
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MOBILEAGENTBENCH: AN EFFICIENT AND USER-
FRIENDLY BENCHMARK FOR MOBILE LLM AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language model (LLM)-based mobile agents are increasingly popular due
to their capability to interact directly with mobile phone Graphic User Interfaces
(GUIs) and their potential to autonomously manage daily tasks. Despite their
promising prospects in both academic and industrial sectors, little research has
focused on benchmarking the performance of existing mobile agents, due to the
inexhaustible states of apps and the vague definition of feasible action sequences.
To address this challenge, we propose an efficient and user-friendly benchmark,
MobileAgentBench, designed to alleviate the burden of extensive manual testing.
We initially define 100 tasks across 10 open-source apps, categorized by multiple
levels of difficulty. Subsequently, we evaluate several existing mobile agents, in-
cluding AppAgent and MobileAgent, to thoroughly and systematically compare
their performance. All materials will be accessible on our project webpage, con-
tributing to the advancement of both academic and industrial fields.

1 INTRODUCTION

With the emergence of large language models (LLMs) (Achiam et al., 2023), researchers have devel-
oped various autonomous agents across fields such as robotics (Bousmalis et al., 2023; Reed et al.,
2022), games (Wang et al., 2023b; Du et al., 2023), and mobile phones (Yang et al., 2023b; Rawles
et al., 2023). Among these, mobile agents have attracted significant attention due to their potential
to enhance user experiences and provide intelligent assistance on-the-go.

People have been dreaming of Intelligent Personal Assistants (IPAs) (de Barcelos Silva et al., 2020)
that can fully automate daily tasks for decades. Since Apple introduced its digital assistant, Siri (Ap-
ple, 2011) in 2011, almost all the leading technology companies have launched their own IPAs,
including Microsoft Cortana (Microsoft, 2014), Amazon Alexa (Amazon, 2014), and Google Assis-
tant (Google, 2016). While these digital assistants provide a hands-free human-computer interaction
experience using Natural Language Interface (NLI), they can only fulfill relatively simple tasks, such
as setting an alarm clock or sending a text message (Li et al., 2024). For third-party apps, developers
have to follow and implement the application programming interfaces and protocols, such that when
a user issues a very specific command, the system can invoke the corresponding functionality. This
limits the usability of those digital assistants.

LLMs contribute significantly to resolving the persistent challenge of understanding user intent.
The demonstrated reasoning ability (Qiao et al., 2022) highlights the potential of LLM-based au-
tonomous agents as next-generation Intelligent Personal Assistants (IPAs), which are not limited by
the programming interfaces since they directly operate on the Graphic User Interface (GUI) (Wang
et al., 2024; Yang et al., 2023b). The GUI can either be represented by a text-based view tree to be
consumed by a LLM or a screenshot image that can leverage a Multi-modal LLM (MLLM) (Yin
et al., 2023). The action space of the agents composes a series of functions to simulate human oper-
ations, such as click, type, swipe, etc. In this way, LLM agents can theoretically achieve whatever
human users can do, without any modification of the existing apps.

The promising future of LLM-based smartphone agents attracts more and more researchers to study
this topic. However, the scope of benchmarks available for evaluating the performance of these
agents remains constrained. Among the existing benchmarks, several prevalent issues are evident:
1. Scalability and usability. Researchers need to fully understand complicated data structures and

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Comparison between the proposed and existing benchmarks

Benchmark Fully
Autonomous

Realistic
Environment

Flexible
Success Condition

Low Code
Invasiveness

Large
Scale

AppAgent (Yang et al., 2023b) ✗ ✓ ✓ ✓ ✗
AITW (Rawles et al., 2023) ✓ ✗ ✗ ✗ ✓
AndroidArena (Xing et al., 2024) ✓ ✓ ✗ ✗ ✓
AppBuddy (Shvo et al., 2021) ✓ ✓ ✓ ✗ ✗
AndroidEnv (Toyama et al., 2021) ✓ ✓ ✓ ✗ ✓
B-MoCA (Lee et al., 2024) ✓ ✓ ✓ ✗ ✗
AndroidWorld (Rawles et al., 2024) ✓ ✓ ✓ ✗ ✓
LLamaTouch (Zhang et al., 2024) ✓ ✓ ✓ ✗ ✓
MobileEnv (Zhang et al., 2023) ✓ ✓ ✓ ✗ ✓

