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ABSTRACT

Large vision-language models have recently achieved remarkable progress, ex-
hibiting great multimodal perception and reasoning abilities. However, how to
effectively evaluate these large vision-language models remains a major obstacle,
hindering future development in this domain. Traditional benchmarks like VQAv2
or COCO Caption provide quantitative performance measurements but suffer from
a lack of fine-grained ability assessment and non-robust evaluation metrics. Re-
cent subjective benchmarks, such as OwlEval, offer comprehensive evaluations
of a model’s abilities by incorporating human labor, but they are not scalable and
display significant bias. In response to these challenges, we propose MMBench,
a new benchmark for assessing multi-modal capabilities of VLMs. MMBench
methodically develops a comprehensive evaluation pipeline, primarily comprised
of two key features: 1. MMBench is a meticulously curated dataset that surpasses
existing similar benchmarks in terms of the number and the variety of evaluation
questions and abilities; 2. MMBench introduces a rigorous CircularEval strategy
and incorporates the use of ChatGPT to convert free-form predictions into pre-
defined choices, thereby facilitating a fair and robust evaluation despite of VLMs’
different instruction following capabilities. MMBench is a systematically designed
objective benchmark for robustly evaluating the various abilities of vision-language
models. We hope MMBench will assist the research community in better evaluating
their models and facilitate future progress in this area.

1 INTRODUCTION

Recently, notable progress has been achieved within the realm of large language models (LLMs). For
instance, the latest large language models, such as OpenAI’s ChatGPT and GPT-4 (OpenAI, 2023),
have demonstrated remarkable reasoning capabilities that are comparable to, and in some cases, even
surpass human capabilities. Drawing inspiration from these promising advancements in LLMs, large
vision-language models (LVLMs) have also experienced a revolutionary transformation. Notable
works, such as MiniGPT-4 (Zhu et al., 2023), Otter (Li et al., 2023b;a), and LLaVA (Liu et al., 2023b),
have demonstrated enhanced capabilities in terms of image content recognition and reasoning within
the domain of vision-language models, demonstrating superior capabilities compared to early works.
Nevertheless, the majority of current studies tend to emphasize showcasing qualitative examples,
rather than undertaking comprehensive quantitative experiments to thoroughly assess their model
performance. The lack of quantitative assessment poses a considerable challenge for comparing
various models. Recent studies have mainly explored two approaches to conduct quantitative
evaluations. The first approach involves utilizing existing public datasets (Goyal et al., 2017; Chen
et al., 2015) for objective evaluation. Alternatively, some studies employ human annotators (Ye
et al., 2023; Xu et al., 2023) to perform subjective evaluation. However, it is worth noting that both
approaches exhibit some inherent limitations.

A multitude of public datasets, such as VQAv2 (Goyal et al., 2017), COCO Caption (Chen et al.,
2015), GQA (Hudson & Manning, 2019), OK-VQA (Marino et al., 2019), have long served as
valuable resources for the quantitative evaluation of vision-language models. These datasets offer
objective metrics, including accuracy, BLEU, CIDEr, etc. However, when employed to evaluate
more advanced LVLMs, these benchmarks encounter the following challenges:
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Figure 1: Results of six representative large vision-language models across the 20 ability di-
mensions defined in MMBench. For more comprehensive evaluation results on additional models,
please refer to Table 3 and Table 8, as well as the appendix.

(1). Existing evaluation metrics mostly require an exact match between the prediction and the reference
target, leading to potential limitations. For instance, in the Visual Question Answering (VQA) task,
even if the prediction is “bicycle” while the reference answer is “bike”, the existing metric would
assign a negative score to the prediction, despite its correctness. Consequently, this issue results in a
considerable number of false-negative samples.

(2). Current public datasets predominantly focus on evaluating a model’s performance on some
specific tasks, offering limited insights into the fine-grained capabilities of these models. Thus, they
provide insufficient feedback regarding potential directions for future improvements.

Given the aforementioned challenges, recent studies, such as mPLUG-Owl (Ye et al., 2023) and
LVLM-eHub (Xu et al., 2023) propose human-involved subjective evaluation strategies, aiming
to address existing methods’ limitations by incorporating human judgment and perception in the
evaluation process. mPLUG-Owl comprises 82 artificially constructed open-ended questions related
to 50 images sourced from existing datasets. After predictions are generated by both mPLUG-
Owl and another vision-language (VL) model, human annotators will assess the quality of these
predictions. Similarly, inspired by FastChat (Zheng et al., 2023), LVLM-eHub develops an online
platform where two models are prompted to answer a question related to an image. A participant
then compares the answers provided by the two models. These subjective evaluation strategies offer
several advantages, consists of accurate matching (humans can accurately match a prediction to
the target, even if presented in different words) and comprehensive assessment (humans tend to
compare two predictions based on multiple aspects). The final score is calculated as the average score
across different abilities, enabling a comprehensive evaluation of various model capabilities.

While subjective evaluation allows for a more comprehensive assessment of a model’s abilities, it also
introduces new challenges that need to be addressed. Firstly, human evaluations are inherently biased.
Consequently, it becomes challenging to reproduce the results presented in a work with a different
group of annotators. Also, existing subjective evaluation strategies face scalability issues. Employing
annotators for model evaluation after each experiment is an expensive endeavor. Moreover, evaluation
datasets of small sizes can result in statistical instability. To ensure a robust evaluation, collecting
more data becomes necessary, which in turn demands a significant amount of human labor.
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In light of the challenges faced by conventional objective and subjective benchmarks, we propose
MMBench, a systematically designed objective evaluation benchmark to robustly evaluate different
abilities of large vision-language models. Currently, MMBench contains approximately 3000 single-
choice questions covering 20 different ability dimensions, such as object localization and social
reasoning, for evaluating vision-language models. Each ability dimension includes more than
75 questions, enabling a balanced and comprehensive evaluation of various abilities. The ability
dimensions are not static and will expand as we continue to work on them. Since some existing VLMs
have poor instruction-following capability and cannot directly output choice labels (A, B, C, etc.)
for MMBench questions, the evaluation based on exact matching may not yield fair and reasonable
conclusions. In order to reduce the number of false-negative samples during answer matching, we
employ ChatGPT to match a model’s prediction to one of the choices in a multi-choice question and
then output the label for the matched choice. We conduct a comparison between ChatGPT-based
choice matching and human evaluations, and discovered that ChatGPT can accurately match human
assessments in 87% of cases. Further investigation on the misaligned cases shows that ChatGPT
yields more correct matchings compared to human annotators, demonstrating its good alignment
and robustness as an evaluator. To make the evaluation more robust, we propose a novel evaluation
strategy, named CircularEval (details in Sec. 3.1). We comprehensively evaluate 18 well-known
vision-language models on MMBench and report their performance on different ability dimensions.
The performance ranking offers a direct comparison between various models and provides valuable
feedback for future optimization. In summary, our main contributions are three-fold:

• Systematically-constructed Dataset: To thoroughly evaluate the capacity of a VLM, we have
carefully curated a dataset, comprised of a total of 2,948 meticulously selected questions, which
collectively cover a diverse spectrum of 20 fine-grained skills.
• Robust Evaluation: We introduce a novel circular evaluation strategy (CircularEval) to improve the
robustness of our evaluation process. After that, ChatGPT is employed to match model’s prediction
with given choices, which can successfully extract choices even from predictions of a VLM with poor
instruction-following capability.
• Analysis and Observations: We perform a comprehensive evaluation of a series of well-known
vision-language models using MMBench, and the evaluation results can provide insights to the
research community for future improvement.

2 MMBENCH

There exist two unique characteristics that differentiate MMBench from existing benchmarks for
multi-modality understanding: i) MMBench adopts problems from various sources to evaluate
diversified abilities in a hierarchical taxonomy; ii) MMBench applies a robust, LLM-based evaluation
strategy, which can well handle the free-form outputs of multi-modality models and yield trustworthy
evaluation results with affordable cost. In this section, we focus on the first characteristic and
organize the subsequent content as follows: In Sec. 2.1, we present the hierarchical ability taxonomy
of MMBench and discuss the design philosophy behind. In Sec. 2.2, we briefly introduce how we
collect the MMBench questions, and provide some statistics of MMBench.

2.1 THE HIERACHICAL ABILITY TAXONOMY OF MMBENCH

Human possess remarkable perception and reasoning capabilities, allowing them to understand
and interact with the world. These abilities have been crucial in human evolution and serve as a
foundation for complex cognitive processes. Perception refers to gathering information from sensory
inputs, while reasoning involves drawing conclusions based on this information. Together, they
form the basis of most tasks in the real world, including recognizing objects, solving problems, and
making decisions (Oaksford & Chater, 2007; Fodor, 1983). In pursuit of genuine general artificial
intelligence, vision-language models are also expected to exhibit strong perception and reasoning
abilities. Therefore, we incorporate Perception and Reasoning as our top-level ability dimensions
in our ability taxonomy, referred to as L-1 ability dimension. After that, the L-2 and L-3 ability
dimensions, belonging to Perception and Reasoning, are also derived. More details about these
ability dimensions are shown in Figure 2. Detailed definitions of all L-3 abilities are presented in
Appendix F.
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Figure 2: Overview of existing ability dimensions in MMBench. Currently, MMBench incorporates
three levels of ability dimensions (from L-1 to L-3), which encompass 20 distinct leaf abilities. Note
that the demonstrated ability taxonomy is an initial version. Further adjustments can be made to
improve the taxonomy and make it more comprehensive.

2.2 DATA COLLECTION AND STATISTICS

In the current version of MMBench , we collect vision-language QAs in the format of multiple-
choice problems for each L-3 ability. A multiple choice problem Pi corresponds to a quadruple
(Qi, Ci, Ii, Ai). Qi denotes the question, Ci represents a set with n (2 ≤ n ≤ 4) choices c1, c2, ..., cn,
Ii corresponds to the image associated to the question, and Ai is the correct answer. In Figures 7
to 12, we visualize data samples corresponding to each L-3 ability. Our data — which include images,
choices, and questions — are manually collected from multiple sources by a group of volunteers
from colleges. Before starting the collection process, we equip our volunteers with the necessary
training. The training includes: i) Detailed definitions for each ability dimension, from L1 to L3. ii)
Potential sources for image, question, and choice collection. If no existing questions or choices are
available, the volunteers are trained on how to create them. A comprehensive list of these sources
can be found in Table 7. iii) We compile a set of 10 to 50 multiple-choice problems for each L-3
ability. These problems serve as exemplars, demonstrating the specific types of problems associated
with the evaluation of each respective ability. Using these examples as references, the annotators
can expand the collection of multiple-choice problems for each L-3 ability. This ensures that the
collected problems remain relevant and suitable for assessing the targeted abilities. iv) The process of
saving the collected or created data samples, including the necessary content and meta-information,
is also covered in the training. It is noteworthy that some data samples originate from public datasets
such as COCO-Caption (Chen et al., 2015), which has been used by several public vision-language
models in pre-training. Regardless, evaluation on MMBench can still be considered as out-domain
evaluation (Dai et al., 2023) for two primary reasons: Firstly, our data is gathered from the validation
sets of these public datasets, not their training sets. Secondly, data samples procured from these
public datasets constitute less than 10% of all MMBench data samples.

