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Abstract

Mathematical reasoning is a central problem in developing more intelligent lan-
guage models. An intriguing phenomenon observed in mathematical arithmetics
is grokking, where the training loss of a transformer model stays near zero for
an extended period until the validation loss finally reduces to near zero. In this
work, we approach this phenomenon through a view of the Hessian of the loss
surface. The Hessian relates to the generalization properties of neural networks
as it can capture geometric properties of the loss surface, such as the sharpness of
local minima. We begin by noting in our experiments that high weight decay is
essential for grokking to occur in several arithmetic tasks (trained with a GPT-2
style transformer model). However, we also find that the training loss is highly
unstable and exhibits strong oscillations. To address this issue, we consider adding
regularization to the Hessian by injecting isotropic Gaussian noise to the weights
of the transformer network, and find that this combination of high weight decay
and Hessian regularization can smooth out the training loss during grokking. We
also find that this approach can accelerate the grokking stage compared to existing
methods by at least 50% measured on seven arithmetic tasks. Finally, to under-
stand the precise cause of grokking, we consider a Hessian-based measurement for
multi-layer networks and find that this measure yields non-vacuous estimates of
the generalization errors observed in practice. We hope these empirical findings
can facilitate future research towards understanding grokking (and generalization)
in mathematical reasoning.

1 Introduction

Mathematical reasoning in large neural networks [1] is a central issue in the design of more intelli-
gent, interactive language models, especially in scenarios that require precise, step-by-step logical
operations. An intriguing phenomenon that has been observed in arithmetic tasks is grokking [19],
where a transformer model exhibits a delayed yet sudden generalization of training data even as the
training curve has converged. In this paper, we analyze grokking behavior in arithmetic tasks by
examining the Hessian of the transformer model’s loss surface.

Power et al. [19] demonstrate that for a range of modular arithmetic tasks, grokking can occur
on two-layer transformers, whereby the training loss remains near zero for a long period until the
validation loss also converges to zero. However, the training loss can exhibit dramatic oscillations.
To motivate this work, we begin by applying regularization methods to SGD and examine their effect
on grokking. First, we find that high weight decay is crucial for grokking in arithmetic tasks. In other
words, we find that the validation accuracy does not increase to near perfect when weight decay is
moderate (Fig. 1a and 1b). Moreover, even after adding high decay, the training curve still exhibits
notable variations, leading to unstable training (with training accuracy reduced to zero; see Fig. 1c).
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(a) SGD, λ = 0
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(b) SGD, λ = 0.1
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(c) SGD, λ = 1
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(d) Noise Injection, λ = 1

Figure 1: Training behavior with different weight decay (denoted as λ) and Hessian regularization.

To address these issues, we consider regularization methods that regularize the Hessian. These
methods are known to improve generalization by reducing the sharpness of solutions in the loss
surface [6, 22]. In particular, we consider regularizing the Hessian by first adding noise to the weights
of the transformer before computing its gradient. We observe that this noise injection provides an
approximately unbiased estimate of the trace of the Hessian. Surprisingly, we find that, along with
high weight decay, this noise injection algorithm can now smooth out the oscillations in the training
curve. Moreover, we also find that this Hessian regularization can reduce the number of grokking
steps during training by at least 28%, measured on three arithmetic tasks.

Finally, to understand these results, we develop a preliminary theoretical analysis. We examine a
Hessian-based generalization measure motivated by PAC-Bayes analysis [17, 11, 2]. We find that by
measuring a Hessian-vector product on the weight space, we can provide a non-vacuous estimate
of the generalization errors. Note that the phenomenon of delayed generalization is known since
classical works on boosting [3]. Our contribution is to provide a Hessian view of this phenomenon
since the Hessian can be measured from data.

In summary, we find that by using high weight decay and noise injection to regularize the Hessian,
we can effectively reduce the instability that has commonly been observed for training transformers
on arithmetic tasks. Second, this combined regularization can further reduce the number of grokking
steps. Third, we develop a Hessian-based measurement that can give a non-vacuous estimate of the
generalization error. We hope these findings can facilitate future research on understanding grokking
in the mathematical reasoning of large models.

2 Regularization of Loss Surface Hessian

Previous works have indicated that grokking requires an appropriate choice of weight decay [18, 14].
However, using weight decay alone can still lead to oscillations of the training curve. To address this
issue, we explore an alternative approach, where we regularize the loss Hessian matrix, which can
provide more fine-grained control on the loss surface, such as sharpness. To instantiate the Hessian
regularization, we add a random noise variable to the weight matrices of a transformer network. In
particular, let ℓ(fW (x), y) denote the loss of a neural net fW (parameterized by W ), given an input
pair (x, y). Let U be a random sample from an isotropic Gaussian (with the same dimension as W ),
whose variance has been scaled by σ2. We consider the following noise injection update:

W ←W − η

2
(∇ℓ (fW+U (x), y) +∇ℓ (fW−U (x), y)) , (1)

for some learning rate η. In particular, σ2 determines the level of regularization in this procedure.
To see that this update regularizes the Hessian, we notice that equation (1) is equivalent to applying
SGD to the stochastic optimization objective of

E
U
[ℓ(fW+U (x), y)] ≈ ℓ(fW (x), y) +

σ2

2
∇2ℓ(fW (x), y) +O(σ3).

