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Abstract

We introduce a novel analysis that leverages linguistic minimal pairs to probe
the internal linguistic representations of Large Language Models (LLMs). By
measuring the similarity between LLM activation differences across minimal pairs,
we quantify the linguistic similarity and gain insight into the linguistic knowledge
captured by LLMs. Our large-scale experiments, spanning 100+ LLMs and 150k
minimal pairs in three languages, reveal properties of linguistic similarity from
four key aspects: consistency across LLMs, relation to theoretical categorizations,
dependency to semantic context, and cross-lingual alignment of relevant phenom-
ena. Our findings suggest that 1) linguistic similarity is significantly influenced by
training data exposure, leading to higher cross-LLM agreement in higher-resource
languages. 2) Linguistic similarity strongly aligns with fine-grained theoretical
linguistic categories but weakly with broader ones. 3) Linguistic similarity shows
a weak correlation with semantic similarity, showing its context-dependent nature.
4) LLMs exhibit limited cross-lingual alignment in their understanding of relevant
linguistic phenomena. This work demonstrates the potential of minimal pairs as a
window into the neural representations of language in LLMs, shedding light on the
relationship between LLMs and linguistic theory.2

1 Introduction

The categorization of linguistic phenomena3 based on their relevance has been a long-standing
endeavor, dating back to Aristotle Aristotle [350 BC]. This has led to the widely accepted theoretical
linguistic consensus of a hierarchical categorization of language structure encompassing syntax,
semantics, morphology, etc., which provides a structured way to understand the intricate nature of
language, and allows linguists to investigate the interrelationships and commonalities among these
linguistic domains Comorovski [2013], Li [2004].

Alongside the theoretical discussions of linguistic phenomena, a growing body of research on
quantitative measurement of similarities based on statistical modeling on large-scale corpora has
been observed in computational linguistics. Examples include lexical similarity Holman et al. [2011],
syntactic similarity Boghrati et al. [2018], Schoot et al. [2016], semantic similarity Pennington et al.

∗Joint first authors. Xinyu Zhou is now affiliated with Université Paris Cité and Sorbonne Université.
2For the detailed and complete version of this paper, please refer to the preprint on arXiv:

https://arxiv.org/abs/2409.12435.
3Linguistic phenomena refer to observable patterns or features in language use. For example, subject-verb

agreement is a linguistic phenomenon where verbs must agree with subjects in number and person. An example
would be: “The dog barks” (correct) instead of “*The dog bark” (incorrect).
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[2014], Reimers and Gurevych [2019], among others. These examples showcase the possibilities
of understanding the nature of language through purely statistical methodologies. However, there
has been limited research on quantitatively measuring the relationships between different linguistic
phenomena. Given that language is a complex system composed of numerous interrelated linguistic
phenomena, addressing this gap could lead to a more comprehensive understanding of language
structure and its underlying mechanisms.

In this work, we aim to uncover and analyze the internal linguistic knowledge of Large Language
Models (LLMs) when presented with a wide range of linguistic phenomena. LLMs are large-scale
unsupervised language learners without any prior linguistic knowledge, and have demonstrated human-
level language capability, as evidenced by their leading performance on language understanding
benchmarks and impressive language generation fluency Zhao et al. [2023], Bang et al. [2023]. More
specifically, we are interested in how LLMs represent different linguistic phenomena, and whether
linguistically similar phenomena are represented similarly in LLMs.

To elicit such representations, we examine the activations in LLMs in response to linguistic minimal
pairs Warstadt et al. [2020]. As shown in Fig. 1, these pairs consist of sentences that differ only in a
word/phrase, with one being grammatical and the other ungrammatical. Since minimal pairs differ
only in one particular linguistic phenomenon, information about other aspects (such as topic and
semantic meaning) will be canceled out through subtraction. We interpret the remaining differences as
the LLMs’ internal representation of a specific linguistic phenomenon. By calculating the similarity
between multiple such representations, we derive a measure of linguistic similarity between linguistic
minimal pairs.

Activations Difference

LLM ㊀Cheryl is thinking that Jerry thinks about her.
*Cheryl is thinking that Jerry thinks about herself.

Binding (syntax-semantics)

LLM ㊀Heidi was imagining that Travis wasn't referencing her.
*Heidi was imagining that Travis wasn't referencing herself.

Binding (syntax-semantics)

LLM ㊀
Most children listen to Regina.

*Most children listens to Regina.
Subject-Verb Agreement (morphology)

Linguistic Similarity: 0.6

Linguistic Similarity: 0.0

Linguistic Minimal Pairs 

Figure 1: The process of measuring linguistic similarity in an LLM. We extract LLM activations
for sentences in linguistic minimal pairs and compute their differences. Since the sentences differ
solely in a specific linguistic phenomenon, the resulting difference only contains information about
that phenomenon. We then measure the similarity between these activation differences, which we
refer to as linguistic similarity.

