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ABSTRACT

The prevailing mindset is that a single decision tree underperforms random forests
in testing accuracy, despite its advantages in interpretability and lightweight struc-
ture. This study challenges such a mindset by significantly improving the testing
accuracy of an oblique regression tree through our gradient-based entire tree opti-
mization framework, making its performance comparable to random forests. Our
approach reformulates tree training as a differentiable unconstrained optimiza-
tion task, employing a scaled sigmoid approximation strategy. To ameliorate nu-
merical instability, we propose an algorithmic scheme that solves a sequence of
increasingly accurate approximations. Additionally, a subtree polish strategy is
implemented to reduce approximation errors accumulated across the tree. Exten-
sive experiments on 16 datasets demonstrate that our optimized tree outperforms
random forests by an average of 2.03% improvements in testing accuracy.

1 INTRODUCTION

The single decision tree attracts significant attention in machine learning primarily due to its inherent
interpretability. Its transparent “IF-THEN” decision rules make it highly useful for tasks that require
clear decision-making logic behind predictions. However, its adoption is often limited by lower test-
ing accuracy, particularly when compared to tree ensemble methods like random forests Breiman
(2001). Random forests, built from multiple decision trees, are widely recognized for their superior
testing performance over single tree models (Tan & Dowe, 2006), and are considered among the best
models for accuracy (Fernández-Delgado et al., 2014; Grinsztajn et al., 2022). However, a random
forest, which typically consists of hundreds of decision trees, diminishes—or even eliminates—the
interpretability that a single decision tree provides. This trade-off between interpretability and ac-
curacy has become widely accepted, fostering a common mindset that random forests outperforms
single decision trees in testing accuracy, though at the expense of interpretability.

Such a mindset forces resorting to random forests when high test accuracy is essential, even in cases
where a lightweight structure and interpretability are also demanded. For instance, in embedded
systems with limited hardware resources and power budgets, a lightweight algorithm like decision
tree is ideally preferable due to its fewer parameters and less energy consumption (Narayanan et al.,
2007; Alcolea & Resano, 2021); yet, in practice, the subpar performance of a single tree often
compels a shift toward tree ensembles, such as random forest (Elsts & McConville, 2021; Van Essen
et al., 2012). This shift introduces two major issues: first, it significantly aggregates computational
costs and memory consumption due to more parameters from multiple trees. Second, it sacrifices
the interpretability, which is crucial in certain decision-support scenarios, such as piece-wise control
law in explicit model predictive control (Bemporad et al., 2002) and threshold-based well control
optimization in subsurface energy management (Kuk et al., 2022). These two concerns can be
effectively addressed by a single decision tree if it could match the accuracy of random forests.

Aiming at a single tree with higher accuracy and fewer parameters, the oblique decision tree, a pivot
extension of the classic orthogonal decision tree, holds great potential. Oblique decision trees use
linear combination of features to create hyperplane splits. When the underlying data distribution fol-
lows hyperplane boundaries, oblique decision trees tend to simply tree structures, generating smaller
trees with higher accuracy (Costa & Pedreira, 2023). Nevertheless, inducing oblique decision trees
presents substantial computational challenges, owing to the innumerable linear combinations of fea-
tures at each node (Zhu et al., 2020). Earlier works mainly focus on finding the optimal feature

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

combinations at an individual node using greedy top-down algorithms, such as CART-LC (Breiman
et al., 1984) and OC1 (Murthy et al., 1994). Besides, alternative methods rely on greedy orthogonal
decision trees CART to induce oblique trees by rotating the feature space, exemplified by HHCART
(Wickramarachchi et al., 2015) and RandCART (Blaser & Fryzlewicz, 2016). Despite their advance-
ments, such greedy methods that focus on optimal splits at current nodes, might lead to suboptimal
solutions due to the weaker splits at subsequent child nodes. Considering the optimization of splits
at all nodes, Bertsimas & Dunn (2017) presented optimal decision tree method to formulate tree
training as a mixed-integer programming (MIP) problem. However, the practical application of
MIP-based methods often face challenges in scalability and computational efficiency, especially in
optimal oblique decision trees where the search space is expanded. Recent efforts in optimal oblique
trees (Boutilier et al., 2023; Zhu et al., 2020) have been confined to classification tasks with a lim-
ited number of categorical prediction values. In contrast, addressing regression tasks with an infinite
number of possible prediction values remains an extremely challenging task. In response to this
limitation, the originators of MIP-based work further proposed an alternative local search method
ORT-LS (Dunn, 2018) for tasks that are unsolvable by MIP. However, ORT-LS still suffers from
high computational costs and suboptimal accuracy, as observed in our comparative studies.

In this work, we reformulate the training of an entire tree as an unconstrained optimization task,
offering significant solvability advantages over MIP reformulations. This reformulation makes it
easily solvable through exiting powerful frameworks of gradient-based optimization. Given the
non-differentiability of indicator functions in hard splits, two intuitive solutions has been used in
recent literatures: treating the gradient of those indicators as one via straight-through estimators
(Karthikeyan et al., 2022; Marton et al., 2023) and approximating indicators with sigmoid functions
(Wan et al., 2021; Yang et al., 2018; Frosst & Hinton, 2017). However, straight-through estimators
may neglect crucial gradient information, resulting in suboptimal outcomes, as observed in both
their work (Marton et al., 2023) and our experiments. In light of those works with sigmoid approx-
imation, two major concerns arise. Firstly, previous efforts predominantly focused on constructing
“soft” decision trees (İrsoy et al., 2012), characterized by soft splits and probabilistic predictions.
Nonetheless, there do exist scenarios where a hard-split tree with deterministic predictions is not
only appropriate but also imperative. Further, the probabilistic soft splits significantly deviates from
the interpretable True-False, IF-THEN decision logic. Secondly, the simple use of sigmoid functions
leaves a considerable gap from indicator functions, necessitating a delicate balance between approx-
imation accuracy and numerical solvability by scaling the sigmoid function (Hehn & Hamprecht,
2017). However, identifying the optimal scale factor also remains a challenge. More importantly,
less attention has been paid to the approximation error that can accumulate across the entire tree, par-
ticularly in deep trees with numerous nodes. These issues substantially degrade the testing accuracy
of a gradient-based tree, far lagging behind the performance of random forests.

Our contributions: Firstly, we propose a strategy of iterative scaled sigmoid approximation to
narrow the gap between the original indicator function and its differentiable approximation. This
strategy uses the solution from an optimization task with a smaller scale factor to effectively warm-
starts optimization with a larger scale factor. By starting with a smaller, smoother scale factor and
gradually increasing it, this strategy enhance the approximation degree, while mitigating numerical
instability typically associated with larger scale factors. Secondly, unlike soft trees with probabilis-
tic predictions, we remain the hard-split decisions and deterministic predictions, only using soft
approximation for gradient computations. Thirdly, to address severe approximation errors accumu-
lated across each split in the entire tree, we propose a subtree polish strategy to further improve
the training optimality. Finally, we provide an extensible Gradient-based Entire Tree optimization
framework for inducing a tree with both constant predictions (termed as GET) and linear predictions
(termed as GET-Linear), easily implemented in existing deep learning frameworks, as available
in https://github.com/anonymweblinks/GET.

Performance: Experiments show that our method can produce a tree with testing accuracy compa-
rable to, or even exceeding, that of random forests, challenging the prevailing mindset.

• Empirically and statistically, our oblique tree GET outperforms compared decision tree methods in
test accuracy. Notably, it outperforms CART by 7.59% and the state-of-the-art ORT-LS by 3.76%.

• Our method GET statistically confirms its testing accuracy as comparable to random forests, and
empirically underperforms random forests by a mere 0.24% gap.
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• Our optimized oblique tree with linear predictions GET-Linear impressively outperforms ran-
dom forests by an average of 2.03% in testing, demonstrating a statistically significant difference.

2 FOUNDATIONS OF OBLIQUE REGRESSION TREE

In this section, we explore oblique regression trees from an optimization perspective by formulating
tree training as an optimization problem. For ease of understanding, we primarily follow the notation
for optimal decision trees as used in the original work of Bertsimas & Dunn (2017).

Consider a dataset comprising n samples denoted as {xi, yi}ni=1 with input vectors xi ∈ [0, 1]p

and true output values yi ∈ [0, 1]. A binary tree of depth D comprises T = 2D+1 − 1 nodes,
where each node is indexed by t ∈ T = {1, · · · , T} in a breadth-first order. The nodes can be
categorized into two types: branch nodes, which execute branching tests and are denoted by indices
t ∈ TB = {1, · · · , ⌊T/2⌋}, and leaf nodes denoted by t ∈ TL = {⌊T/2⌋+ 1, · · · , T}, responsible
for providing regression predictions. Each branch node comprises a split weight at ∈ Rp and a split
threshold bt ∈ R to conduct a branching test (aT

t xi ≤ bt) for the samples allocated to that particular
branch node. If a sample xi passes the branching test (aT

t xi ≤ bt), it is directed to the left child
node at index 2t; otherwise, to the right child node at index 2t + 1. Each leaf node comprise the
parameters of kt ∈ Rp and ht ∈ R to provide a prediction value for current leaf. The training of
oblique regression trees involves solving the following optimization problem:

min
A,b,K,h

n∑
i=1

(yi − ŷi)
2
, (1a)

s.t. ŷi = ftree(A, b,K,h,xi), i ∈ {1, · · · , n}, (1b)
where A = {a1, · · · ,a⌊T/2⌋} and b = {b1, · · · , b⌊T/2⌋} are tree split parameters for branch nodes,
K = {k⌊T/2⌋+1, · · · ,kT } and h = {h⌊T/2⌋+1, · · · , hT } are leaf prediction parameters. In this
work, we consider two types of leaf prediction: (a) linear prediction and (b) constant prediction.

(a) Tree with linear predictions: Linear predictions involve a linear combination of input features
(Quinlan, 1998), representing a general form of leaf predictions. If xi is assigned to leaf node t, the
final prediction is described as ŷi = kT

t xi + ht.

(b) Tree with constant predictions: This type is a special case of linear predictions, where K
remains zero. It is the most commonly used type in existing decision tree methods, with ŷi = ht.

3 UNCONSTRAINED OPTIMIZATION FORMULATION

In this work, we reformulate the tree training as an unconstrained optimization task, allowing us to
leverage powerful gradient-based optimization frameworks for improved solvability and accuracy.

