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ABSTRACT

Although Large Language Models (LLMs) like GPT-4 perform excellently in ma-
chine translation, their high costs and scalability make them unavailable in many
scenarios. Recently, there has been increased effort to build smaller LLMs that
can achieve comparable performance. However, while typical instruction tuning
methods tend to directly mimic reference translations, leading to less meaningful
results, recent preference optimization methods have shown improvements. De-
spite this, they still fail to effectively utilize crucial preference information during
inference. In this paper, we introduce Preference-Enhanced Instruction Tuning
(PEIT), a novel method that explicitly incorporates preferences into both the in-
struction fine-tuning and the inference phase. Our extensive experiments show
that PEIT not only improves translation quality but also significantly outperforms
state-of-the-art preference optimization methods and instruction tuning baselines
on multiple language benchmarks.

1 INTRODUCTION

Large language models (LLMs), such as GPT-4 (Achiam et al., 2023), have been showing predom-
inant performance in machine translation (MT) (Hendy et al., 2023; Zhu et al., 2023; Jiao et al.,
2023b). However, attaining such level of performance often requires the expense of substantial
model size, significant infrastructure demands, and high deployment costs. To address these chal-
lenges, recent research has shifted toward fine-tuning smaller LLMs to enhance translation capa-
bilities while mitigating the associated resource overhead. (Zeng et al., 2023; Jiao et al., 2023a;
Kudugunta et al., 2024; Zan et al., 2024; Li et al., 2024; Guo et al., 2024; He et al., 2024; Wu et al.,
2024a; Xu et al., 2024b). For example, ALMA (Xu et al., 2023) enhances the multilingual capabil-
ities of LLaMA-2 (Touvron et al., 2023b) by fine-tuning with non-English data and refining it with
high-quality translation instruction data. Similarly, Aya (Aryabumi et al., 2024) fine-tunes smaller
LLMs using a larger amount of translation instruction examples from the Aya Dataset (Singh et al.,
2024), allowing it to achieve stronger translation performance.

Simple instruction tuning using translation pairs has its limitations, primarily due to the quality is-
sues inherent in the reference data — even when it is human-generated (Xu et al., 2024b; He et al.,
2024; Wu et al., 2024b). These imperfections can impede the LLM’s ability to produce high-quality
translations, as it may merely learn to replicate the references during instruction tuning. To address
this limitation, recent works have moved beyond direct instruction tuning, focusing instead on pref-
erence optimization (Zhu et al., 2024; He et al., 2024; Xu et al., 2024c; Wang & Xiao, 2024; Xu
et al., 2024b). For example, Contrastive Preference Optimization (CPO) (Xu et al., 2024b) is one
of the leading approaches, which enables the LLM to learn from preferences between synthesized
preference-rich translation pairs, allowing it to exceed the quality of the original reference data by
optimizing based on comparative judgments rather than simple replication. In human translation,
context is often leveraged to enhance translation accuracy(House, 2006). Intuitively, machine trans-
lation should benefit from contextual information in a similar way. However, even with preference
optimization methods, this information is not effectively utilized due to the issue of prompt shift (Li
et al., 2023), which occurs when the preference intentions (e.g., contextual information or trans-
lation examples) embedded in the inference prompt misalign with the model’s training data. This
misalignment makes it difficult for the model to capture and incorporate these intentions, leading to
translation bias and outputs that deviate from the expected behavior.
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Figure 1: We compare Preference-Enhanced Instruction Tuning (PEIT) with other methods using
blue and red . The ones in the upper left corner with yellow and gray backgrounds are the

legend and legend examples. PEIT enables the translation model to learn how to catch preference
intentions from the preference scenarios provided by the context during the training process. In
the inference phase, it can easily identify the context to which the source belongs and generate
translations that align with the preferences of the current scenario.

As shown in Figure 1, to overcome above issues, we propose using different strategies during the
training and inference phase to catch intentions effectively. In the training phase, we initially re-
trieve preference-rich translation pairs from the corpus that are contextually similar to the source
text. These preference-rich translation pairs are then integrated with the source text to construct
the model’s training data, and then we propose the Preference-Enhanced Instruction Tuning (PEIT)
technique to enable the model to naturally develop the ability to understand preferences in con-
text. During the inference phase, we explicitly provide the retrieved preference-rich translation pairs
along with the current source text as input, allowing the model to generate translations with the
correct preference intention.

Our main contributions are summarized as follows:

• We introduce Preference-Enhanced Instruction Tuning(PEIT), which helps the model learn
preference from retrieved preference-rich translation pairs, boosting the performance of
preference alignment of the translation model.

• We have theoretically validated that PEIT can guide the model toward the preference sce-
narios associated with the current source text from the perspective of parameter editing,
enabling a single model to better adapt to translation tasks with different preference inten-
tions.

• We conducted extensive comparative experiments to demonstrate that in preference data,
reject items, like the chosen items, also significantly affect translation model performance.

2 PREFERENCE-ENHANCED INSTRUCTION TUNING

In this section, we first introduce the challenges of using a single model to handle complex transla-
tion scenarios. Next, we discuss how, from a parameter update perspective, a customized prefix in
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the model input can potentially mitigate these challenges. Finally, we present the modeling objective
of PEIT, which focuses on learning preferences from the context to address these limitations.

