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Abstract

Graph sparsification aims to reduce the number
of edges of a graph while maintaining its struc-
tural properties. In this paper, we propose the first
general and effective information-theoretic formu-
lation of graph sparsification, by taking inspiration
from the Principle of Relevant Information (PRI).
To this end, we extend the PRI from a standard
scalar random variable setting to structured data
(i.e., graphs). Our Graph-PRI objective is achieved
by operating on the graph Laplacian, made pos-
sible by expressing the graph Laplacian of a sub-
graph in terms of a sparse edge selection vector
w. We provide both theoretical and empirical jus-
tifications on the validity of our Graph-PRI ap-
proach. We also analyze its analytical solutions in
a few special cases. We finally present three rep-
resentative real-world applications, namely graph
sparsification, graph regularized multi-task learn-
ing, and medical imaging-derived brain network
classification, to demonstrate the effectiveness, the
versatility and the enhanced interpretability of
our approach over prevalent sparsification tech-
niques. Code of Graph-PRI is available at https:
//github.com/SJYuCNEL/PRI-Graphs,

1 INTRODUCTION

Many complex structures and phenomena are naturally de-
scribed as graphs and networks (e.g., social networks, brain
functional connectivity [Zhou et al., 2020], climate causal
effect network [Nowack et al., [2020], etc.). However, it is
challenging to exactly visualize and analyze a graph even
with moderate size due to the quadratic growth in the num-
ber of edges. Therefore, techniques to sparsify graphs by
pruning less informative edges have gained increasing at-
tention in the last two decades [Spielman and Srivastava,

2011}, Bravo Hermsdorff and Gunderson, 2019, 'Wu and
Chenl 2020]. Apart from offering a much easier visualiza-
tion, graph sparsification can be used in multiple ways. For
example, it may reduce the storage space and accelerate
the running time of machine learning algorithms involving
graph regularization, with negligible accuracy loss [Sad{
hanala et al.| 2016|]. When differentiable privacy is a major
concern, sparsity can remove or hide edges for the purpose
of information protection [[Arora and Upadhyay) 2019].

On the other hand, there is a recent trend to leverage
information-theoretic concepts and principles to problems
related to graphs or graph neural networks. Let X' denote
the graph input data which may encode both graph struc-
ture information (characterized by either adjacency matrix
A or graph Laplacian L) and node attributes, and Y the
desired response such as node labels or graph labels. A
notable example is the famed Information Bottleneck (IB)
approach [Tishby et al.,|1999]], which formulates the learn-
ing as:

Lip = min I(X;T) — BI(Y;T), (1)

in which I(-;-) denotes the mutual information. 7" is the
object we want to learn or infer from {X', Y} that can be
used as graph node representation [Wu et al., [2020] or as the
most infromative and interpretable subgraph with respect to
the label Y [Yu et al.}|2020]. [ is a Lagrange multiplier that
controls the trade-off between the sufficiency (the perfor-
mance of 7" on down-stream task, as quantified by I(Y; T'))
and the minimality (the complexity of the representation,
as measured by I(X; T)).

Instead of using the IB approach, we explore the feasibil-
ity and power in graph data of another less well-known
information-theoretic principle - the Principle of Relevant
Information (PRI) [Principel 2010, Chapter 8], which ex-
ploits self organization, requiring only a single random vari-
able X. Different from IB that requires an auxiliary relevant
variable Y and possibly the joint distribution of P(X,Y),
the PRI is fully unsupervised and aims to obtain a reduced
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statistical representation 1" by decomposing X’ with:
Lpr = min H(T") + BD(P(X)||P(T)), 2

where H (T') refers to the entropy of 7'. The minimization
of entropy can be viewed as a means of reducing uncertainty
and finding the statistical regularity in 7. D(P(X)||P(T))
is the divergence between the distributions of X’ (i.e., P(X))
and T (i.e., P(T")), which quantifies the descriptive power
of T" about X

So far, PRI has only been used in a standard scalar random
variable setting. Recent applications of PRI include, but are
not limited to, selecting the most relevant examples from the
majority class in imbalanced classification [Hoyos-Osorio
et al.,|2021]], and learning disentengled representations with
variational autoencoder [Li et al., 2020]. Usually, one uses
the 2-order Rényi’s entropy [Rényi, |1961] to quantify H (T")
and the Cauchy-Schwarz (CS) divergence [Jenssen et al.,
2006] to quantify D(P(X)||P(T")) for ease of optimization.