3.1 DETERMINISTIC SAMPLE ROUTE FORMULATION

The interpretability of decision trees primarily stems from their transparent prediction rules associ-
ated with the tree paths from the root to leaf nodes. Identifying a sample’s specific tree path, such
as “1 → 2 → 5” for a sample routed to leaf node 5, is crucial for calculating prediction loss.

Specifically, for a leaf node t ∈ TL, we denote its set of ancestor nodes as At. The subsets Al
t and

Ar
t represent the ancestor nodes traversed via the left branch and right branch, respectively, such

that At = Al
t ∪ Ar

t . Additionally, we introduce a binary branching test variable Ii,j ∈ {0, 1} to
signify whether a sample xi successfully passes the branching test at the branch node j, defined as
Ii,j = 1

(
bj − aT

j xi > 0
)
. Here, Ii,j = 1 signifies a successful pass at node j; otherwise, Ii,j = 0.

Subsequently, the sample routing indicator Pi,t ∈ {0, 1}, determines if sample xi is assigned to leaf
node t, computed as follows:

Pi,t =
∏
j∈Al

t

Ii,j
∏
j∈Ar

t

(1− Ii,j) , (2)

where Pi,t = 1 indicates an assignment to the leaf node t, and Pi,t = 0 denotes non-assignment. An
illustrative example for understanding these formulations is provided in Appendix A, Figure 4.
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3.2 LOSS FORMULATION AND DIFFERENTIABILITY

Following the deterministic sample route, the training of oblique regression trees is subsequently
reformulated as an unconstrained optimization problem. The objective function L is defined by

L =

n∑
i=1

∑
t∈TL

Pi,t

(
yi − (kT

t xi + ht)
)2

. (3)

Here, the variables A, b, K and h are implicitly expressed in terms of Ii,j and Pi,t, as shown in
Equation (2). For decision trees with constant predictions, the variable K is always equal to zero.

In the computation of gradients of L (as detailed in Appendix B, Figure 5), an exception arises
due to the non-differentiability of the indicator function 1(·) in the calculation of the branching test
variable Ii,j . To resolve this issue, we employ the scaled sigmoid function S(·) as an approximation
for the indicator function, resulting in the introduction of the approximated branching test variable
denoted as Îi,j :

Îi,j = S(bj − aTj xi) =
[
1 + e−α(bj−aT

j xi)
]−1

, (4)

where α represents a critical balance between achieving high approximation accuracy and maintain-
ing stability in optimization processes, while also providing some potential concerns.

Concerns regarding the special case: α = 1 corresponds to standard sigmoid function, commonly
used in Soft Decision Tree (İrsoy et al., 2012; Frosst & Hinton, 2017), which adopt soft splits at
branch nodes and probabilistic predictions at leaf nodes. Their work on soft trees deviates from the
interpretability pertinent to hard True-False decision and deterministic predictions, making it less
suitable for scenarios requiring hard-splits, as exemplified in Appendix C. More importantly, there
remains a big gap between the standard sigmoid function with α = 1 and the true indicator function,
diminishing the accuracy of the training.

Concerns regarding the selection of α: A larger α leads to a more accurate approximation, but it
also introduces numerical instability, potentially compromising the optimization capabilities. Fur-
ther empirical analyses are given in Appendix D. Identifying the optimal α that balances approxima-
tion degree and differentiability remains a challenge. To mitigate this, we propose an iterative scaled
sigmoid approximation strategy, detailed in the following Section 4.1, to narrow the gap between
the original indicator function and its differentiable approximation.

Clarification for the adoption of hard-split in inference: Unlike soft trees that base final predic-
tions on probability and trained leaf values (K and h), our tree still maintains hard-splits. Hard
splits in the inference phase not only meet the practical demand for hard decisions but also mitigates
additional errors that may arise from the trained leaf values. Ideally, with a high approximation
accuracy and optimal optimization, the trained leaf values from soft approximations should closely
match those calculated by hard splits. However, achieving this level of optimality is challenging due
to potential errors in soft approximation. This concern justifies the use of hard splits in the inference
phase, which are more likely to yield more accurate final predictions.

4 OBLIQUE TREE TRAINING THROUGH GRADIENT-BASED OPTIMIZATION

Our optimization task in Equation (3), incorporating the approximated Îi,j obtained from Equa-
tion (4), closely approximate the original non-differentiable tree training problem. This task can be
efficiently solved through our proposed entire tree optimization framework.

4.1 ITERATIVE SCALED SIGMOID APPROXIMATION

In response to early-mentioned concerns regarding an optimal α, we propose a strategy of iterative
scaled sigmoid approximation to enhance the approximation accuracy to indicator functions. The
key challenge of lies in the selection of α. A larger α may destabilize optimization process, whereas
a smaller α tends to be easier to solve for gradient-based optimization. Our strategy leverage this
insight by using a solution from an optimization task with a smaller scale factor to effectively warm-
starts optimization with a larger scale factor. By starting with a smaller scale factor and gradually
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increasing it, this strategy enhance the approximation accuracy, while mitigating numerical instabil-
ity typically associated with larger scale factors.

Specifically, the procedure begins by randomly sampling a set of scale factors within a predeter-
mined range, ensuring a broad exploration of possible α values. These sampled scale factors, de-
noted as {α1, · · · , αn}, are then applied in ascending order, from small to large. We initiate the
optimization with the smallest sampled scale factor to generate the initial optimized tree candidate.
This candidate then serves as the starting point for the subsequent optimization task with a slightly
larger α. This iterative process is repeated until all sampled scale factors have been utilized. Detailed
implementation steps are integrated within our systematic optimization framework, Algorithm 1.

4.2 GRADIENT-BASED ENTIRE TREE OPTIMIZATION FRAMEWORK

Unlike greedy methods that optimize each node sequentially, our approach concurrently optimizes
the entire tree, encompassing tree split parameters A and b at all branch nondes, and leaf prediction
parameters K and h at all leaf nodes. Our entire tree optimization, outlined in Algorithm 1, begins
at multiple random initialization (Line 4 - 6). This multiple-initialization serves two purposes: First,
multi-start increases the chance of finding the optimal solution of the unconstrained reformulation.
Second, in Section 4.1, the iterative scaled sigmoid approximation involves randomly sampling
scale factors for each iteration. These multiple starts enable sampling diverse scale factors in a
wider range, thereby enhancing the robustness and approximation accuracy. For each start, the
optimization with iterative scaled sigmoid approximation is implemented to produce an optimized
tree candidate (Line 7 - 17). Importantly, our method deterministically calculates the leaf values
based on hard-splits (Line 12). The specific deterministic calculations for K and h are given in
Appendix E. Finally, the optimal tree is determined by comparing each candidate from multiple
starts (Line 14 - 15). This optimization framework is readily implementable using existing powerful
tools that embed gradient-based optimizers, such as PyTorch and TensorFlow.

The framework is applicable to decision trees with both constant and linear predictions. The only
minor difference is that for constant predictions, the parameters K remain zero without gradients.
For clarity, we term our approach Gradient-based Entire Tree optimization as GET when applied to
trees with constant predictions; otherwise, termed as GET-Linear for trees with linear predictions.

Algorithm 1 Gradient-based Entire Tree Optimization (applicable to both GET and GET-Linear)
1: Input: {xi, yi}ni=1, tree depth D, learning rate η, epoch number Nepoch, multi-start number Nstart.
2: Output: Optimal trainable variables Abest, bbest, Kbest (Zero for the case of GET) and hbest.
3: Assign a large value to the parameter Lmin and define empty variables for Abest, bbest, Kbest and hbest.
4: for start = 1 to Nstart do
5: Initialize trainable variables A, b, K (Zero for GET) and h.
6: Randomly generate a set of scale factors {α1, · · · , αn} in ascending order.
7: for αiter ∈ {α1, · · · , αn} do
8: If iter ̸= 1, initialize trainable variables from the solution of last iteration computed by Line 13.
9: for k = 1 to Nepoch do

10: Approximate loss L at step k by Equation (3) and (4) and calculate ∂L
∂A

, ∂L
∂b

, ∂L
∂K

(exclude for
GET) and ∂L

∂h
. Then update trainable variables, such as Ak+1 = Ak − η ∂L

∂A
.

11: end for
12: Deterministically update K and h based on hard-splits.
13: Generate a tree candidate with optimized variables, termed as Aiter , biter , Kiter and hiter .
14: Deterministically compute the current loss L based on hard-splits using Equation (3).
15: IF L < Lmin, Abest ← Aiter; bbest ← biter; Kbest ←Kiter; hbest ← hiter; Lmin ← L.
16: end for
17: end for

Hyperparameters Analysis: Despite the introduction of additional hyperparameters in gradient-
based optimization, tuning them is not typically necessary because their effects are straightforward.
For instance, the multi-start number Nstart directly influences training optimality by increasing the
chance of finding optimal solution, albeit at a higher computational cost. In practice, Nstart is set to
balance acceptable computational cost with desired training accuracy. More empirical analyses of
Nstart, the sampling range of scale factors and other hyperparameters are detailed in Appendix F.
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4.3 SUBTREE POLISH STRATEGY TO MITIGATE ACCUMULATED APPROXIMATION ERRORS

Accumulated Approximation Error Analysis: Despite our approximation strategy effectively nar-
rowing the substantial gap to the indicator function at each node, the approximation error can still
accumulate across an entire decision tree, particularly in deeper trees with numerous nodes. This
accumulation can significantly degrade the training optimality, a concern that has received insuffi-
cient attention in the literature. To mitigate these accumulated errors, we propose a subtree polish
strategy to further enhance training optimality.
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Figure 1: The illustrative example of our subtree polish strategy.

Subtree Polish Strategy to improve training optimality: In Algorithm 1, Our method is designed
to simultaneously optimize all 2D − 1 branch nodes of an entire tree. Intuitively, once a branch
node is optimally identified, we can sequentially polish its subtree, including all child nodes of that
branch node, while keeping the rest of the tree fixed. This process forms the basis of our subtree
polish strategy, which starts with optimizing the entire tree, establishing an initial best tree candidate.

For each branch node, there exists a corresponding subtree that extends from the current branch node
to the leaf nodes. As illustrated in Figure 1, the subtree is represented within a dashed triangle. Each
subtree is optimized using the same approach as for entire tree in Algorithm 1, while leaving the
remaining tree nodes fixed. Each subtree optimization is warm-started with the best tree candidate
available at that time. Once a subtree is optimized, we combine it with the fixed tree nodes and
update the best tree if the combined tree improves training accuracy. This process then proceeds to
next subtree, rooted at next branch node. This iterative process continues until the subtree rooted at
the last branch node is polished. The final best tree is returned after polishing all branch nodes. The
implementation procedure of the subtree polish strategy is provided in Appendix G, Algorithm 2.

