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Abstract

Multi-task learning with an unbalanced data
distribution skews learning towards high re-
source tasks, especially when model capac-
ity is fixed and fully shared across all tasks.
Sparse scaling architectures, such as BASE-
Layers, provide flexible mechanisms for tasks
to have a variable number of parameters,
which can be useful to counterbalance skewed
data distributions. However, we find that that
BASELayers sparse model for multilingual
machine translation can perform poorly out of
the box, and propose two straightforward tech-
niques to mitigate this — a temperature heat-
ing mechanism and dense pre-training. Over-
all, these methods improve performance on
two multilingual translation benchmarks com-
pared to standard BASELayers and dense scal-
ing baselines, and in combination, more than
2x model convergence speed.

1 Introduction

Training a universal model capable of handling
many different tasks is a longstanding ambition
in natural language processing (Collobert and We-
ston, 2008; Ruder, 2017; McCann et al., 2018),
with recent progress driven by training transformer
models on a wide range of tasks (Xue et al., 2021;
Khashabi et al., 2020; Lu et al., 2020). A central
challenge in multi-task learning is accounting for
the dramatically varying amounts of training data
available for different tasks, which can lead to over-
fitting on low-resource tasks whilst simultaneously
underfitting on tasks with abundant training data.

In this work, we study multilingual machine
translation as a multi-task learning problem (Dong
et al., 2015; Firat et al., 2016), where a single model
is trained to translate between many language pairs
(Fan et al., 2021). Multilingual learning has the
potential of crosslingual transfer, allowing low-
resource languages to benefit from high-resource

data (Conneau et al., 2020). However, in practice,
this positive transfer is often mitigated by interfer-
ence between languages (Arivazhagan et al., 2019;
Tan et al., 2019; Zhang et al., 2020). This is because
all languages, irrespective of the amount of data,
are trained with a fixed model capacity (Lepikhin
et al., 2020), leading to insufficient specialized ca-
pacity. Recent efforts have focused on sparse ar-
chitectures (Lewis et al., 2021) to train high ca-
pacity models, but these overfit to low-resource
languages and have worse performance than dense
architectures (Fan et al., 2021; Tran et al., 2021).
We analyze the learning patterns of experts through-
out training and identify a fundamental problem:
experts specialize early on and rarely change spe-
cialization.

We propose two straightforward techniques
to improve BASELayers-based sparse architec-
tures (Lewis et al., 2021) for multitask learning:
first, we slowly ramp the number of instances from
low-resource tasks over epochs rather than having
a fixed sampling ratio (Arivazhagan et al., 2019).
This promotes cross-lingual transfer and reduces
over-fitting as the model witnesses low-resource
task instances in the later epochs. Second, we train
a dense architecture before switching to sparse
training. Intuitively, we learn a generalized rep-
resentation that can transfer across all tasks first
with a dense model and then gradually sparsify and
specialize the experts to different tasks. Overall
with these two modifications, we observe improve-
ment in low-resource performance by 0.6 BLEU
on WMT-15 benchmark and 1.1 BLEU on ML-50
benchmark — whilst halving the training time.

2 Methods

We motivate the need for preventing early expert
specialization and describe our proposal to circum-
vent it and more than double convergence speed.



2.1 Expert Utilization Rarely Changes

Sparse scaling schemes, such as BASELayers or
Mixture-of-Experts, enable sparse computation by
distributing model capacity across sets of experts.
In each forward pass, only a small subset of ex-
perts are utilized, leading to incredibly compute-
efficient scaling. The challenge, however, is the
routing function — or how experts can be bal-
anced so they actually specialize to learn different
things (Kudugunta et al., 2020). When the routing
mechanism is unbalanced, all the tasks degener-
ate to using only a single specific expert for all
tasks (Lepikhin et al., 2020) — essentially wast-
ing parameters. BASELayers (Lewis et al., 2021)
employ a simple mechanism that learns a balanced
routing without the need for additional auxiliary
losses. We focus on BASELayers as it has straight-
forward and simple training and has previously
been shown to have strong performance.
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Figure 1: Expert distribution for Romanian and French
as training progresses (10k, 30k and 50k updates) on
WMT-15 benchmark, where Romanian is low-resource
and French is high-resource.

Even though BASELayers leads to effective uti-
lization of all parameters, it limits parameter shar-
ing across tasks, which is crucial when the data
distribution is unbalanced — if the number of tasks
and experts are the same, all tasks end up using a
different set of experts. As a result, when applied to
multilingual machine translation, the performance
is worse than a corresponding dense architecture.
Figure 1 demonstrates that the main reason for lim-
ited parameter sharing is that expert assignment
is fixed incredibly early on in training and rarely
changes. Instead of learning how to better utilize
capacity across high and low-resource languages
over the training process, expert capacity is essen-
tially frozen. We describe two strategies for more

effective utilization of expert capacity, which can
be easily applied to improve both low and high-
resource translation performance.