In this paper, we extend PRI to graph data. This is not a triv-
ial task, as the Rényi’s quadratic entropy and CS divergence
are defined over probability space and do not capture any
structure information. We also exemplify our Graph-PRI
with an application in graph sparsification. To summarize,
our contributions are fourfold:

» Taking the graph Laplacian as the input variable, we
propose a new information-theoretic formulation for
graph sparsification, by taking inspiration from PRI.

We provide theoretical and empirical justifications to
the objective of Graph-PRI for sparsification. We also
analyze the analytical solutions in some special cases
of hyperparameter f3.

* We demonstrate that the graph Laplacian of the result-
ing subgraph can be elegantly expressed in terms of
a sparse edge selection vector w, which significantly
simplify the learning argument of Graph-PRI. We also
show that the objective of Graph-PRI is differentiable,
which further simplifies the optimization.

Experimental results on graph sparsification, graph-
regularized multi-task learning, and brain network clas-
sification demonstrate the versatility and compelling
performance of Graph-PRI.

2 PRELIMINARY KNOWLEDGE

2.1 PROBLEM DEFINITION AND NOTATIONS

Consider an undirected graph G = (V, E) with a set
of nodes V. = {vy,---,un} and a set of edges £ =
{e1,- -, en} which reveals the connections between nodes.
The objective of graph sparsification is to preferentially re-
tain a small subset of edges from G to obtain a sparsified sur-
rogate graph G = (V, E) with the edge set E; C F such

that | Es| < M [Spielman and Srivastava, 201 1, Hamann
et al., 2016].

Alternatively to graph sparsification, it is also possible to
reduce the nodes of the graph, which is called graph coarsen-
ing. Recent examples on graph coarsening include [Loukas|
2019, (Cai et al., [2021]]. Recently, [Bravo Hermsdorff and
Gunderson, |2019] provides a unified framework for graph
sparsification and graph coarsening. In this work, we only
focus on graph sparsification.

The topology of G is essentially determined by its graph
Laplacian L = D — A, where A is the adjacency ma-
trix and D = diag (d) is the diagonal matrix formed by
the degrees of the vertices d; = Zjvzl A;;. Consider an
arbitrary orientation of edges of G, the incidence matrix

B =[by, - ,bp]of Gisa N x M matrix whose entries
is given by:

+1 if node v; is the head of edge e,
[b'm]i - —1
0 otherwise

if node v; is the tail of edge e,,, . (3)

Mathematically, L can be expressed in terms of B as:

M
L=BB"=Y b,b} “

m*

m=1

Suppose the subgraph G4 contains K edges, one can ob-
tain G4 from G through an edge selection vector w =
[wy, - ,wy]T € {0,1}M. Here, ||wl|jo = K, w,, = 1if
the m-th edge belongs to the edge subset F;, and w,,, = 0
otherwise. Finally, one can write the graph Laplacian L
of the subgraph G as a function of w by the following
formula:

M
Ly(w) =Y wmbpbl, = Bdiag(w)B",  (5)

m=1
in which diag (w) € RM*M js a square diagonal matrix
with w on the main diagonal.

Note that, Eq. (5) also applies to weighted graph G =
(V, W) by a proper reformulation of the incidence matrix B
as:

+/tm if node v; is the head of edge e,,
—VHm

0 otherwise

b]: = if node v; is the tail of edge e,

(6)

in which ., is the weight of edge e,,.

In what follows, we will design a learning-based approach
to optimally obtain the edge selection vector w by making
use of the general idea of PRI.



2.2 GRAPH SPARSIFICATION

Substantial efforts have been made on graph sparsifica-
tion. In general, existing methods are mostly based on sam-
pling [Fung et al.|[2019]], [Wickman et al.|[2021]], in which
the importance of edges can be evaluated by effective resis-
tance [Spielman and Srivastaval 2011} Spielman and Teng],
2011]], degree of neighboring nodes [Hamann et al.| 2016]
or local similarity [[Satuluri et al.| 2011]]. Among them, the
most notable example is the spectrum-preserving approach
that generates a y-spectral approximation to G such that:

1
L
5

8

Treg <~z'L,z forall Z.  (7)

Remarkably, Spielman et al. also proved that every graph G
has an (1 + €)-spectral approximation G with nearly O (%)
edges.