In practice, we add the noise injection along both the positive and negative directions of U . This
helps eliminate the variance that appears from the first-order Taylor’s expansion term above [22].
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3 Experimental Results

3.1 Results on arithmetic tasks

Our experimental setup follows the work of Power et al. [19]. We focus on evaluating the grokking
phenomena with arithmetic tasks, which correspond to equations of the form (a ◦ b) mod p = c. “a,”
“◦,” “b,” “=,” and “c” are separated tokens, where “c” is the prediction goal. For each task, we generate
a ∈ [p] and b ∈ [p], resulting in a total of p2 (in our settings, p = 97) unique data. Specifically, we
select a2 + ab+ b2 = c to illustrate our findings, and more experiments of different equations are
shown in Appendix A. We compare our regularization method to naive SGD and SAM [6]. SAM is
based on a constrained minimax optimization formulation that penalizes the worst-case perturbations.

#1: Stabilizing the training curves. We observed that all the approaches can induce grokking
in our experiments, as shown in Figure 2. After the training loss converges, we observe a sudden
increase in validation accuracy to over 99%. Although all these methods can exhibit stable training
before convergence, we find that during the grokking phase, SGD experiences sharp fluctuations in
the training curve, with training accuracy dropping close to zero, which also caused the validation
accuracy to drop to nearly zero. By contrast, both SAM and our noise-injection method can maintain
stable training loss values during the grokking phase, which avoids dramatic fluctuations.
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(a) SGD, λ = 1
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(b) SAM, λ = 1
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(c) Noise Injection, λ = 1

Figure 2: Illustrating the grokking phenomenon of SGD, SAM, and Hessian regularization.

#2: Reducing the steps of grokking steps. We also report the comparison of the number of training
steps from the point where the training accuracy has converged to near 100% to the point where
validation accuracy convergences to near 100%. We report the results for different approaches in
Table 1. We observe that our approach requires fewer steps than SGD. In some tasks, our approach
doesn’t even need grokking steps to generalize. We also note that SAM, which penalizes the largest
eigenvalue of the Hessian, requires more steps than noise injection.

Table 1: Number of grokking steps observed for different methods.
a+ b a× b a/b a2 + b2 a2 + ab+ b2 a2 + ab+ b2 + a a3 + ab

SGD 36480 5040 89868 7890 48280 150263 83776
SAM 30240 3620 44718 9170 26452 220116 0
Ours 14826 0 24576 3700 0 51187 0

3.2 Results on algorithmic tasks

We also evaluate our findings on the Needle-in-a-Haystack task, following the setting of Zhong
et al. [23]. Specifically, we have an input sequence [m1, c1,m2, c2, ...,mk, ck,mu], where mi are
different markers and ci are corresponding values. The last element is a marker mu, u ∈ [1, k] which
indicates the goal marker. The model is trained to learn to search for the marker in the previous
sequence and give the corresponding value cu.

More surprisingly, we observe that the grokking phenomenon does not occur when using SGD,
although the training curve also experiences slight fluctuations, and the validation accuracy remains
low. The number of grokking steps of SAM and noise injection are 12288 and 5632, respectively:
see Figure 3.
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(b) SAM, λ = 1
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Figure 3: Illustrating the grokking phenomenon of SGD, SAM, and Hessian regularization.

4 Nonvacuous Generalization Error Estimates with Hessian

Toward rigorously understanding the above empirical results, we consider the PAC-Bayes analysis
framework. In particular, we consider a linear PAC-Bayes bound [16, 2], which holds with probability
1− δ for any δ > 0:

LQ(fW ) ≤ 1

β
L̂Q(fW ) +

C
(
KL(Q||P) + log 1

δ

)
2β(1− β)n

, for any β ∈ (0, 1). (2)

Above, Q is the posterior hypothesis distribution of the learning algorithm. P is the prior distribution
of the learning algorithm. C > 0 is an upper bound on the loss value. L and L̂ refer to the expected
and empirical risks. For example, in the context of fine-tuning foundation models, one may view P
as the weight of the pretrained model (plus some small perturbations), and Q is the fine-tuned model
weight [11]. For a complete statement, see Lemma B.2 in Appendix B.