We then conduct an extensive analysis of linguistic similarity in LLMs. Our experiment encompasses
100+ LLMs of varying scales and pretraining corpora, utilizing 150,000 linguistic minimal pairs
across 3 different languages. We report our observations correspond to the following key questions:

1) How consistent is linguistic similarity across different LLMs? LLMs have the highest alignment
of linguistic similarity in English, which is the most widely used language for LLM pertaining,
while the alignments are comparatively weaker in Chinese and Russian. We further visualized the
relationships among these LLMs with UMAP McInnes et al. [2018]. On Chinese samples, we
observed a distinct clustering pattern: bilingual and multilingual LLMs formed one cluster, while
English-only models formed another. The above results suggest that the language distribution in the
training data influences the linguistic similarity in LLMs.

2) Does linguistic similarity align with theoretical linguistic categorizations? We compared
linguistic similarity across three levels of theoretical linguistic categorizations. Our analysis revealed
that fine-grained classifications exhibit significantly higher intra-class similarities compared to inter-
class similarities. However, this disparity diminishes considerably at higher categorization levels.
Meanwhile, we can also observe some highly correlated phenomena pairs that are not classified to
the same theoretical categorization.

3) To what extent does linguistic similarity correlate with semantic similarity? We showed a
weak correlation between semantic similarity and linguistic similarity, despite many existing samples
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with low linguistic similarity and high semantic similarity, and conversely, high in linguistic and low
in semantic. The weak correlation indicates that linguistic similarity in LLMs has a context-dependent
nature.

4) Whether relevant phenomena in different languages enjoy higher linguistic similarities? We
compare the linguistic similarity of the shared three linguistic phenomena in English and Chinese.
Our UMAP visualization revealed that while English phenomena are clustered within a shared region,
they are “attracted” by their relevant phenomena in Chinese.

We hope this paper sparks new exploration into LLMs’ internal linguistic representations, uncov-
ering deeper insights into their inner workings and potentially informing linguistic theory. To
facilitate future research, the activation differences of the 100+ LLMs, pre-computed sample-level
linguistic similarities, and all the codes are made publicly available at https://github.com/
ChenDelong1999/Linguistic-Similarity.

2 Measuring Linguistic Similarity in Large Language Models

2.1 Definition

Let x+ denote a grammatically correct natural language sentence, and x− represent an ungrammatical
sentence derived from x+ with a minimal modification affecting a specific linguistic phenomenon.
The pair ⟨x+, x−⟩ is referred to as a linguistic minimal pair. Let fLLM denote an LLM that takes
sentences as input and generates corresponding hidden activations, i.e., z+ = fLLM(x+) and z− =
fLLM(x−), where z+, z− ∈ Rn and n is the dimensionality of the hidden representations.

We compute the difference between the hidden activations: ∆z = z+ − z−. While z+ and z−

individually encode rich information about the input sentences, including both semantic and linguistic
properties, their difference ∆z primarily captures the representation of the specific linguistic phe-
nomenon that distinguishes the minimal pair, as other aspects of the sentences are guaranteed to be
identical and thus will be canceled out. Formally, given two linguistic minimal pairs ⟨x+

1 , x
−
1 ⟩ and

⟨x+
2 , x

−
2 ⟩, we define their linguistic similarity as sim(∆z1,∆z2), where sim(·) is a similarity metric

and we used cosine similarity in this work.

2.2 Implementation

Data. We utilized linguistic minimal pairs from three existing datasets: BLiMP Warstadt et al. [2020],
SLING Song et al. [2022], and RuBLiMP Taktasheva et al. [2024], which consist of 67, 38, and 45
linguistic phenomena in English, Chinese, and Russian, respectively. Each linguistic phenomenon is
associated with 1,000 corresponding linguistic minimal pairs, yielding a total of 150,000 pairs.

LLMs. Each sentence was input into various LLMs without any prompts, and hidden states were ex-
tracted from five evenly sampled layers. We specifically extracted the activations of the last-but-two to-
ken, as previous tokens remain visible, while the final tokens correspond to the <end-of-sentence>
token. A comprehensive range of 104 LLMs from Huggingface was employed; the complete list is
provided in Appendix C.

Computation. All inferences on the LLMs were conducted using half-precision (float-16). Given
the extensive volume of linguistic minimal pairs and the number of LLMs, we optimized storage
by saving both the activation differences and the computed pairwise linguistic similarity matrix in
int8 precision. Under this configuration, the activation differences for Llama-2-7B required 1.3
GB of storage (a tensor of 67,000 samples × 5 layers × 4096 neurons), while the similarity matrix of
67,000 × 67,000 necessitated 4.2 GB of storage.

3 Result and Discussion

To quantitatively assess the consistency of linguistic similarity across different LLMs, we adopted
the mutual k-nearest neighbors metric as proposed in Huh et al. [2024]. Specifically, for a given
linguistic minimal pair, we retrieved the top-k closest neighbors based on linguistic similarity from
two distinct LLMs and calculated the percentage of overlapping samples among the retrieved sets as
the alignment score (see Huh et al., 2024 for further details).
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Figure 2: The relationship between linguistic similarity across LLMs. In English, LLMs form
a single cluster, while in Chinese, two distinct clusters emerge: one for bilingual and multilingual
LLMs, and another for English-only models. Detailed visualizations can be found in Appendix E.1.