Data Statistics. In the present study, we have gathered a total of 2,948 data samples spanning across
20 distinct L-3 abilities. We depict the problem counts of all the 3 levels of abilities in Figure 2.
To ensure a balanced and comprehensive evaluation for each ability, we try to maintain an even
distribution among problems associated with different abilities during data collection.
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The original VL problem: 
Q: How many apples are there in the image? 
A. 4;  B. 3;  C. 2;  D. 1 GT: A

4 Passes in Circular Evaluation (choices with circular shift):
1. Q: How many apples are there in the image? Choices: A. 4;  B. 3;  C. 2;  D. 1.  VLM prediction: A. GT: A ✔
2. Q: How many apples are there in the image? Choices: A. 3;  B. 2;  C. 1;  D. 4.  VLM prediction: D. GT: D ✔
3. Q: How many apples are there in the image? Choices: A. 2;  B. 1;  C. 4;  D. 3.  VLM prediction: B. GT: C ✖
4. Q: How many apples are there in the image? Choices: A. 1;  B. 4;  C. 3;  D. 2.  VLM prediction: B. GT: B ✔

VLM failed at pass 3. Thus wrong.

Circular Evaluation

Figure 3: A demonstration of the Circular Evaluation strategy. In Circular Evaluation, a problem
is tested multiple times with circular shifted choices and the VLM needs to succeed in all testing
passes. In this example, the VLM failed in pass 3 and thus considered failed the problem.
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Figure 4: The choice distribution of ground-truth answers and predictions of MiniGPT-4 and
mPLUG-Owl (all CircularEval records). Since there exist questions with only 2 or 3 choices in
MMBench , the choice distribution of ground-truth answers is not exactly balanced.

Data Splits. We follow the standard practice in previous works (Marino et al., 2019) to split
MMBench into dev and test subsets at a ratio of 4:6. For the dev subset, we make all data
samples publicly available along with the ground truth answers for all questions. For the test subset,
only the data samples are released, while the ground truth answers remain confidential. To obtain the
test subset evaluation results, one needs to submit the predictions to MMBench evaluation server.

Data Cleaning. In preliminary study, we find that it’s possible to solve some questions in MMBench
solely without resorting to the associated image. In some cases, the question can be solved with
external knowledge, while in other cases the quality of distractors is not good. To this end, we create
a subset of MMBench that excludes all questions that can be correctly answered by GPT-4, and
evaluate the VLMs on the subset. Detailed results can be found in Appendix A.2.

3 EVALUATION STRATEGY

In MMBench we propose a new evaluation strategy that yields robust evaluation results with an
affordable cost. At a strategic level, we adopt the Circular Evaluation strategy, which feeds a
question to a VLM multiple times (with different prompts) and checks if the VLM succeeds in
solving the question in all attempts. To deal with the free-form VLMs’ outputs, we propose to
utilize ChatGPT as a helper for choice extraction. We conduct extensive experiments to study the
ChatGPT-involved evaluation procedure. The results well support the effectiveness of ChatGPT as a
choice extractor. Without specifications, we use gpt-3.5-turbo-0613 as the choice extractor in all of
the following experiments.

3.1 THE CIRCULAR EVALUATION STRATEGY

MMBench incorporates a diverse range of problems aimed at assessing the multifaceted capabilities
of vision-language models (VLMs). These problems are presented as multiple-choice questions. The
formulation poses an evaluation challenge: random guessing can lead to ∼25% Top-1 accuracy for
4-choice questions, potentially reducing the discernible performance differences between various
VLMs. Besides, we noticed that VLMs may perfer to predict a certain choice among all given choices
(Figure 4), which further amplify the bias in evaluation. To this end, we introduce a more robust
evaluation strategy termed Circular Evaluation (or CircularEval). Under this setting, each question
is fed to a VLM N times (N equals to the choice number). Each time circular shifting is applied to
the choices and the answer to generate a new prompt for VLMs (example in Figure 3). A VLM is
considered successful in solving a question only if it correctly predicts the answer in all rotational
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passes. CircularEval doesn’t necessarily requires N× API calls. By definition, if the VLM made
a wrong prediction in one pass, we can directly drop the following passes and say the VLM fails
to answer this question. CircularEval can achieve a good trade-off between the robustness and the
evaluation cost.

3.2 CHATGPT-INVOLVED CHOICE EXTRACTION

In our initial attempts to solve the MMBench questions, we observed that the instruction-following
capabilities of various VLMs is limited. Though problems are presented as clear multiple-choice
questions with well-formatted options, many VLMs still output the answers in free-form text (e.g.,
model’s output can be The correct answer is [choice "A" content] , but not A ). Extracting choices
from free-form predictions is easy for human beings, but difficult with rule-based matching. Thus we
design a universal evaluation strategy for all VLMs with different instruction-following capabilities:

Step 1. Matching Prediction. Extract choices from VLM predictions with exact matching. For
each choice, we try to match its choice label (the uppercase letter, with optional prefixes or suffixes1)
or its choice content with content output by a VLM . If there exists one and only one choice that is
matched with the VLM’s output, we successfully extract the model’s choice.

Step 2. Matching ChatGPT’s output. If step 1 fails, we then try to extract the choice with ChatGPT.
We provide GPT with the question, options, and model prediction, and then, we request ChatGPT
to align the prediction with one of the given options, and subsequently produce the label of the
corresponding option. The specific prompt querying ChatGPT can be found in Appendix D.

Step 3. Fallback: Random Assignment. If step 2 can still not extract the choice, we label
the prediction with a random choice among all valid choices and ‘X’. Additionally, a comment
message will be added to denote that ChatGPT fails to parse the model prediction. This step is never
encountered is our preliminary feasibility analysis (Sec. 3.3), but we still add it for pipeline integrity.

For each input, we compare the model’s label prediction (after GPT’s similarity readout) with the
actual ground truth label. If the prediction matches the label, the test sample is considered correct.

3.3 CHATGPT AS THE JUDGE: A FEASIBILITY ANALYSIS

Table 1: Success rate of each
step in our choice extraction.
Model Name Step-1 Step-2

LLaMA-Adapter (Gao et al., 2023) 1.0% 100.0%

OpenFlamingo (Alayrac et al., 2022) 98.6% 100.0%

VisualGLM (Du et al., 2022) 14.9% 100.0%

MiniGPT-4 (Zhu et al., 2023) 71.6% 100.0%

LLaVA (Liu et al., 2023b) 9.9% 100.0%

Otter-I (Li et al., 2023b) 100.0% 100.0%

InstructBLIP (Dai et al., 2023) 91.2% 100.0%

mPLUG-Owl (Ye et al., 2023) 42.6% 100.0%

We first conduct pilot experiments to study the effectiveness of
ChatGPT as the judge. To keep the setting simple, for MMBench
, we sample a subset with ∼1000 samples and use the vanilla single-
pass evaluation strategy to evaluate 8 selected VLMs.

Instruction following capabilities of different VLMs vary a lot.
ChatGPT-involved choice extraction plays a vital role in MMBench
evaluation, especially for VLMs with poor instruction following
capabilities. In Table 1, we demonstrate the success rate of step 1
and step 2 of our evaluation strategy. Step 1 success rate (matching
choices with VLM predictions) is directly related to the VLM’s
instruction-following capability. Table 1 shows that the step-1 success rates of different VLMs vary a
lot, covering a wide range from 1.0% to 100.0%.

With ChatGPT choice extractor equipped, the step-2 success rates of all VLMs reach 100%, which
enables a fair comparison of different VLMs on MMBench. Another point worth noting is, the
instruction following capability and the overall multi-modality modeling capability is not necessarily
correlated. OpenFlamingo (Alayrac et al., 2022) demonstrates top instruction following capability
among all VLMs, while also achieving one of the worst performance on MMBench (Table 3).

Human vs ChatGPT: alignment in choice extraction.

For VLM predictions that cannot be parsed with exact matching, we adopt ChatGPT as the choice
extractor. To validate its efficacy, we sample a subset of MMBench , which contains 103 questions
and 824 (103× 8) question-answer pairs. We keep only the QA pairs that can not be parsed by the

1As an example, for ‘C’, we try to match "C", "C.", "C)", "C,", "C).", etc. . Since ‘A’ may serve has an

article in a sentence, we skip "A" during matching.
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Table 2: CircularEval vs VanillaEval. We compare CircularEval and VanillaEval on MMBench
dev split and present the overall Top-1 accuracy of all VLMs.

Eval \VLM OpenFlamingo LLaMA-Adapter MiniGPT-4 MMGPT InstructBLIP VisualGLM LLaVA Qwen-VL

VanillaEval 34.6% 62.6% 56.9% 49.1% 61.7% 61.0% 62.8% 60.6%

CircularEval 4.6% 41.2% 32.0% 15.2% 35.5% 38.6% 44.5% 38.2%

∆ -30.0% -21.4% -24.9% -33.9% -26.2% -22.4% -18.3% -22.4%

Eval \VLM OpenFlamingo v2 mPLUG-Owl MiniGPT-4-13B Otter-I InstructBLIP-13B PandaGPT Shikra Qwen-VL-Chat

VanillaEval 40.0% 65.5% 61.3% 69.2% 64.8% 55.2% 70.4% 75.6%

CircularEval 6.7% 48.1% 42.5% 51.6% 44.4% 33.9% 59.4% 60.6%

∆ -33.3% -17.4% -18.8% -17.6% -20.4% -21.3% -11.0% -15.0%

evaluation step 1, which yield 376 data samples. With the help of 6 volunteers, we perform manual
choice extraction to these data samples2.

Perfectly Aligned w. Human Mis-Aligned w. Human

Closed-Source LLMs Open-Source LLMs

100%

80%

60%

40%

20%

Figure 5: The alignment rate between
human and different LLMs in choice
extraction.

In Figure 5, we report the alignment rate (extracted choices
are exactly the same) between ChatGPT and Human.
Specifically, ChatGPT (GPT-3.5) achieves 87.0% align-
ment rate, while the more powerful GPT-4 achieves a
slightly better 87.2%. We further conduct an ablation
study to learn the effect of using various LLMs as the
choice extractor. GPT-4 and ChatGPT take the lead
among all LLMs. Claude achieves a very close align-
ment rate (86.4%) compared to ChatGPT. Existing open-
source LLMs adapted from LLaMA (Gao et al., 2023)
and GLM (Du et al., 2022) achieves poor performance on
the choice matching task. Further scaling the architecture
(e.g. from Vicuna-7B to Vicuna-33B) only leads to limited
improvements. We adopt ChatGPT as the choice extractor
in our evaluation for a good performance-cost trade-off.

4 EVALUATION RESULTS

4.1 VLM INFERENCE SETTING

Currently, we adopt the traditional zero-shot setting for VLM inference, primarily due to the limited
compatibility of existing VLMs with few-shot evaluation settings. However, we have noticed the
great potential of few-shot evaluation protocols in LLMs (Huang et al., 2023). In future work,
we specifically plan to construct a subset of data samples designated for few-shot evaluation. We
anticipate that few-shot evaluation will evolve into a standard assessment strategy, akin to the approach
employed in LLMs.

4.2 MAIN RESULTS

We select 18 different multi-modality models (containing some variants of a same model family) and
benchmark them on MMBench. The models we have selected cover a broad spectrum of strategies
and architectures, effectively illustrating the current state-of-the-art in multimodal understanding.
To facilitate a fair comparison, we mainly examine the "light" versions of all multimodal models
— those with a total amount of parameters below 10B — when multiple variants exist. For further
reference, we also evaluate larger variants (e.g. 13B, 80B) of some selected models, and report their
performance. Please refer to Table 6 for detailed information regarding the architecture and the total
parameters of these models.