Learning-based approach (especially which uses neural net-
works) for graph sparsification, in which there is an explicit
learning objective and can be directed optimized, is still
less-investigated. GSGAN [Wu and Chen, 2020] is designed
mainly for community detection, whereas SparRL [Wick{
man et al., [2021]] uses deep reinforcement learning to se-
quentially prune edges by preserving the subgraph mod-
ularity. Different from GSGAN and SparRL, we demon-
strate below that a sparsified graph can be learned simply
by a gradient-based method in a principled (information-
theoretic) manner, avoiding the necessity of reinforcement
learning or the tuning of a generative adversarial network
(GAN) [Goodfellow et al.| 2014].

3 PRI FOR GRAPH SPARSIFICATION

3.1 THE LEARNING OBJECTIVE

Suppose we are given a graph G with a known but fixed
topology that is characterized by its graph Laplacian p, from
which we want to obtain a surrogate subgraph G5 with graph
Laplacian o, by preferentially removing less informative (or
redundant) edges in G. Motivated by the objective of PRI
in Eq. (), we can cast this problem as a trade-off between
the entropy S(o) of G and its descriptive power about G
in terms of their divergence (or dissimilarity) D(c||p):

JGraph—PRl = arg moi_n S(J) + ﬁD(O—| |p)v (8)

In this paper, we choose von Neumann entropy on the trace
normalized graph Laplacian (i.e., & = o/ tr(o) to quantify
the entropy of G5, which is defined on the cone of symmetric
positive semi-definite (SPS) matrix with trace 1 as [Nielsen!
and Chuangl, 2002]:

S (6) = —tr(Glogs) = = > (AilogAi), (9

%

in which log(+) is the matrix logarithm, tr(-) denotes the
trace, {\; } are the eigenvalues of &.

We then use the quantum Jenssen-Shannon (QJS) divergence
between two trace normalized graph Laplacians ¢ and p to
quantify the divergence between G and G [Lamberti et al.,
2008]:

o 0 1
”p) - Sw(p). (10)

<~ 1
Daas(el1p) = 5 ( 737 ) - 35(@) - 5

In this paper, we absorb a scaling constant 2 into the ex-
pression for Dqys(&||5), the resulting objective combining

Egs. (§)-(I0) is given by:

JGraph-PRI = arg min Syn

= arg min Syny

+ {25\,1\1 (

(@) + BDqs(a][p) (11
(@)

T2 s(o) - S

= argmin(l — 8)Sy(5) + 265N (5’ ; ﬁ) .

We remove an extra term —3Syn(p) in the last line of
Eq. (TT), because it is a constant value with respect to &.

3.2 JUSTIFICATION OF THE OBJECTIVE OF
GRAPH-PRI

One may ask why we choose the von Neumann entropy
in Jgraph-pr1- In fact, the Laplacian spectrum contains rich
information about the multi-scale structure of graphs [Mo4{
har}, |1997]]. For example, it is well-known that the second
smallest eigenvalue A2 (L), which is also called the alge-
braic connectivity, is always considered to be a measure of
how well-connected a graph is [Ghosh and Boyd\ 2006].

On the other hand, it is natural to use the QJS divergence
to quantify the dissimilarity between the original graph and
its sparsified version. The QJS divergence is symmetric and
its square root has also recently been found to satisfy the
triangle inequality [Virosztek, 2021]]. In fact, as a graph dis-
similarity measure, QJS has also found applications in mul-
tilayer networks compression [De Domenico et al.,[2015]]
and anomaly detection in graph streams [Chen et al.| 2019].

A few recent studies indicate the close connections be-
tween Syn(L) with the structure regularity and sparsity
of a graph [Passerini and Severinil, 2008, Han et al., [2012]
Liu et al.| 2021} Simmons et al.| 2018]|]. We shall now high-
light three theorems therein and explain our justifications in
Sections 3.2.1 and 3.2.2 in detail.

Theorem 1 ([Passerini and Severinil, 2008|)). Given an undi-
rected graph G = {V, E}, let G' = G + {u, v}, where
V(G) =V (@) and E(G) = E(G') U {u, v}, we have:

dar —2

S(Ler) > 26— 2
~n(Lar) > =

Sw(Le), 12)



where dgr = 37, vy d(v) is the degree-sum of G, Lg
and L¢: refer to respectively the graph Laplacians of G and
G

Theorem |1| shows that Syx(L) tends to grow with edge
addition. Although Eq. (I2)) does not indicate a monotonic
increasing trend for Syn (L), it does suggest that minimizing
SyN(L) may lead to a sparser graph, especially when the
degree-sum is large.

Theorem 2 ([Liu et al., 2021]). For any undirected graph
G = {V, E}, we have:

log, e tr(W?)