We computed pairwise alignment scores for all 104 LLMs across three datasets. For computational
efficiency, we randomly sampled 10% of the total samples from each dataset (i.e., 6,700 for BLiMP,
3,800 for SLING, and 4,500 for RuBLiMP) and set k to 1% of the sample pool size for retrieval
(i.e., 67, 38, and 45). Notably, the BLiMP dataset (English) exhibited the highest alignment, with an
average score of 0.471 (i.e., 47.1% of the top-1% similar minimal pairs are shared across LLMs on
average), whereas the SLING (Chinese) and RuBLiMP (Russian) demonstrated average alignment
scores of 0.414 and 0.139, respectively.

We also observed that the distribution of alignment scores for English and Russian datasets is
unimodal, while the Chinese dataset exhibits a bimodal distribution. To further investigate this
phenomenon, we employed UMAP McInnes et al. [2018] to embed the LLMs to 2D plane based
on a distance metric of distance = − log(alignment score), following Huh et al. [2024]. As
illustrated in Fig. 2, each dot represents an LLM, with closer dots indicating similar linguistic
similarities. LLMs from the same family (e.g., models from the same creator with different sizes
or base/chat versions) are clustered together, indicated by the same color. Interestingly, in Chinese,
we observed two distinct clusters: the left cluster (marked with a green dotted line) predominantly
consists of bilingual (English-Chinese) and multilingual models, while the right cluster marked with
purple is primarily composed of English-only trained LLMs. These results suggest a correlation
between alignment scores and LLMs’ pertaining language.

3.1 Alignment between Linguistic Similarity and Theoretical Categorizations

To investigate the alignment between linguistic similarity and theoretical linguistic categorizations,
we compared intra-class and inter-class similarities at different levels of linguistic classification for
both English (BLiMP) and Chinese (SLING) datasets. BLiMP and SLING provide hierarchical
linguistic classifications, with the 1st level being the most fine-grained “phenomena”, the 2nd level
capturing broader categories of “terms”, and the 3rd level representing the most general “fields”
(examples are shown in leftmost and rightmost columns in Fig. 6).

The analysis in this section is based on averaged linguistic similarities across the 104 LLMs. We
focused on BLiMP and SLING datasets due to their high linguistic similarity alignment across LLMs,
as demonstrated in the previous Section 3. We excluded the RuBLiMP (Russian) dataset with weaker
consensus across LLMs.

As shown in Fig. 6, our analysis revealed that at the lowest level, intra-class similarities were
significantly higher than inter-class similarities for both BLiMP and SLING datasets. This suggests
that linguistic similarity effectively captures the nuanced distinctions within these detailed categories.
This clear separation indicates a strong alignment between linguistic similarity and these fine-grained
theoretical linguistic categorizations. However, as we moved to higher levels of classification, the
gap between intra-class and inter-class similarities diminished considerably. For both datasets, the
disparity between inner and inter-class similarities approximately halved with each ascent in the
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BLIMP dataset (English) SLING dataset (Chinese)

Figure 3: Joint distribution of linguistic similarity and semantic similarity. Each dot in the
plots represents a pair of linguistic minimal pairs. We observed a weak correlation between the two
similarity measurements, showing that linguistic similarity has a context-dependent nature.

categorization hierarchy. Higher-level linguistic categories exhibit greater interconnectedness and
mutual influence than previously recognized, which may explain the diminishing differentiation in
linguistic similarity at broader classification levels.

We further visualize the phenomenon-level linguistic similarity matrix in Fig. 5 (visualizations for
other datasets can be found in Appendix E.2). The observations here confirm our above conclusions
from Fig. 6. The clearly distinguishable diagonal entries represent the lowest linguistic phenomenon-
level similarity, which enjoys significant inter/intra separation. For higher 2nd-level classification,
as noted by dashed black lines, there exist both homogeneous (e.g., anaphor agreement, determiner
none agreement) and heterogeneous (e.g., irregular forms and many others) ones. We cannot observe
any clear clustering effects for the 3rd-level classification as separated by bold black lines, which also
aligns with our findings from Fig. 6.

Interestingly, we found that there are some pairs of phenomena that do not belong to the exact same
theoretical categorization, but also enjoy considerably high similarities. For example, “sentential
negation NPI licensor present” in the “NPI licensing” term of “semantics” field has very high
similarity with “sentential negation NPI scope” in the “NPI licensing” term of “syntax-semantics”
field; and “principle A domain 3” in the “binding” term of “syntax-semantics” filed has considerably
high similarities to the phenomena in “anaphor agreement” term of the “morphology” field. These
observations underscore the potential of linguistic similarity as a valuable tool for refining our
understanding of language structure and organization.

3.2 The Relationship Between Linguistic Similarity and Semantic Similarity

To further investigate the nature of linguistic similarity captured by our method, we compare it
with the semantic similarity between minimal pairs. We employed a multilingual Sentence Trans-
former Reimers and Gurevych [2019] model4 to generate sentence embeddings for the correct
sentence in the minimal pairs. Cosine similarity between these embeddings served as our measure
of semantic similarity following default practice. We sampled 1k pairs of minimal pairs that have
linguistic similarity within each range of (0.9, 1.0), (0.8, 0.9), ..., (0, 0.1), (−∞, 0), and plotted their
semantic similarity against their linguistic similarity.