2.1 THE PARADOX OF FITTING

Translation demands arise in diverse scenarios (e.g., written and spoken language) in different lan-
guages. Consequently, the data in translation tasks naturally exhibit inconsistent distributions, lead-
ing to varying preferences of dynamic scenarios. However, current post-training methods for adapt-
ing smaller LLMs to translation tasks involve only a single parameter edit (from θ to θ + ∆θ).
According to NFL theory (Wolpert & Macready, 1997), such models cannot perform optimally
across all preference distributions. We prove (Appendix A.2 for more details) that there exists a
set of model parameters {θ + ∆θi} such that the average loss measured across all distributions is
strictly greater than the average loss measured when fitting each distribution with these independent
models, differing by at least an insurmountable constant ϵ :

1

k

k∑
i=1

L(fθ+∆θ, Di) >
1

k

k∑
i=1

L(fθ+∆θi , Di) + ϵ (1)

where, Di represents a preference distribution in a specific direction within the overall dataset D,
and L measures the error of the model f on D. In this light, although we aim to minimize loss across
all datasets during the training process, it inevitably results in an unbridgeable lower bound on loss
across all datasets.

Whereas, we can address this issue by introducing a mapping g : R|θ| → R|θ| in the parameter
dimension, which offers a targeted parameter transformation when this single model computes on
Di such that g(θ +∆θ,Di) = δθ (where δθ represents a value in R|θ|). This transformation allows
the single model to achieve the same loss lower bound as a multi-model setup:

min
θ

1

k

k∑
i=1

L(fθ+∆θ+g(θ+∆θ,Di), Di) ⇐⇒ min
θ

1

k

k∑
i=1

L(fθ+∆θi , Di) (2)

2.2 CONTEXT PROVIDE FINE-GRAINED FINE-TUNING GRADIENT DIRECTION

We can formally prove that the translation model can learn a mapping g from the context C, allowing
the single model to better adapt to various preferences by using In-Context Learning (ICL) during
inference. The main idea of the proof is to decompose the ICL mechanism into a direction-learnable
parameter edit (Dai et al., 2023), which helps the smaller LLM make fine-grained tuning during
computation, thereby aligning with different preference distributions.

Specifically, as q = WQ[C;x] is the vector of the attention query which constructed by source text
x and related Context C. We simulated the model’s computational process after incorporating C,
and derive from equation 3.

FICL(θ; [C;x]) = Attn(V,K, q) = WV [C;x]softmax(
(WK [C;x])T q√

d
) (3)

For ease of understanding, we analyze the approximation of standard attention by removing the
scaling factor

√
d and unary operations, transforming it into relaxed linear attention.

FICL(θ; [C;x]) ≈ WV [C;x](WK [C;x])T q := ˆFICL(θ; [C;x]) (4)

We define Wθ = WV x(WKx)T as the initialized parameters to be updated since Wθq is the at-
tention result in the zero-shot learning (ZSL) setting, where no C is provided. Proceeding with the
derivation:

ˆFICL(θ; [C;x]) = WV [C;x](WK [C;x])T q

= WV xx
TWT

Kq +WV CCTWT
Kq

= Wθq +WV CCTWT
Kq ⇔ Wθq +∆Wq

= (Wθ+∆θ)q

(5)
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This shows that we enable more fine-grained parameter editing, aligning the final effective parame-
ters more closely with the desired distribution of preference by customizing the context C. There-
fore, we can leverage the flexibility demonstrated by ICL to guide the translation model toward the
preference distribution corresponding to the current source text.

2.3 LEARNING TO LEARN PREFERENCE FROM IN-CONTEXT

Our primary goal is to guide the model to learn preference information from the CONTEXT, mean-
ing that the model can learn a correct mapping g from the preference-rich examples. We achieve
this goal by training the model using a preference-enhanced ICL loss which contain a Lprefer and
Lcontext to strengthen the model’s ability to recognize preferences from the output perspective and
robustness in utilizing explicit preference information.

Given a set of source sentences x, alongside preferred translation output yw and sub-preferred trans-

lation yl, we can access a dataset, denoted as D =
⋃

k Dk =
{(

x(i), y
(i)
w , y

(i)
l

)}N

i=1
. We obtain

samples from D that belong to the same preference distribution Di as the current source text xi to
serve as the context Ci. Then, We minimize the objective L(fθ+∆θ+g(θ+∆θ,Di), Di) by optimizing
the loss function:

LICL = −E(x,yw,yl)∼D[logπθ(yw|C, I, x)]

We use a preference loss Lprefer to enhance the model’s ability to distinguish preferences in its
output. This loss effectively approximated to DPO loss, helps PEIT learn the preferred translation
and reject suboptimal translations, which can be defined as follows:

Lprefer = −E(x,yw,yl)∼D[log σ (β log πθ(yw|C, I, x)− β log πθ(yl|C, I, x))]

Furthermore, PEIT’s ability to identify intended preferences from retrieved examples relies heavily
on the quality of these examples. Therefore, enhancing the model’s robustness in handling low-
quality examples is a critical issue that must be addressed. We have designed a training objective
Lcontext that encourages the model to align the preference intention representations from examples
of varying quality.

Let hi
C , hi

C+ , and hi
C− denote the representations of the preferences intentions of the model for

contextual information C, C+, and C−, respectively, which, despite differences in quality, share
similar preference intention. To align the representation hi

C with hi
C+ and hi

C− , we optimize the
model using a contrastive loss Li

context defined as:

Li
context = −log

esim(hi
C ,hi

C+ )/τ

esim(hi
C ,hi

C+ )/τ + esim(hi
C ,hi

C− )/τ
,

where sim(hi, hj) is the similarity of two preference representation, and τ is a temperature hyper-
parameter.

Combining the above all parts, the overall learning objective is

min
θ

LICL + Lprefer +min(λ,
LICL

Lcontext
)Lcontext

where λ controls the weight assigned to the context loss, balancing the model’s ability to recognize
preference intentions with overall translation quality. By aligning the hidden representations of
contexts with similar preference tendencies, regardless of quality differences, the model becomes
more robust in discerning desired preferences from low-quality examples.