0<AH(G) = H(G) - Swlle) < —

(13)
where H(G) = — Zil (j—é) log, (j—é) in which 6 =
mind;|d; > 0 is the minimum positive node degree, d¢ is
the degree-sum, W is the weighted adjacency matrix of G.

Theorem 3 ([Liu et al.,[2021]]). For almost all unweighted
graphs G of order n, we have:

H(G)
>, 14
SVN(LG) o ( )

and decays to 0 at a rate of O(1/logy(n)).

Theorem 2l and Theorem 3 bound the difference between
Sy~(L) and H(G), the Shannon discrete entropy on node
degree. They also indicate that H(G) is a natural choice of
the fast approximation to Syx(L). In fact, there are different
fast approximation approaches so far [Chen et al., [2019|
Minello et al., 2019, [Kontopoulou et al., 2020]]. According
to [Liu et al., [2021]], H(G) enjoys simultaneously good
scalability, interpretability and provable accuracy.

3.2.1 [ controls the sparsity of G

Different from the spectral sparsifiers [Spielman and Srivas;
taval, 2011} |Spielman and Teng} 2011]| in which the sparsity
of the subgraph is hard to control (i.e., there is no monotonic
relationship between the hyperparameter e and the degree
of sparisity as measured by | Fs|), we argue that the sparsity
of subgraph obtained by Graph-PRI is mainly determined
by the value of hyperparameter 3.

Our argument is mainly based on Theorem T} Here, we addi-
tionally claim that, under a mild condition (Assumption E]),
the QJS divergence Dqys(L||Ls) is prone to decrease with
edge addition (Corollary 1).

Assumption 1. Given an undirected graph G = {V, E},
let G' = G+ {u,v}, where V(G) = V(G') and E(G) =
E(G") U{u,v}, we have Syn(Lgr) > Syn(Lg), i.e., there
exists a strictly monotonically increasing relationship be-
tween the number of edges |G| and the von Neumann en-
tropy Suw(La).

Corollary 1. Under Assumption[l] suppose G = {V, Es}
is a sparse graph obtained from G = {V, E} (by remov-
ing edges), let G, = Gy + {u,v}, where {u,v} is an
edge from the original graph G, V(Gs) = V(G.) and
E(G,) = E(GY) U {u,v}, we have Dg;s(Lg:||La) <
Dyss(Le,||La), i.e., adding an edge is prone to decrease
the QJS divergence.

We provide additional information on the rigor of Assump-
tion[T]in Appendix A.1. Combining Theorem[I]and Corol-
lary [T} it is interesting to find that the edge addition has
opposite effects on Syx and Dgys: the former is likely to
increase whereas the latter will decrease. Therefore, when
minimizing the weighted sum of S,N and Dgys together as
in Graph-PRI, one can expect the number of edges in G
is mainly determined by the hyperprameter 3: a smaller 3
gives more weight to Syy and thus encourages a more sparse
graph.

To empirically justify our argument, we generate a set of
graphs with 200 nodes by either the Erdos-Rényi (ER)
model or the Barabasi-Albert (BA) model [Barabasi and
Albert, |1999]. For both models, we generate the original
dense graph G where the average of the node degree d is
approximately 10, 20 and 30, respectively. We then spar-
sify G to obtain G5 by a random sparsifier, which satisfies
the spectral property (i.e., Eq. (7)), whose computational
complexity is, however, low [Sadhanala et al., 2016].

We finally evaluate the von Neumann entropy of G5 and
the QJS divergence between G and G with respect to dif-
ferent percentages (pct.) of preserved edges. We repeat the
procedure 100 independent times and the averaged results
are plotted in Fig. 1} from which we can clearly observe
the opposite effects mentioned above. We also sparisify the
original graph G by our Graph-PRI with different values of
B. The number of preserved edges in G5 with respect to [ is
illustrated in Fig. [2] from which we can observe an obvious
monotonic increasing relationship.
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(a) ER model (b) BA model

Figure 1: The variations of entropy and divergence with respect to
different percentages of preserved edges.

3.2.2 Graph-PRI in special cases of 5

Continuing our discussion in Sec.[3.2.1] it would be inter-
esting to infer what may happen in some special cases of f3.



3000

2500

2000

f Edges

§ 1500

mbe

1000

N

500

(a) ER model (b) BA model

Figure 2: The monotonic increasing relationship between number
of preserved edges and hyperparameter /3 in our Graph-PRI.

Here, we restrict our discussion with 8 = 0 and § — oo.