5 NUMERICAL EXPERIMENTS AND DISCUSSIONS

We evaluate our optimized tree with both constant and linear predictions, termed as GET and
GET-Linear, against random forests RF. Our analysis covers testing accuracy, the number of
parameters and prediction time. Additionally, we assess the capabilities of GET, with other de-
cision tree methods in terms of both training optimality and testing accuracy. Finally, we pro-
vide a limitation analysis. The compared tree methods include the baseline CART, greedy methods
like HHCART (Wickramarachchi et al., 2015), RandCART (Blaser & Fryzlewicz, 2016), and OC1
(Murthy et al., 1994), existing gradient-based trees such as GradTree (Marton et al., 2023) using
a straight-through estimator for non-differentiable splits, and soft decision tree SoftDT (Frosst &
Hinton, 2017) using standard sigmoid function for soft approximation, as well as the state-of-the-
art heuristic method ORT-LS (Dunn, 2018). These comprehensive experiments are conducted on
16 real-world datasets obtained from UCI machine learning repository (Dua & Graff, 2019) and
OpenML (Vanschoren et al., 2014), with sample size ranging from 1,503 to 16,599 and feature
number from 4 to 40. Detailed dataset information and specific data usage in our study is provided
in Appendix H.1. Comparisons focus on testing and training accuracy in terms of R2, and com-
putational time in seconds. The Friedman Rank (Sheskin, 2020) is also used to statistically sort
the compared methods according to their testing accuracy, with a lower rank indicating better per-
formance. Comprehensive details on the implementation, algorithm configuration, and computing
facilities are provided in Appendix H.2.
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5.1 TESTING ACCURACY COMPARISON AGAINST RANDOM FORESTS

For testing accuracy comparison, we conduct depth tuning by cross validation to determine the op-
timal depth across depths from 1 to 12 for our methods. For a fair comparison, comprehensive
hyperparameter tuning is also performed for RF. Specifically, the number of trees in a forest is a
critical parameter. It is well-recognized that testing performance improves with an increase in the
number of trees; however, the marginal gains become less pronounced as additional trees are added
(Probst & Boulesteix, 2018; Oshiro et al., 2012). Accordingly, the number of trees for RF is tuned
across a set of {50, 100, 200, 300, 400, 500}. Moreover, the maximum tree depth for RF is tuned
over a broader range, from 1 to 50, to potentially capture optimal depth settings, given that RF em-
pirically benefits from overly-deeper trees for enhanced testing accuracy. Other hyperparameters for
RF, including the number of features per split and the number of samples per tree, are maintained at
default settings. These parameters have been shown to balance the bias-variance trade-off, typically
yielding robust performance with default values (Probst & Boulesteix, 2018).

Testing accuracy comparison: Our GET slightly underperforms RF by 0.24% averaging across
16 datasets. In contrast, GET-Linear significantly outperforms RF by 2.03%, as detailed in Ta-
ble 1. This superiority is further supported by the Friedman Rank, where GET-Linear ranking
the highest, followed by RF and GET. Among 16 datasets, GET-Linear outperforms RF in 8
datasets. Detailed results for each dataset are given in Appendix H.3. These findings question the
conventional belief that a single decision tree typically underperforms random forests, highlighting
the capabilities of our approach in achieving competitive testing accuracy.

Table 1: Comparison of testing accuracy for GET, GET-Linear, and RF across 16 datasets.
Item Number of Trees Tree Depth Test Accuracy (%) Friedman Rank
RF 309.38 19.24 81.94 1.75
GET 1 6.56 81.70 2.69

GET-Linear 1 6.94 83.97 1.56

Paired T-test for statistical significance: While Table 1 empirically shows that our single tree is
competitive to RF, we further conduct a Paired T-test to statistically validate the significant difference
among GET, GET-Linear and RF. The null hypothesis asserts that RF is not significantly different
from GET and GET-Linear. By setting a tolerance (acceptable significance level) τ = 0.1, if cal-
culated p-value is less than τ , the null hypothesis can be rejected, indicating statistical significance.

GET GET-Linear5

0

5

T-
st

at
is

tic

p=0.877
p=0.127

0.158
-1.614

Figure 2: T-statistic and p-value of the Paired T-test comparing RF with our methods.

The t-statistic (black point), p-value, 95% confidence interval are depicted in Figure 2. The Paired
T-test between RF and our GET yields a p value of 0.877 (greater than τ ), suggesting no statistically
significant difference in testing accuracy between RF and GET. Thus, their testing accuracies are
comparable. In contrast, the p value for T-test between RF and GET-Linear is relatively smaller
with p = 0.127, also suggesting that RF is not significantly better than GET-Linear. Moreover,
if we accept a tolerance τ > 0.127, we can reject the null hypothesis of equal performance. As
indicated by a negative t-statistic of -1.164, this implies that GET-Linear is statistically superior
to RF. These results further confirm the competitive testing accuracy of our tree over random forests.

5.2 TESTING ACCURACY COMPARISON AGAINST OTHER DECISION TREES

Following our empirical findings, which showcases the superiority of our optimized tree, we proceed
to compare it with other commonly-used decision tree methods under same depth tuning setting, to
further validate the efficacy of our approach. For a fair comparison, since existing decision trees are
mainly designed with constant predictions, we limit the comparison to our GET with them.

7
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Table 2: Comparison of test accuracy for GET and other decision tree methods.
Item Greedy Methods Gradient-based Trees State-of-the-Art Heuristic Our Tree

CART OC1 RandCART HHCART SoftDT GradTree ORT-LS GET
Test Accuracy (%) 74.18 72.54 71.31 76.37 72.69 64.13 78.01 81.77

Tree Depth 10.06 7.94 8 8.19 10.19 10.38 6.13 6.56
Friedman Rank 4.81 5.19 5.88 3.63 4.69 6.94 3.50 1.38

Testing accuracy comparison: Our GET consistently outperform compared decision trees in test-
ing accuracy across 16 datasets, as shown in Table 2. Specifically, GET achieves the highest test-
ing accuracy, surpassing the state-of-art heuristic method ORT-LS by 3.76%, the greedy method
HHCART by 5.39%, and the baseline orthogonal tree CART by 7.59%. Notably, compared to
other gradient-based trees, GET also outperforms GradTree by 17.64%, and the soft decision tree
SoftDT by 9.08%. These results underscore the effectiveness of our tree optimization approach.
Additionally, the rank comparisons reinforce these findings, with GET attaining the highest rank.
Detailed results for each dataset are provided in Appendix H.3.

Paired T-test for statistical significance: The Paired T-test for all comparisons consistently shows
that we can reject the null hypothesis, which posits that our method GET is not significantly different
from the compared decision trees. The observations of p < τ = 0.1 and positive t-statistic value,
indicate that GET is superior to these compared decision trees with statistically significance.

CART OC1 RandCART HHCART SoftDT GradTree ORT-LS
0

10

20

T-
st

at
is

tic p=0.012 p=0.001
p=0.001

p=0.011
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p=0.002

2.842 3.910 4.225
2.890 2.881

4.860 3.860

Figure 3: The Paired T-test comparing our GET with various decision tree methods.

5.3 SUPERIOR TEST ACCURACY ANALYSIS: FROM TRAINING OPTIMALITY PERSPECTIVE

To figure out the rationale behind the competitive testing accuracy of our optimized tree, we delve
into the analysis of training optimality from optimization perspective. Notably, the training of tree
with different depth corresponds to different optimization problems, exhibiting different optimiza-
tion challenge in scalability and performance. To assess the optimization capabilities, the training
of a predetermined-depth tree is a common practice in the literature. Therefore, the predetermined
depths of D = {2, 4, 8, 12} are used for training accuracy comparison between these top four meth-
ods reported in Table 2. Detailed comparisons for all methods are given in Appendix H.4.

Table 3: Training accuracy comparison on 16 real-world datasets across different depths.

Depth Training Accuracy (%) Testing Accuracy(%)
CART HHCART ORT-LS GET CART HHCART ORT-LS GET

2 47.26 46.68 66.47 71.80 46.45 46.12 64.44 70.24
4 60.90 62.59 79.51 82.40 58.60 61.24 74.84 77.89
8 81.33 82.28 90.81 91.02 69.07 74.18 74.00 78.55

12 93.43 94.90 97.50 96.09 67.21 67.63 67.14 71.97

The effectiveness of our tree optimization approach: Table 3 shows that our method GET out-
performs ORT-LS by 5.33%, 2.89% and 0.21% in training accuracy for depths of 2, 4 and 8, re-
spectively, while it outperforms CART by 24.55%, 21.50% and 9.69% across various depths. These
improvements in training accuracy verify the efficacy of our tree optimization method to achieve
training optimality. Additionally, an increase in training accuracy correlates with improved testing
accuracy at depths of 2, 4, and 8, suggesting that an optimized tree with higher training accuracy can
potentially yield better testing accuracy before encountering serious overfitting issues. Overfitting,
particularly at deeper depth like 12, is simply addressed by tuning an optimal tree depth through
cross validation, as discussed in previous subsections.
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Ablation study on the strategies of our optimization approach: The observed improvements
can be attributed to two key strategies: the iterative scaled sigmoid approximation, which improves
training accuracy by an average of 9.95% across depths of 2, 4, 8, and 12 compared to the simple
sigmoid approximation; and the subtree polish strategy, which contributes an additional average
improvement of 1.4%. Detailed results for the ablation study are provided in Appendix H.5.

Training Time Analysis: A detailed training time comparison is given in Appendix H.4. Our
method GET not only significantly improves training accuracy but also shows great scalability over
the state-of-the-art ORT-LS by approximately 20 times acceleration at deep depth 12. However,
it remains considerably slower, thousands of times, than CART. This trade-off between training
optimality and computational cost is deemed acceptable for a single tree model. In comparison with
random forests, our GET offers competitive accuracy but incurs substantially longer training times,
being thousands of times slower than RF. Despite this inefficiency, our focus mainly lies in making
a single tree suitable for scenarios with limited computational resources. Consequently, our primary
metrics of interest are testing accuracy, interpretability and testing time, rather than training time.
The benefits of its lightweight structure and prediction speed are further discussed in Section 5.4.