3 EXPERIMENTS

3.1 PREFERENCE DATA

We conduct main experiments on the ALMA-R-Preference dataset which (Xu et al., 2024a) re-
leased, and selected both the chosen and rejected translations for the target language based on the
average quality of each data item. To demonstrate the generality of our approach, we also performed
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supplementary experiments on translation tasks involving other low-resource languages using the
Flores-200 dataset (Team et al., 2022). We transformed the Flores-200 dataset into a pairwise pref-
erence dataset by implementing a synthetic preference data method tailored for our experiments.
Building upon the approach of (Nvidia et al., 2024), we adopted the LLM-as-generator method,
utilizing different large language models to generate candidate responses. According to the defini-
tion in (Jiang et al., 2024), we employed a Feedback from Inductive Biases method to construct
the preference direction. This ensures that the preference direction aligns to the test set provided in
the Flores-200 dataset.

3.2 SETTINGS

We view PEIT not just as an optimization technique, but as a conceptual approach that highlights
the importance of providing preference information during both the training and inference phases.
This aids in aligning model outputs with desired translation tendencies and enhances overall per-
formance. To demonstrate the potential of in-context preference learning, we developed a series
of progressively comparative methods. Following this, we introduce the baselines chosen for our
experiments and explain the rationale behind these selections.

SFT Using supervised fine-tuning (SFT) to adapt large language models to specific downstream
tasks is a fundamental approach. Its effectiveness has been validated through extensive practical
experiments. Therefore, SFT on prefer data serves as the first baseline in our experiments.

CPO and DPO We also compared the commonly used preference alignment methods in the machine
translation field. These two methods are derived from the same optimization goal (Schulman et al.,
2017) but reflect different training objectives due to the adoption of distinct assumptions. Therefore,
these two methods serve as the primary comparative methods for preference alignment evaluation.

ICFT and ICPFT We set In-Context Fine-Tuning (ICFT) and In-Context-Preference Fine-Tuning
(ICPFT) as baselines to compare with SFT and PEIT, demonstrating the validity of our approach
and the superiority of PEIT. Specifically, in the SFT scenario, we add a retrieved example to each
input during training to create the ICFT setup. For ICPFT, we enhance the example by incorporating
preference pair.

PE-CPO Preference-Enhanced Contrastive Preference Optimization (PE-CPO) aims to ensure a
fairer comparison and to strengthen the baseline, we introduced the concept of PEIT into the CPO
method, resulting in the PE-CPO baseline. This enhanced version integrates preference estimation
into the CPO framework, allowing the model to utilize in-context preference information during
training, providing a more strong baseline against which to evaluate our proposed approach.

3.3 OTHER DETAILS

Base model Our experiment primarily focuses on comparing fine-tuning methods rather than spe-
cific base models. We conducted our main experiments on widely used open source LLMs(Touvron
et al., 2023a; Dubey et al., 2024). To avoid data leakage, we used an earlier version, LLaMA2-13B,
for our experiments and present the main result in it. We also conduct additional experiments with
other models, and release result in Appendix E.

Training with PEFT During the training phase, we focus exclusively on updating the weights of
the added LoRA parameters. These weights have a rank of 32 and only add an additional 24M
parameters to the original 13B size of the model. The fine-tuning process involves a batch size of
32, spanning 5 epochs, and accommodating sequences with a maximum length of 512 tokens.

Translation Instruction Like the base model, the translation prompt is not our main focus, so it
will not be carefully tuned. We will maintain consistency across all experiments, and details can be
found in the Appendix C.

Hyperparameters For CPO, DPO and PEIT, we adhere to the default β value of 0.1 as used by (Xu
et al., 2024a; Rafailov et al., 2024). For PEIT, we set τ and λ to 0.3 and 2.0. For all baselines, we set
the learning rate to 2e-5. To ensure the fairness of the experiment, we have made a specific design
for the DPO training process. Before applying the DPO method, we conducted preliminary training
with the selected data to simulate the typical pipeline for preference alignment using DPO. We have
provided more detailed settings in Appendix B.
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Table 1: The main result in Translating from English (en→xx). PEIT methods significantly out-
perform all comparable methods. The dark blue boxes in ICFT and PECPO indicates a significant
improvement compared to their original versions (ICFT and CPO), while light blue boxes repre-
sents only a small but noticeable enhancement. For PEIT, Dark blue boxes signifies a significant
improvement compared to the second-best method in all comparisons, and light blue boxes follows
the same pattern. All red colors indicate a slight decrease in performance.

Methods de zh ru cs ind
BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET

SFT 30.25 88.81 27.94 87.94 27.12 88.37 26.22 87.62 25.93 89.48
DPO 29.50 90.03 27.33 88.23 26.32 87.03 26.25 88.68 25.41 89.43
CPO 30.54 90.16 24.87 89.85 25.14 89.63 27.13 88.73 27.21 90.04
ICFT 29.19 89.24 24.77 88.12 24.54 88.78 25.06 86.64 24.95 89.33

ICPFT 29.96 89.91 25.78 88.37 27.93 89.13 28.25 87.28 25.37 89.21
PE-CPO 31.41 90.66 25.89 90.23 26.20 90.11 27.88 89.27 23.73 89.26
PEIT 31.22 91.74 26.33 90.51 27.22 90.47 29.47 89.53 26.01 90.13

PEIT instantiation Within the PEIT framework, various implementation options exist for each
component. Here, we outline the specific details used in our experiments. In the implementation
of the retriever, we use ”xlm-r-bert-base-nli-stsb-mean-tokens” (Reimers & Gurevych, 2019) as the
sentence embedding model and train a Faiss (Douze et al., 2024) index for similarity retrieval. When
calculating Lcontext, we take the probability distribution of the model’s first output token as hC . We
choose the cosine similarity function as the instantiation of sim() to measure the similarity of hC .
For each text to be translated, we set the number of examples k = 1 during training, and we also
report the results for the same k during testing.