When § = 0, due to Theorems [2] and [3| our objec-
tive can be interpreted as min H(G). H(G) takes the
mathematical form of the Shannon discrete entropy (i.e.,
- Zf\il P(x;)log P(x;), in which P(x;) is the probability
of the i-th state) on the degree of node. In this sense, H (G)
reaches to maximum for uniformly distributed degree of
node (i.e., d; = --- = dy = k, which is also called the
k-regular graph) and reduces to minimum if the degree
of one node dominates (i.e., a star graph that possesses a
high level of centralization). In fact, it was also conjectured
in [Dairyko et al.,|2017] that among connected graphs with
fixed order n, the star graph S;, minimizes the von Neumann
entropy. Thus, Syn(L) can also be interpreted as a measure
of degree heterogeneity or graph centrality [[Stmmons et al.,
2018|. It also indicates that minimizing Syn(L) pushes the
Graph-PRI to learn a graph that has more graph centrality.

When 3 — oo, we are expect to recover original graph G
by Corollary I} Fig. 3| corroborates our analysis.

Interestingly, similar properties also hold for the original
PRI in scalar random variable setting (see Appendix B).

3.3 OPTIMIZATION

We define a gradient descendent algorithm to solve Eq. ().
As has been discussed in Section we have p = BBT
and o, = Bdiag (w)B7”, in which w is the edge selection
vector. For simplicity, we assume that the selections of edges
from the original graph G are conditionally independent to
each other [Luo et al., 2020], that is Py, = Hf\il Py,. Due
to the discrete nature of G, we relax w = [w1, wa, ..., way]
from a binary vector {0, 1}* to a continuous real-valued
vector in [0, 1]*. In this sense, the value of w; can be inter-
preted as the probability of selecting the ¢-th edge.

In practice, we use the Gumbel-softmax [Maddison et al.}
2017, Jang et al., |2016]] to update w;. Particularly, suppose
we want to approximate a categorical random variable repre-
sented as a one-hot vector in R with category probability
p1,D2, - ,pK (here, K = 2), the Gumbel-softmax gives a

K -dimensional sampled vector with the i-th entry as:

b= exp ((logp; +gi)/7) , (15)

SR exp ((logp; + g7)/7)

where 7 is a temperature for the Concrete distribution and
g; is generated from a Gumbel(0, 1) distribution:

gi = —log(—logu;), w; ~ Uniform(0,1). (16)
Note that, although we use the Gumbel-Softmax to ease the
optimization, Graph-PRI itself has analytical gradient (The-
orem[d). The detailed algorithm of Graph-PRI is elaborated
in Appendix E. We also provide a PyTorch example therein.

Theorem 4. The gradient of Eq. (I1) with respect to edge
selection vector w is:

ijGraph-PRI = Ugv (17
where W is the normalised w (W = w/ Zf\il w;),
1, = ﬁlM is the normalized version of the all-ones
vector. 0y, = % (6w+p) = %B diag (\7\7 + iM)BT.
g = —diag (BT [(1 - B)Inéw + BInow] B) and U =
{u;j} € RMXM 4y, = —%,Viﬂi # jyui = 1.

3.4 APPROXIMATION AND CONNECTIVITY
CONSTRAINT

The computation of von Neumann entropy requires the
eigenvalue decomposition of a trace normalized SPS matrix,
which usually takes O(NN?3) time. In practical applications
in which the computational time is a major concern (i.e.,
when training deep neural networks or when dealing with
large graphs with hundreds of thousands of nodes), based on
Theorems 2] and 3] we simply approximate Sy (L¢) with
the Shannon discrete entropy on the normalized degree of
nodes H (G), which immediately reduces the computational
complexity to O(N). Unless otherwise specified, the exper-
iments in the next section still use the basic Syn(L¢).

On the other hand, when the connectivity of the subgraph is
preferred, one can simply add another regularization on the
degree of the nodes [Kalofolias, |2016]:

min S(Gw) + BD(Gw||p) — 1" log (diag (o)), (18)

where the hyper-parameter o > 0. This Logarithm barrier
forces the degree to be positive and improves the connec-
tivety of graph without compromising sparsity. Unless oth-
erwise specified, we select & = 0.005 throughout this work.

4 EXPERIMENTAL EVALUATION

In this section, we demonstrate the effectiveness and versa-
tility of our Graph-PRI in multiple graph-related machine
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Figure 3: Ilustration of the sparsified graph structures revealed by our Graph-PRI for (a) Zachary’s karate club|Zachary|[[1977]. As the
values of [ increases, the solution passes through (b) an approximately star graph to the extreme case of (d) 8 — oo, in which we get

back the original graph as the solution.

learning tasks. Our experimental study is guided by the
following three questions:

Q1 What kind of structural property or information does
our method preserves?