5.4 ANALYSIS FOR PARAMETER NUMBER, PREDICTION TIME, AND INTERPRETABILITY

As discussed in Section 1, random forests usually replace a single decision tree to improve testing
accuracy in embedded systems. However, a single tree with comparable accuracy could be prefer-
able due to its lightweight structure and interpretability. In this section, we primarily compare our
methods with RF regarding the number of parameters, prediction time, and interpretability.

Comparison of parameter number and testing time: Building on the testing comparison in Ta-
ble 1, we then assess total parameter number and prediction time, in Table 4. RF contains 324
times more parameters than GET and 119 times more than GET-Linear. The prediction speed of
GET, averaged over 10,000 repetitions, is 30 times faster than RF, and GET-Linear is 24 times
faster. This comparison shows that our tree achieves competitive accuracy with significantly fewer
parameters and faster prediction than RF, thereby saving memory and computational costs.

Table 4: Comparison of parameter number and prediction time for GET, GET-Linear, and RF.

Item Number
of Branch Nodes

Number
of Leaf Nodes

Parameter Number
in Branch Nodes

Parameter Number
in Leaf Nodes Total Parameters Prediction Time

(s)
RF 819,566.56 819,875.94 1,639,133.13 819,875.94 2,459,009.06 1.7337
GET 476.50 477.50 7,101.63 477.50 7,579.13 0.0572

GET-Linear 1,084.25 1,085.25 10,292.13 10,304.50 20,596.63 0.0728

Interpretability of our oblique tree: Interpretability can be assessed from two aspects: tree-based
prediction logic and the complexity of decision rules. First, RF, in Table 1, uses an average of 309.38
trees for higher accuracy, almost losing the interpretability for final predictions compared to a single
tree. Second, RF often results in an overly-deep tree with an average depth of 19.24, significantly
deeper than our GET with depth of 6.56. Moreover, as compared in Table 2, GET not only achieves
the highest testing accuracy but also with the lowest tree depth, enhancing interpretability. For in-
stance, a 2-depth tree yields 4 decision rules across 2 layers, whereas 8-depth tree produces 256 rules
across 8 layers. Understanding hundreds of nested IF-THEN rules can be challenging. Therefore,
our optimized tree with smaller depth offers more interpretability than deeper decision trees.

5.5 LIMITATIONS ANALYSIS OF OUR APPROACH

Our extensive experiments are conducted on datasets containing less than 20,000 samples, without
exploring large-scale datasets. While our approach exhibits great scalability compared to the state-
of-the-art heuristic decision tree ORT-LS, it is still thousands of times slower than the heuristic
methods CART and RF. This limitation is generally acceptable for a single tree model, particularly
because it significantly improves accuracy, aligning with our primary focus on testing accuracy,
interpretability, and prediction time. However, the longer training time could potentially limit the
application of our method in scenarios involving large-scale datasets.

Another limitation arises from inadequate regularization in our optimization approach. As shown
in Table 3, while training accuracy for GET improves by 5.07% from depth 8 to 12, testing accu-

9
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racy conversely drops by 6.58%, indicating a serious overfitting issue. This overfitting issue is more
pronounced in decision trees with linear predictions, with more detailed analysis and comparisons
provided in Appendix H.6. In response, we preliminarily apply L1 regularization to GET-Linear
for the experiments reported in Table 1, leading to a modest improvement in testing accuracy by
0.73%. However, due to the challenges in identifying the optimal regularization strength and poten-
tial increases in computational costs, we limited our tuning to only between 0 and a small value of
1e − 5, without extensive tuning. Despite these efforts, further enhancements in testing accuracy
could be achieved through more dedicated regularization strategies.

6 CONCLUSION

In conclusion, our development of the gradient-based entire tree optimization method, is not neces-
sarily to bring the best regression tree, but rather to explore the potential of a single decision tree
in achieving comparable testing accuracy to random forests. This makes a single tree more prefer-
able for scenarios where a lightweight structure and interpretability are valued alongside predictive
performance. Our approach reformulates decision tree training as a differentiable unconstrained
optimization task, incorporating an iterative scaled sigmoid approximation. The tree optimization
capability is further enhanced by a subtree polish strategy. Extensive experiments show that our
optimized tree not only achieves but also statistically confirms its testing accuracy comparable to
random forest, challenging the mindset that a single decision tree typically underperforms random
forests in testing performance.

10
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A EXAMPLE OF DETERMINISTIC SAMPLE ROUTING FORMULATIONS

We introduced the deterministic sample routing formulations in Section 3.1. To facilitate a better
understanding of these formulations, an illustrative example is provided. As shown in Figure 4, we
use a 2-depth tree, where the leaf nodes are indexed by TL = 4, 5, 6, 7. Focusing on leaf node t = 5,
the corresponding tree path is delineated as ”1 → 2 → 5”. The associated ancestor sets are specified
as Al

5 = 1 and Ar
5 = 2. Assuming the ith sample is assigned to leaf node 5 by successfully passing

the branching test on branch node 1 with aT
1 xi < b1 and failing on branch node 2 with aT

2 xi ≥ b2,
the ensuing outcomes are Ii,1 = 1, Ii,2 = 0, Pi,5 = Ii,1 ·(1−Ii,2) = 1, and Pi,4 = Pi,6 = Pi,7 = 0.
Consequently, this signifies that the sample xi is assigned to leaf node 5.
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Figure 4: Example of deterministic sample routing 1 → 2 → 5.

B ILLUSTRATION OF FORWARD AND BACKWARD PROCESSES OF LOSS
CALCULATION.

Along with detailing gradient calculation for the loss function in Section 3.2, we also provide a
comprehensive illustration of the forward and backward processes involved in loss and gradient
calculation.

Equation (4) Same
Route Loss

Equation (6)Equation (5)

Equation (6)
Equation (4)

The forward and backward processes of Loss equation L 
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Function
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Backward
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xi

<latexit sha1_base64="BGx6uD7LRDEP4MsE+He5Gk2xI3I=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQNyURX8uKG5cV7AOaECbTSTt28mDmRighOzf+ihsXirj1F9z5N07bLLR64MLhnHu59x4/EVyBZX0ZpYXFpeWV8mplbX1jc8vc3mmrOJWUtWgsYtn1iWKCR6wFHATrJpKR0Bes44+uJn7nnknF4+gWxglzQzKIeMApAS155r4TEhj6QUZyL7t0BAugBo7kgyEceXe5Z1atujUF/kvsglRRgaZnfjr9mKYhi4AKolTPthJwMyKBU8HyipMqlhA6IgPW0zQiIVNuNv0jx4da6eMglroiwFP150RGQqXGoa87J1ereW8i/uf1Uggu3IxHSQosorNFQSowxHgSCu5zySiIsSaESq5vxXRIJKGgo6voEOz5l/+S9nHdPquf3pxUG7iIo4z20AGqIRudowa6Rk3UQhQ9oCf0gl6NR+PZeDPeZ60lo5jZRb9gfHwDZqqZjQ==</latexit>aA(t)j
<latexit sha1_base64="+kTP/Zx6czMMX4vOwPJyBGMZa/g=">AAACJHicbZDLSsNAFIYn9VbrrerSzWARKkhJpKjgpuJGdxXsBZoSJtNJO3ZyYeZEKCEP48ZXcePCCy7c+CxO2oLa+sPAz3fO4cz53UhwBab5aeQWFpeWV/KrhbX1jc2t4vZOU4WxpKxBQxHKtksUEzxgDeAgWDuSjPiuYC13eJnVW/dMKh4GtzCKWNcn/YB7nBLQyCme254kNLEjIoETgetOwo8gTX/IdUaSC1swD8pgS94fwKFzl6apUyyZFXMsPG+sqSmhqepO8c3uhTT2WQBUEKU6lhlBN8kWUcHSgh0rFhE6JH3W0TYgPlPdZHxkig806WEvlPoFgMf090RCfKVGvqs7fQIDNVvL4H+1TgzeWTfhQRQDC+hkkRcLDCHOEsM9LhkFMdKGUMn1XzEdEJ0a6FwLOgRr9uR50zyuWCeV6k21VMPTOPJoD+2jMrLQKaqhK1RHDUTRA3pCL+jVeDSejXfjY9KaM6Yzu+iPjK9vYHOlxw==</latexit>

@Pi,t

@Ii,A(t)j

<latexit sha1_base64="fHwtXDauAKN7QR2TSPlFm+jttmY=">AAACFXicbVDLSsNAFJ3UV62vqEs3g0VwUUoiRV0W3LhwUcE+oAllMp20QycPZm6EEvITbvwVNy4UcSu482+ctEG09cDA4Zx779x7vFhwBZb1ZZRWVtfWN8qbla3tnd09c/+go6JEUtamkYhkzyOKCR6yNnAQrBdLRgJPsK43ucr97j2TikfhHUxj5gZkFHKfUwJaGpg1x5eEpk5MJHAinIDAmBKR3mTZj4hbg5TXIMsGZtWqWzPgZWIXpIoKtAbmpzOMaBKwEKggSvVtKwY3zcdSwbKKkygWEzohI9bXNCQBU246uyrDJ1oZYj+S+oWAZ+rvjpQESk0DT1fmW6tFLxf/8/oJ+JduysM4ARbS+Ud+IjBEOI8ID7lkFMRUE0Il17tiOiY6JtBBVnQI9uLJy6RzVrfP643bRrWJizjK6Agdo1NkowvURNeohdqIogf0hF7Qq/FoPBtvxvu8tGQUPYfoD4yPb033oA4=</latexit>

@L
@Pi,t

<latexit sha1_base64="oWYV63/9LAJgwikw6B4xiCh9NKc=">AAACA3icbVDLSsNAFJ34rPUVdaebwSJUkJJIUZcVN7qrYB/QhDCZTtqxkwczN0IJATf+ihsXirj1J9z5NyZtFtp64MLhnHu59x43ElyBYXxrC4tLyyurpbXy+sbm1ra+s9tWYSwpa9FQhLLrEsUED1gLOAjWjSQjvitYxx1d5X7ngUnFw+AOxhGzfTIIuMcpgUxy9P0bJ+EnyaUlmAdVsCQfDOHYuU/TsqNXjJoxAZ4nZkEqqEDT0b+sfkhjnwVABVGqZxoR2AmRwKlgadmKFYsIHZEB62U0ID5TdjL5IcVHmdLHXiizCgBP1N8TCfGVGvtu1ukTGKpZLxf/83oxeBd2woMoBhbQ6SIvFhhCnAeC+1wyCmKcEUIlz27FdEgkoZDFlodgzr48T9qnNfOsVr+tVxq4iKOEDtAhqiITnaMGukZN1EIUPaJn9IretCftRXvXPqatC1oxs4f+QPv8ASgwlx0=</latexit>