2.2 Balancing Low-Resource Tasks
Temperature Sampling: To ensure that low-
resource tasks are well represented during model
training, temperature sampling (Arivazhagan et al.,
2019) is used to upsample low-resource tasks. If
the data distribution across different tasks is p, then
temperature sampling re-scales this distribution:

p← p
1/T
n∑

n∈|tasks| p
1/T
n

(1)

As we increase temperature from 1 to ∞, the
sampling distribution changes from the original
data distribution (e.g. highly skewed) to a uniform
distribution (e.g. tasks are equally represented).

Temperature Heating: Instead of keeping the
temperature fixed while sampling data for each
task, we define temperature as a function of current
epoch, t = f(e)

We define a minimum starting temperature ts,
which is gradually increased at each epoch e, with
a square root factor defined over maximum number
of epochs C. The conduction coefficient k influ-
ences the rate at which the temperature is increased
over epochs.

te =
(√

1 + k
C
e
)
ts (2)

In particular, we adopt square root scaling of
temperature with each epoch, instead of linear to
allow for gradual changes to the sampling distribu-
tion. During the initial steps of training, this trains
with lower temperatures, meaning high-resource
tasks are better represented than low-resource tasks.
As a result, the experts are more uniformly assigned
across high-resource tasks. Upon slowly introduc-
ing low-resource tasks by increasing temperature
during the learning process, the gating mechanism
learns to route low-resource tasks through experts
which were initially trained with high-resource
tasks. This promotes positive cross-lingual trans-
fer from high-resource languages to linguistically
similar low-resource languages.

2.3 Dense Pre-training
Architecturally, the sparsity in the output feed-
forward layer of the transformer block can be
viewed as a version of the same transformer on mul-
tiple GPUs with two main differences: the sparse



Model WMT-15 ML-50

Low High All Low Mid High All

Dense 13.3 25.4 19.8 10.7 23.7 24.7 22.5
BASELayers 12.7 25.3 19.4 8.7 22.6 26.5 22.3
+ heat. (ts=0.8) 12.9 26.4 20.1 8.9 22.9 26.5 22.5
+ heat. (ts=1.0) 13.2 26.1 20.1 8.5 22.7 26.5 22.3
+ heat. (ts=1.5) 13.1 26.1 20.0 9.3 22.9 26.5 22.4
+ heat. (ts=2.0) 13.3 25.5 19.8 10.1 23.7 26.0 22.9

Table 1: Average BLEU over Low resource, High resource and
All languages for different starting temperatures with a fixed
conduction coefficient, k=1. The baselines are from our best
performing dense and BASELayers models
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Figure 2: Validation ppl on ML-50 (ts=0.8).
Higher k show faster convergence.

feed-forward layers do not share parameters (have
different initialization and gradients) and an ad-
ditional gating mechanism decides which token
should be routed to which expert. The alternative
dense architecture would fully share parameters, so
all parameters are utilized for each training exam-
ple rather than routing to sparse parameters.

We propose first training a dense model for a
fixed number of updates. Afterwards, we add a ran-
domly initialized gating module and continue train-
ing the (output) feed-forward layers with sparsity,
e.g. we do not average their gradients across com-
pute nodes before back-propagating but update the
weights individually in each node. As the sparse
weights slowly diverge, they become more special-
ized towards specific tasks. Thus, models first learn
a generalized representation when all parameters
are fully shared, and then gradually specialize to
handle different tasks. Training in this fashion not
only improves the learning of specialized experts,
but also increases convergence.

3 Experiments and Results

We experiment with English → Many multi-
tasking on two benchmarks, WMT-151 and ML-
50 (Tang et al., 2020) — the first includes 15 lan-
guages and the second 50 languages. We use a
Transformer (Vaswani et al., 2017) sequence-to-
sequence model with 6 encoder and decoder layers.
We replace the final feed-forward layer of every
alternate transformer block with a BASELayer. For
ML50, we increase model capacity to 12 Trans-
former layers following Tang et al. (2020). We
implement our methods in fairseq (Ott et al.,
2019) and evaluate performance with BLEU.

1http://www.statmt.org/wmt15/translation-task.html

3.1 Effectiveness of Temperature Heating
On WMT-15, training with BASELayers as a base-
line has worse low-resource performance compared
to a similarly sized dense model, losing 0.6 BLEU.
However, as we increase temperature, we recover
the loss in low-resource task performance and also
see improvements in the high-resource languages.
The heating technique improves the overall BASE-
Layers model performance by +0.7 BLEU (at ts
= 0.8) (see Table 1). We observe similar trends
in ML-50, where adding heating improves low-
resource performance by +1.4 BLEU. Furthermore,
temperature heating improves convergence speed.
Given fixed ts, the higher the k, the faster the model
converges. As shown in Figure 2, the model con-
verges to same validation perplexity with k=3 at
50k updates as 100k updates with k=1.
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Figure 3: Expert distribution for low-resource English
to Latvian as temperature is increased for WMT-15.