Fig. 3 provides the results for the BLiMP and SLING. We can observe a weak correlation between
linguistic and semantic similarities for both datasets, suggesting that the linguistic similarity in
LLMs is context dependent to some extent. However, linguistic and semantic similarities can vary
independently. In English, two minimal pairs from the Binding (syntax-semantics) phenomenon
show high linguistic similarity (>0.6) but low semantic similarity (<0.3), indicating that while these
pairs involve the same linguistic structures, the semantic impact of the changes differs substantially.
Conversely, we found cases of low linguistic similarity (<0.3) but high semantic similarity (>0.6)
between minimal pairs from Binding (syntax-semantics) and Argument Structure (syntax). We also
observed cases where both linguistic and semantic similarities are consistently high or low, which
often emerges when minimal pairs share similar vocabulary or address completely unrelated linguistic
features. The result of SLING reveals similar patterns to those observed in BLiMP.

4https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
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Figure 4: UMAP visualization of minimal pairs in same categories (terms) but different lan-
guages. Linguistic phenomena are dominantly grouped by their language in multilingual LLMs:
English samples are all clustered within purple-shaded areas. While relevant linguistic phenomena in
different languages are not fully overlapped, LLM does capture some relationships. As indicated by
purple arrows, English samples seem to be “attracted” by the corresponding Chinese samples.

3.3 Linguistic Similarity Across Different Languages

We are interested in how LLMs represent similar linguistic phenomena across different languages–for
relevant phenomena in different languages, whether they exhibit higher linguistic similarity? We
conducted a multi-lingual analysis focusing on three key linguistic terms: anaphor agreement, polarity
items, and filler-gap dependency, on both BLiMP (English) and SLING (Chinese) datasets. Linguistic
phenomena within each of these terms are considered relevant, and a total of 39 phenomena are
involved, leading to a total of 39k minimal pairs.

To explore the relationship between those phenomena, we used a representative state-of-the-art
multilingual LLM Llama-3.15, and employed UMAP dimensionality reduction based on pair-wise
linguistic similarity.

Interestingly, we also observe that relevant phenomena across different languages often exhibit closer
proximity than unrelated phenomena within the same language. This cross-lingual correlation is
illustrated by the purple arrows in Figure 4, which “attracts” English samples to Chinese samples.
Quantitatively, we calculated the average pair-wise linguistic similarity of the three terms in BLiMP
and SLING.

4 Conclusion

Our comprehensive analysis of linguistic similarity in LLMs, spanning over 100 models and 150k
minimal pairs across three languages, reveals several key insights. We found that linguistic similarity
consistency across LLMs is strongly influenced by pertaining data, with high-resource languages
showing greater alignment. LLMs’ internal representations align well with fine-grained linguistic
categorizations, but this alignment weakens at broader levels. The weak correlation between linguistic
and semantic similarities suggests that LLMs’ representation of linguistic phenomena is context-
dependent. Cross-lingually, while LLMs tend to group phenomena by language, they do capture
some relationships between relevant phenomena across languages.

These findings contribute to our understanding of LLMs’ internal language processing, potentially
bridging the gap between neural language models and linguistic theory. As LLMs continue to advance,
this work provides a foundation for future research into their linguistic representations, informing
model development and offering insights into both artificial and human language processing.

5https://huggingface.co/meta-llama/Meta-Llama-3.1-8B
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Appendix

A Related Work

Linguistic Minimal Pairs. Acceptability judgments Chomsky [1957] have long served as a proxy
for grammaticalness in generative syntax, relying on native speakers’ intuitions to evaluate whether
sequences generated by a grammar are perceived as acceptable. In the past decade, grammatical
acceptability judgment tasks Linzen et al. [2016], Futrell et al. [2018], Wilcox et al. [2019], Warstadt
et al. [2019], Gauthier et al. [2020] have been commonly used to evaluate language models by
comparing output probabilities, providing a direct linguistic measure of sentence acceptability.
Among these benchmarks, BLiMP Warstadt et al. [2020] introduced a large-scale linguistic minimal
pair benchmark in English. This work was followed by many studies in other languages, namely
CLiMP Xiang et al. [2021] and SLING Song et al. [2022] for Chinese, JBLiMP Someya and Oseki
[2023] for Japanese, BHASA Leong et al. [2023] for Indonesian, RuBLiMP Taktasheva et al. [2024]
for Russian and BLiMP-NL Suijkerbuijk et al. [2024] for Dutch.

Linguistic and Language Representation in LLMs. A growing body of research is investigating
the linguistic mechanisms within LLMs through probing and interventional strategies Arora et al.
[2024], He et al. [2024], Weber et al. [2024]. These studies mostly focus on specific linguistic
phenomena, such as subject-verb agreement Giulianelli et al. [2018], plurality Hanna [2022], long-
distance agreement Li et al. [2023], negative polarity items DeCarlo et al. [2023], and adjective
order Jumelet et al. [2024], see Millière [2024] for a comprehensive review. Furthermore, recent
studies have also identified linguistic regions Zhang et al. [2024] and language-specific neurons Tang
et al. [2024], Kojima et al. [2024] that contribute to multilingual capabilities, and further suggests that
LLMs exhibit layer-wise specialization, with intermediate layers processing information in a common
"language" concept space and final layers generating responses in the specific language Wendler et al.
[2024], Zhong et al. [2024].