MobileAgentBench (ours) ✓ ✓ ✓ ✓ ✓

tools before extending the benchmark with customized tasks or integrating it into their own code-
bases (Zhang et al., 2024). 2. Robustness and Flexibility. Only the annotated task completion
path is considered (Rawles et al., 2023; Xing et al., 2024). However, there might be multiple paths
to successfully complete a task, which may break the task success judgment logic. 3. Realistic
environment. Some benchmarks evaluate the agent’s performance based on a collection of screen-
shots but not real devices. It fails if the agent performs an abnormal action and goes to an undefined
state (Rawles et al., 2023).

To address the issues described, we propose a robust benchmark, MobileAgentBench, designed to
evaluate the capabilities of mobile LLM agents within the Android ecosystem. MobileAgentBench
offers several advantages over previous benchmarks due to its ease of use and minimally invasive
nature. Specifically, for standard agents, the integration process requires fewer than ten lines of
additional code. The benchmark excels in usability and versatility, supporting a broad spectrum of
testing tasks across various Android operating system versions and executing on actual devices.

In this initial release, we offer 100 built-in benchmarking tasks spanning ten open-source applica-
tions. Notably, MobileAgentBench diverges from traditional approaches by simplifying the exten-
sion process. Third-party developers can specify the conditions for task success using just a few
lines of Python code, without needing extensive knowledge in Android development. This accessi-
bility makes MobileAgentBench more conducive to developers and researchers from non-Android
Development communities. Furthermore, we introduce an innovative method for determining the
task-terminating state, rendering the benchmark resistant to the complexities of tracking multiple
potential success pathways. This approach ensures that MobileAgentBench provides reliable and
precise benchmarking outcomes.

The comparison between the proposed and existing benchmarks is listed in Tab. 1, where fully
autonomous represents if the benchmark does not need human supervision or judgment, realistic
environment represents the tasks can be run on real devices, success condition flexibility represents
it takes all possible success paths into consideration, low code invasiveness represents integrating
the benchmark into existing agents does not need significant code changes.

Our contributions are summarized as follows:

• We propose a benchmark framework for mobile LLM agents. The new approach addresses com-
mon issues of existing benchmarks, making the evaluation process fully autonomous and reliable.

• We implement and test 100 benchmarking tasks with different levels of difficulty. The benchmark
is plug-and-play and easy for both developing new agents and evaluating existing agents.

• We evaluate the performance of state-of-the-art mobile LLM agents and perform a solid and sys-
tematic comparison with our new benchmark, providing baseline data to the community.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 MOBILE LLM AGENTS

Studies before the LLM-era employed reinforcement learning (RL) to solve the autonomous GUI
navigation problem (Gur et al., 2018). The recent advancement of LLM and MLLM becomes the
dominant agent paradigm becaust of the greater ability of UI understanding and reasoning. Early
studies focused on web agents, which achieve task automation within browsers (Deng et al., 2024;
Zhou et al., 2023). Recently, more and more studies started to investigate agents on mobile devices,
especially on the Android platform, as Android smartphones are the most widely used personal
computing devices.

Mobile LLM agents share a similar algorithm. The full input prompt often consists of four main
components: the user prompt (task description), the current UI view hierarchy (VH) description, the
action function list, and historical information. Specifically, the action list mainly includes click,
swipe, type, and other common UI operations. If MLLM is used, the current screenshot is also a
part of the input. The LLM/MLLM is asked to think of the next action based on the current and
historical states and call the correct function to perform the given task step by step. The agent finally
parses the model response and sends control signals to the Android device using Android Debug
Bridge (ADB) 1, UIAutomator 2, or other higher-level UI automation frameworks.