3.4 RESULTS

We present the primary result in Table 1 and Table 2, average score in Table 3. Our evaluation
metrics include both statistical and neural metrics (Papineni et al., 2002; Rei et al., 2020), but we
place a primary emphasis on neural metrics, using statistical metrics only as a reference with a
limited level of confidence. For neural metrics, we adopted the XCOMET series models 1, and for
statistical metrics, we used BLEU.

Compared with implicit tuning methods We first compared the results of PEIT with those of
fitting-based fine-tuning methods. Under the evaluation of robust neural metrics, PEIT, due to its
ability to leverage fine-grained preference information, achieved a higher average score compared
to the average scores of CPO and DPO. In translation tasks in five languages, including German,
Chinese, Russian, Czech, and Indonesian, PEIT achieved an average score of 92.10 of XCOMET,
CPO averaged 90.92, DPO 89.43, and SFT 89.51. However, from our motivation’s perspective,
achieving an excellent average score does not necessarily mean the method is sufficient. Therefore,
we conducted a more fine-grained analysis of the models’ capabilities trained by different methods
at Section 4. Overall, PEIT demonstrates a clear advantage over previous methods in fine-grained
comparisons.

Compared with ablation We also conducted ablation experiments on our own design, and this
section of the experiment demonstrated the effectiveness of our approach. After incorporating pref-
erence information into the task demonstration context (ICFT to ICPFT), we observed an improve-
ment of 0.68% in our main evaluation metrics. Following the inclusion of our Lcontext design in
PE-CPO, the score increased further by 0. 58%.

4 ANALYSES

The analysis in this section is divided into two parts. In the first part, we focus on evaluating the
effectiveness of PEIT, first comparing the degree of improvement that PEIT brings to the model ver-
sus CPO and PE-CPO, and then conducting a performance analysis of the models trained with PEIT.

1we use XCOMET-XL
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Table 2: The main result in Translating to English (xx→en).

Methods de zh ru cs ind
BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET

SFT 33.12 93.67 25.13 90.45 39.12 90.42 41.22 86.54 31.05 91.86
DPO 31.99 93.24 25.17 89.94 39.11 89.16 42.15 86.70 31.58 91.92
CPO 32.74 94.72 26.32 91.73 38.26 91.85 43.13 89.91 30.27 92.60
ICFT 31.45 93.57 24.78 90.84 33.14 91.28 39.57 87.82 33.51 93.73

ICPFT 31.19 95.43 25.78 91.76 35.54 91.97 40.13 88.72 35.02 94.39
PE-CPO 35.33 95.96 25.89 93.13 37.55 92.35 43.34 90.67 30.11 93.67
PEIT 34.21 96.31 26.22 92.86 39.13 93.44 41.47 91.37 37.47 94.71

Table 3: average result of the main experiment across two translation directions.

XCOMET SFT DPO CPO ICFT ICPFT PE-CPO PEIT

Translating from English (en→xx) 88.44 88.67 89.68 88.42 88.77 89.90 90.47
Translating to English (xx→en) 90.58 90.19 92.16 91.44 92.45 93.15 93.73

In the second part, we provide a detailed description of our two methods for generating synthetic
preference data and analyze the impact of synthetic preference data on the translation task.

4.1 DOES PEIT RECOGNIZE FINE-GRAINED PREFERENCE INTENTIONS?

We provide a comprehensive view of the impact of PEIT by examining fine-grained performance and
deeper token distribution patterns. We adopt a more detailed comparative approach, going beyond
average scores, to analyze the results of PEIT alongside other fine-tuning methods. The primary
focus is the win rate ratio between PEIT and the alternative methods. By inferring preference ten-
dencies from finely retrieved contextual information, PEIT demonstrates an ability to align with the
current text more effectively. This allows it to outperform fitting-based fine-tuning methods.

Ties-K win-rate curve Specifically, we compare each score of generative translation, and to mitigate
the inherent errors of the metric, we arrange the score differences in ascending order, designate the
smallest k of differences as ties, and subsequently recalculate the win rate in Fig. 2. This approach
allows us to plot a graph illustrating the relationship between k and the win rate. Judging the fine-
grained win rate of two methods from the trend of the Ties-K win-rate curve is more fair and robust
than directly comparing win rates.

By incorporating the contextual loss term Lcontext into the learning objective, the model can robustly
leverage explicit preference information during inference phase. To evaluate this, we conducted
experiments on a well-trained model by introducing controlled perturbations to the context and
analyzing performance trends. This allows us to assess the model’s sensitivity to changes in the
contextual scene, which is critical for understanding how well the model adapts to subtle shifts in
preference signals.

(a) train CPO with Preference Enhance (b) train CPO without Preference Enhance

Figure 2: Ties-K win-rate curve of PEIT with CPO and PE-CPO. This curve indicates that the
superiority of PEIT’s average results is not driven by a few very high-score translations, but rather
that nearly every translation achieves relatively high quality.

7
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Different preferences representations of context To investigate how PEIT learns preference from
context at varying levels, we visualized the hidden states of the final output tokens from the last
Transformer layer of the decoder in Fig. 3. We selected 100 data points from the ALMA-R-
Preference dataset (Xu et al., 2024a) and chose similar samples at different levels of contextual
similarity, representing different distances in preference space. By capturing the hidden states from
the final layer for each of these levels, we aim to understand how preference representation changes
as the model encounters different contextual clues.