Before delving deeper into concrete evaluation results, we first compare our CircularEval (infer a
question multiple passes, consistency as a must) with VanillaEval (infer a question only once). In
Table 2, we present the results with two evaluation strategies on MMBench dev split. For most VLMs,

2The human annotations will be released.
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Table 3: CircularEval results on MMBench test set (L-2 abilities). Abbreviations adopted:
LR for Logical Reasoning; AR for Attribute Reasoning; RR for Relation Reasoning; FP-C for
Fine-grained Perception (Cross Instance); FP-S for Fine-grained Perception (Single Instance); CP for
Coarse Perception. The dash line separate models with the parameter size ≤ 10B or > 10B.

VLM Overall CP FP-S FP-C AR LR RR

OpenFlamingo (Alayrac et al., 2022) 4.5% 1.5% 2.5% 1.6% 12.5% 9.8% 3.3%

OpenFlamingo v2 (Alayrac et al., 2022) 5.7% 4.1% 5.3% 0.8% 12.8% 11.6% 1.4%

MMGPT (Gong et al., 2023) 16.0% 18.4% 17.8% 5.3% 24.0% 1.2% 20.9%

MiniGPT-4 (Zhu et al., 2023) 29.4% 36.6% 35.2% 16.6% 42.4% 12.1% 14.2%

Qwen-VL (Bai et al., 2023) 32.2% 36.4% 32.9% 27.9% 43.1% 9.8% 30.3%

VisualGLM (Du et al., 2022) 33.6% 41.3% 35.7% 18.2% 49.0% 11.6% 28.0%

InstructBLIP (Dai et al., 2023) 35.4% 43.7% 34.4% 25.1% 49.7% 22.0% 22.3%

LLaMA-Adapter (Zhang et al., 2023b) 39.6% 50.7% 44.7% 33.6% 47.6% 13.3% 23.2%

LLaVA (Liu et al., 2023b) 42.2% 59.3% 37.9% 30.8% 57.6% 15.0% 27.0%

IDEFICS-9B (Laurençon et al., 2023) 45.5% 56.3% 43.2% 36.8% 64.9% 21.4% 29.4%

mPLUG-Owl (Ye et al., 2023) 46.4% 60.4% 53.0% 25.1% 55.6% 16.2% 40.3%

Otter-I (Li et al., 2023b;a) 48.5% 60.8% 46.7% 36.4% 63.5% 22.5% 39.8%

Shikra (Chen et al., 2023) 60.4% 71.9% 61.8% 50.6% 69.8% 33.5% 53.1%

Qwen-VL-Chat (Bai et al., 2023) 61.8% 72.8% 66.3% 46.2% 74.3% 40.5% 47.9%

PandaGPT (Su et al., 2023) 30.7% 47.8% 20.1% 20.6% 41.7% 15.6% 22.3%

MiniGPT-4-13B (Zhu et al., 2023) 42.5% 50.7% 49.7% 19.8% 62.8% 17.3% 30.3%

InstructBLIP-13B (Dai et al., 2023) 43.4% 54.2% 45.7% 24.3% 59.7% 17.3% 36.5%

IDEFICS-80B (Laurençon et al., 2023) 54.8% 62.1% 56.0% 48.6% 68.1% 29.5% 46.4%

switching from VanillaEval to CircularEval leads to a significant drop in model accuracy. In general,
comparisons under CircularEval can reveal a more significant performance gap between different
VLMs. As an example, LLaVA outperforms InstructBLIP by 1.1% top-1 accuracy under VanillaEval,
while a much larger performance gap (9.0% top-1 accuracy) is observed under CircularEval. For
some specific cases (MiniGPT-4 vs. PandaGPT, e.g.), the conclusions can be even differenct with two
evaluation strategies. In following experiments, We adopt CircularEval as our default evaluation
strategy, which is a more reasonable and well-defined evaluation paradigm.

We exhaustively evaluate all VLMs on all existing leaf abilities of MMBench. In Table 3, we report
the models’ overall performance and the performance in six L-2 abilities, namely Coarse Perception
(CP), Fine-grained Perception (single-instance, FP-S; cross-instance, FP-C), Attribute Reasoning
(AR), Logic Reasoning (LR) and Relation Reasoning (RR). on the test split (dev split results in
Table 8). These results offer valuable insights into the individual strengths and limitations of each
model in different aspects of multi-modality understanding.

As demonstrated in Table 3, Shikra and Qwen-VL-Chat, with localization information integrated in
multi-modal learning, yields superior results and significantly outperforms other models across nearly
all L-2 abilities. IDEFICS-80B (with LLaMA-65B adopted as the language model) achieves the
third best performance, demonstrates strong visual-language modeling capability. After that, three
models (Otter-I, mPLUG-Owl, IDEFICS-9B) are roughly at the same level of overall performance,
but with strengths in different L2 abilities. Among all VLMs, OpenFlamingo (both versions) and
MMGPT demonstrate lower overall performance compared to the other models. We obtain two major
findings from the evaluation results: 1. VLMs without supervised finetuning significantly lag behind
their finetuned counterparts: OpenFlamingo vs. Otter-I, Qwen-VL vs. Qwen-VL-Chat, etc.; 2. It
is apparent that model scaling enhances performance metrics. This is evident as MiniGPT-4-13B
outperforms MiniGPT-4 by an impressive 13.1%, and InstructBLIP-13B outperforms its predecessor,
InstructBLIP, by a notable 8.0%.

The assessment on MMBench reveals that each multi-modality model exhibits unique strengths and
weaknesses across different levels of abilities. This observation highlights the importance of carefully
selecting and fine-tuning multi-modality models based on the specific requirements and objectives of
a given task. Moreover, the identified limitations in some abilities suggest potential directions for
further research and development in multi-modality AI systems.
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For a more in-depth understanding, we provide a comprehensive analysis of the L3 abilities in
Tables 9 to 14, allowing readers to examine the very details of MMBench and gain deeper insights
into the performance disparities among the evaluated models.

4.3 ANALYSIS

With the comprehensive evaluation, we observe some interesting facts, which is expected to provide
insights for future optimization.

Existing VLMs have limited instruction-following capabilities. For the sake of efficient evaluation,
we guide each model to output only the label for each option, for instance, A, B, C, or D. However,
we observe that these models often generate a full sentence corresponding to one option or a sentence
semantically akin to one of the options. This tendency is the primary reason for employing ChatGPT
for choice extraction. To improve the usability of multi-modality models to empower diversified
applications, pursuing stronger instruction-following ability can be a significant direction.

The overall performance of existing VLMs is still limited. The strict CircularEval strategy reveals
that the overall performance of existing VLMs is not satisfying. In experiments, only IDEFICS-
80B, Shikra, and Qwen-VL-Chat succeeded to reach 50% Top-1 accuracy on MMBench test for
multiple choice questions with at most 4 choices. Potential reasons are two fold: 1. Current VLMs
are not robust enough to produce the same prediction with slightly different prompts (performance
under CircularEval is much worse than the performance under VanillaEval, see Table 2). 2. The
capabilities of current VLMs are still quite limited and can be further improved. We hope that
MMBench and our evaluation strategy can serve as important guideline for future development,
iteration and optimization of VLMs in the future.

Cross-Instance Understanding and Logic Reasoning are extremely difficult. An examination of
our evaluation results reveals that cross-instance understanding—specifically relation reasoning (RR)
and cross-instance fine-grained perception (FP-C)—poses a significant challenge for existing Visual
Language Models (VLMs). The average accuracy for cross-instance fine-grained perception across all
models is 26.0% on the MMBench test, significantly lower than that of single-instance fine-grained
perception (FP-S, 38.3%). A similar disparity can be observed between relation reasoning (RR) and
attribute reasoning (AR) as evidenced in Tables 3 and 8. Furthermore, when compared to other L-2
abilities, the logical reasoning (LR) capability of existing models appears strikingly weak, with an
average accuracy of only 17.8%. The results indicate that improving the cross-instance understanding
and logic reasoning capabilities of VLMs can be a significant and promising direction.

The introduction of object localization data is anticipated to enhance model performance.
Among various models, Shikra and Qwen-VL-Chat notably excels, offering significant improvements
across almost all L-2 capabilities, particularly in logical reasoning and cross-instance fine-grained
perception. Compared to other opponents, the two models incorporate object localization within
their training datasets. The integration of localization data infuses more detailed object-specific
information into the models, allowing them to comprehend the dynamic states of objects more
effectively. Moreover, it aids in elucidating relationships and interactions between distinct objects.
This strategy contributes substantively to the enhancement of the models’ capabilities in logical
reasoning and cross-instance fine-grained perception.

5 CONCLUSION

The inherent limitations of traditional benchmarks (VQAv2, COCO Caption, etc.) and subjective
benchmarks (mPLUG-Owl, etc.) underscore the need for an innovative evaluation paradigm in vision-
language understanding. To address this, we introduce MMBench, a multi-modality benchmark that
proposes an objective evaluation pipeline of 2,948 multiple-choice questions covering 20 ability
dimensions. To produce robust and reliable evaluation results, we introduce a new evaluation strategy
named CircularEval. The strategy is much stricter than the vanilla 1-pass evaluation and can yield
reliable evaluation results with an affordable cost. Additionally, we leverage ChatGPT to match
model predictions with target choices, which enables a fair comparison among VLMs with different
levels of instruction-following capabilities. Comprehensive studies on both MMBench and public
benchmark indicate the feasiblility of using ChatGPT as the judge. We hope MMBench can aid the
research community in optimizing their models and inspire future progress.

9



Under review as a conference paper at ICLR 2024

REFERENCES

W3c school. In https://www.w3schools.com/, 2023. 19

Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen, Rishabh Jain, Mark Johnson, Dhruv
Batra, Devi Parikh, Stefan Lee, and Peter Anderson. Nocaps: Novel object captioning at scale. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 8948–8957, 2019.
13

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in Neural Information Processing Systems, 35:23716–
23736, 2022. 6, 8, 13, 19

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023. 8, 15, 19

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020. 13

Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang, Feng Zhu, and Rui Zhao. Shikra: Un-
leashing multimodal llm’s referential dialogue magic. arXiv preprint arXiv:2306.15195, 2023. 8,
19

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. arXiv preprint
arXiv:1504.00325, 2015. 1, 4, 13, 19

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2023. 13

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language
models with instruction tuning. arXiv preprint arXiv:2305.06500, 2023. 4, 6, 8, 13, 19

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. Glm:
General language model pretraining with autoregressive blank infilling. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
320–335, 2022. 6, 7, 8, 13, 15, 19

Haodong Duan, Yue Zhao, Kai Chen, Yuanjun Xiong, and Dahua Lin. Mitigating representation
bias in action recognition: Algorithms and benchmarks, 2022. URL https://arxiv.org/
abs/2209.09393. 19

Jerry A Fodor. The modularity of mind. MIT press, 1983. 3

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu,
Wei Lin, Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, and Rongrong Ji. Mme: A comprehensive
evaluation benchmark for multimodal large language models. ArXiv, abs/2306.13394, 2023. URL
https://api.semanticscholar.org/CorpusID:259243928. 13, 15

Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu,
Conghui He, Xiangyu Yue, et al. Llama-adapter v2: Parameter-efficient visual instruction model.
arXiv preprint arXiv:2304.15010, 2023. 6, 7