Q2 How well does our method compare against popular
and competitive graph sparsification baselines?

Q3 How to use the Graph-PRI in practical machine learn-
ing problems; and what are the performance gains?

The selected competing methods include 1 baseline and 3
state-of-the-art (SOTA) ones: 1) the Random Sampling (RS)
that randomly prunes a percentage of edges; 2) the Local
Degree (LD) [Hamann et al.l [2016] that only preserves
the top |degree(v)®| (0 < a < 1) neighbors (sorted by
degree in descending order) for each node v; 3) the Local
Similarity (LS) [Satuluri et al.| 2011]]) that applies Jaccard
similarity function on nodes v and u’s neighborhoods to
quantify the score of edge (u,v); 4) the Effective Resistance
(ER) [Spielman and Srivastava, 2011]]. We implement RS,
LD, LS by NetworKif'} and ER by PyGSH]

4.1 GRAPH SPARSIFICATION

We use 2 synthetic data and 4 real-world network data from
KONECT network dataset for evaluation. They are, G1: a
k-NN (k = 10) graph with 20 nodes that constitute a global
circle structure; G2: a stochastic block model (SBM) with
four distinct communities (30 nodes in each community, and
intra- and inter-community connection probabilities of 22
and 277, respectively); G3: the most widely used Zachary
karate club network (34 nodes and 78 edges); G4: a network
contains contacts between suspected terrorists involved in
the train bombing of Madrid on March 11, 2004 (64 nodes
and 243 edges); G5: a network of books about US politics
published around the time of the 2004 presidential election

Uhttps://networkit.github.io/
“https://github.com/epfl-1ts2/pygsp
*http://konect.cc/networks/

and sold by the online bookseller Amazon.com (105 nodes
and 441 edges); and G6: a collaboration network of Jazz
musicians (198 nodes and 2, 742 edges).

We expect Graph-PRI to preserve two essential properties
associated with the original graph: 1) the spectral similar-
ity (due to the divergence term); and 2) the graph central-
ity (due to the entropy term). We empirically justify our
claims with two metrics. They are, the geodesic distance
dz(p, o) [Bravo Hermsdorff and Gunderson, [2019]:

=1121] 5212
Lo DRI

dz(p,0) = arccosh ( 2T o) oT)

in which we select Z to be the smallest non-trivial eigen-
vector of the original Laplacian p, as it encodes the global
structure of a graph; and the graph centralization measure
by Cp [Freemanl [1978]]):

> J.\il max(d;) — d;
= = 2
o N2 3N +2 0

in which max(d;) refers to the maximum node degree.

We demonstrate in Fig. 4] and Fig. [5|respectively the values
of dz(p, o) and Cp with respect to different edge preserv-
ing ratio (i.e., | Es|/| E|) for different sparsification methods.
As can be seen, our Graph-PRI always achieves the 2"
best performance across different graphs. Although LD has
advantages on preserving spectral distance and graph cen-
trality, it does not have compelling performance in practical
applications as will be demonstrated in the next subsection.

4.2 GRAPH-REGULARIZED MULTI-TASK
LEARNING

In traditional multi-task learning (MTL), we are given a
group of T related tasks. In each task we have access to
a training set D; with N, data instances {(x},y!) : i =

,N¢,t =1,--- [ T}. In this section, we focus on the
regression setup in which xi € X; C R? and y! € R.
Multi-task learning aims to learn from each training set D;
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a prediction model f;(wy, ) : Ay — R with parameter w,
such that the task relatedness is taken into consideration and
the overall generalization error is small.

In what follows, we assume a linear model in each task,
i.e., fi(w,x) = wlx. The multi-task regression problem
with a regularization {2 on the model parameters W =
[w1,Wg, -+, wp] can thus be defined as:

T
. T 2
m wlx, — Q(W).
MI,DE [wi x¢ — yellz + W)

t=1

2y

Graph is a natural way to establish the relationship over mul-
tiple tasks: each node refers to a single task; if two tasks are
strongly correlated to each other, there is an edge to connect
them. In this sense, the objective for multi-task regression
learning regularized with a graph adjacency matrix A can
be formulated as [He et al.,|[2019]]:

T
SN Aylwi—w;l3 22

T
min Y~ [wi x;—yl[3+7
w ‘
t=1 i=1 jEN;

where N; is the set of neighbors of i-th task.