B Limitations and Future Works

Our study’s findings are inherently dependent on the quality and scope of existing linguistic minimal
pair datasets, which may have the possibility of violating the assumption of having only difference
of individual phenomena. Additionally, our analysis is limited to three languages, which cannot
fully represent global linguistic diversity. Despite examining 150 linguistic phenomena, this still
captures only a fraction of language’s complexity. Future directions include developing more high-
quality minimal pairs, broadening language coverage to include more diverse linguistic families, and
increasing the range of phenomena studied.

C The List of 104 LLMs

The following is a list of all LLMs that are adopted in our analysis, grouped by model families:

Llama-2

• NousResearch/Llama-2-7b-chat-hf: Total 33 layers, 4096 neurons per layer. Sampled layers: 5,
11, 16, 22, 27.

• NousResearch/Llama-2-13b-chat-hf: Total 41 layers, 5120 neurons per layer. Sampled layers:
6, 13, 20, 27, 34.

Llama-3 & Llama-3.1

• meta-llama/Meta-Llama-3-8B: Total 33 layers, 4096 neurons per layer. Sampled layers: 5, 11, 16,
22, 27.

• meta-llama/Meta-Llama-3-8B-Instruct: Total 33 layers, 4096 neurons per layer. Sampled
layers: 5, 11, 16, 22, 27.

• meta-llama/Meta-Llama-3.1-8B: Total 33 layers, 4096 neurons per layer. Sampled layers: 5, 11,
16, 22, 27.
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• meta-llama/Meta-Llama-3.1-8B-Instruct: Total 33 layers, 4096 neurons per layer. Sampled
layers: 5, 11, 16, 22, 27.

Mistral-7B-v0.3

• mistralai/Mistral-7B-v0.3: Total 33 layers, 4096 neurons per layer. Sampled layers: 5, 11, 16,
22, 27.

• mistralai/Mistral-7B-Instruct-v0.3: Total 33 layers, 4096 neurons per layer. Sampled layers:
5, 11, 16, 22, 27.

OLMo

• allenai/OLMo-1B-hf: Total 17 layers, 2048 neurons per layer. Sampled layers: 2, 5, 8, 11, 14.

• allenai/OLMo-7B-hf: Total 33 layers, 4096 neurons per layer. Sampled layers: 5, 11, 16, 22, 27.

• allenai/OLMo-7B-Instruct-hf: Total 33 layers, 4096 neurons per layer. Sampled layers: 5, 11,
16, 22, 27.

Qwen, Qwen-1.5, & Qwen-2

• Qwen/Qwen-7B: Total 33 layers, 4096 neurons per layer. Sampled layers: 5, 11, 16, 22, 27.

• Qwen/Qwen-7B-Chat: Total 33 layers, 4096 neurons per layer. Sampled layers: 5, 11, 16, 22, 27.

• Qwen/Qwen-14B: Total 41 layers, 5120 neurons per layer. Sampled layers: 6, 13, 20, 27, 34.

• Qwen/Qwen-14B-Chat: Total 41 layers, 5120 neurons per layer. Sampled layers: 6, 13, 20, 27, 34.

• Qwen/Qwen1.5-0.5B: Total 25 layers, 1024 neurons per layer. Sampled layers: 4, 8, 12, 16, 20.

• Qwen/Qwen1.5-0.5B-Chat: Total 25 layers, 1024 neurons per layer. Sampled layers: 4, 8, 12, 16,
20.

• Qwen/Qwen1.5-1.8B: Total 25 layers, 2048 neurons per layer. Sampled layers: 4, 8, 12, 16, 20.

• Qwen/Qwen1.5-1.8B-Chat: Total 25 layers, 2048 neurons per layer. Sampled layers: 4, 8, 12, 16,
20.

• Qwen/Qwen1.5-4B: Total 41 layers, 2560 neurons per layer. Sampled layers: 6, 13, 20, 27, 34.

• Qwen/Qwen1.5-4B-Chat: Total 41 layers, 2560 neurons per layer. Sampled layers: 6, 13, 20, 27, 34.

• Qwen/Qwen1.5-7B: Total 33 layers, 4096 neurons per layer. Sampled layers: 5, 11, 16, 22, 27.

• Qwen/Qwen1.5-7B-Chat: Total 33 layers, 4096 neurons per layer. Sampled layers: 5, 11, 16, 22, 27.

• Qwen/Qwen1.5-14B: Total 41 layers, 5120 neurons per layer. Sampled layers: 6, 13, 20, 27, 34.

• Qwen/Qwen1.5-14B-Chat: Total 41 layers, 5120 neurons per layer. Sampled layers: 6, 13, 20, 27,
34.

• Qwen/Qwen2-0.5B: Total 25 layers, 896 neurons per layer. Sampled layers: 4, 8, 12, 16, 20.

• Qwen/Qwen2-0.5B-Instruct: Total 25 layers, 896 neurons per layer. Sampled layers: 4, 8, 12, 16,
20.