3.2 Dense Pre-training with Heating
For the WMT-15 benchmark, Table 2 demonstrates
that with dense pre-training, the best performing
model improves by +0.75 BLEU over baseline
BASELayers model but at the cost of 12% more
compute time. To resolve this, we reduce compu-



Model WMT-15 ML-50

High Low All
(BLEU)

All
(ChrF++) Walltime High Mid Low All

(BLEU)
All
(ChrF++) Walltime

Dense 25.2 12.7 19.4 49.1 76K 24.7 23.7 10.7 22.5 49.8 596K
+ heating 25.5 13.2 19.8 50.9 42K 25.9 23.4 10.5 22.7 50.3 173K

BASELayers 25.2 12.9 19.5 50.5 77K 26.6 22.6 8.7 22.2 49.7 221K
+ heating 26.0 13.0 19.9 52.3 42K 26.5 23.0 9.3 22.4 51.2 151K

Dense Pre-Train 26.3 13.3 20.2 54.7 86K 26.8 22.9 9.6 22.6 52.2 122K
+ heating 26.0 13.4 20.1 53.4 31K 26.7 23.1 9.8 22.7 53.0 87K

Table 2: Average BLEU across High and Low resource languages and Walltime (min) on WMT-15 and ML-50,
with increasing number of dense pre-training steps at a starting fixed temperature of 1.5. Wall clock time is the
total training time including dense pre-training and sparse fine-tuning until the model reaches validation perplexity
of 5.99 for WMT-15 and 7.6 for ML-50.

tation time by increasing the temperature, keep-
ing the +0.7 BLEU improvement but reducing the
computation time by ∼60%. Table 2 confirms a
similar trends on ML-50. By combining Dense Pre-
training with heating, we improve over baseline
BASELayers model by +0.5 BLEU and 2.5x in con-
vergence speed. However, heating can also be ap-
plied to the baselines. In those cases, on both bench-
marks, we find that utilizing Dense Pre-training in
combination with heating still has slightly better
performance with significantly faster convergence.

3.3 Effect on Expert Distribution
In standard BASELayer training, the learned ex-
pert distributions rarely change over training (see
Figure 1). This prevents effective expert capacity
utilization resulting in low-resource overfitting. In
contrast, with our proposed techniques, the expert
distribution changes and learns over training. Fig-
ure 3 compares expert distribution between fixed
temperature sampling and temperature heating over
epochs for a low-resource language, demonstrating
that temperature heating leads experts to change
and learn over time. Figure 4 shows that by utiliz-
ing dense pre-training, we observe a high entropy
in the expert distribution and increased expert shar-
ing, indicating positive cross-lingual transfer from
similar high to low-resource languages.

4 Related Work

Data Sampling Low-resource tasks are upsam-
pled to balance their representation when pooled
with high-resource tasks. Temperature sam-
pling (Arivazhagan et al., 2019) upsamples the
data distribution based on fixed temperature, but
can result in overfitting. Dynamic sampler (Got-
tumukkala et al., 2020) selects instances based on
current performance of task on dev set, which is
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Figure 4: Expert distribution as sparse fine-tuning pro-
gresses on a dense pre-trained model.

useful in case of catastrophic forgetting. Learned
data samplers (Wang et al., 2020) choose better are
sample efficient but computationally expensive.

Sparse Scaling Sparsely-gated MoE mod-
els (Shazeer et al., 2017; Du et al., 2021) use a
routing mechanism that decides which expert a
task should be routed to. This is the key element
that governs effective (better representation)
and efficient (balanced assignment) resource
utilization. To promote a balanced assignment,
routing techniques (Shazeer et al., 2017; Lepikhin
et al., 2020; Fedus et al., 2021) add a number
of auxiliary task to encourage the use of diverse
set of experts. BASELayers (Lewis et al., 2021)
circumvents this by treating the routing mechanism
as a linear expert-to-task assignment problem,
without the need of auxiliary loss. Routing net-
works (Rosenbaum et al., 2018) learn better task
representations by clustering and disentangling
parameters conditioned on input.



5 Conclusion

We analyze the problem of balancing shared and
specialized capacity in multitask learning, focusing
on multilingual machine translation. We present
two straightforward tricks to significantly increase
convergence rate of mixture-of-expert models and
improve their performance relative to dense base-
lines on two benchmarks.
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