Despite the similarity of the high-level ideas, researchers have developed different techniques to im-
prove performance and efficiency. Among these works, AndroidArena (Xing et al., 2024) transforms
the long and overwhelming view hierarchy XML into a compressed representation and assigned UI
elements with unique node IDs, which shortens the prompt and makes the system more efficient.
MobileAgent (Wang et al., 2024) observes that GPT-4V lacks the capability of UI element local-
ization, and employs an Optical Character Recognition (OCR) model to locate and localize text
views. Moreover, it uses the CLIP (Radford et al., 2021) and Grounding DINO (Liu et al., 2023)
models to detect icons. AppAgent (Yang et al., 2023b) uses SoM (Yang et al., 2023a) prompts
to localize UI elements and breaks tasks into two phases, exploration, and deployment. During
the exploration phase, the agent automatically interacts with the apps and summarizes the observa-
tions into a document. In the deployment phase, it employes the Retrieval Augmented Generation
(RAG) (Lewis et al., 2020) technique to utilize the summarized knowledge and improve success
rate. CogAgent (Hong et al., 2023) proposes its own highly efficient 18B-parameter MLLM, which
can be loaded on a single commercial GPU. Furthermore, Octopus v2 (Chen & Li, 2024) proposes a
compact 3B-parameter model, which unlocks the potential to run mobile LLM agents on-device in
an efficient and privacy-preserving manner.

2.2 BENCHMARKS FOR MOBILE LLM AGENTS

Since the Mobile LLM agent is a newly emerging research field, the choice of benchmarks is very
limited. Some studies rely on verifying the task execution status manually to evaluate the perfor-
mance (Yang et al., 2023b), which is tedious and time-consuming. To expedite the agent develop-
ment, we need a fully autonomous benchmarking system to report various metrics, especially the
task success rate. However, automatically judging if a task is completed successfully is non-trivial.
The main challenge is caused by the dynamic nature of the GUI navigation task – the agent may
perform random actions and drive the app to an unknown state.

AITW (Rawles et al., 2023) is a popular benchmark for mobile LLM agents. It has a large scale,
but it’s based on static screenshot images. Thinking of each app state (screenshot) as a node, and
each action as an edge, we can build a State Transferring Graph (STG) based on the screenshots and
the human-annotated actions. It fails immediately if the agent performs actions in a non-considered
sequence and leads the STG to a non-existent node, even if the agent can eventually complete the
task.

The only solution is to identify task successes on real devices. One approach is to match the agent’s
actions with the annotated ground truth (GT). A step-wise matching algorithm is not accurate, be-
cause the agent may not finish the task exactly in the same order with GT. AndroidArena (Xing

1 https://developer.android.com/tools/adb
2 https://developer.android.com/training/testing/other-components/ui-automator

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

et al., 2024) proposes an adaptive method of calculating the longest common subsequence of the
agent and GT action sequences, which is illustrated as follows, where a and â are the GT and actual
actions, respectively. The common subsequences are marked in red.

a = ABC (1)
â = AXY BUCVW (2)

AndroidArena (Xing et al., 2024) treats a task as successful if the GT is a subsequence of the actual
action sequence. It addresses the issue of redundant actions but is still not optimal. A simple counter-
example can be navigating from the page 1 to page 3 by clicking the next page button two times.
If the agent performs the following sequence of actions: clicking the next page button, clicking the
previous page button, and clicking the next page button, it doesn’t navigate to the correct page but
is still a subsequence of the GT. This method gives false positive results if the redundant action has
a side effect.

A concurrent work, LlamaTouch (Zhang et al., 2024), addresses this problem by examining the
final UI state, which is similar to our approach. We observe that despite the infinite feasible action
sequences, the final success state convergence to one. The success or failure can be determined by
checking the final UI state. An edge case is that some tasks may not have a direct UI representation,
for example, the result of a network request triggered by a button may not be directly reflected on
the current UI page. Thus, only checking the UI state is not sufficient and we need to incorporate
actions, such as the clicking event, into consideration. LlamaTouch (Zhang et al., 2024) matches
the click action by mapping the coordinate to a UI element, based on the view bounding boxes.
However, it may not always be accurate. The process of finding the correct view to respond to a
clicking event is called a hit test, and it’s only accurate if performed by the Android UI system. This
is because app developers can modify the touchable area, making it different from the view border
to get better user experience.

Button

Extended Touchable Area

1 2 3

Button View Border

Figure 1: Extended touchable area.