Ii,A(t)j

<latexit sha1_base64="vlhlthbQgntZLzSLn3HC42UbMUY="></latexit>

@Ii,A(t)j

aA(t)j

<latexit sha1_base64="io1/dW+TG6byl7QeEkp58FDL5Nk=">AAACKXicbVDLSsNAFJ3UV62vqks3g0WoICWRoi4rbnRXwT6gCWEynbRjJw9mboQS8jtu/BU3Coq69Uectllo7YELh3Pu5d57vFhwBab5aRSWlldW14rrpY3Nre2d8u5eW0WJpKxFIxHJrkcUEzxkLeAgWDeWjASeYB1vdDXxOw9MKh6FdzCOmROQQch9TgloyS03bF8SmtoxkcCJwDduyk/SS1swH6pgSz4YwrF7n2VZ6rmLdLdcMWvmFPg/sXJSQTmabvnV7kc0CVgIVBClepYZg5NO9lPBspKdKBYTOiID1tM0JAFTTjr9NMNHWuljP5K6QsBT9fdESgKlxoGnOwMCQzXvTcRFXi8B/8JJeRgnwEI6W+QnAkOEJ7HhPpeMghhrQqjk+lZMh0RHBzrckg7Bmn/5P2mf1qyzWv22XmngPI4iOkCHqIosdI4a6Bo1UQtR9Iie0Rt6N56MF+PD+Jq1Fox8Zh/9gfH9A3wRp+k=</latexit>

@Ii,A(t)j

bA(t)j

<latexit sha1_base64="inysxcygv8xIBVc3A+wNI5RmpC4=">AAAB/3icbVBNS8NAEN3Ur1q/ooIXL6FFqJeSSFGPFS8eK9gPaErYbDft2s0m7E6EEnvwr3jxoIhX/4Y3/42bNgdtfTDweG+GmXl+zJkC2/42Ciura+sbxc3S1vbO7p65f9BWUSIJbZGIR7LrY0U5E7QFDDjtxpLi0Oe044+vM7/zQKVikbiDSUz7IR4KFjCCQUueeeR76ZXLaQBVcCUbjuDUu5+WPLNi1+wZrGXi5KSCcjQ988sdRCQJqQDCsVI9x46hn2IJjHA6LbmJojEmYzykPU0FDqnqp7P7p9aJVgZWEEldAqyZ+nsixaFSk9DXnSGGkVr0MvE/r5dAcNlPmYgToILMFwUJtyCysjCsAZOUAJ9ogolk+laLjLDEBHRkWQjO4svLpH1Wc85r9dt6pVHO4yiiY1RGVeSgC9RAN6iJWoigR/SMXtGb8WS8GO/Gx7y1YOQzh+gPjM8fQAaVgw==</latexit>

bA(t)j

<latexit sha1_base64="6eFMrfD/q0LvOdpuDf9nzmiRDVw=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gEF1ISKeqy4sZlBfuANoTJdNKOnTyYmQg1BH/FjQtF3Pof7vwbJ20W2npg4HDOvdwzx4s5k8qyvo3S0vLK6lp5vbKxubW9Y+7utWWUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHG1/nfueBCsmi8E5NYuoEeBgynxGstOSaB/0Aq5Hnpzhz0ys3Zaf3WeaaVatmTYEWiV2QKhRouuZXfxCRJKChIhxL2bOtWDkpFooRTrNKP5E0xmSMh7SnaYgDKp10mj5Dx1oZID8S+oUKTdXfGykOpJwEnp7Ms8p5Lxf/83qJ8i+dlIVxomhIZof8hCMVobwKNGCCEsUnmmAimM6KyAgLTJQurKJLsOe/vEjaZzX7vFa/rVcbqKijDIdwBCdgwwU04Aaa0AICj/AMr/BmPBkvxrvxMRstGcXOPvyB8fkD7QaVbw==</latexit>

aAi,j

<latexit sha1_base64="Rfk64vRXoWtpo6raUCyI+HbZmJM=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LC2CBymJFPVY8eKxgv2ANoTNdtOu3WzC7kYoIX/DiwdFvPpnvPlv3LQ5aOuDgcd7M8zM82POlLbtb6u0tr6xuVXeruzs7u0fVA+PuipKJKEdEvFI9n2sKGeCdjTTnPZjSXHoc9rzp7e533uiUrFIPOhZTN0QjwULGMHaSEPfS2+8lJ0/ZlnFq9bthj0HWiVOQepQoO1Vv4ajiCQhFZpwrNTAsWPtplhqRjjNKsNE0RiTKR7TgaECh1S56fzmDJ0aZYSCSJoSGs3V3xMpDpWahb7pDLGeqGUvF//zBokOrt2UiTjRVJDFoiDhSEcoDwCNmKRE85khmEhmbkVkgiUm2sSUh+Asv7xKuhcN57LRvG/WW7UijjKcQA3OwIEraMEdtKEDBGJ4hld4sxLrxXq3PhatJauYOYY/sD5/AHH1kTU=</latexit>

bAi,j
<latexit sha1_base64="v+I012npGR1IuMiFWvEDBrMBWp0=">AAACDnicbVC7TsMwFHXKq5RXgJHFoqrEgKoEVcBYiQW2ItGH1ESR4zqtqeNEtoNUWf0CFn6FhQGEWJnZ+BucNgO0HMnS8Tn36t57wpRRqRzn2yqtrK6tb5Q3K1vbO7t79v5BRyaZwKSNE5aIXogkYZSTtqKKkV4qCIpDRrrh+Cr3uw9ESJrwOzVJiR+jIacRxUgZKbBrXiQQ1l6KhKKIwZtA09P76VR7MVKjMNIoML/Arjp1Zwa4TNyCVEGBVmB/eYMEZzHhCjMkZd91UuXrfAhmZFrxMklShMdoSPqGchQT6evZOVNYM8oARokwjys4U393aBRLOYlDU5kvKRe9XPzP62cquvQ15WmmCMfzQVHGoEpgng0cUEGwYhNDEBbU7ArxCJl8lEmwYkJwF09eJp2zunteb9w2qk1YxFEGR+AYnAAXXIAmuAYt0AYYPIJn8ArerCfrxXq3PualJavoOQR/YH3+AGx+nOQ=</latexit>

@Ii,j

aj

<latexit sha1_base64="7MTOg73yUcoiRpGNwCu3jheKAGE=">AAACBXicbVDLSsNAFL3xWesr6lIXg0VwISWRoi4LbnRXwT6gKWEynbTTTh7MTIQSsnHjr7hxoYhb/8Gdf+OkzUJbD1w4nHPvzL3HizmTyrK+jaXlldW19dJGeXNre2fX3NtvySgRhDZJxCPR8bCknIW0qZjitBMLigOP07Y3vs799gMVkkXhvZrEtBfgQch8RrDSkmseOb7AJHViLBTDHN26KTsbZVnquaPMNStW1ZoCLRK7IBUo0HDNL6cfkSSgoSIcS9m1rVj10vxtwmlWdhJJY0zGeEC7moY4oLKXTq/I0IlW+siPhK5Qoan6eyLFgZSTwNOdAVZDOe/l4n9eN1H+VS9lYZwoGpLZR37CkYpQHgnqM0GJ4hNNMBFM74rIEOtYlA6urEOw509eJK3zqn1Rrd3VKnVUxFGCQziGU7DhEupwAw1oAoFHeIZXeDOejBfj3fiYtS4ZxcwB/IHx+QPz5JjF</latexit>

@Ii,j

bj

<latexit sha1_base64="WGLUzPW7xlWRdCK3HjRKlR89ki8=">AAACEnicbZDLSsNAFIYn9VbrLerSzWARFKQkUtRlwY3uKthaaEOYTCft2MmFmROhhDyDG1/FjQtF3Lpy59s4aQNq6w8DP985Z2bO78WCK7CsL6O0sLi0vFJeraytb2xumds7bRUlkrIWjUQkOx5RTPCQtYCDYJ1YMhJ4gt16o4u8fnvPpOJReAPjmDkBGYTc55SARq551PMloWkvJhI4EbjppvwYsuyHXOXkLstcs2rVrInwvLELU0WFmq752etHNAlYCFQQpbq2FYOT5tdSwbJKL1EsJnREBqyrbUgCppx0slKGDzTpYz+S+oSAJ/T3REoCpcaBpzsDAkM1W8vhf7VuAv65k/IwToCFdPqQnwgMEc7zwX0uGQUx1oZQyfVfMR0SnRHoFCs6BHt25XnTPqnZp7X6db3awEUcZbSH9tEhstEZaqBL1EQtRNEDekIv6NV4NJ6NN+N92loyipld9EfGxzf/vZ41</latexit>

@Pi,t

@Ii,j

<latexit sha1_base64="Qo1DTUkW8c21lfzIRj9QOXdE7RA=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBg5RdKeqx4EVvFewHtEvJptk2NpusSVYoS/+EFw+KePXvePPfmG33oK0PBh7vzTAzL4g508Z1v53Cyura+kZxs7S1vbO7V94/aGmZKEKbRHKpOgHWlDNBm4YZTjuxojgKOG0H4+vMbz9RpZkU92YSUz/CQ8FCRrCxUue2n7Kzh2mpX664VXcGtEy8nFQgR6Nf/uoNJEkiKgzhWOuu58bGT7EyjHA6LfUSTWNMxnhIu5YKHFHtp7N7p+jEKgMUSmVLGDRTf0+kONJ6EgW2M8JmpBe9TPzP6yYmvPJTJuLEUEHmi8KEIyNR9jwaMEWJ4RNLMFHM3orICCtMjI0oC8FbfHmZtM6r3kW1dler1FEeRxGO4BhOwYNLqMMNNKAJBDg8wyu8OY/Oi/PufMxbC04+cwh/4Hz+AD37j1o=</latexit>