• Qwen/Qwen2-1.5B: Total 29 layers, 1536 neurons per layer. Sampled layers: 4, 9, 14, 19, 24.

• Qwen/Qwen2-1.5B-Instruct: Total 29 layers, 1536 neurons per layer. Sampled layers: 4, 9, 14, 19,
24.

• Qwen/Qwen2-7B: Total 29 layers, 3584 neurons per layer. Sampled layers: 4, 9, 14, 19, 24.

• Qwen/Qwen2-7B-Instruct: Total 29 layers, 3584 neurons per layer. Sampled layers: 4, 9, 14, 19,
24.

SeaLLMs

• SeaLLMs/SeaLLMs-v3-1.5B: Total 29 layers, 1536 neurons per layer. Sampled layers: 4, 9, 14, 19,
24.

• SeaLLMs/SeaLLMs-v3-1.5B-Chat: Total 29 layers, 1536 neurons per layer. Sampled layers: 4, 9,
14, 19, 24.

• SeaLLMs/SeaLLMs-v3-7B: Total 29 layers, 3584 neurons per layer. Sampled layers: 4, 9, 14, 19, 24.

• SeaLLMs/SeaLLMs-v3-7B-Chat: Total 29 layers, 3584 neurons per layer. Sampled layers: 4, 9, 14,
19, 24.
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SmolLM

• HuggingFaceTB/SmolLM-135M: Total 31 layers, 576 neurons per layer. Sampled layers: 5, 10, 15,
20, 25.

• HuggingFaceTB/SmolLM-135M-Instruct: Total 31 layers, 576 neurons per layer. Sampled layers:
5, 10, 15, 20, 25.

• HuggingFaceTB/SmolLM-360M: Total 33 layers, 960 neurons per layer. Sampled layers: 5, 11, 16,
22, 27.

• HuggingFaceTB/SmolLM-360M-Instruct: Total 33 layers, 960 neurons per layer. Sampled layers:
5, 11, 16, 22, 27.

• HuggingFaceTB/SmolLM-1.7B: Total 25 layers, 2048 neurons per layer. Sampled layers: 4, 8, 12,
16, 20.

• HuggingFaceTB/SmolLM-1.7B-Instruct: Total 25 layers, 2048 neurons per layer. Sampled layers:
4, 8, 12, 16, 20.

TinyLlama

• TinyLlama/TinyLlama_v1.1: Total 23 layers, 2048 neurons per layer. Sampled layers: 3, 7, 11, 15,
19.

• TinyLlama/TinyLlama_v1.1_chinese: Total 23 layers, 2048 neurons per layer. Sampled layers:
3, 7, 11, 15, 19.

• TinyLlama/TinyLlama_v1.1_math_code: Total 23 layers, 2048 neurons per layer. Sampled layers:
3, 7, 11, 15, 19.

Yi

• 01-ai/Yi-1.5-6B: Total 33 layers, 4096 neurons per layer. Sampled layers: 5, 11, 16, 22, 27.

• 01-ai/Yi-1.5-6B-Chat: Total 33 layers, 4096 neurons per layer. Sampled layers: 5, 11, 16, 22, 27.

• 01-ai/Yi-1.5-9B: Total 49 layers, 4096 neurons per layer. Sampled layers: 8, 16, 24, 32, 40.

• 01-ai/Yi-1.5-9B-Chat: Total 49 layers, 4096 neurons per layer. Sampled layers: 8, 16, 24, 32, 40.

Bloom & Bloomz

• bigscience/bloom-560m: Total 25 layers, 1024 neurons per layer. Sampled layers: 4, 8, 12, 16, 20.

• bigscience/bloomz-560m: Total 25 layers, 1024 neurons per layer. Sampled layers: 4, 8, 12, 16,
20.

• bigscience/bloom-1b1: Total 25 layers, 1536 neurons per layer. Sampled layers: 4, 8, 12, 16, 20.

• bigscience/bloomz-1b1: Total 25 layers, 1536 neurons per layer. Sampled layers: 4, 8, 12, 16, 20.

• bigscience/bloom-1b7: Total 25 layers, 2048 neurons per layer. Sampled layers: 4, 8, 12, 16, 20.

• bigscience/bloomz-1b7: Total 25 layers, 2048 neurons per layer. Sampled layers: 4, 8, 12, 16, 20.

• bigscience/bloom-3b: Total 31 layers, 2560 neurons per layer. Sampled layers: 5, 10, 15, 20, 25.

• bigscience/bloomz-3b: Total 31 layers, 2560 neurons per layer. Sampled layers: 5, 10, 15, 20, 25.

• bigscience/bloom-7b1: Total 31 layers, 4096 neurons per layer. Sampled layers: 5, 10, 15, 20, 25.

• bigscience/bloomz-7b1: Total 31 layers, 4096 neurons per layer. Sampled layers: 5, 10, 15, 20,
25.

Gemma & Gemma-2

• google/gemma-2b: Total 19 layers, 2048 neurons per layer. Sampled layers: 3, 6, 9, 12, 15.

• google/gemma-2b-it: Total 19 layers, 2048 neurons per layer. Sampled layers: 3, 6, 9, 12, 15.