(a) train without Lcontext (b) train with Lcontext

Figure 3: UMAP Visualization (McInnes et al., 2020) illustrates the preference intentions learned
by the model trained with PEIT, with or without Lcontext, based on preference examples of varying
retrieval quality. The proximity of the two centers reflects the model’s ability to effectively learn
preferences from these examples. In this experiment, we represent the model’s observed preference
tendencies through the probability distribution of its first output token after reading the preference
examples.

To provide a more intuitive understanding of the results, we applied dimensionality reduction to
the token distributions, projecting the high-dimensional vocabulary space onto a lower-dimensional
space suitable for visual analysis. This visualization allowed us to examine the model’s output
patterns under various contextual conditions.

In addition, we conducted an ablation experiment on in-context examples to investigate the impact of
different qualities of in-context examples on the performance of PEIT. We concluded that the more
complete the retrieval (using higher quality relevant examples or increasing the number of relevant
examples), the better the final result. Detailed results can be found in Appendix D.

From this analysis, it becomes clear that PEIT not only effectively utilizes contextual preference
information during inference phase but also demonstrates robustness to the quality of the context.
Even when the preference information is weak or ambiguous, PEIT can still accurately discern and
align with the desired preferences. This indicates that PEIT is capable of capturing fine-grained
preference intentions, maintaining its performance even when contextual cues are less informative.

4.2 HOW PREFERENCE DATA QUALITY AFFECTS PEIT?

In this section, we explore how the quality of preference data affects the performance of PEIT. To
investigate this, we employed two methods to generate preference data for our experiments. Using
the Feedback from Inductive Biases perspective (Jiang et al., 2024), we transformed this generated
data into preference datasets, allowing us to assess how variations in data quality influence PEIT’s
ability to learn and generalize preference intentions. From this perspective, we treat the original
instruction data as embodying test-time preferences, and any generated translation—regardless of
quality—as misaligned with these preferences due to differing inductive biases in the models. This
approach allows us to construct preference datasets where the original instructions serve as the
preferred option, while translations generated by both methods are considered less preferred.

8
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Table 4: different quality preference data

XCOMET SFT DPO CPO ICFT ICPFT PE-CPO PEIT

GPT-Generated 90.67 90.67 91.32 91.53 91.80 91.46 92.15
Self-Paraphrasing 90.67 88.93 90.66 91.53 91.12 90.65 91.37

GPT-Generated Translations The first method involves using GPT-4 to generate translations. We
provided GPT-4 with the original instruction data, which represents the test-time preferences, and
prompted it to produce translations. Although GPT-4 can generate high-quality, fluent, and gram-
matically correct translations, these outputs may not fully reflect the specific preferences encoded in
the original instruction data due to differing inductive biases. We regard these GPT-generated trans-
lations as less preferred compared to the original instructions, as they may not capture the subtle
preferences embedded in the instruction data.

Self-Paraphrasing The second method involves training the model on the test set and repeatedly
generating translations through a paraphrasing process. Specifically, we fine-tuned the model on
the training set using Supervised Fine-Tuning (SFT) to perform the translation task. By generating
multiple translations of the same training set, we collected a series of paraphrased outputs. These
paraphrased translations are syntactically different but semantically similar to the originals. How-
ever, since they are produced by the model itself, they may reflect the model’s own inductive biases
rather than the specific preferences encoded in the original instruction data. As a result, we treat
these translated versions as less preferred options in our preference dataset.

We compared the results of all the baselines mentioned in this study on the preference datasets
constructed using these two methods. The experiments demonstrate that higher-quality distractor
data leads to higher-quality preference data, with GPT-4 generated data achieving better results
across all methods. We specifically examine the differences between data generated using GPT-
Generated and Self-Paraphrasing methods. The data generated by GPT shows superior quality in
various dimensions compared to Self-Paraphrasing, while semantically it does not exhibit significant
deficiencies compared to the original instruction data, differing only in preference tendencies.

Compared to CPO’s approach of constructing preference data, where the lowest-quality data is used
as the distractor in preference pairs, our experimental results seem to suggest a different recommen-
dation. However, the underlying principle is the same: maximizing the quality of distractor data is
essential to increasing the value of preference data.

5 CONCLUSION

In this paper,we introduce preference-enhanced instruction tuning (PEIT) as a novel approach to
enhancing machine translation quality by leveraging in-context preference learning with large lan-
guage models. Experiments across multiple languages demonstrate that PEIT outperforms existing
methods like CPO, DPO, and SFT, especially when high-quality preference data is utilized. PEIT
achieves such outstanding performance even without fully exploring the form of explicit preference
information. Objectively speaking, PEIT is orthogonal to methods like CoT (Wei et al., 2023),
ReFT (Luong et al., 2024), and even LLM reasoning. Overall, PEIT offers a promising direction
for improving machine translation systems by effectively integrating explicit preference information
through in-context learning.
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URL https://arxiv.org/abs/2401.08281.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, et al.
The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Jiaxin Guo, Hao Yang, Zongyao Li, Daimeng Wei, Hengchao Shang, and Xiaoyu Chen. A
novel paradigm boosting translation capabilities of large language models. arXiv preprint
arXiv:2403.11430, 2024.

Zhiwei He, Xing Wang, Wenxiang Jiao, Zhuosheng Zhang, Rui Wang, Shuming Shi, and Zhaopeng
Tu. Improving machine translation with human feedback: An exploration of quality estimation as
a reward model. ArXiv, abs/2401.12873, 2024. URL https://api.semanticscholar.
org/CorpusID:267095196.

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf, Vikas Raunak, Mohamed Gabr, Hitokazu Mat-
sushita, Young Jin Kim, Mohamed Afify, and Hany Hassan Awadalla. How good are gpt models
at machine translation? a comprehensive evaluation. arXiv preprint arXiv:2302.09210, 2023.