Ii,j

<latexit sha1_base64="LA+j13UaMb5mzwh+m0UynvClTlQ=">AAACDnicbVDLSsNAFJ34rPUVdelmsBRcSEmkqMuCG91VsA9oSphMJ+20k0mYmQhlyBe48VfcuFDErWt3/o2TNgttPXDhcM693HtPkDAqleN8Wyura+sbm6Wt8vbO7t6+fXDYlnEqMGnhmMWiGyBJGOWkpahipJsIgqKAkU4wuc79zgMRksb8Xk0T0o/QkNOQYqSM5NtVLxQIay9BQlHE4K2v6dk4y7QXITUKQo0yf5z5dsWpOTPAZeIWpAIKNH37yxvEOI0IV5ghKXuuk6i+zpdgRrKyl0qSIDxBQ9IzlKOIyL6evZPBqlEGMIyFKa7gTP09oVEk5TQKTGd+pFz0cvE/r5eq8KqvKU9SRTieLwpTBlUM82zggAqCFZsagrCg5laIR8jko0yCZROCu/jyMmmf19yLWv2uXmnAIo4SOAYn4BS44BI0wA1oghbA4BE8g1fwZj1ZL9a79TFvXbGKmSPwB9bnD2yvnOQ=</latexit>

@Ii,j

aj

<latexit sha1_base64="OmikqVFAfdu9KkzeGPP/UBE8Mz4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LC2Cp5JIUY8FLx4r2A9oQ9lsp+3a3U3Y3Qgl9C948aCIV/+QN/+NSZuDtj4YeLw3w8y8IBLcWNf9dgobm1vbO8Xd0t7+weFR+fikbcJYM2yxUIS6G1CDgitsWW4FdiONVAYCO8H0NvM7T6gND9WDnUXoSzpWfMQZtZkUDB5Lg3LVrbkLkHXi5aQKOZqD8ld/GLJYorJMUGN6nhtZP6HaciZwXurHBiPKpnSMvZQqKtH4yeLWOTlPlSEZhTotZclC/T2RUGnMTAZpp6R2Yla9TPzP68V2dOMnXEWxRcWWi0axIDYk2eNkyDUyK2YpoUzz9FbCJlRTZtN4shC81ZfXSfuy5l3V6vf1aqOSx1GEM6jABXhwDQ24gya0gMEEnuEV3hzpvDjvzseyteDkM6fwB87nD28ZjcA=</latexit>

bj

<latexit sha1_base64="+lqiPr2WaMS1irhrg2uM87CwFOs=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuCG5cV7APasWTSTBubSYYko5Rh/sONC0Xc+i/u/Bsz7Sy09UDgcM693JMTxJxp47rfTmlldW19o7xZ2dre2d2r7h+0tUwUoS0iuVTdAGvKmaAtwwyn3VhRHAWcdoLJde53HqnSTIo7M42pH+GRYCEj2Fjpvh9hMw7CFGeD9CEbVGtu3Z0BLROvIDUo0BxUv/pDSZKICkM41rrnubHxU6wMI5xmlX6iaYzJBI9oz1KBI6r9dJY6QydWGaJQKvuEQTP190aKI62nUWAn85R60cvF/7xeYsIrP2UiTgwVZH4oTDgyEuUVoCFTlBg+tQQTxWxWRMZYYWJsURVbgrf45WXSPqt7F/Xz2/NaAxV1lOEIjuEUPLiEBtxAE1pAQMEzvMKb8+S8OO/Ox3y05BQ7h/AHzucPIreS1Q==</latexit>

aj
<latexit sha1_base64="qHfZzV9jNgFRU9jWOtsZQnbQMa4=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5RESvVY8OKxgv2ANpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1PY2Nza3inulvb2Dw6PyscnbROnmvEWi2WsuwE1XArFWyhQ8m6iOY0CyTvB5G7ud564NiJWjzhNuB/RkRKhYBSt1GkOMnGFs0G54lbdBcg68XJSgRzNQfmrP4xZGnGFTFJjep6boJ9RjYJJPiv1U8MTyiZ0xHuWKhpx42eLc2fkwipDEsbalkKyUH9PZDQyZhoFtjOiODar3lz8z+ulGN76mVBJilyx5aIwlQRjMv+dDIXmDOXUEsq0sLcSNqaaMrQJlWwI3urL66R9XfXq1dpDrdIgeRxFOINzuAQPbqAB99CEFjCYwDO8wpuTOC/Ou/OxbC04+cwp/IHz+QMhPI9X</latexit>

Pi,t

<latexit sha1_base64="tJsRmmCiKmYjY/Z/0Qv5kXMaaKk=">AAAB83icbVDLSsNAFL2pr1pfVZdugkFwVRLBByJYcOOygn1AE8pkOmmHTiZhHkIJ/QZ3blwo4taVf+LOD/Ab3Dppu9DWAwOHc+7lnjlhyqhUrvtpFRYWl5ZXiqultfWNza3y9k5DJlpgUscJS0QrRJIwykldUcVIKxUExSEjzXBwlfvNOyIkTfitGqYkiFGP04hipIzk+zFS/TDKBqOO6pQdt+KOYc8Tb0qcy+/7i/cvfV7rlD/8boJ1TLjCDEnZ9txUBRkSimJGRiVfS5IiPEA90jaUo5jIIBtnHtkHRunaUSLM48oeq783MhRLOYxDM5lnlLNeLv7ntbWKzoKM8lQrwvHkUKSZrRI7L8DuUkGwYkNDEBbUZLVxHwmElampZErwZr88TxpHFe+kcnzjOlUHJijCHuzDIXhwClW4hhrUAUMKD/AEz5a2Hq0X63UyWrCmO7vwB9bbDziWliU=</latexit>

kt

<latexit sha1_base64="nxoejoMDNyr98Ag9+AQsCw1BNig=">AAAB6nicbZDLSsNAFIZPvNZ6q7p0EwyCq5IIXhDBghuXFe0F2lAm00k7dDIJMydCCX0EEVwo4tY38E3c+QA+g1unl4W2/jDw8f/nMOecIBFco+t+WnPzC4tLy7mV/Ora+sZmYWu7quNUUVahsYhVPSCaCS5ZBTkKVk8UI1EgWC3oXQ7z2h1TmsfyFvsJ8yPSkTzklKCxbrotbBUct+iOZM+CNwHn4vvh/P0rPSu3Ch/NdkzTiEmkgmjd8NwE/Ywo5FSwQb6ZapYQ2iMd1jAoScS0n41GHdj7xmnbYazMk2iP3N8dGYm07keBqYwIdvV0NjT/yxophqd+xmWSIpN0/FGYChtje7i33eaKURR9A4Qqbma1aZcoQtFcJ2+O4E2vPAvVw6J3XDy6dp2SA2PlYBf24AA8OIESXEEZKkChA/fwBM+WsB6tF+t1XDpnTXp24I+stx8VYZIC</latexit>

ht

<latexit sha1_base64="nxoejoMDNyr98Ag9+AQsCw1BNig=">AAAB6nicbZDLSsNAFIZPvNZ6q7p0EwyCq5IIXhDBghuXFe0F2lAm00k7dDIJMydCCX0EEVwo4tY38E3c+QA+g1unl4W2/jDw8f/nMOecIBFco+t+WnPzC4tLy7mV/Ora+sZmYWu7quNUUVahsYhVPSCaCS5ZBTkKVk8UI1EgWC3oXQ7z2h1TmsfyFvsJ8yPSkTzklKCxbrotbBUct+iOZM+CNwHn4vvh/P0rPSu3Ch/NdkzTiEmkgmjd8NwE/Ywo5FSwQb6ZapYQ2iMd1jAoScS0n41GHdj7xmnbYazMk2iP3N8dGYm07keBqYwIdvV0NjT/yxophqd+xmWSIpN0/FGYChtje7i33eaKURR9A4Qqbma1aZcoQtFcJ2+O4E2vPAvVw6J3XDy6dp2SA2PlYBf24AA8OIESXEEZKkChA/fwBM+WsB6tF+t1XDpnTXp24I+stx8VYZIC</latexit>

ht

<latexit sha1_base64="TS53MRJXXNTsvhoyvPdTkWx0iD8=">AAACEXicbVDLSsNAFJ34rPUVFTe6GSxCVyURtC4Lbly4qGAf0IQwmU7aoZNJmJkIJcRPcOMHuHbvxoUibt258xP8CydtEW09MHA459479x4/ZlQqy/o05uYXFpeWCyvF1bX1jU1za7spo0Rg0sARi0TbR5IwyklDUcVIOxYEhT4jLX9wlvutayIkjfiVGsbEDVGP04BipLTkmWUnEAinToyEoog5IVJ9jFh6kWU/Iux7KvPMklWxRoCzxJ6QUm3va7d6/3BT98wPpxvhJCRcYYak7NhWrNw0H4kZyYpOIkmM8AD1SEdTjkIi3XR0UQYPtdKFQST04wqO1N8dKQqlHIa+rsw3ltNeLv7ndRIVnLop5XGiCMfjj4KEQRXBPB7YpYJgxYaaICyo3hXiPtIRKR1iUYdgT588S5pHFfukcnyp04BgjALYBwegDGxQBTVwDuqgATC4BY/gGbwYd8aT8Wq8jUvnjEnPDvgD4/0buiahww==</latexit>

@L
@ht
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Figure 5: Forward and backward processes of loss calculation.

C CERTAIN SCENARIOS REQUIRING DECISION TREES WITH HARD-SPLITS

Hard-split decision trees and soft decision trees represent fundamentally different models, each
suited to different application scenarios. Further, there do exist scenarios where the application
of hard-split decision trees is not only more appropriate but also imperative. Below are illustrative
examples from several industrial projects that underscore this preference:

Scenario 1: Threshold-based well control optimization in underground hydrogen storage system.

In the context of large-scale underground hydrogen storage, the operation of periodic hydrogen in-
jection and production across numerous wells necessitates the design of optimal control strategies.
Such decision-making problems can be modeled by decision trees, particularly when decisions cen-
ter on exceeding specific thresholds. For instance, the reservoir pressure or the production rate
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exceeding a certain threshold can be regarded as the hard decisions at branch nodes. For these sce-
narios, hard-split decision trees are more suitable for making clear decisions, which can be easily
understood and implemented by field engineers or operators.

Scenario 2: True-false decision-making in law enforcement.

In law enforcement, decision-making often involves binary choices, such as whether to prosecute a
suspect or not. In this case, hard-split decision trees can be used to make clear decisions based on
the evidence and the law, which can be easily interpreted by legal professionals.

Scenario 3: Piece-wise affine control law in explicit model predictive control.

In explicit model predictive control, the control law is often represented by piece-wise affine func-
tions, which can be effectively approximated by a hard-split decision tree. The hard decisions at
branch nodes can be used to determine the control action based on the state of the system, which
can be easily implemented in real-time control systems.

Beyond the utility of making clear hard decisions, the optimal decision tree model that offers supe-
rior predictive performance is also crucial for these scenarios. From the perspective of application
scenarios, the motivation and necessity for hard-split optimal decision trees are both intuitive and
compelling.