• google/gemma-7b: Total 29 layers, 3072 neurons per layer. Sampled layers: 4, 9, 14, 19, 24.

• google/gemma-7b-it: Total 29 layers, 3072 neurons per layer. Sampled layers: 4, 9, 14, 19, 24.

• google/gemma-2-2b: Total 27 layers, 2304 neurons per layer. Sampled layers: 4, 9, 13, 18, 22.

• google/gemma-2-2b-it: Total 27 layers, 2304 neurons per layer. Sampled layers: 4, 9, 13, 18, 22.

• google/gemma-2-9b: Total 43 layers, 3584 neurons per layer. Sampled layers: 7, 14, 21, 28, 35.
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• google/gemma-2-9b-it: Total 43 layers, 3584 neurons per layer. Sampled layers: 7, 14, 21, 28, 35.

GLM

• THUDM/glm-4-9b: Total 41 layers, 4096 neurons per layer. Sampled layers: 6, 13, 20, 27, 34.

• THUDM/glm-4-9b-chat: Total 41 layers, 4096 neurons per layer. Sampled layers: 6, 13, 20, 27, 34.

GPT-Neo

• EleutherAI/gpt-neo-125m: Total 13 layers, 768 neurons per layer. Sampled layers: 2, 4, 6, 8, 10.

• EleutherAI/gpt-neo-1.3B: Total 25 layers, 2048 neurons per layer. Sampled layers: 4, 8, 12, 16,
20.

• EleutherAI/gpt-neo-2.7B: Total 33 layers, 2560 neurons per layer. Sampled layers: 5, 11, 16, 22,
27.

• EleutherAI/gpt-neox-20B: Total 45 layers, 6144 neurons per layer. Sampled layers: 7, 15, 22, 30,
37.

GPT-2

• openai-community/gpt2: Total 13 layers, 768 neurons per layer. Sampled layers: 2, 4, 6, 8, 10.

• openai-community/gpt2-medium: Total 25 layers, 1024 neurons per layer. Sampled layers: 4, 8,
12, 16, 20.

• openai-community/gpt2-large: Total 37 layers, 1280 neurons per layer. Sampled layers: 6, 12,
18, 24, 30.

• openai-community/gpt2-xl: Total 49 layers, 1600 neurons per layer. Sampled layers: 8, 16, 24,
32, 40.

InternLM-2.5

• internlm/internlm2_5-1_8b: Total 25 layers, 2048 neurons per layer. Sampled layers: 4, 8, 12,
16, 20.

• internlm/internlm2_5-1_8b-chat: Total 25 layers, 2048 neurons per layer. Sampled layers: 4,
8, 12, 16, 20.

• internlm/internlm2_5-7b: Total 33 layers, 4096 neurons per layer. Sampled layers: 5, 11, 16, 22,
27.

• internlm/internlm2_5-7b-chat: Total 33 layers, 4096 neurons per layer. Sampled layers: 5, 11,
16, 22, 27.

• internlm/internlm2_5-20b: Total 49 layers, 6144 neurons per layer. Sampled layers: 8, 16, 24,
32, 40.

• internlm/internlm2_5-20b-chat: Total 49 layers, 6144 neurons per layer. Sampled layers: 8,
16, 24, 32, 40.

OPT

• facebook/opt-125m: Total 13 layers, 768 neurons per layer. Sampled layers: 2, 4, 6, 8, 10.

• facebook/opt-1.3b: Total 25 layers, 2048 neurons per layer. Sampled layers: 4, 8, 12, 16, 20.

• facebook/opt-2.7b: Total 33 layers, 2560 neurons per layer. Sampled layers: 5, 11, 16, 22, 27.

• facebook/opt-6.7b: Total 33 layers, 4096 neurons per layer. Sampled layers: 5, 11, 16, 22, 27.

• facebook/opt-13b: Total 41 layers, 5120 neurons per layer. Sampled layers: 6, 13, 20, 27, 34.

Phi

• microsoft/phi-1: Total 25 layers, 2048 neurons per layer. Sampled layers: 4, 8, 12, 16, 20.

• microsoft/phi-1_5: Total 25 layers, 2048 neurons per layer. Sampled layers: 4, 8, 12, 16, 20.

• microsoft/phi-2: Total 33 layers, 2560 neurons per layer. Sampled layers: 5, 11, 16, 22, 27.

• microsoft/Phi-3-mini-128k-instruct: Total 33 layers, 3072 neurons per layer. Sampled layers:
5, 11, 16, 22, 27.
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• microsoft/Phi-3-small-128k-instruct: Total 33 layers, 4096 neurons per layer. Sampled
layers: 5, 11, 16, 22, 27.

Pythia

• EleutherAI/pythia-1.4b: Total 25 layers, 2048 neurons per layer. Sampled layers: 4, 8, 12, 16,
20.

• EleutherAI/pythia-12b: Total 37 layers, 5120 neurons per layer. Sampled layers: 6, 12, 18, 24,
30.

• EleutherAI/pythia-14m: Total 7 layers, 128 neurons per layer. Sampled layers: 1, 2, 3, 4, 5.