Usually, a dense graph G is estimated at first to fully char-
acterize task relatedness [Chen et al.| 2010, He et al., 2019]].
Here, we are interesting in: 1) sparsifying G to reduce redun-
dant or less-important connections (edges) between tasks;
and 2) validating if the sparsified graph can further reduce
the generalization error.

To this end, we exemplify our motivation with the recently
proposed Convex Clustering Multi-Task regression Learn-
ing (CCMTL) [He et al| 2019] that optimizes Eq. (22) with
the Combinatorial Multigrid (CMG) solver [Koutis et al.|
2011]], and test its performance on two benchmark MTL
datasetﬂ 1) a synthetic dataset |Goncalves et al.[ [2016]

“See Appendix C on details of datasets in sections and

with 20 tasks in which tasks 1-10 are mutually related and
tasks 11-20 are mutually related; 2) a real-world Parkinson’s
disease datasef’] which contains biomedical voice measure-
ments from 42 patients. We view each patient as a single task
and aim to predict the motor Unified Parkinson’s Disease
Rating Scale (UPDRS) score based 19-dimensional features
such as age, gender, and jitter and shimmer voice measure-
ments. In both datasets, the initial dense task-relatedness
graph G is estimated in the following way: we perform lin-
ear regression on each task individually; the task-relatedness
between two tasks is modeled as the ¢5 distance of their in-
dependently learned linear regression coefficients; we then
construct a k-nearest neighbor (k = 10) graph based on all
pairwise task distances as G.
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Figure 6: The RMSE with respect to the degree of sparsity (de-
fined as 1 — |E|/|E|) of the resulting subgraph for all competing
methods. Black dashed line indicates performance without any
edge pruning. Our method is able to drop out redundant or less-
important edges to further reduce generalization error.

We evaluate the test performance with the root mean squared
error (RMSE) and demonstrate the values of RMSE with
respect to different edge pruning ratio (i.e., 1 — |Es|/|E|)
of different methods in Fig.[6] In synthetic data, only Graph-

Shttps://archive.ics.uci.edu/ml/datasets/parkinsons+
telemonitoring
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PRI and LS are able to further reduce test error. For Graph-
PRI, this phenomenon occurs at the beginning of pruning
edges, which indicates that our method begins to remove
less-informative or spurious connections in an early stage.
In Parkinson’s data, most of methods obtain almost similar
performances to “no edge pruning" (with Graph-PRI per-
forms slightly better as shown in the zoomed plot), which
suggests the existence of redundant task relationships. One
should note that, the performance of Graph-PRI becomes
worse if we remove large amount of edges. One possible
reason is that when |E| is small, our subgraph tends to
have a high graph centrality or star shape, such that one
task dominates. Note however that, in MTL, keeping a very
sparse relationship is usually not the goal. Because it may
lead to weak collaboration between tasks, which violates
the motivation of MTL.

4.3 fMRI-DERIVED BRAIN NETWORK
CLASSIFICATION AND INTERPRETABILITY

Brain networks are complex graphs with anatomic brain
regions of interest (ROIs) represented as nodes and func-
tional connectivity (FC) between brain ROIs as links. For
resting-state functional magnetic resonance imaging (rs-
fMRI), the Pearson’s correlation coefficient between blood-
oxygen-level-dependent (BOLD) signals associated with
each pair of ROISs is the most popular way to construct FC
network [Farahani et al.,[2019]).

In the problem of brain network classification, the identifi-
cation of predictive subnetworks or edges is perhaps one of
the most important tasks, as it offers a mechanistic under-
standing of neuroscience phenomena [Wang et al., | 2021].
Traditionally, this is achieved by treating all the connections
(i.e., the Pearson’s correlation coefficients) of FC as a long
feature vector, and applying feature selection techniques,
such as LASSO [Tibshirani, |1996] and two-sample t-test, to
determine if one edge connection is significantly different
in different groups (e.g., patients with Alzheimer’s disease
with respect to normal control members).

In this section, we develop a new graph neural networks
(GNNs) framework for interpretable brain network classifi-
cation that can infer brain network categories and identify
the most informative edge connections, in a joint end-to-
end learning framework. We follow the motivation of [Cui
et al.l |2021] and aim to learn a global shared edge mask
M to highlight decision-specific prominent brain network
connections. The final explanation for an input graph G;
is generated by the element-wise product of A; and o (M),
ie., A; © o(M), in which A; is the adjacency matrix of
G, o refers to the sigmoid activation function that maps
M to [0,1]¥*N_ Obviously, o(M) in our GNN also plays
a similar role to the edge selection vector w in Graph-PRI.