Juliane House. Text and context in translation. Journal of Pragmatics, 38(3):338–358, 2006.
ISSN 0378-2166. doi: https://doi.org/10.1016/j.pragma.2005.06.021. URL https://www.
sciencedirect.com/science/article/pii/S0378216605002109. Special Is-
sue: Translation and Context.

Ruili Jiang, Kehai Chen, Xuefeng Bai, Zhixuan He, Juntao Li, Muyun Yang, Tiejun Zhao, Liqiang
Nie, and Min Zhang. A survey on human preference learning for large language models, 2024.
URL https://arxiv.org/abs/2406.11191.

Wenxiang Jiao, Jen-tse Huang, Wenxuan Wang, Zhiwei He, Tian Liang, Xing Wang, Shuming Shi,
and Zhaopeng Tu. ParroT: Translating during chat using large language models tuned with human
translation and feedback. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the
Association for Computational Linguistics: EMNLP 2023, pp. 15009–15020, Singapore, Decem-
ber 2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.
1001. URL https://aclanthology.org/2023.findings-emnlp.1001.

Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Xing Wang, and Zhaopeng Tu. Is chatgpt a good
translator? a preliminary study. arXiv preprint arXiv:2301.08745, 1(10), 2023b.

Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Derrick Xin, Aditya Kusupati, Romi
Stella, Ankur Bapna, and Orhan Firat. Madlad-400: A multilingual and document-level large
audited dataset. Advances in Neural Information Processing Systems, 36, 2024.

Jiahuan Li, Hao Zhou, Shujian Huang, Shanbo Cheng, and Jiajun Chen. Eliciting the translation
ability of large language models via multilingual finetuning with translation instructions. Trans-
actions of the Association for Computational Linguistics, 12:576–592, 2024.

Moxin Li, Wenjie Wang, Fuli Feng, Yixin Cao, Jizhi Zhang, and Tat-Seng Chua. Robust prompt op-
timization for large language models against distribution shifts. arXiv preprint arXiv:2305.13954,
2023.

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Rea-
soning with reinforced fine-tuning, 2024. URL https://arxiv.org/abs/2401.08967.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction, 2020. URL https://arxiv.org/abs/1802.03426.

Nvidia, Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H. Anh, et al. Nemotron-4 340b technical
report, 2024. URL https://arxiv.org/abs/2406.11704.

10

https://arxiv.org/abs/2212.10559
https://arxiv.org/abs/2401.08281
https://arxiv.org/abs/2407.21783
https://api.semanticscholar.org/CorpusID:267095196
https://api.semanticscholar.org/CorpusID:267095196
https://www.sciencedirect.com/science/article/pii/S0378216605002109
https://www.sciencedirect.com/science/article/pii/S0378216605002109
https://arxiv.org/abs/2406.11191
https://aclanthology.org/2023.findings-emnlp.1001
https://arxiv.org/abs/2401.08967
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/2406.11704


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin (eds.),
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp.
311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguis-
tics. doi: 10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2024. URL https://arxiv.org/abs/2305.18290.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon Lavie. COMET: A neural framework for MT
evaluation. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 2685–
2702, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.emnlp-main.213. URL https://aclanthology.org/2020.emnlp-main.213.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL http://arxiv.org/
abs/1908.10084.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Shivalika Singh, Freddie Vargus, Daniel Dsouza, Börje F Karlsson, Abinaya Mahendiran, Wei-Yin
Ko, Herumb Shandilya, Jay Patel, Deividas Mataciunas, Laura OMahony, et al. Aya dataset:
An open-access collection for multilingual instruction tuning. arXiv preprint arXiv:2402.06619,
2024.
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A PROOFS

A.1 QUESTION

Let D1, D2, . . . , Dk be k distinct data sets, each from a different preference distribution. We define
the following two scenarios:

Single Model: We fit fθ on all data sets using a single neural network to fθ+∆θ.

Multiple Models: We fit fθ on each data set Di using a separate neural network to fθ+∆θi .

Let L(fθ, Di) denote the loss function (e.g., croos-entropy loss) for fitting data set Di with the
neural network fθ. The total loss for the single model is given by:

Ltotal =
1

k

k∑
i=1

L(fθ+∆θ, Di), (6)
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and the loss for the multiple models scenario is:

Lsep =
1

k

k∑
i=1

L(fθ+∆θi , Di). (7)

Our goal is to prove the following two results:

1. Ltotal > Lsep + ϵ, i.e., the error using a single model is higher than the average error using
multiple models.

2. If we allow the parameters θ of the single model to be dynamically adjusted for each data
set by a mapping, then the error lower bound for the single model can match that of multiple
models.

A.2 PROOF OF HIGHER ERROR IN SINGLE MODEL SCENARIO

We proof this by NFL theory:
Proof. w.l.o.g. ∀fθ+∆θ, ∃ fθ+∆θk s.t. L(fθ+∆θ, Dk) < L(fθ+∆θk , Dk) (k ̸= j) (8)

Assemble a set of all f that meet the conditions.
Let Fk = {fθ | L(fθ+∆θ, Dk) < L(fθ, Dk)} (9)

From NFL theory, we know that:
∃fj ∈ Fk s.t. L(fθ+∆θ, Dj) ≥ L(fj , Dj) (10)

Let fθ+∆θj = fj , we have:
L(fθ+∆θ, Dj) ≥ L(fθ+∆θj , Dj) (11)

By a similar argument, for each i ∈ {1, 2, ..., k}, we can find such a fi ,so that:
L(fθ+∆θ, Di) ≥ L(fθ+∆θi , Di) (12)

The equal sign is not held at the same time, so we have:

1

k

k∑
i=1

L(fθ+∆θ, Di) >
1

k

k∑
i=1

L(fθ+∆θi , Di) + ϵ (13)

Thus, we conclude that using multiple models results in a lower average error than using a single
model.