• EleutherAI/pythia-160m: Total 13 layers, 768 neurons per layer. Sampled layers: 2, 4, 6, 8, 10.

• EleutherAI/pythia-1b: Total 17 layers, 2048 neurons per layer. Sampled layers: 2, 5, 8, 11, 14.

• EleutherAI/pythia-2.8b: Total 33 layers, 2560 neurons per layer. Sampled layers: 5, 11, 16, 22,
27.

• EleutherAI/pythia-410m: Total 25 layers, 1024 neurons per layer. Sampled layers: 4, 8, 12, 16,
20.

• EleutherAI/pythia-6.7b: Total 33 layers, 4096 neurons per layer. Sampled layers: 5, 11, 16, 22,
27.

• EleutherAI/pythia-70m: Total 7 layers, 512 neurons per layer. Sampled layers: 1, 2, 3, 4, 5.

Others

• anas-awadalla/mpt-1b-redpajama-200b: Total 24 layers, 2048 neurons per layer. Sampled
layers: 4, 8, 12, 16, 20.

• CohereForAI/aya-23-8B: Total 33 layers, 4096 neurons per layer. Sampled layers: 5, 11, 16, 22,
27.

• distilbert/distilgpt2: Total 7 layers, 768 neurons per layer. Sampled layers: 1, 2, 3, 4, 5.

D List of Linguistic Phenomena used in Section 3.3

BLIMP Dataset (English)

• Anaphor agreement

– anaphor gender agreement
– anaphor number agreement

• Polarity item

– matrix question npi licensor present
– npi present 1
– npi present 2
– only npi licensor present
– only npi scope
– sentential negation npi licensor present
– sentential negation npi scope

• Filler gap dependency

– wh questions object gap
– wh questions subject gap
– wh questions subject gap long distance
– wh vs that no gap
– wh vs that no gap long distance
– wh vs that with gap
– wh vs that with gap long distance

SLING Dataset (Chinese)

• Anaphor agreement
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– self male
– cl men self female
– pp male
– baseline male
– baseline cl men female
– baseline cl female
– cl self male
– cl men self male
– self female
– pp female
– baseline cl men male
– menself female
– menself male
– cl self female
– baseline cl male
– baseline female
– baseline men female
– baseline men male

• Polarity item

– any
– more or less
– even wh

• Filler gap dependency

– rc resumptive noun
– rc resumptive pronoun
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E Additional Visualizations

Figure 5: Phenomena-level linguistic similarity matrix of BLiMP. Each grid corresponds to the
average similarity between two linguistic phenomena. The categorization in the 2nd-level (linguistic
terms) and the 3rd-level are respectively separated by dashed and bold black lines. On the left, we
provide label of the 1st to 3rd levels of linguistic classifications, separated by “|”. Visualizations of
SLING and RuBLiMP can be found in Appendix E.2.

BLIMP (English) SLING (Chinese)

3rd level Classification
• Syntax
• Semantics

2nd level Classification
• Alternative Question
• Aspect
• Definiteness Effect
• Polarity Items
         …

1st level Classification
• 还是…吗 (haishi…ma)
• 在…过 (zai…guo) 
• 定指_每(definiteness_every)
• 或多或少 (more or less)
         …

3rd level Classification
• Syntax
• Semantics
• Morphology
• Syntax-Semantics

2nd level Classification
• Island Effects
• NPI Licensing
• Anaphor Agreement
• Binding
         …

1st level Classification
• Adjunct Island
• Only NPI Licensor Present
• Anaphor Gender Agreement
• Principle A Case 1
         …

Figure 6: Intra-class and inter-class linguistic similarities at different levels of linguistic classifi-
cation. At the most fine-grained level (1st level), intra-class similarities are significantly higher than
inter-class similarities, indicating a strong alignment with detailed theoretical linguistic categoriza-
tions. As we move to broader categories (2nd and 3rd levels), the gap between inner and inter-class
similarities narrows notably.
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E.1 Consistency of Linguistic Similarity Across 104 LLMs

Figure 7: Pair-wise alignment scores of 104 LLMs in BLiMP dataset (English), corresponding to
Fig. 2 left.
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Figure 8: UMAP visualization based on LLM alignment scores on BLiMP dataset (English), corre-
sponding to Fig. 2 left.
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Figure 9: Pair-wise alignment scores of 104 LLMs in SLING dataset (Chinese), corresponding to
Fig. 2 right.
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Figure 10: UMAP visualization based on LLM alignment scores on SLING dataset (Chinese),
corresponding to Fig. 2 right.
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Figure 11: Pair-wise alignment scores of 104 LLMs in RuBLiMP dataset (Russian).
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Figure 12: UMAP visualization based on LLM alignment scores on RuBLiMP dataset (Russian).
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E.2 Alignment between Linguistic Similarity and Theoretical Categorizations

Figure 13: Self-similarities of linguistic phenomena in English, Chinese, and Russian
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Figure 14: Phenomena-level linguistic similarity matrix of SLING

Figure 15: Phenomena-level linguistic similarity matrix of RUBLiMP
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E.3 Linguistic Similarity Across Different Languages
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Figure 16: Extended detailed visualization of Fig. 4.
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