Derivation of a Hessian-based measure: Let U ∼ Q be a random variable drawn from a posterior
distribution Q. We are interested in the perturbed loss, ℓQ(fU (x), y), which is the expectation of
ℓ(fU (x), y) over U . Using Taylor’s expansion, we get that

ℓQ(fW (x), y)− ℓ(fW (x), y) ≤
(

L∑
i=1

〈
Σi,∇2

i [ℓ(fW (x), y)]
〉
+ C1 ∥Σ∥3/2F

)
, (3)

where Σi is the population covariance matrix of the perturbation added to layer i, and ∇2
i is the

Hessian matrix with respect to the weights at layer i of fW . See Lemma B.1 in Appendix B for the
complete statement of this result.

Based on equation (3), next, we apply the PAC-Bayes bound from equation (2) to an L-layer
transformer neural network fW parameterized by W . We note that the KL divergence between the
prior and posterior distributions, which are both Gaussian, is equal to

∑L
i=1

〈
Σ−1

i , viv
⊤
i

〉
, where vi

is the distance between the initialized weight and the trained weight at layer i.

Next, it remains to minimize the sum of the Hessian estimate, and the above KL divergence in the
PAC-Bayes bound will lead to a different covariance matrix for every layer. Let ∇2

i
+ denote the

truncated Hessian matrix where we set the negative eigenvalues of∇2
i to zero. We have that

L∑
i=1

( 〈
Σi,∇2

i [ℓ(fW (x), y)]
〉
+

1

n

〈
Σ−1

i , viv
⊤
i

〉 )
≤

L∑
i=1

(〈
Σi,∇2

i
+
[ℓ(fW (x), y)]

〉
+

1

n

〈
Σ−1

i , viv
⊤
i

〉 )
. (4)

By applying equations (4) and (3) back to equation (2), and minimizing over β, we will derive an
upper bound on the generalization error (between L(fW ) and L̂(fW )) that is equal to:

α := max
(x,y)∈D

L∑
i=1

√
v⊤i ∇2

i
+
ℓ(fW (x), y)vi√
n

, (5)
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where n is the size of the sample set and D is the unknown distribution where the samples are drawn.

Having introduced the Hessian measure, we now report the results from measuring the above α in
the grokking experiments and compare α with the empirically observed generalization errors. The
results are shown in Figure 4 below. We can see that α now gives a nonvacuous upper bound on
the generalization error. Importantly, while this can also be achieved with standard methods such as
k-fold cross-validation, the Hessian can reveal more structures (e.g., sharpness) of loss surfaces.
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(b) SAM, λ = 1

102 103 104 105

Number of steps

10−3

10−2

10−1

100

101

M
ea

su
re

m
en

t

a2 + ab + b2

Loss Gap

α

(c) Noise Injection, λ = 1

Figure 4: The Hessian measurement α correlates with the empirically observed generalization errors
for training neural networks while grokking.

5 Related Work

Grokking. The grokking phenomenon, first proposed by Power et al. [19], illustrates that with
continued training over several epochs, the validation loss eventually decreases and converges
after training loss does not decrease further after converging. Extending the study of grokking,
Liu et al. [15] conducted experiments across diverse datasets, including images, language, and
graphs, expanding the area of grokking. Previous research predominantly focused on how training
configurations influence grokking. Davies et al. [5] explored the relationship between grokking
and double descent concerning pattern learning. Huang et al. [9] examined the impact of model
and dataset sizes on grokking. Nanda et al. [18] highlighted the critical role of weight decay in
grokking, noting that insufficient weight decay prolongs the process of grokking. Thilak et al. [20]
linked grokking to the slingshot mechanism, interpreting it as a form of implicit regularization. More
recently, Lee et al. [14] introduced Grokfast, a method designed to accelerate grokking by amplifying
the gradients’ low-frequency components. Theoretical investigations of why grokking occurs have
recently been studied [21]. In particular, Xu et al. [21] provably demonstrate grokking in two-layer
ReLU networks trained by gradient descent on XOR cluster data where a constant fraction of the
training labels are flipped.

Hessian and optimization algorithms. Historical studies on second-order methods for training
multi-layer networks primarily focus on optimization methods like Newton or quasi-Newton and
employ the Hessian matrix to adjust learning rates [13, 12, 4]. Although they estimate the spectral
information of the Hessian by computing Hessian-vector products, they do not explore the dynamics of
the Hessian throughout training. In the Neural Tangent Kernel (NTK) analysis [10], the Hessian matrix
is treated as a random features matrix, which remains fixed during training. The estimation of spectral
density through Stochastic Lanczos Quadrature is discussed by Ghorbani et al. [7]. Additionally,
Grosse et al. [8] have investigated scaling up influence functions in large neural networks, which
includes innovative techniques for computing Hessian-inverse vector products.