D EMPIRICAL ANALYSIS OF THE IMPACT OF SCALE FACTORS ON SCALED
SIGMOID APPROXIMATION

The scale factor α significantly influence the approximation degree to indicator function and the
behavior of its gradient in optimization. A larger α leads to a better approximation than sigmoid
function, achieving closer proximity to an indicator function as α approaches infinity. Nonetheless,
a larger α also results in a more unstable gradient, which may adversely affect the optimization
process. Specifically, a larger α may cause the gradient to be too small or even zero, leading to the
stagnation of gradient descent.

The gradient of scaled sigmoid function, denoted as S(x) = (1 + e−αx)−1 is given by ∂S
∂x =

αS(x)(1− S(x)). When α is larger, either S(x) or 1− S(x) tend towards zero for value of x away
from origin, potentially causing the gradient to approach zero. Consequently, the α represents a crit-
ical balance between achieving high approximation degree and maintaining stability in optimization
processes.

To show how the scale factor α impacts the training optimality of the unconstrained optimization
problem (our method without using the strategy of iterative scaled sigmoid approximation), we
conduct the comparison experiments across different α values at different depths. The findings,
summarized in Table 5, reveal the relationship between α and training performance, as measured by
the average training accuracy R2. Notably, we observe that the training accuracy at the extremes
of α = 1 (sigmoid function) and α = 1000 are inferior compared to intermediate α values. This
observation underscores two critical insights: firstly, relying solely on the sigmoid function (α = 1)
yields suboptimal optimization results; secondly, the high α value may not necessarily lead to better
optimality.

Table 5: The impact of α on training accuracy across different depths.

Various α Value Training Accuracy (%)
D = 2 D = 4 D = 8 D = 12

α = 1 (Standard Sigmoid Function) 55.23 65.38 81.91 93.42
α = 50 67.97 78.72 87.51 93.99
α = 100 68.48 77.22 87.09 94.11
α = 1000 65.37 75.64 83.26 93.42

However, it remains a challenge to identify the optimal scale factor α that balances the trade-off
between approximation degree and differentiability. To mitigate this issue, we propose an iterative
scaled sigmoid approximation strategy, detailed in the following Section 4.1, to narrow the gap
between the original indicator function and its differentiable approximation.
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E DETERMINISTIC CALCULATIONS FOR LEAF PREDICTION PARAMETERS

As outlined in Algorithm 1, our method deterministically calculates the leaf values (i.e., the values
of K and h), rather than directly using trained values for K and h. Given a tree with tree split
parameters A and b, the deterministic tree path for each sample can be calculated by Equation (2),
which allows for determining the total number of samples assigned to a specific leaf node t ∈ TL.

For decision trees with constant predictions, the value of K remains zero. The value of h at a leaf
node t is an average of true output values (yi) of the samples assigned to that leaf node t.

For decision trees with linear predictions, the prediction at a leaf node is a linear combination of
input features by fitting a linear correlation between all samples assigned to that leaf node. The leaf
values at a leaf node t, kt and ht, are the linear coefficients determined by linear regression.

F HYPERPARAMETERS ANALYSIS OF OUR GRADIENT-BASED ENTIRE TREE
OPTIMIZATION APPROACH

Despite the introduction of additional hyperparameters in gradient-based optimization, tuning them
is not typically necessary because their effects are straightforward. To be more specific, the hyper-
parameters in our gradient-based entire tree optimization approach are as follows:

(1) The multi-start number Nstart
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(a) GET without subtree polish strategy
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(b) GET with subtree polish strategy
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Figure 6: The trend of training optimality under different depth setting with different Nstart.

The multi-start number Nstart directly influences training optimality by increasing the chance of
finding the optimal solution, albeit at a higher computational cost. In practice, Nstart is set to
balance acceptable computational expenses with desired training accuracy.

To explore the correlation between Nstart and the training optimality, our Gradient-based Entire
Tree Optimization for decision trees with constant predictions (GET) is performed under different
Nstart values as shown in Figure 6. It indicates that increasing Nstart generally improves training
optimality for all various tree depths, especially at lower tree depths.

(2) The epoch number Nepoch

The epoch number Nepoch is another hyperparameter that directly affects training optimality. A
higher Nepoch value increases training accuracy, but it also increases computational costs. In prac-
tice, Nepoch is also set to balance acceptable computational expenses with desired training accuracy.

Our experiment with different Nepoch = {100, 3000, 5000} in Figure 7, shows that increasing
Nepoch generally improves training optimality for all various tree depths. The improvements are
more pronounced for lower Nepoch, and become less significant as Nepoch increases.

(3) The range of sampled scale factors [αmin, αmax]
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Figure 7: The trend of training optimality under different depth setting with various Nepoch.
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Figure 8: Disparity comparison of scaled sigmoid function over indicator function under varying α.

This predetermined range is used to sample a set of scaled factors α for the strategy of iterative
scaled sigmoid approximation. The principal aim is to explore a broader range of scale factors,
ranging from smaller to larger values. As observed in Figure 8, the gap between scaled sigmoid
approximation and the original indicator function narrows as α increases. Noticeably, the standard
sigmoid function with α = 1 exhibits a significant deviation from the indicator function as depicted
in black line. In the implementation of our experiments, we simply set the range [αmin, αmax] =
[5, 150] meet our requirements. This range ensures that smaller values maintain a smooth gradient
and exhibit less disparity than the standard sigmoid function, while larger values closely approximate
the indicator function.

(4) The number of sampled scale factors

Within a predetermined range, a set of scaled factors, denoted as {α1, · · · , αn}, is sampled and
sorted in ascending order for subsequent use in iterative scaled sigmoid approximation, as detailed
in Section 4.1. Larger scale factors reduce the approximation disparity, whereas smaller ones yield a
smoother and more stable gradient. Including a greater number of scale factors in the set facilitates
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a more stable approximation process, enhancing the approximation degree of the indicator function
while minimizing the loss of differentiability typically associated with larger scale factors. Intu-
itively, including more scale factors in the set enhances training optimality. However, this leads to
increased iterations in the approximation strategy, thereby raising computational costs. Practically,
the number of scale factors is often determined by balancing training accuracy against computa-
tional demands. In our experiments, to avoid excessive computational costs, we primarily sample
two scale factors: a smaller α within the range of [5, 25] and larger α within the range of [50, 150].

(5) The learning rate η

The learning rate is a common parameter in gradient-based optimization, and has garnered signif-
icant attentions in the literature. To simplify its usage, we adopt the well-established learning rate
scheduler, referred to as CosineAnnealingWarmRestarts in PyTorch, which decreases the
learning rate from an initial value of 0.01, thus minimizing the need for additional tuning.

G SUBTREE POLISH STRATEGY

Algorithm 2 The Subtree Polish Strategy
1: Input: Dataset {xi, yi}ni=1, tree depth D, and other parameters in Algorithm 1.
2: Output: Optimal trainable variables Abest, bbest, K (Zero for the case of GET) and h.
3: Initially optimize an entire tree as the best tree candidate using Algorithm 1, termed Abest and bbest.
4: for t ∈ TB do
5: Induce a subset {Xt,Yt} of the dataset {xi, yi}ni=1 for branch node t after fixing the optimized hyper-

planes at its parent nodes.
6: if |Xt| > 1 and unique(Yt) > 1 then
7: Retrieve dsub-depth subtree results rooted at node t from the tree candidate as the warm start.
8: Polish the subtree, termed as Asub and bsub, using Algorithm 1.
9: Replace the corresponding subtree of the current best tree candidate with Asub and bsub from Line 8.

Update the current best tree candidate only if this modification improves training optimality.
10: end if
11: end for
12: Deterministically calculate K and h based on the final best tree candidate Abest and bbest.

H THE BASIC SETTING OF NUMERICAL EXPERIMENTS

H.1 DATASET INFORMATION

The 16 real-world dataset from UCI repository (Dua & Graff, 2019) and OpenML (Vanschoren
et al., 2014) are used in our numerical experiments. Detailed information about these datasets is
summarized in Table 6. The dataset size n and the number of features p are provided in the table.

Typically, we allocated 75% of the samples for training purposes and the remaining 25% for test-
ing. If an experiment requires cross validation for hyperparameters tuning like tree depth, we then
subdivide the training datasets into training and validation subsets in a 2:1 ratio. The dataset setting
accordingly changes to 50% samples as training set, 25% samples as validation set, and 25% sam-
ples as testing set. After determine the best hyperparameters, we then retrain the model using the
combined training and validation set, and use the remaining 25% as testing set to evaluate the final
testing accuracy.

H.2 THE IMPLEMENTATION SETTINGS FOR COMPARISON STUDIES

To implement our Gradient-based Entire Tree optimization framework, we utilize PyTorch that em-
beds auto differentiation tools and gradient-based optimizers. Our tree induction method is referred
to as GET when applied to trees with constant predictions. In cases of trees with linear predictions,
we refer to it as GET-Linear. It should be noted that GET is incorporated our additional subtree
polish strategy to mitigate accumulated approximation errors, thereby improving training optimality.
In contrast, GET-Linear is not equipped with this strategy, as decision trees with linear predic-
tions generally perform well as observed in our experiments. Moreover, decision trees with linear
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Table 6: Real-world datasets from UCI and OpenML Repository.
Dataset Index Dataset Name Dataset Size (n) Feature Number (p)

1 airfoil-self-noise 1,503 5
2 space-ga 3,107 6
3 abalone 4,177 8
4 gas-turbine-co-emission-2015 7,384 9
5 gas-turbine-nox-emission-2015 7,384 9
6 puma8NH 8,192 8
7 cpu-act 8,192 21
8 cpu-small 8,192 12
9 kin8nm 8,192 8

10 delta-elevators 9,517 6
11 combined-cycle-power-plant 9,568 4
12 electrical-grid-stability 10,000 12
13 condition-based-maintenance compressor 11,934 16
14 condition-based-maintenance turbine 11,934 16
15 ailerons 13,750 40
16 elevators 16,599 18

predictions are prone to overfitting, a risk potentially exacerbated by subtree polish strategy unless
carefully regularized. The tendency of these tree to overfit is also evidenced by results from exiting
open-source software for model linear trees, discussed in Appendix H.6. Our methods (GET and
GET-Linear) are configured with Nepoch = 3000 and Nstart = 10, unless otherwise specified.