A.3 PARAMETER ADJUSTMENT ADDRESSES GAP

Now, consider the case where the parameters θ of the single model can be dynamically adjusted for
each data set. Let δθi = g(θ + ∆θ,Di), where g is a function that generates the parameters θi for
data set Di, and ϕ represents shared global parameters.

The optimization problem is now:

min
∆θ

1

k

k∑
i=1

L(fθ+∆θ+g(θ+∆θ,Di), Di). (14)

Let g(θ+∆θ,Di) = ∆θi −∆θ , it can generate parameters θ+∆θ to θ+∆θi that are close to the
optimal parameters for each data set. In that case, we have:

∇θL(fθ+∆θ+g(θ+∆θ,Di), Di) = ∇θL(fθ+∆θi , Di),

which implies that the parameter adjustment allows the single model to achieve the same gradient
updates as the multiple models. Therefore, the error lower bound of the single model with dynamic
parameter adjustment is:

min
θ

1

k

k∑
i=1

L(fθ+∆θ+g(θ+∆θ,Di), Di) ⇐⇒ min
θ

1

k

k∑
i=1

L(fθ+∆θi , Di) (15)
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B EXPERIMENTS DETAILS OF BASELINE

We provide a detailed explanation of our experimental design and procedure here. Our experiment
aims to compare the effects of using preference data with different methods.

SFT We use the chosen entries in the pair-wise preference dataset as the labels for SFT, setting the
learning rate to 2 × 10−5, LoRA rank to 32, and LoRA alpha to 64. These hyperparameters are
consistent with all other baselines.

DPO We use the chosen and reject entries in the pair-wise preference dataset as the labels for DPO’s
SFT init, setting the learning rate to 2×10−5, LoRA rank to 32, and LoRA alpha to 64. Subsequently,
we continue training the model with DPO, setting the reference for DPO as a duplicate of this SFT
model.

CPO Since CPO inherently includes an SFT loss, we do not initialize it with SFT. Instead, we
proceed directly with CPO training.

ICFT, ICPFT and PE-CPO We use the same retrieval method as PEIT, except that in ICFT, samples
with preference information are replaced by those without preferences. Implementation details can
be found in Appendix C.

Table 5: Baseline configurations and hyperparameters

Baseline lr Lora rank Lora target Initialization Random seed
SFT 2e-5 32 QKVO Gaussian distribution 42
CPO 2e-5 32 QKVO Gaussian distribution 42
DPO 2e-5 32 QKVO Adapter weights trained with SFT 42
ICFT 2e-5 32 QKVO Gaussian distribution 42
ICPFT 2e-5 32 QKVO Gaussian distribution 42
PECPO 2e-5 32 QKVO Gaussian distribution 42
PEIT 2e-5 32 QKVO Gaussian distribution 42

As a result, our controlled variable experiment limits most of the variable factors, which makes
conclusions almost dependent on the training method.

C TRANSLATION PROMPT

We designed different prompts, as shown in Fig. 4 for each method based on their characteristics and
the required information, but we did not deliberately perform prompt engineering for each method
in the experiments.

D ABLATION OF IN-CONTEXT EXAMPLE

We present the experimental setup, as shown in table 6, and results of our ablation experiment on
in-context examples. In our experiments, we set k = 1 by default. Additionally, we evaluated the
impact of different k values on performance, as shown in the table above. The larger the k value, the
better the performance. However, since larger k values result in higher training and inference costs,
we chose k = 1 as the default.

Table 6: Base Model Details

Base model Dataset Direction
Llama3-8b ALMA-R-Preference xx→en

Subsequently, we explored the impact of selecting examples with different similarity ranks on the
performance of PEIT when k=1.
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Figure 4: Prompt used in experiment

Table 7: PEIT performance for different values of k

PEIT k=1 k=2 k=3
XCOMET 95.25 95.29 95.36

Table 8: PEIT performance for different rank of example

Model PEIT+rank 1 example PEIT+rank 2 example PEIT+rank 3example
XCOMET 95.25 94.67 94.59

Model PEIT+constant example SFT CPO
XCOMET 93.60 92.13 93.62

As can be seen from the ablation experiments, as shown in table 7 and 8, the more complete the
retrieval (using higher quality relevant examples or increasing the number of relevant examples), the
better the final result.

E FULL EXPERIMENT RESULT

We present all our experimental results here, though the comparisons are not entirely fair, as they
involve some additional models. Some results are from CPO, and we have also included Aya-
23-8B, an advanced instruction-tuned model, whose test results show that it has reached GPT-4’s
performance level.
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Table 9: Llama3-8B main result

Methods de zh ru cs ind
BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET BLEU XCOMET

Translating from English (en→xx)

SFT 31.25 92.31 26.79 89.44 27.87 89.07 26.65 89.04 26.98 89.56
DPO 29.77 90.03 26.23 89.07 26.29 88.98 25.92 88.68 26.42 89.32
CPO 31.59 91.77 26.81 90.16 25.41 90.23 27.79 89.79 27.20 90.52
ICFT 30.09 89.45 25.88 88.73 23.21 89.39 26.36 89.15 23.99 89.59
ICPFT 30.78 90.23 26.20 89.24 26.53 89.92 27.31 89.82 26.34 89.83
PE-CPO 31.11 91.96 25.52 90.29 27.33 90.64 28.13 90.30 24.75 90.74
PEIT 31.24 92.63 27.16 91.01 28.10 91.13 29.34 91.21 27.22 91.21

Translating to English (xx→en)