6 Conclusion

This paper explored the issue of generalization in arithmetic tasks. We analyze the grokking phe-
nomenon through a view of the Hessian matrix of the loss surface. We find that using a high weight
decay and noise injection can smooth out the oscillations commonly observed in SGD training of
arithmetic tasks. Another benefit of this regularization is that we could accelerate the grokking stage,
reducing the number of training steps required for model generalization. Finally, we find that a
Hessian-based measurement can give a nonvacuous estimate of the generalization errors in various
modular arithmetic tasks.
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A Experiment Details

A.1 Tasks

Modular Arithmetic We consider the following list of modulo tasks where p = 97:

• a+ b (mod p) = c,
• a× b (mod p) = c,
• a/b (mod p) = c,
• a2 + b2 (mod p) = c,
• a2 + ab+ b2 (mod p) = c,
• a2 + ab+ b2 + a (mod p) = c,
• a3 + ab (mod p) = c.

Needle-in-a-Haystack This task assesses model performance on long input sequences. The input
consists of a sequence [m1, c1,m2, c2, ...,mk, ck,mu], where m1, . . . ,mk are distinct markers with
corresponding values c1, . . . , ck. The final marker mu requires the model to locate its prior occurrence
and output the associated value cu. In our task, following [23], our sequences contain between 1 and
30 markers, and we uniformly select each mi ∈ {1, . . . , 127} and ci ∈ {128, . . . , 158}.

A.2 Parameters

We include the parameters we use to define our modular arithmetic and needle-in-a-haystack tasks
below.

Optimizers For all the methods, we use a weight decay of λ = 1, a learning rate equal to 10−4,
and a maximum number of epochs of 1.4 × 105, with batch size 512. For SAM, we set ρ = 0.05.
For our noise-injection method, we set σ = 0.01.

Model For all modular arithmetic tasks, we use a model dimension of 128, whereas for the needle-
in-a-haystack task, we use a model dimension of 256. For all modular arithmetic tasks except a3+ab,
we use a 1-layer model. For a3 + ab and needle-in-a-haystack tasks, we use a 2-layer model instead.
We use 4 attention heads for all experiments.
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Tasks Training
ratio

Batch
size

Learning
rate

Weight
decay Layers Model

dimension
Attention

heads
a+ b 0.3 512 1e-4 1 1 128 4
a× b 0.5 512 1e-4 1 1 128 4
a/b 0.3 512 1e-4 1 1 128 4
a2 + b2 0.5 512 1e-4 1 1 128 4
a2 + ab+ b2 0.9 512 1e-4 1 1 128 4
a2 + ab+ b2 + a 0.9 512 1e-4 1 1 128 4
a3 + ab 0.9 512 1e-4 1 2 128 4
Needle-in-a-haystack 0.9 256 1e-4 1 2 256 4

A.3 Additional Results

In Figures 5-11, we illustrate the training and validation accuracy for the arithmetic tasks from above.
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Figure 5: Comparison of SGD, Grokfast, SAM, and our noise-injection method in a+b (mod p) = c.
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Figure 6: Comparison of SGD, Grokfast, SAM, and our noise-injection method in a×b (mod p) = c.
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Figure 7: Comparison of SGD, Grokfast, SAM, and our noise-injection method in a/b (mod p) = c.
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Figure 8: Comparison of SGD, Grokfast, SAM, and our method in a2 + b2 (mod p) = c.
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Figure 9: Comparison of SGD, Grokfast, SAM, and our method in a2 + ab+ b2 (mod p) = c.
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Figure 10: Comparison of SGD, Grokfast, SAM, and our method in a2 + ab+ b2 + a (mod p) = c.
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Figure 11: Comparison of SGD, Grokfast, SAM, and our method in a3 + ab (mod p) = c.

B Technical Lemmas

First, we state the result of Taylor’s expansion of the perturbed loss.
Lemma B.1. For any i = 1, 2, · · · , L, let Ui ∈ Rdidi−1 be a random vector sampled from a Gaussian
distribution with mean zero and variance Σi. Let the posterior distribution Q be centered at Wi and
perturbed with an appropriately reshaped Ui at every layer. Then, there exists a fixed value C1 > 0
that does not grow with n, such that the following holds for any x ∈ X and y ∈ {1, . . . , k}:

ℓQ(fW (x), y)− ℓ(fW (x), y) ≤
L∑

i=1

(〈
Σi,∇2

i [ℓ(fW (x), y)]
〉
+ C1 ∥Σi∥3/2F

)
. (6)

Next, we state the PAC-Bayes bound, which can be found in the PAC-Bayes literature (e.g., [16, 2]).
Lemma B.2. Suppose the loss function ℓ(x, y) lies in a bounded range [0, C] given any x ∈ X with
label y. For any β ∈ (0, 1) and δ ∈ (0, 1], with probability at least 1− δ, the following holds

LQ(fW ) ≤ 1

β
L̂Q(fW ) +

C
(
KL(Q||P) + log 1

δ

)
2β(1− β)n

. (7)
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