Tao Gong, Chengqi Lyu, Shilong Zhang, Yudong Wang, Miao Zheng, Qian Zhao, Kuikun Liu,
Wenwei Zhang, Ping Luo, and Kai Chen. Multimodal-gpt: A vision and language model for
dialogue with humans, 2023. 8, 19

10

https://arxiv.org/abs/2209.09393
https://arxiv.org/abs/2209.09393
https://api.semanticscholar.org/CorpusID:259243928


Under review as a conference paper at ICLR 2024

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in
vqa matter: Elevating the role of image understanding in visual question answering. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 6904–6913, 2017. 1, 13

Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3608–3617,
2018. 13

V. Hosu, H. Lin, T. Sziranyi, and D. Saupe. Koniq-10k: An ecologically valid database for
deep learning of blind image quality assessment. IEEE Transactions on Image Processing, 29:
4041–4056, 2020. 19

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021. 13

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng
Liu, Chuancheng Lv, Yikai Zhang, Jiayi Lei, et al. C-eval: A multi-level multi-discipline chinese
evaluation suite for foundation models. arXiv preprint arXiv:2305.08322, 2023. 7

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 6700–6709, 2019. 1, 13, 16, 17

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2901–2910, 2017. 19

Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov,
Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, and
Victor Sanh. Obelics: An open web-scale filtered dataset of interleaved image-text documents,
2023. 8, 19

Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Fanyi Pu, Jingkang Yang, Chunyuan Li,
and Ziwei Liu. Mimic-it: Multi-modal in-context instruction tuning. 2023a. 1, 8, 19

Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Jingkang Yang, and Ziwei Liu. Otter: A
multi-modal model with in-context instruction tuning. arXiv preprint arXiv:2305.03726, 2023b. 1,
6, 8, 13, 19

Junnan Li, Yongkang Wong, Qi Zhao, and Mohan S Kankanhalli. Dual-glance model for decipher-
ing social relationships. In Proceedings of the IEEE international conference on computer vision,
pp. 2650–2659, 2017. 19

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597,
2023c. 13

Fangyu Liu, Guy Edward Toh Emerson, and Nigel Collier. Visual spatial reasoning. Transactions
of the Association for Computational Linguistics, 2023a. 19

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv
preprint arXiv:2304.08485, 2023b. 1, 6, 8, 13, 19

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind
Tafjord, Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought
chains for science question answering. Advances in Neural Information Processing Systems, 35:
2507–2521, 2022. 13, 14, 19

Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual
question answering benchmark requiring external knowledge. In Proceedings of the IEEE/cvf
conference on computer vision and pattern recognition, pp. 3195–3204, 2019. 1, 5, 13, 16, 17

11



Under review as a conference paper at ICLR 2024

Mike Oaksford and Nick Chater. Bayesian rationality: The probabilistic approach to human
reasoning. Oxford University Press, 2007. 3

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023. 1, 13, 15

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022. 13

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. 13

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 8317–8326, 2019. 13, 16, 17, 19

Yixuan Su, Tian Lan, Huayang Li, Jialu Xu, Yan Wang, and Deng Cai. Pandagpt: One model to
instruction-follow them all. arXiv preprint arXiv:2305.16355, 2023. 8, 19

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023. 13

Peng Xu, Wenqi Shao, Kaipeng Zhang, Peng Gao, Shuo Liu, Meng Lei, Fanqing Meng, Siyuan
Huang, Yu Jiao Qiao, and Ping Luo. Lvlm-ehub: A comprehensive evaluation benchmark for large
vision-language models. 2023. 1, 2

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen
Hu, Pengcheng Shi, Yaya Shi, et al. mplug-owl: Modularization empowers large language models
with multimodality. arXiv preprint arXiv:2304.14178, 2023. 1, 2, 6, 8, 13, 15, 19

Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
denotations: New similarity metrics for semantic inference over event descriptions. Transactions
of the Association for Computational Linguistics, 2:67–78, 2014. 13

Pan Zhang, Xiaoyi Dong Bin Wang, Yuhang Cao, Chao Xu, Linke Ouyang, Zhiyuan Zhao,
Shuangrui Ding, Songyang Zhang, Haodong Duan, Hang Yan, et al. Internlm-xcomposer: A
vision-language large model for advanced text-image comprehension and composition. arXiv
preprint arXiv:2309.15112, 2023a. 15

Renrui Zhang, Jiaming Han, Chris Liu, Peng Gao, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan
Lu, Hongsheng Li, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with
zero-init attention, 2023b. 8, 19

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. 2

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2017. 19

Luowei Zhou, Chenliang Xu, and Jason Corso. Towards automatic learning of procedures from web
instructional videos. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018. 13

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023. 1, 6, 8, 13, 15, 19

12



Under review as a conference paper at ICLR 2024

A RELATED WORK

A.1 MULTI-MODAL DATASETS

Large-scale vision-language models have shown promising potential in multi-modality tasks such
as complex scene understanding and visual question answering. Though qualitative results so far
are encouraging, quantitative evaluation is of great necessity to systematically evaluate and compare
the abilities of different VLMs. Recent works evaluated their models on numerous existing public
multi-modality datasets. COCO Caption (Chen et al., 2015), Nocaps (Agrawal et al., 2019), and
Flickr30k (Young et al., 2014) provide human-generated image captions and the corresponding task
is to understand image content and describe it in the form of text. Visual question answering datasets,
such as GQA (Hudson & Manning, 2019), OK-VQA (Marino et al., 2019), VQAv2 (Goyal et al.,
2017) and Vizwiz (Gurari et al., 2018), contain question-answer pairs related to the given image,
used to measure the model’s ability on visual perception and reasoning. Some datasets provide
more challenging question-answering scenarios by incorporating additional tasks. For example,
TextVQA (Singh et al., 2019) proposes questions about text shown in the image, thus involving the
OCR task into question-answering. ScienceQA (Lu et al., 2022) focuses on scientific topics, requiring
the model to integrate commensense into reasoning. Youcook2 (Zhou et al., 2018) replaces images
with video clips, introducing additional temporal information. However, the aforementioned datasets
are designed on specific domains, and can only evaluate the model’s performance on one or several
tasks. Besides, different data formats and evaluation metrics across datasets make it more difficult
to comprehensively assess model’s capability. Ye et al. (2023) built an instruction evaluation set,
OwlEval, consisting of several kinds of visual-related tasks, but in a limited size. Fu et al. (2023)
built MME, which is a evaluation dataset containing multi-modality Yes / No questions. However,
the exact-matching based evaluation and non-rigorous evaluation setting make it harder to reveal the
real performance gap between VLMs. Different from previous works, in this paper, we propose a
novel multi-modal benchmark MMBench , which is built based on measuring abilities rather than
performing specific tasks, aimed to better evaluating models once and for all.

A.2 MULTI-MODAL MODELS

Benefit from the success of LLMs e.g. GPTs (Radford et al., 2019; Brown et al., 2020; Ouyang
et al., 2022), LLaMA (Touvron et al., 2023), and Vicuna (Chiang et al., 2023), multi-modal models
also achieve great improvements recently. Flamingo (Alayrac et al., 2022) is one of the early
attempts on introducing LLMs into vision-language pretraining. To be conditioned well on visual
features, it inserts several gated cross-attention dense blocks between pretrained language encoder
layers. OpenFlamingo (Alayrac et al., 2022) provides an open-source version of it. BLIP-2 (Li
et al., 2023c) proposes a Querying Transformer (Q-former) to bridge the modality gap between the
frozen image encoder and large language encoder. After that, InstructBLIP (Dai et al., 2023) extend
BLIP-2 (Li et al., 2023c) with vision-language instruction tuning and achieve better performance.
VisualGLM (Du et al., 2022) also adopts Q-former (Li et al., 2023c) to bridge the visual model and
language encoder, GLM (Du et al., 2022). LLaVA (Liu et al., 2023b) adopt GPT4 (OpenAI, 2023)
only with language inputs to generate instruction-following data for vision-language tuning. Otter (Li
et al., 2023b) also constructs an instruction-tuning dataset to improve the ability of instruction-
following for OpenFlamingo. MiniGPT-4 (Zhu et al., 2023) believes the ability of GPT4 (OpenAI,
2023) comes from advanced LLMs and proposes to adopt only one project layer to align the visual
representation with the language model. Although it is trained in high computational efficiency, it
demonstrates some capabilities similar to GPT4 (OpenAI, 2023). mPLUG-Owl (Ye et al., 2023)
proposes another learning paradigm by first tuning the visual encoder to summarize and align visual
features and then tuning the language model with LoRA (Hu et al., 2021). In this paper, after
thoroughly evaluating them on the proposed MMBench and other public datasets, we provide some
insights for future multi-modal research.

B A VISUAL-ONLY SUBSET OF MMBENCH.

To find out questions in MMBench that can be solved solely based on the text part (without resorting
to the image). We try to solve each questions in MMBench given only the question and options with
cutting-edge LLMs (Claude-2, GPT-3.5-Turbo (0613 ver.), GPT-4 (0613 ver.)). In the pseudo code
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below, we demonstrate how we prompt the LLMs to guide them try their best to make a reasonable
guess:

prompt_tmpl = """
You are an AI assistant which is designed to answer questions from people.
You will be asked a question and provided several choices,
and you need to choose the best choice to answer the question.
There is an image associated with the problem, but that is not provided to you,
so you need to try your best to hallucinate the image.
Again, you can only choose from the provided choices,
and output a single uppercase letter (A, B, C, D, etc.). \n
Question: <question begins> {} <question ends>; \n
Choices: <choices begin> {} <choices end>. \n
Your answer:
"""
example_question = "How many apples are there in the image?"
option_str = "A. 4\nB. 3\nC. 2\nD. 1"
prompt = prompt_tmpl.format(example_question, option_str)

Except the absence of visual information, the testing procedure is exactly the same as testing for
VLMs. In the table below, we present the accuracy that those LLM-based approaches can achieve on
MMBench-Dev (with CircularEval applied).

Model Overall CP FP-S FP-C AR LR RR
GPT-4 13.23 6.41 7.84 6.99 32.16 27.96 4.34
GPT-3.5 11.17 2.7 9.9 4.9 22.11 25.42 10.43
Claude-2 10.74 5.74 6.14 2.8 27.14 22.88 4.35

As demonstrated in above table, the performance of the text-only GPT-4 model — prompted solely
with question text — is notably sub-optimal. This limitation is particularly evident in responding
to queries that require ‘perception’ abilities. Such questions, often intrinsically linked to visual
information, include examples like “What mood does this image convey?" or “Who is this person?".
In contrast, GPT-4 exhibits a degree of proficiency in ’reasoning’ tasks, with a notable strength
in logical reasoning (LR). The model’s performance in LR is comparable to that of other leading
open-source models. The effectiveness in LR could be attributed to the model’s ability to leverage
common sense in answering questions. Notably, some LR data, sourced from ScienceQA, suggest
that a portion of these tasks can be effectively addressed using the model’s inherent common sense
reasoning (Lu et al., 2022).

Based on the above LLM inference results, we remove the questions that were correctly answered
by GPT-4 and re-calculate the accuracy. The results are demonstrated in the table below. Removing
those questions has limited impact on the final accuracy, and will not lead to significant changes.