For benchmarking, the open-source Scikit-learn library in Python is used to implement
CART and random forest (RF) methods. The parameter values for these methods are set to de-
fault values, unless otherwise specified, such as the specific hyperparameters tuning discussed in
Section 5.1. The implementation of HHCART, RandCART and OC1 are adapted from publicly
sourced GitHub repository and programmed in Python. We modified their classification-oriented
loss functions to adapt for regression tasks. As for the local search method ORT-LS, we reproduce
it in Julia due to the absence of open-source code for ORT-LS. The GradTree and SoftDT
method are implemented using their respective open-source GitHub repositories, with adjustments
made only to the epoch numbers to align with our methods.

Experiments necessitating CPU computation were executed on the high-performance Oracle HPC
Cluster, specifically utilizing the “BM.Standard.E4.128” configuration. Each compute node within
this cluster is equipped with an “AMD EPYC 7J13 64-Core Processor”. Concurrently, experiments
requiring GPU resources were conducted on the “Narval” server, which is equipped with an NVIDIA
A100 GPU. Additionally, for the comparative analysis of prediction times as elaborated in Sec-
tion 5.4, we assessed the prediction speeds of each method on the login node of the “Cedar” server.

H.3 DETAILED TESTING ACCURACY COMPARISON RESULTS ON 16 REAL-WORLD DATASETS

The testing accuracy comparison for specific 16 real-world datasets is detailed in Table 7.

H.4 RESULTS FOR ALL COMPARED DECISION TREES UNDER FIXED DEPTH SETTING

To figure out the rationale behind the competitive predictive accuracy of our optimized tree, we
delve into the analysis of training optimality from the perspective of optimization. As previously
discussed, the assessment of the optimization capabilities only make sense when the tree depth
is fixed, as the training of tree with different depths corresponds to different optimization tasks.
Therefore, the predetermined depths of D = {2, 4, 8, 12} are used for training accuracy comparison.
Detailed comparisons for all methods in terms of training accuracy, testing accuracy and training
time are given in Table 8.
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Table 7: The testing accuracy comparison for each dataset.
Dataset CART OC1 RandCART HHCART SoftDT GradTree ORT-LS GET GET-Linear RF

1 85.27 86.38 76.79 85.71 67.06 56.46 85.24 89.21 89.96 92.58
2 42.14 40.53 50.70 49.05 47.46 30.47 49.51 62.07 62.07 53.22
3 47.29 46.15 46.94 54.75 55.28 49.68 54.20 57.29 60.24 57.64
4 66.50 55.39 57.24 60.61 60.80 64.07 55.62 63.38 71.59 68.10
5 82.19 83.20 83.30 84.43 80.81 67.03 86.39 87.97 86.79 91.00
6 62.36 62.71 41.64 66.95 60.31 61.53 63.68 63.68 68.12 68.38
7 96.98 97.23 92.06 97.15 85.36 95.30 97.59 98.01 98.23 98.27
8 95.89 96.25 95.78 96.25 88.66 93.69 96.65 96.93 97.06 97.63
9 42.56 51.53 51.83 56.32 71.60 44.22 69.57 79.82 86.67 70.48

10 60.19 59.03 58.42 60.91 62.76 54.76 58.52 61.66 64.26 63.16
11 93.33 93.15 93.11 93.55 93.16 84.66 92.84 93.86 94.04 95.92
12 71.17 74.72 58.08 68.80 86.35 45.01 80.66 86.76 91.19 89.59
13 98.58 94.37 98.45 98.63 86.83 85.17 98.93 98.98 99.98 99.50
14 97.34 71.14 96.11 95.23 48.37 76.81 97.78 98.11 99.97 98.74
15 75.96 76.55 75.48 77.92 81.61 67.49 78.44 81.18 82.53 83.24
16 69.12 72.30 65.03 75.66 86.57 49.73 82.61 89.41 90.88 83.59

Table 8: Detailed comparison for all compared methods under fixed depth setting.

Item D Greedy Methods Gradient-based Trees State-of-Art Heuristic Our Tree
CART OC1 RandCART HHCART SoftDT GradTree ORT-LS GET

Traing
Accuracy (%)

2 47.26 49.85 33.22 46.68 49.27 39.37 66.47 71.80
4 60.90 62.90 54.62 62.59 55.81 53.34 79.51 82.40
8 81.33 81.24 78.12 82.28 66.41 64.70 90.81 91.02

12 93.43 92.97 93.48 94.90 72.93 66.83 97.50 96.09

Testing
Accuracy (%)

2 46.45 48.15 32.86 46.12 48.59 38.45 64.44 70.24
4 58.60 59.76 53.14 61.24 55.27 51.40 74.84 77.89
8 69.07 68.26 70.16 74.18 66.03 62.39 74.00 78.55

12 67.21 64.27 63.80 67.63 72.32 63.67 67.14 71.97

Training Time (s)

2 0.03 2648.84 0.59 3.47 1054.35 28.74 313.89 796.65
4 0.04 3439.93 1.18 5.72 1680.10 49.24 673.39 2234.64
8 0.06 3932.06 3.46 8.87 10415.84 277.17 7872.43 2420.84

12 0.08 4179.08 9.12 15.70 173544.28 9564.43 181308.67 9394.67

H.5 ABLATION EXPERIMENTS ON THE STRATEGIES USED IN OUR TREE OPTIMIZATION

The observed improvements in training accuracy of our method GET, as reported in Table 8, can be
attributed to two key strategies: the iterative scaled sigmoid approximation and the subtree polish
strategy. The comparative results, presented in Table 9, illustrate the impact of these strategies on
GET. It should be noted that our method, which utilizes the iterative scaled sigmoid approximation,
is referred to as GET in the table. In contrast, when this strategy is not employed, the method is
denoted by specific values of scale factors, such as α = 1 and α = 100. Additionally, the subtree
polish strategy is evaluated in the table, with the methods labeled as GET without subtree
polish strategy and GET with subtree polish strategy.

Table 9: The effectiveness of strategies used in our tree optimization approach on training accuracy.
Item D = 2 D = 4 D = 8 D = 12

without Iterative Scaled Sigmoid Approximation
(A fixed scale factor)

α = 1
(Sigmoid Function) 55.23 65.38 81.91 93.42

α = 100 68.48 77.22 87.09 94.11
with Iterative Scaled Sigmoid Approximation

(Our GET method)
GET without subtree polish strategy 70.86 80.30 89.45 95.16
GET with subtree polish strategy 71.80 82.40 91.02 96.09

Regarding the iterative scaled sigmoid approximation, we analyze training accuracy with and with-
out this strategy. Without this strategy, we utilized a fixed scale factor for the differentiability ap-
proximation, utilizing both the standard sigmoid function with α = 1 and a larger scale factor with
α = 100. The findings indicate substantial improvements with the iterative approach: training
accuracy increased by 15.63%, 14.92%, 7.54%, and 1.74% at tree depths of 2, 4, 8, and 12, respec-
tively, when compared to the standard sigmoid approximation. Moreover, when compared to the
larger scale factor of α = 100, the iterative approach improved training accuracy by 2.38%, 3.08%,
2.36%, and 1.05% for these depths, respectively. These results confirm that our iterative scaled sig-
moid approximation surpasses both the standard sigmoid function commonly used in soft decision
trees and larger scale factors in differentiability approximation.
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The subtree polish strategy also contributes to these improvements, particularly at shallower tree
depths. It boosts training accuracy by 0.94%, 2.10%, 1.57%, and 0.93% at tree depths of 2, 4, 8, and
12, respectively.

H.6 OVERFITTING ISSUE AND COMPARISON FOR TREES WITH LINEAR PREDICTIONS

As discussed in Section 5.5, overfitting issues has been observed with both our method GET and
GET-Linear. Upon further comparison of our GET-Linear with the existing open-source li-
brary linear-tree, it is evident that the overfitting issues are more pronounced in trees with
linear predictions. The open-source software linear-tree exhibits significantly more severe
overfitting issues at depths such as 8 and 12, as detailed in Table 10.

For our method GET-Linear, although it benefits from the subtree polish strategy, improving
training accuracy by 1% to 2.19%, it conversely results in a reduction of testing accuracy by up to
3.24%. This decrease in testing accuracy for GET-Linear begins at relatively small depths, such
as 4. Given the susceptibility of trees with linear predictions to overfitting, we opt not to apply
the subtree polish strategy to GET-Linear in order to mitigate the risk of exacerbating overfitting
issues.

Table 10: Comparison of training and testing accuracy for GET-Linear and linear-tree.
Depth Training Accuracy (%) Testing Accuracy (%)

linear-tree
GET-Linear without
subtree polish strategy

GET-Linear with
subtree polish strategy linear-tree

GET-Linear without
subtree polish strategy

GET-Linear with
subtree polish strategy

2 79.55 81.74 82.71 79.15 79.98 80.76
4 84.90 84.78 86.97 72.26 81.86 80.82
8 93.13 88.59 89.88 -400195.15 (overfitting) 81.50 78.26
12 98.28 90.88 92.74 -11993680.84 (overfitting) 64.91 49.53

To mitigate the overfitting issues for GET-Linear, we preliminarily attempt to apply L1 regular-
ization for trainable variables A. This approach involves incorporating a regularization term into
the loss function L below, serving to penalize the complexity of the tree structure. The regularized
loss is delineated in Equation (5), where λ denotes the regularization strength and ∥ · ∥1 represents
the L1 norm.

Lreg =

n∑
i=1

∑
t∈TL

Pi,t

(
yi − (kT

t xi + ht)
)2

+ λ
∑
t∈Tb

∥at∥1 (5)

Table 11: The comparison for GET-Linear with and without regularization across 16 datasets.
Item GET-Linear without regularization GET-Linear with regularization

Testing Accuracy (%) 83.24 83.97

However, identifying the appropriate regularization strength λ proves challenging during our ex-
periments, necessitating extensive hyperparameter tuning. This tuning significantly increase the
computational cost and the implementation complexity of our method. Consequently, in our exper-
iment reported in Table 1, we did not extensive tune this parameter. We only adjust it between 0
and a very small value 1e− 5 to implement a minimal regularization, aiming to enhance testing ac-
curacy without greatly compromising optimization capabilities. With this slight regularization, the
testing accuracy of GET-Linear reported in Table 1 is improved by 0.73% compared to the results
without regularization, as shown in Table 11. Despite the slight improvement, the overfitting issues
for GET-Linear still exist, and our preliminary regularization is not sufficient to address this is-
sue. Significant improvements in testing accuracy are achievable through appropriate regularization
strategies; however, this requires further exploration and is limited in this paper.
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