SFT 35.65 94.97 26.42 91.45 40.26 92.17 43.97 87.62 37.62 93.41
DPO 33.90 94.74 24.26 90.93 37.38 91.06 40.12 86.70 32.73 92.92
CPO 35.61 95.72 25.39 92.69 38.04 92.72 43.18 88.21 37.31 94.03
ICFT 32.23 95.17 25.10 91.82 33.69 92.38 39.55 87.80 34.25 93.98
ICPFT 33.65 95.73 26.44 92.13 38.35 92.35 42.21 87.93 35.74 94.21
PE-CPO 36.43 96.39 26.86 93.41 38.92 93.29 42.35 90.80 36.21 94.58
PEIT 36.76 96.87 27.91 93.64 39.99 94.23 43.35 90.93 38.32 95.22

Table 10: The full result in xx → en including both statistic, reference-free and reference-based
metrics.

Models de zh ru
BLEU KIWI XCOMET BLEU KIWI XCOMET BLEU KIWI XCOMET

GPT-4 32.41 81.50 94.47 23.82 79.33 92.06 41.09 81.57 90.95
Aya23-8B 44.84 84.42 96.56 39.41 83.16 93.42 45.68 85.02 95.15
LLaMA-2-13B 31.06 79.47 91.10 21.81 75.09 85.68 36.50 79.14 86.12

SFT on prefer 33.12 84.01 93.67 25.13 81.53 90.45 39.12 81.92 90.42
DPO 31.99 82.91 93.24 25.17 81.73 89.94 39.11 81.40 89.16
CPO 32.74 83.70 94.72 26.32 82.37 91.73 38.26 82.58 91.85
ICFT 31.45 81.31 93.57 24.78 80.26 90.84 33.14 81.27 91.28
ICPFT 31.19 81.97 95.43 25.78 81.63 91.76 35.54 82.06 91.97
PECPO 35.33 82.21 95.96 25.89 81.31 93.13 37.55 82.31 92.35
PEIT 34.21 83.42 96.31 26.22 82.04 92.86 39.13 83.22 93.44

Models cs ind Avg.
BLEU KIWI XCOMET BLEU KIWI XCOMET BLEU KIWI XCOMET

GPT-4 46.86 82.52 88.48 38.25 82.73 94.98 36.48 81.53 92.18
Aya23-8B 50.87 83.27 93.74 40.23 84.33 96.88 44.20 84.04 95.15
LLaMA-2-13B 40.02 79.29 78.50 30.03 73.20 88.72 31.88 77.23 86.02

SFT on prefer 41.22 80.93 86.54 31.05 81.51 91.86 33.92 81.98 90.58
DPO 42.15 80.26 86.70 31.58 81.85 91.92 34.00 81.63 90.19
CPO 43.13 81.74 89.91 30.27 82.36 92.60 34.14 82.55 92.16
ICFT 39.57 80.63 87.82 33.51 81.47 93.73 32.48 80.98 91.44
ICPFT 40.13 80.58 88.72 35.02 80.63 94.39 33.53 81.37 92.45
PECPO 43.34 81.52 90.67 30.11 82.52 93.67 34.44 81.97 93.15
PEIT 41.47 81.35 91.37 37.47 82.87 94.71 35.70 82.58 93.73
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Table 11: The full result in en → xx including both statistic, reference-free and reference-based
metrics.

Models de zh ru
BLEU KIWI XCOMET BLEU KIWI XCOMET BLEU KIWI XCOMET

GPT-4 34.58 83.48 97.85 44.41 81.73 90.97 28.74 83.64 94.30
Aya23-8B 44.68 84.57 97.56 42.58 82.64 93.24 37.43 83.39 94.79
LLaMA-2-13B 13.69 68.33 90.81 30.00 74.09 81.06 0.59 56.78 84.94

SFT on prefer 30.25 81.38 88.81 27.94 80.18 87.94 27.12 80.29 88.37
DPO 29.50 80.61 90.03 27.33 78.94 88.23 26.32 79.33 87.03
CPO 30.54 81.53 90.16 24.87 80.57 89.85 25.14 80.22 89.63
ICFT 29.19 81.02 89.24 24.77 79.37 88.12 24.54 79.10 88.78
ICPFT 29.96 81.10 89.91 25.78 79.70 88.37 27.93 79.91 89.13
PECPO 31.41 82.41 90.66 25.89 80.26 90.23 26.20 79.51 90.11
PEIT 31.22 81.13 91.74 26.33 80.59 90.51 27.22 80.33 90.47

Models cs ind Avg.
BLEU KIWI XCOMET BLEU KIWI XCOMET BLEU KIWI XCOMET

GPT-4 33.74 84.81 93.48 27.63 83.21 91.27 33.82 83.37 93.57
Aya23-8B 46.83 84.79 94.52 42.12 83.47 95.11 42.72 83.77 95.04
LLaMA-2-13B 0.87 61.38 74.26 12.54 62.35 75.22 11.53 64.58 81.25

SFT on prefer 26.22 79.88 87.62 25.93 81.46 89.48 27.49 80.63 88.44
DPO 26.25 79.21 88.68 25.41 81.77 89.43 26.96 79.97 88.67
CPO 27.13 80.63 88.73 27.21 81.35 90.04 26.97 80.85 89.68
ICFT 25.06 79.09 86.64 24.95 80.09 89.33 25.70 79.73 88.42
ICPFT 28.25 79.10 87.28 25.37 81.85 89.21 27.45 80.33 88.77
PECPO 27.88 80.26 89.27 23.73 81.38 89.26 27.02 80.76 89.90
PEIT 29.47 80.38 89.53 26.01 82.93 90.13 28.05 81.07 90.47
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