Model Dev Dev w/o. GPT-4 Test Test w/o. GPT-4
Qwen-VL-Chat 60.57 59.9 61.83 60.75
Shikra 59.36 60 60.43 60.81
IDEFICS-80B 54.81 51.29 54.82 52.34
IDEFICS-9B 48.37 47.03 45.52 44.8
mPLUG-Owl 48.11 48.51 46.41 46.11
LLaVA 44.5 42.77 42.21 41.74
InstructBLIP-13B 44.42 43.17 43.39 43.18
MiniGPT-4-13B 42.53 40.5 42.54 41.62
LLaMA-Adapter 41.24 41.09 39.63 39.63
VisualGLM 38.57 37.82 33.63 33.52
Qwen-VL 38.23 36.53 32.23 31.34
InstructBLIP 35.48 33.66 35.37 34.08
PandaGPT 33.93 32.77 30.72 29.1
MiniGPT-4 32.04 30.69 29.43 28.04
MMGPT 15.21 13.66 15.98 15.26
OpenFlamingo v2 6.7 5.45 5.72 4.61
OpenFlamingo 4.64 3.37 4.54 3.55
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C COMPARISON WITH CONTEMPORARY WORKS

MME (Fu et al., 2023) is another significant contemporary work alongside MMBench. Both bench-
marks focus on evaluating various capabilities of a vision-language model, while they are different in
the following aspects:

(1). Benchmark Scale & Data Balance. MME includes 1187 images covering 14 leaf ability
categories, each associates with two different questions. Meanwhile, the scale of MMBench is larger,
which includes 2948 images covering 20 leaf ability categories, divided into a development set and
a confidential testing set. Besides, MMBench is more balanced across ability categories. MME
primarily focuses on perception tasks: 89.0% questions in MME are for perception tasks, and only
11.0% questions are for cognition tasks. Besides, 4 leaf abilities have only 20 image samples. In
MMBench, 62.6% questions are for perception tasks while 37.4% are for reasoning ones. Except
one leaf ability that contains only 76 images, all other leaf abilities include more than 110 image
samples. The larger scale and improved data balance can lead to more stable evaluation results.

(2). Answer Matching Strategy. MME continues to utilize exact matching to extract answers from
VLMs’ predictions, which necessitates the model to produce precise ’yes’ or ’no’ responses. This
approach, however, tends to generate a number of false negative samples.

(3). Evaluation Metric. Metrics adopted by MME (accuracy & accuracy +) enable random guessing
to achieve a substantial amount of score (37.5%), and also makes it difficult to reveal the performance
gap between VLMs. Besides, it appears not reasonable that certain models yield scores on the
MME that are lower than those of random guesses (especially for perception tasks). The table
below provides some data points of this issue. Notably, MMBench doesn’t suffer from the problem.
Examples: i) XComposer outperforms Qwen-VL-Chat by 14.2% Top-1 accuracy on MMBench-Dev,
which is a substantial gap. However, in MME, the gap is merely 70 in total score (2.5% of the total
score). ii) In MME, VisualGLM-6B and MiniGPT-4 demonstrates poorer performance compared
to the random baseline, which doesn’t sounds reasonable. However, in MMBench-Dev, the two
approaches significantly outperforms the random baseline (<0.5% Top-1 accuracy).

Method MME-Perception MME-Cognition MME-Total MMBench-Dev
GPT4-V (OpenAI, 2023) 1409 517 1926 75.1%
XComposer (Zhang et al., 2023a) 1528 391 1919 74.8%
Qwen-VL-Chat (Bai et al., 2023) 1488 361 1849 60.6%
mPLUG-Owl2 (Ye et al., 2023) 1450 313 1763 66.5%
VisualGLM-6B (Du et al., 2022) 705 182 887 38.1%
MiniGPT-4 (Zhu et al., 2023) 582 144 726 24.3%
Random 750 375 1225 <0.5%

D CHOICE EXTRACTION

ChatGPT-based choice extraction. To utilize ChatGPT as the choice extractor, we query it with
the our manually created template including the question, options and the corresponding VLM’s
prediction. We prompt ChatGPT with two hand-crafted examples to improve its instruction-following
capability.
gpt_query_template = (

"You are an AI assistant to help me matching an answer with several options of a multiple choice question. "
"You are provided with a question, several options, and an answer, "
"and you need to find which option is most similar to the answer. "
"If the meaning of all options are significantly different from the answer, output X. "\
"Your should output a single uppercase character in A, B, C, D (if they are valid options), and X. \n"
"Example 1: \n"
"Question: What is the main object in image?\nOptions: A. teddy bear B. rabbit C. cat D. dog\n"
"Answer: a cute teddy bear\nYour output: A\n"
"Example 2: \n"
"Question: What is the main object in image?\nOptions: A. teddy bear B. rabbit C. cat D. dog\n"
"Answer: Spider\nYour output: X\n"
"Example 3: \n"
f"Question: {question}?\nOptions: {options}\nAnswer: {prediction}\nYour output: ")

We then get the prediction’s option (e.g. A) from GPT’s response. For most questions, GPT-3.5 is
capable of returning a single character (e.g., A, B, C) as the answer.
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With the above prompt and the extraction strategy introduced in Sec. 3.2, we successfully readout all
VLMs’ predictions for questions in MMBench. In Figure 5, we list the alignment rates with human
of different LLMs when adopted as the choice extractor and show the advantage of ChatGPT. We
further investigate the cause of this misalignment since the choice extraction result of ChatGPT is not
entirely aligned with that of humans.

D.1 MIS-ALIGNED CASES ANALYSIS.

Due to the newly introduced pseudo choice ‘X’, sometimes humans and LLMs can make different
decisions when doing choice extraction due to different matching thresholds. For example, agent A
may match the prediction P with a given choice C since C is the most similar choice to P; while
agent A can output choice X since he / she thinks P is not similar enough to any choice. Based on
that observation, we divide the 50 ChatGPT mis-aligned cases into two categories:

Case I. Human or ChatGPT fails to match the prediction with given choices and outputs an ‘X’. 70%
misaligned samples belong to that case.

Case II. Human and ChatGPT successfully match the prediction with given choices, but the matching
results are different. 30% misaligned samples belong to that case.

In the two cases, I means the judgement of human and ChatGPT are less aligned (may due to different
evaluation standards), while II means the judgement of human and ChatGPT is completely different.
We manually investigate 15 samples in Case-II, and find that:

1. In 7 samples, ChatGPT did the right match while human did the wrong one;

2. In 6 samples, the model’s prediction is ambiguous and related to multiple choices;

3. In 2 samples, human did the right match while ChatGPT did the wrong one. The results support
that ChatGPT can have strong capability in choice matching, even when compared with human
annotators. We visualize Case-II samples in Figure 6.

Ambiguous Samples

GPT correct match, Human wrong match

Q. Based on the image, what makes Quick Stop Groceries stand out from other 
grocery stores?
A. The store offers a wide variety of groceries and household items.
B. The store has a large selection of magazines in addition to groceries.
C. The store provides exclusive discounts and promotions.
D. The store focuses on organic and locally sourced products.
llava-7b: Quick Stop Groceries stands out from other grocery stores due to its wide 
variety of groceries and household items, as well as the large selection of magazines
available. The store has a large number of items displayed, which makes it an 
attractive option for customers looking for a diverse range of products. Additionally, 
the store's focus on organic and locally sourced products, as well as its emphasis on 
providing exclusive discounts and promotions, can also contribute to its unique appeal.

Human Matching: B        GPT Matching: A

Q: What's the function of 
the demonstrated object?
A. used as decorations.
B. stuffed toy in the form 
of a bear
C. collectibles
D. represent characters 
from movies
visualglm-6b: The 
demonstrated object, a 
brown teddy bear, is used 
as decorations.
Human: B        GPT: A

Q: Based on the map, what was true about the Silk Road 
around the year 1300 CE?
A. The Silk Road included both land and sea routes.
B. The Silk Road was made up of only land routes.
C. The Silk Road connected East Asia and Americas by sea.
llava-7b: The map shows that the Silk Road around the year 
1300 CE was primarily a land route, connecting East Asia 
and the Americas. The Silk Road was not a sea route, as it 
did not include maritime routes connecting East Asia and 
the Americas. The map also indicates that the Silk Road was 
a major route for trade and cultural exchange, connecting 
various regions and cultures across Asia and Europe.

Human: C        GPT: B

Q: Does Daucus 
carota have cells 
that have a nucleus?
A. no
B. yes
mplug_owl-7b: Yes, 
Daucus carota has 
cells that have a 
nucleus.

Human: A
GPT: B

Human correct match, ChatGPT wrong match
Q. What is the relationship between the people in the
image?
A. couple
B. professional
C. friends
D. commercial
llama-adapter: The relationship between the people in the 
image is that of a couple. The woman is standing next to 
the man, who is holding a microphone and a turntable.
They are likely a DJ or a musician, and they are posing for
a photo together.
.

Human Matching: B        GPT Matching: A

Figure 6: Visualization of Case-II data samples.

D.2 CHATGPT-BASED EVALUATION FOR EXISTING MULTI-MODAL TASKS.

To demonstrate ChatGPT is a general evaluator, we also validate our ChatGPT-based evaluation
paradigm on existing multi-modality tasks, including GQA (Hudson & Manning, 2019), OK-
VQA (Marino et al., 2019), and Text-VQA (Singh et al., 2019). Given the ground-truth answer,
we use GPT3.5 to score the VLM’s prediction3. For each benchmark, we randomly select 1000
testing samples and evaluate with exact match (the traditional paradigm) and ChatGPT-based match,
respectively, and list the results in Table 4. Basically, ChatGPT-based evaluation demonstrates the
same trend compared to the exact-match accuracy on all tasks. On GQA, two algorithms demonstrate
very close performance under ChatGPT-based evaluation. In further investigation, we find the reason
is that ChatGPT succeeds in matching slightly different answers (compared to GT) generated by
MiniGPT-4, while exact matching fails (examples in Table 5).

3The score will be an integer in [1, 2, 3, 4, 5]. 1 means completely wrong, while 5 means completely correct.
We provide the prompt used for marking in Appendix.
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Table 4: ChatGPT-based marking vs Exact Matching. A preliminary study on VQA benchmarks.
Accuracy is the success rate of answers being exactly matched with the groundtruth. For each sample,
GPT score is an integer n ∈ [1, 5], indicating the similarity between answer and groundtruth. We
report the average GPT score for testing samples.

Dataset GQA (Hudson & Manning, 2019) OK-VQA (Marino et al., 2019) Text-VQA (Singh et al., 2019)

Model Flamingo MiniGPT-4 Flamingo MiniGPT-4 Flamingo MiniGPT-4

Accuracy 33.6% 22.4% 42.6% 21.9% 22.9% 9.8%

Average GPT score 2.75 2.74 2.79 1.97 1.92 1.54

Many MiniGPT-4 GQA answers can not be matched with exact matching, but can be matched with
ChatGPT-based evaluation. Here we provide some examples:

Table 5: MiniGPT-4 GQA answers (different from GT) that can be matched by ChatGPT-based
evaluation.

Question GroundTruth MiniGPT-4 Answer GPT Score
On which side of the picture is the leather bag? right leather bag is on right side 5

Who is wearing a shirt? girl woman is wearing shirt 5
What is the pen made of? plastic pen is made of plastic## 5

What does the male person ride on? bike bicycle 4
Is the microwave silver and rectangular? Yes microwave is silver and rectangular 5

How does the silver lamp appear to be, on or off? off silver lamp appears to be off ## 5

E DETAILS OF THE EVALUATED MODELS

In Table 6, we provide the details of the models evaluated in Section 4.2.

F ABILITY DIMENSIONS AND DATA SOURCE

In this section, we first introduce the definition of each leaf ability with more details. Then, we list all
the data sources we adopted to build MMBench.