Problem definition. Given a weighted brain network G =

(V,E,W), where V = {v;}}¥ | is the node set of size N
defined by the ROIs, E is the edge set, and W € RN
is the weighted adjacency matrix describing FC strengths
between ROIs, the model outputs a prediction label y. In
brain network analysis, N remains the same across subjects.

Experimental data. We evaluate our method on two bench-
mark real-world brain network datasets. The first one is
the eyes open and eyes closed (EOEC) dataset [Zhou et al.,
2020]], which includes 96 brain networks with the goal to
predict either eyes open or eyes closed states. The second
one is from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) databaseﬂ We use the brain networks generated
by [Kuang et al.| [2019]], with the task of distinguishing mild
cognitive impairment (MCIﬂ group (38 patients) from nor-
mal control (NC) subjects (37 in total). Details on brain
network construction are elaborated in Appendix C.

Methodology and objective. Following [Cui et al[2021]],
we provide interpretability by learning an edge mask M €
RNXN that is shared across all subjects to highlight the
disease-specific prominent ROI connections. Motivated by
the functionality of PRI to prune redundant or less informa-
tive edges as demonstrated in previous sections, we train
M such that the resulting subgraph G’ = G ® (M) and
the original graph G meets the PRI constraint, i.e., Eq. (8).
Therefore, the final objective of our interpretable GNN can
be formulated as:

Lce + AEqpe) {SW(G') + BDqis(G']|G)},  (23)

in which Lcg refers to the supervised cross-entropy loss for
label prediction, A is the hyperparameter that balances the
trade-off between Lcg and PRI constraint.

Empirical results. We summarize the classification accu-
racy (%) with different methods over 10 independent runs
in Table [T} in which Graph-PRI* refers to our objective
implemented by approximating von Neumann entropy with
Shannon discrete entropy functional on the normalized de-
gree of nodes (see Section @ As can be seen, our method
achieves compelling or higher accuracy in both datasets.

To evaluate the interpretability of our method, we visualize
the edges been frequently selected for MCI patients and NC
group in Fig. [/| We observed that the interactions within
sensorimotor cortex (colored blue) for MCI patients are
stronger than that of NC group. This result is consistent
with the findings in [Ferreri et al., 2016, Niskanen et al.|
2011] which observed that the motor cortex excitability is
enhanced in AD and MCI from the early stages. We also
observed that the interactions within the frontoparietal net-
work (colored ) of patients are significantly less than
that of NC group, which is in line with previous studies [Ne4
ufang et al.,[2011} Zanchi et al.| [2017]] stated that decreased
activation in FPN is associated with subtle cognitive deficits.

®http://adni.loni.usc.edu/
"MCIl is a transitional stage between AD and NC.
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Figure 7: The contributing functional connectivity links for (a)
MCI patients; and (b) normal control group. We visualize edges
with a probability of more than 50% been selected by our generated
edges. The colors of neural systems are described as: sensorimotor
network (SMN), occipital network (ON), fronto-parietal network
( ), default mode network (DMN), cingulo-opercular network
(CON), and cerebellum network (CN), respectively.

Table 1: Classification accuracy (%) and standard deviation with
different methods over 10 independent runs. The best and second-
best performances are in bold and underlined, respectively.

Method EOEC ADNI
SVM + t-test 71.79 £7.80 60.61 £ 10.52
SVM + LASSO 72.08 £7.29 54.67 £12.88
GCN [Kipf and Welling, [2017] 68.42 +8.59 66.67 + 2.48
GAT [Velickovi¢ et al.L 2018] 73.68 £ 8.60 66.67 = 9.43
Graph-PRI 80.70 £ 9.60 66.67 £6.67
Graph-PRI* 78.95+4.30 64.44+3.14

S CONCLUSIONS

We present a first study on extending the Principle of Rele-
vant Information (PRI) - a less well-known but promising
unsupervised information-theoretic principle - to network
analysis and graph neural networks (GNNs). Our Graph-PRI
preserves spectral similarity well, while also encouraging
the resulting subgraph to have higher graph centrality. More-
over, our Graph-PR1 is easy to optimize. It can be flexibly in-
tegrated with either multi-task learning or GNNs to improve
not only the quantitative accuracy but also interpretability.

In the future, we will explore more unknown properties be-
hind Graph-PRI, including a full understanding to the phys-
ical meaning of von Neumann entropy on graphs. We will
also investigate more downstream applications of Graph-
PRI on GNNs such as node representation learning.
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