COARSE PERCEPTION

1. Image Style: Determine which type of image it belongs to, such as photos, paintings, CT scans,
etc.

2. Image Scene: Determine which environment is shown in the image, such as indoors, outdoors,
forest, city, mountains, waterfront, sunny day, rainy day, etc.

3. Image Emotion: Determine which subjective emotion is conveyed by the overall image, such as
cold, cheerful, sad, or oppressive.

4. Image Quality: Determine the objective quality of the image, such as whether it is blurry, bright
or dark, contrast, etc.

5. Image Topic: Determine what the subject of the image is, such as scenery, portrait, close-up of an
object, text, etc.

FINE-GRAINED PERCEPTION (SINGLE-INSTANCE)

1. Object Localization: For a single object, determine its position in the image (such as top, bottom,
etc.), its absolute coordinates in the image, count the number of objects, and the orientation of the
object.

2. Attribute Recognition: Recognition of texture, shape, appearance characteristics, emotions,
category.

3. Celebrity Recognition: Recognition of celebrities, landmarks, and well-known objects.
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Table 6: Details of the evaluated VLMs.
VLM Language Backbone Vision Backbone Overall Parameters Trainable Parameters

OpenFlamingo LLaMA 7B CLIP ViT-L/14 9B 1.3B

OpenFlamingov2 MPT 7B CLIP ViT-L/14 9B 1.3B

MMGPT LLaMA 7B CLIP ViT-L/14 9B 22.5M

MiniGPT-4 Vicuna 7B EVA-G 8B 11.9M

MiniGPT-4-13B Vicuna 13B EVA-G 14B 11.9M

PandaGPT Vicuna 13B ImageBind ViT-H/14 14B 28.8M

VisualGLM ChatGLM 6B EVA-CLIP 8B 0.2B

InstructBLIP Vicuna 7B EVA-G 8B 0.2B

InstructBLIP-13B Vicuna 13B EVA-G 14B 0.2B

Otter-I LLaMA 7B CLIP ViT-L/14 9B 1.3B

LLaVA LLaMA 7B CLIP ViT-L/14 7.2B 7B

LLaMA-Adapter LLaMA 7B CLIP ViT-L/14 7.2B 1.2M

mPLUG-Owl LLaMA 7B CLIP ViT-L/14 7.2B 0.4B

Shikra LLaMA 7B CLIP ViT-L/14 7.2B 6.7B

IDEFICS-9B LLaMA 7B CLIP ViT-H/14 9B 8.9B

IDEFICS-80B LLaMA 65B CLIP ViT-H/14 80B 78.5B

Qwen-VL Qwen 7B ViT-G/16 9.6B 9.6B

Qwen-VL-Chat Qwen 7B ViT-G/16 9.6B 9.6B

4. OCR: Recognition of text, formula, and sheet in the image.

FINE-GRAINED PERCEPTION (CROSS-INSTANCE)

1. Spatial Relationship: Determine the relative position between objects in image.

2. Attribute Comparison: Compare attributes of different objects in image, such as shape, color,
etc.

3. Action Recognition: Recognizing human actions, including pose motion, human-object interac-
tion, and human-human interaction.

ATTRIBUTE REASONING

1. Physical Property Reasoning: Predict the physical property of an object. Examples: he physical
property of concentrated sulfuric acid is that it is volatile, the physical property of water is its
fluidity, etc.

2. Function Reasoning: Predict the function of an object. Examples: the function of a broom is to
sweep the floor, the function of a spatula is to cook, the function of a pen is to write, etc.

3. Identity Reasoning: Predict the identity of a person. Example: by observing a person’s clothing
and appearance, one may infer his / her occupation.

RELATION REASONING

1. Social Relation: Relations in human society or relations defined from the human perspective.
Examples: Inter-person relations, such as father and son, husband and wife, friend, hostile, etc.

2. Physical Relation: All relationships that exist in the physical world, 3D spatial relationships and
the connections between objects are.

3. Nature Relation: Other abstract relationships that exist in nature. Examples: predation, symbiosis,
coexistence, etc.

LOGIC REASONING

1. Structuralized Image-Text Understanding: Structured understanding of images and text, includ-
ing parsing the content of charts (such as the trends of multiple bars in a bar chart), understanding
the code in an image, etc.
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2. Future Prediction: Predict what will happen in the future. Examples: if it is thundering in the
sky now, it can be predicted that it will rain soon (physical phenomenon); if someone raises their
fist, it means they are going to hit someone (event occurrence); if someone’s face becomes serious,
it means they are going to get angry (emotional change).

Table 7: The source of (Q,C, I,A) in MMBench . Customize/ChatGPT generated means this style
of questions/choices are generated by the annotator/ChatGPT, given the image annotation.

Image Source Question Source Choice and Answer Source
W3C School W3C (2023) customize matched code;unmatched code
Places Zhou et al. (2017) customize image-paired scene category;unpaired scene category
TextVQA Singh et al. (2019) TextVQA ground-truth answer;unpaired answer
ARAS Duan et al. (2022) customize image-paired action category;unpaired action category
CLEVR Johnson et al. (2017) CLEVR ground-truth answer;unpaired answer
PISC Li et al. (2017) customize image-paired social relation;unpaired social relation
KonIQ-10k Hosu et al. (2020) customize image-paired description;unpaired description
VSR Liu et al. (2023a) customize image-paired description;unpaired description
LLaVA Liu et al. (2023b) ChatGPT generated ChatGPT generated
COCO-Caption Chen et al. (2015) customize image-paired description;unpaired description
ScienceQA Lu et al. (2022) ScienceQA ground-truth answer;unpaired answer
Internet customize customize; customize

G ADDITIONAL EVALUATION RESULTS

In this section, we present additional MMBench evaluation results, including: 1) The performance of
all VLMs on MMBench dev set, with accuracies of each L-2 capability reported; 2) the performance
of VLMs on all 20 L-3 abilities.

In Table 8, we present the evaluation results of all VLMs on MMBench dev set. Basically, the
performance ranking is consistent with the MMBench test ranking, with only a few exceptions
(the ranking is slightly different for IDEFICS-9B, mPLUG-Owl, etc.).

Table 8: CircularEval results on MMBench dev set (L-2 abilities). We adopt the following abbre-
viations: LR for Logical Reasoning; AR for Attribute Reasoning; RR for Relation Reasoning; FP-C
for Fine-grained Perception (Cross Instance); FP-S for Fine-grained Perception (Single Instance); CP
for Coarse Perception. The dash line separate models with the parameter size ≤ 10B or > 10B.

VLM Overall CP FP-S FP-C AR LR RR

OpenFlamingo (Alayrac et al., 2022) 4.6% 2.0% 6.8% 2.8% 8.0% 6.8% 0.0%

OpenFlamingo v2 (Alayrac et al., 2022) 6.7% 5.1% 8.2% 1.4% 15.6% 4.2% 0.9%

MMGPT (Gong et al., 2023) 15.2% 20.6% 13.7% 3.5% 26.6% 2.5% 13.0%

MiniGPT-4 (Zhu et al., 2023) 32.0% 44.3% 40.6% 13.3% 35.7% 14.4% 13.9%

InstructBLIP (Dai et al., 2023) 35.5% 49.0% 35.8% 18.9% 45.2% 19.5% 20.0%

Qwen-VL (Bai et al., 2023) 38.2% 46.6% 35.2% 39.2% 44.7% 16.1% 34.8%

VisualGLM (Du et al., 2022) 38.6% 47.6% 45.4% 23.1% 44.7% 10.2% 35.7%

LLaMA-Adapter (Zhang et al., 2023b) 41.2% 56.4% 47.1% 39.2% 35.7% 11.9% 29.6%

LLaVA (Liu et al., 2023b) 44.5% 58.4% 43.0% 37.8% 52.8% 20.3% 31.3%

mPLUG-Owl (Ye et al., 2023) 48.1% 58.8% 51.9% 44.8% 50.8% 16.1% 43.5%

IDEFICS-9B (Laurençon et al., 2023) 48.4% 67.2% 47.8% 37.1% 54.3% 21.2% 33.0%

Otter-I (Li et al., 2023b;a) 51.6% 65.9% 46.4% 39.2% 57.3% 32.2% 53.9%

Shikra (Chen et al., 2023) 59.4% 76.4% 57.7% 58.7% 57.3% 26.3% 58.3%

Qwen-VL-Chat (Bai et al., 2023) 60.6% 79.4% 66.2% 48.3% 59.8% 32.2% 43.5%

PandaGPT (Su et al., 2023) 33.9% 48.6% 28.3% 35.7% 39.2% 10.2% 23.5%

MiniGPT-4-13B (Zhu et al., 2023) 42.5% 51.0% 49.5% 26.6% 51.3% 20.3% 30.4%

InstructBLIP-13B (Dai et al., 2023) 44.4% 56.8% 48.1% 25.2% 54.8% 19.5% 34.8%

IDEFICS-80B (Laurençon et al., 2023) 54.8% 64.5% 58.4% 44.8% 65.8% 23.7% 46.1%
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Table 9: Results of leaf abilities (L-3) that belong to the Coarse Perception (CP) L-2 category.
Models are arranged in ascending order of CP top-1 accuracies.

Split VLM CP Image
Style

Image
Scene

Image
Emotion

Image
Quality

Image
Topic

DEV

OpenFlamingo 2.0% 0.0% 1.9% 0.0% 1.9% 8.3%

OpenFlamingo v2 5.1% 3.8% 3.8% 4.0% 3.8% 13.9%

MMGPT 20.6% 3.8% 20.2% 56.0% 13.2% 8.3%

MiniGPT-4 44.3% 37.7% 57.7% 58.0% 11.3% 44.4%

Qwen-VL 46.6% 30.2% 78.8% 28.0% 5.7% 63.9%

VisualGLM 47.6% 37.7% 74.0% 50.0% 0.0% 52.8%

PandaGPT 48.6% 30.2% 70.2% 62.0% 1.9% 63.9%

InstructBLIP 49.0% 47.2% 66.3% 50.0% 5.7% 63.9%

MiniGPT-4-13B 51.0% 64.2% 62.5% 56.0% 3.8% 61.1%

LLaMA-Adapter 56.4% 45.3% 75.0% 76.0% 3.8% 69.4%

InstructBLIP-13B 56.8% 73.6% 74.0% 58.0% 11.3% 47.2%

LLaVA 58.4% 37.7% 82.7% 68.0% 17.0% 66.7%

mPLUG-Owl 58.8% 67.9% 61.5% 82.0% 18.9% 63.9%

IDEFICS-80B 64.5% 60.4% 93.3% 60.0% 9.4% 75.0%

Otter-I 65.9% 64.2% 85.6% 70.0% 17.0% 77.8%

IDEFICS-9B 67.2% 66.0% 91.3% 66.0% 20.8% 69.4%

Shikra 76.4% 62.3% 97.1% 86.0% 37.7% 80.6%

Qwen-VL-Chat 79.4% 83.0% 92.3% 78.0% 50.9% 80.6%

TEST

OpenFlamingo 1.5% 0.0% 4.7% 0.0% 1.2% 0.0%

OpenFlamingo v2 4.1% 1.2% 5.4% 3.6% 2.4% 7.1%

MMGPT 18.4% 3.5% 30.2% 36.1% 7.1% 9.4%

Qwen-VL 36.4% 23.5% 60.5% 13.3% 0.0% 71.8%

MiniGPT-4 36.6% 32.9% 63.6% 33.7% 2.4% 36.5%

VisualGLM 41.3% 30.6% 68.2% 41.0% 0.0% 52.9%

InstructBLIP 43.7% 36.5% 58.9% 39.8% 1.2% 74.1%

PandaGPT 47.8% 38.8% 65.9% 38.6% 16.5% 69.4%

MiniGPT-4-13B 50.7% 62.4% 75.2% 38.6% 4.7% 60.0%

LLaMA-Adapter 50.7% 31.8% 70.5% 44.6% 24.7% 71.8%

InstructBLIP-13B 54.2% 61.2% 72.1% 42.2% 5.9% 80.0%

IDEFICS-9B 56.3% 43.5% 80.6% 38.6% 11.8% 94.1%

LLaVA 59.3% 55.3% 82.9% 51.8% 15.3% 78.8%

mPLUG-Owl 60.4% 68.2% 73.6% 55.4% 35.3% 62.4%

Otter-I 60.8% 62.4% 82.9% 47.0% 4.7% 95.3%

IDEFICS-80B 62.1% 55.3% 85.3% 48.2% 16.5% 92.9%

Shikra 71.9% 72.9% 90.7% 60.2% 30.6% 95.3%

Qwen-VL-Chat 72.8% 72.9% 88.4% 55.4% 45.9% 92.9%

In Tables 9 to 14, we present the performance of VLMs on all 20 L-3 abilities. We noticed that the
rankings on the L-3 abilities are more diversified. Besides the leading VLMs Shikra and Qwen-VL-
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Table 10: Results of leaf abilities (L-3) that belong to the Fine-grained Perception (instance-level,
FP-S) L-2 category. Models are arranged in ascending order of FP-S top-1 accuracies.

Split VLM FP-S Object
Localization

Attribute
Recognition

Celebrity
Recognition OCR

DEV

OpenFlamingo 6.8% 2.5% 10.8% 4.0% 15.4%

OpenFlamingo v2 8.2% 1.2% 14.9% 10.1% 5.1%

MMGPT 13.7% 1.2% 8.1% 27.3% 15.4%

PandaGPT 28.3% 14.8% 52.7% 23.2% 23.1%

Qwen-VL 35.2% 12.3% 32.4% 53.5% 41.0%

InstructBLIP 35.8% 6.2% 50.0% 45.5% 46.2%

MiniGPT-4 40.6% 14.8% 60.8% 52.5% 25.6%

LLaVA 43.0% 12.3% 64.9% 50.5% 46.2%

VisualGLM 45.4% 22.2% 43.2% 67.7% 41.0%

Otter-I 46.4% 16.0% 59.5% 58.6% 53.8%

LLaMA-Adapter 47.1% 17.3% 67.6% 59.6% 38.5%

IDEFICS-9B 47.8% 14.8% 56.8% 68.7% 46.2%

InstructBLIP-13B 48.1% 14.8% 56.8% 69.7% 46.2%

MiniGPT-4-13B 49.5% 28.4% 54.1% 68.7% 35.9%

mPLUG-Owl 51.9% 19.8% 60.8% 76.8% 38.5%

Shikra 57.7% 32.1% 77.0% 63.6% 59.0%

IDEFICS-80B 58.4% 21.0% 64.9% 88.9% 46.2%

Qwen-VL-Chat 66.2% 30.9% 67.6% 92.9% 69.2%

TEST

OpenFlamingo 2.5% 1.9% 3.0% 2.5% 2.6%

OpenFlamingo v2 5.3% 2.9% 6.1% 8.5% 2.6%

MMGPT 17.8% 2.9% 22.2% 28.0% 16.9%

PandaGPT 20.1% 7.7% 36.4% 19.5% 16.9%

Qwen-VL 32.9% 3.8% 28.3% 44.1% 61.0%

InstructBLIP 34.4% 2.9% 42.4% 40.7% 57.1%

MiniGPT-4 35.2% 13.5% 51.5% 34.7% 44.2%

VisualGLM 35.7% 8.7% 39.4% 52.5% 41.6%

LLaVA 37.9% 10.6% 45.5% 39.8% 62.3%

IDEFICS-9B 43.2% 3.8% 46.5% 59.3% 67.5%

LLaMA-Adapter 44.7% 14.4% 58.6% 56.8% 49.4%

InstructBLIP-13B 45.7% 5.8% 44.4% 65.3% 71.4%

Otter-I 46.7% 11.5% 53.5% 57.6% 68.8%

MiniGPT-4-13B 49.7% 21.2% 63.6% 55.9% 61.0%

mPLUG-Owl 53.0% 16.3% 62.6% 78.0% 51.9%

IDEFICS-80B 56.0% 15.4% 58.6% 77.1% 75.3%

Shikra 61.8% 27.9% 71.7% 70.3% 81.8%

Qwen-VL-Chat 66.3% 20.2% 74.7% 85.6% 88.3%

Chat, other VLMs, including IDEFICS-80B, LLaMA-Adapter, Otter-I, also achieve the first place in
one / more sub-tasks on the dev / test split of MMBench.
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Table 11: Results of leaf abilities (L-3) that belong to the Fine-grained Perception (cross-instance,
FP-C) L-2 category. Models are arranged in ascending order of FP-C top-1 accuracies.

Split VLM FP-C Spatial
Relationship

Attribute
Comparison

Action
Recognition

DEV

OpenFlamingo v2 1.4% 2.2% 2.3% 0.0%

OpenFlamingo 2.8% 2.2% 0.0% 5.6%

MMGPT 3.5% 2.2% 2.3% 5.6%

MiniGPT-4 13.3% 4.4% 15.9% 18.5%

InstructBLIP 18.9% 4.4% 11.4% 37.0%

VisualGLM 23.1% 0.0% 31.8% 35.2%

InstructBLIP-13B 25.2% 6.7% 36.4% 31.5%

MiniGPT-4-13B 26.6% 20.0% 20.5% 37.0%

PandaGPT 35.7% 11.1% 25.0% 64.8%

IDEFICS-9B 37.1% 8.9% 4.5% 87.0%

LLaVA 37.8% 2.2% 36.4% 68.5%

Qwen-VL 39.2% 15.6% 34.1% 63.0%

Otter-I 39.2% 15.6% 4.5% 87.0%

LLaMA-Adapter 39.2% 11.1% 47.7% 55.6%

IDEFICS-80B 44.8% 24.4% 13.6% 87.0%

mPLUG-Owl 44.8% 17.8% 43.2% 68.5%

Qwen-VL-Chat 48.3% 20.0% 31.8% 85.2%

Shikra 58.7% 33.3% 45.5% 90.7%

TEST

OpenFlamingo v2 0.8% 0.0% 0.0% 2.3%

OpenFlamingo 1.6% 1.2% 3.8% 0.0%

MMGPT 5.3% 3.7% 3.8% 8.0%

MiniGPT-4 16.6% 7.4% 5.1% 35.2%

VisualGLM 18.2% 7.4% 9.0% 36.4%

MiniGPT-4-13B 19.8% 17.3% 9.0% 31.8%

PandaGPT 20.6% 12.3% 15.4% 33.0%

InstructBLIP-13B 24.3% 9.9% 17.9% 43.2%

InstructBLIP 25.1% 9.9% 3.8% 58.0%

mPLUG-Owl 25.1% 25.9% 17.9% 30.7%

Qwen-VL 27.9% 4.9% 21.8% 54.5%

LLaVA 30.8% 11.1% 26.9% 52.3%

LLaMA-Adapter 33.6% 19.8% 28.2% 51.1%

Otter-I 36.4% 12.3% 2.6% 88.6%

IDEFICS-9B 36.8% 6.2% 9.0% 89.8%

Qwen-VL-Chat 46.2% 21.0% 32.1% 81.8%

IDEFICS-80B 48.6% 28.4% 21.8% 90.9%

Shikra 50.6% 27.2% 26.9% 93.2%
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Table 12: Results of leaf abilities (L-3) that belong to the Attribute Reasoning (AR) L-2 category.
Models are arranged in ascending order of AR top-1 accuracies.

Split VLM AR Physical Property
Reasoning

Function
Reasoning

Identity
Reasoning

DEV

OpenFlamingo 8.0% 10.7% 8.9% 2.2%

OpenFlamingo v2 15.6% 14.7% 8.9% 28.9%

MMGPT 26.6% 24.0% 10.1% 60.0%

MiniGPT-4 35.7% 12.0% 32.9% 80.0%

LLaMA-Adapter 35.7% 16.0% 32.9% 73.3%

PandaGPT 39.2% 16.0% 48.1% 62.2%

VisualGLM 44.7% 18.7% 51.9% 75.6%

Qwen-VL 44.7% 32.0% 53.2% 51.1%

InstructBLIP 45.2% 21.3% 48.1% 80.0%

mPLUG-Owl 50.8% 18.7% 59.5% 88.9%

MiniGPT-4-13B 51.3% 30.7% 50.6% 86.7%

LLaVA 52.8% 33.3% 53.2% 84.4%

IDEFICS-9B 54.3% 33.3% 54.4% 88.9%

InstructBLIP-13B 54.8% 30.7% 58.2% 88.9%

Otter-I 57.3% 29.3% 63.3% 93.3%

Shikra 57.3% 30.7% 64.6% 88.9%

Qwen-VL-Chat 59.8% 32.0% 68.4% 91.1%

IDEFICS-80B 65.8% 46.7% 65.8% 97.8%

TEST

OpenFlamingo 12.5% 16.0% 9.4% 12.2%

OpenFlamingo v2 12.8% 9.0% 7.5% 24.4%

MMGPT 24.0% 13.0% 12.3% 52.4%

PandaGPT 41.7% 15.0% 42.5% 73.2%

MiniGPT-4 42.4% 29.0% 36.8% 65.9%

Qwen-VL 43.1% 25.0% 57.5% 46.3%

LLaMA-Adapter 47.6% 25.0% 45.3% 78.0%

VisualGLM 49.0% 26.0% 46.2% 80.5%

InstructBLIP 49.7% 28.0% 49.1% 76.8%

mPLUG-Owl 55.6% 25.0% 58.5% 89.0%

LLaVA 57.6% 36.0% 54.7% 87.8%

InstructBLIP-13B 59.7% 24.0% 67.9% 92.7%

MiniGPT-4-13B 62.8% 35.0% 67.9% 90.2%

Otter-I 63.5% 45.0% 61.3% 89.0%

IDEFICS-9B 64.9% 45.0% 66.0% 87.8%

IDEFICS-80B 68.1% 35.0% 79.2% 93.9%

Shikra 69.8% 50.0% 70.8% 92.7%

Qwen-VL-Chat 74.3% 52.0% 81.1% 92.7%
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Table 13: Results of leaf abilities (L-3) that belong to the Logic Reasoning (LR) L-2 category.
Models are arranged in ascending order of LR top-1 accuracies.

Split VLM LR Structuralized
Image-Text Understanding

Future
Prediction

DEV

MMGPT 2.5% 2.6% 2.5%

OpenFlamingo v2 4.2% 5.1% 2.5%

OpenFlamingo 6.8% 9.0% 2.5%

VisualGLM 10.2% 11.5% 7.5%

PandaGPT 10.2% 10.3% 10.0%

LLaMA-Adapter 11.9% 7.7% 20.0%

MiniGPT-4 14.4% 16.7% 10.0%

Qwen-VL 16.1% 19.2% 10.0%

mPLUG-Owl 16.1% 12.8% 22.5%

InstructBLIP 19.5% 17.9% 22.5%

InstructBLIP-13B 19.5% 19.2% 20.0%

MiniGPT-4-13B 20.3% 20.5% 20.0%

LLaVA 20.3% 19.2% 22.5%

IDEFICS-9B 21.2% 24.4% 15.0%

IDEFICS-80B 23.7% 24.4% 22.5%

Shikra 26.3% 16.7% 45.0%

Otter-I 32.2% 20.5% 55.0%

Qwen-VL-Chat 32.2% 34.6% 27.5%

TEST

MMGPT 1.2% 0.0% 2.8%

Qwen-VL 9.8% 7.9% 12.5%

OpenFlamingo 9.8% 2.0% 20.8%

OpenFlamingo v2 11.6% 3.0% 23.6%

VisualGLM 11.6% 4.0% 22.2%

MiniGPT-4 12.1% 7.9% 18.1%

LLaMA-Adapter 13.3% 11.9% 15.3%

LLaVA 15.0% 8.9% 23.6%

PandaGPT 15.6% 6.9% 27.8%

mPLUG-Owl 16.2% 6.9% 29.2%

MiniGPT-4-13B 17.3% 6.9% 31.9%

InstructBLIP-13B 17.3% 5.9% 33.3%

IDEFICS-9B 21.4% 6.9% 41.7%

InstructBLIP 22.0% 4.0% 47.2%

Otter-I 22.5% 5.0% 47.2%

IDEFICS-80B 29.5% 12.9% 52.8%

Shikra 33.5% 13.9% 61.1%

Qwen-VL-Chat 40.5% 27.7% 58.3%
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Table 14: Results of leaf abilities (L-3) that belong to the Relation Reasoning (RR) L-2 category.
Models are arranged in ascending order of RR top-1 accuracies.

Split VLM RR Social
Relation

Physical
Relation

Nature
Relation

DEV

OpenFlamingo 0.0% 0.0% 0.0% 0.0%

OpenFlamingo v2 0.9% 0.0% 0.0% 2.1%

MMGPT 13.0% 14.0% 0.0% 18.8%

MiniGPT-4 13.9% 27.9% 0.0% 8.3%

InstructBLIP 20.0% 30.2% 8.3% 16.7%

PandaGPT 23.5% 20.9% 8.3% 33.3%

LLaMA-Adapter 29.6% 37.2% 16.7% 29.2%

MiniGPT-4-13B 30.4% 53.5% 8.3% 20.8%

LLaVA 31.3% 39.5% 12.5% 33.3%

IDEFICS-9B 33.0% 46.5% 16.7% 29.2%

Qwen-VL 34.8% 53.5% 8.3% 31.2%

InstructBLIP-13B 34.8% 55.8% 8.3% 29.2%

VisualGLM 35.7% 62.8% 8.3% 25.0%

Qwen-VL-Chat 43.5% 58.1% 25.0% 39.6%

mPLUG-Owl 43.5% 65.1% 8.3% 41.7%

IDEFICS-80B 46.1% 62.8% 29.2% 39.6%

Otter-I 53.9% 76.7% 20.8% 50.0%

Shikra 58.3% 93.0% 20.8% 45.8%

TEST

OpenFlamingo v2 1.4% 1.3% 3.8% 0.0%

OpenFlamingo 3.3% 0.0% 11.5% 1.2%

MiniGPT-4 14.2% 11.5% 19.2% 13.6%

MMGPT 20.9% 28.2% 3.8% 24.7%

InstructBLIP 22.3% 30.8% 11.5% 21.0%

PandaGPT 22.3% 28.2% 9.6% 24.7%

LLaMA-Adapter 23.2% 32.1% 19.2% 17.3%

LLaVA 27.0% 39.7% 15.4% 22.2%

VisualGLM 28.0% 47.4% 3.8% 24.7%

IDEFICS-9B 29.4% 51.3% 11.5% 19.8%

MiniGPT-4-13B 30.3% 44.9% 21.2% 22.2%

Qwen-VL 30.3% 46.2% 9.6% 28.4%

InstructBLIP-13B 36.5% 48.7% 25.0% 32.1%

Otter-I 39.8% 56.4% 9.6% 43.2%

mPLUG-Owl 40.3% 62.8% 21.2% 30.9%

IDEFICS-80B 46.4% 75.6% 21.2% 34.6%

Qwen-VL-Chat 47.9% 60.3% 30.8% 46.9%

Shikra 53.1% 84.6% 19.2% 44.4%
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H MMBENCH DATA SAMPLES

In the Figures 7 to 12, we illustrate some examples in MMBench, grouped by the L-2 abilities.

Image Style
Q: Which category does this 
image belong to?
A. Oil Paiting
B. Sketch
C. Digital art
D. Photo
GT: A

Q: Which category does this 
image belong to?
A. Oil Paiting
B. Sketch
C. Digital art
D. Photo
GT: B

Q: Which of the following 
captions best describes this 
image?
A. A group of people playing 

soccer in a field
B. A woman walking her dog on 

a beach
C. A man riding a bicycle on a 

mountain trail
D. A child playing with a ball in 

a park
GT: A

Q: Which of the following 
captions best describes this 
image?
A. A group of people playing 

soccer in a field
B. A woman walking her dog on 

a beach
C. A man riding a bicycle on a 

mountain trail
D. A child playing with a ball in 

a park
GT: B

Image Topic

Image scene
Q: What type of environment is 
depicted in the picture?
A. Home
B. shopping mall
C. Street
D. forest
GT: A

Q: What type of environment is 
depicted in the picture?
A. Home
B. shopping mall
C. Street
D. forest
GT: C

Image Mood
Q: Which mood does this image 
convey? 
A. Cozy
B. Anxious
C. Happy
D. Angry
GT: C

Q: Which mood does this image 
convey? 
A. Sad
B. Anxious
C. Happy
D. Angry
GT: A

Image Quality

Q: Which image is more brightful?
A. The first image
B. The second image
GT: A

Q: which image is more colorful 
A. The first image
B. The second image
GT: B

Figure 7: Coarse Perception: Data samples.
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Attribute Recognition
Q: what is the color of this 
object?
A. Purple
B. Pink
C. Gray
D. Orange
GT: D

Q: What is the shape of this
object?
A. Circle
B. Triangle
C. Square
D. Rectangle
GT: A

Celebrity Recognition

Q: Who is this person
A. Benedict Cumberbatch
B. Idris Elba
C. Ed Sheeran
D. Harry Styles
GT: A

Q: Who is this person
A. David Beckham
B. Prince Harry
C. Daniel Craig
D. Tom Hardy
GT: B

Object Localization

Q: Which corner is the juice?
A. Up
B. Down
C. Left
D. Right
GT: D

Q: How many apples are there in 
the image? And how many 
bananas are there?
A. 4 apples and 2 bananas
B. 3 apples and 3 banana
C. 2 apples and 4 bananas
D. 4 apples and 1 bananas
GT: A

OCR Q: What does this picture want 
to express?
A. We are expected to care for 

green plants.
B. We are expected to care for 

the earth.
C. We are expected to stay 

positive.
D. We are expected to work 

hard.
GT: D

Q: What does this outdoor 
billboard mean?
A. Smoking is prohibited here.
B. Something is on sale.
C. No photography allowed
D. Take care of your speed.
GT: B

Figure 8: Fine-grained Perception (single-instance): Data samples.

Spatial Relationship
Q: What direction is Indonesia in 
Philippines?
A. northeast
B. southwest
C. southeast
D. northwest
GT: B

Q: Which sea is located in the south of 
Crete？
A. Ionian Sea
B. Aegean Sea
C. Black sea
D. Mediterranean Sea
GT: D

Attribute Comparison
Q: Are the candies in the two 
jars in the picture the same 
color?
A. Same
B. Not the same
C. Can't judge
GT: B

Q: Are the two arrows in the same 
direction in the picture?
A. Same
B. Not the same
C. Can't judge
GT: B

Action Recognition Q: What kind of human behavior does 
this picture describe?
A. A man with a solemn expression, 

XXX driving.
B. A man is practicing his 

skateboarding XXX skills.
C. A group of XXX breather from 

work.
D. A family is XXX clothing.
GT: A

Q: What kind of human behavior does 
this picture describe?
A. This is a XXX smiles on their faces
B. A man is XXX his breathing and 

inner thoughts.
C. A musician XXX a classical piece.
D. A family is XXX together. 
GT: A

Figure 9: Fine-grained Perception (cross-instance): Data samples. XXX indicates omitted
contents which are less relevant to the question.
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Physical Property Reasoning

Q: The object shown in this figure:
A. Is the hardest naturally occurring 

substance on Earth.
B. Conducts electricity well at room 

temperature.
C. Is typically found in igneous rocks 

like basalt and granite.
D. Has a low melting point compared 

to other minerals.
GT: A

Function Reasoning

Q: What's the function of the 
demonstrated object?
A. Separating
B. Clamping
C. drill
D. incise
GT: A

Q: What's the function of the 
demonstrated object?
A. Cut vegetables
B. stir
C. Water purification
D. Boiling water
GT: B

Identity Reasoning
Q: What's the profession of the people 
in this picture? 
A. Librarian
B. radio host
C. gardener
D. lawyer
GT: C

Q: The object shown in this figure:
A. Is one kind of metal that is liquid 

at the room temperature.
B. Can be easily dissolved in water.
C. Has a low boiling point compared 

to other metals.
D. Is attracted to magnets.
GT: A

Q: What's the profession of the people 
in this picture? 
A. Librarian
B. accountant
C. radio host
D. gardener
E. lawyer
GT: A

Figure 10: Attribute Reasoning: Data samples.

Social_Relation
Q: What can be the relationship 
between the two persons in this image?
A. Father and daughter
B. Mother and son
C. Brother and sister
D. Husband and wife
GT: D

Nature Relation
Q: In nature, what's the relationship 
between these two creatures?
A. Predatory relationships
B. Competitive relationships
C. Parasitic relationships
D. Symbiotic relationship
GT: B

Q: What can be the relationship 
between the two persons in this image?
A. Father and daughter
B. Grandfather and granddaughter
C. Brother and sister
D. Husband and wife
GT: B

Q: In nature, what's the relationship 
between these two creatures?
A. Predatory relationships
B. Competitive relationships
C. Parasitic relationships
D. Symbiotic relationship
GT: D

Physical Relation
Q: Who is closer to the football in the 
image, the player in the black jersey 
or the player in the green jersey?
A. The player in the black jersey
B. The player in the green jersey
C. They are equally close
D. It cannot be determined
GT: A

Q: How many tennis balls are placed 
on the tennis racket?
A. 1
B. 2
C. 3
D. 4
GT: C

Figure 11: Relation Reasoning: Data samples.
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Future Prediction

Q: What will happen next?
A. this person is gonna cry
B. this person is gonna laugh
C. this person is gonna get mad
D. both A,B, and C
GT: A

Structuralized Image-text Understanding

Q: According to this image, which 
fruit did the most kids like?
A. Orange
B. Banana
C. Pear
D. Apple
GT: A

Q: What will happen next?
A. the motorcyle is gonna go forward
B. the motorcyle is gonna crash
C. the motorcyle is gonna go 

backward
D. both A,B, and C
GT: B

Q: According to this image, what 
hobby is liked the least?
A. Reading
B. Singing
C. Painting
D. Dancing
GT: C

Figure 12: Logic Reasoning: Data samples.
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