Fig. 1 shows an example of enlarging the touchable area
of a button view. In Fig. 1, touching point 1, the but-
ton does not respond because it’s outside of the touch-
able area. Touching point 2, the button responds because
it’s inside the button view. Touching point 3, although
it’s outside of the visible button view, the button still re-
sponds because it’s inside the extended touchable area.
To overcome this difficulty, we utilize the Android Ac-
cessibility Service 3 to capture app events faithfully and
forward them to the benchmark server. The details of our
implementation are described in Sec. 3.1.

Another concurrent work, AndroidWorld(Rawles et al., 2024), offers 126 tasks across 20 apps and
has its own agent, M3A, which is benchmarked against others using automatic evaluations and
precise rewards. We all emphasize the importance of real-device benchmarks to truly reflect perfor-
mance and employ Python to gauge task success. This enhances flexibility and accuracy by captur-
ing dynamic system states instead of relying on static UI matching. However, our approach differs
significantly: we prioritize agent-centric development while AndroidWorld focuses on benchmark-
centric strategies. Our MobileAgentBench integrates seamlessly with minimal code adjustments,
supporting existing agents’ action spaces through the Android Accessibility Framework. This en-
ables less intrusive adaptations and broader evaluations beyond mere success rates, facilitating a
more detailed assessment.

3 MOBILEAGENTBENCH

3.1 METHOD

MobileAgentBench runs on real Android devices, supporting both physical devices and emulators.
It sets up environment and then invokes the agent execution function. While the agent is operating
3 https://developer.android.com/reference/android/accessibilityservice/AccessibilityService

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Task Prompt:
Create a new task "Laundry"

Action 1: click

Action 2: click

Action 3: type
Action 4: click

Task Complete

Android Accessibility Service

Android Debug Bridge (ADB)Inter-Device
Communication

App Event

VH Control
Screenshot

VH
...

Control

Task Prompt

Runtime Info
Benchmarking

App
Event

Listener
Benchmark
Orchestrator

Mobile LLM
Agent

Host Machine

Physical
Android
Device

Android
Emulator

Device Farm

Figure 2: Overview of the MobileAgentBench architecture.

the device, MobileAgentBench judges the task success status in real time without any side effects.
After the agent stops or exceeds the maximum steps, MobileAgentBench automatically switches to
the next task. The whole process is fully automated and requires no human supervision.

The task success judgment mechanism is implemented by matching the final UI state, instead of
examining the action sequence. This is because there might be multiple paths towards task com-
pletion, but the final success state converges to one. For example, if the task is to go to the settings
page, agents may mistakenly open random pages before they correctly find the desired settings page.
Matching the action sequence is difficult because of the randomness. On the contrary, checking if
the top page is the settings page is easy and reliable. No matter what operations the agent does, we
treat it as a success as long as the settings page is detected. ADB and UIAutomator are used to fetch
the VH information. For each task, there is a Python file that defines the task success criteria,
making it easy to extend and customize tasks for third-party developers.

As some tasks may not have a direct reflection on the current UI page, only checking the VH in-
formation is not sufficient. An example can be editing a note and saving the changes. Clicking the
save button, the app may only pop up a temporary alert to indicate the save action has succeeded
and stays on the current page. When the benchmark checks the current view state, it doesn’t know
if the save button is clicked or not. As a benchmark, it cannot go to other pages because it may
change the app state and affect the next action of the agent. Since we want to determine the task
success in real-time to collect how many steps the agent takes, it is not feasible to check UI states of
other pages after the agent stops. Besides, some agents have the problem of not being able to stop
gracefully even the task is completed. We address this issue by incorporating app events, especially
button click action signals. For the above-mentioned task, we can use the view hierarchy to check if

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Easy

23%

Medium 55%

Hard

22%

(a) Distribution over all tasks.

File
Man

ag
er

Calc
ula

tor

Cale
nd

ar

Con
tac

ts

Gall
ery

Reco
rde

r

Musi
cP

lay
er

Lau
nc

he
r

Note
bo

ok

Mess
ag

er
0

2

4

6

8

C
ou

nt
s

Easy
Medium
Hard

(b) Distribution over each app.

Figure 3: The distribution of task difficulty levels.

the note is edited correctly, and then mark the task as a success if the save button clicking signal is
received afterwards.

To faithfully receive the app event signals, we make an Android app using the Android Accessibility
Service. Android Accessibility Service was originally designed to help people with disabilities. It
runs in the background and invokes a callback function when the Android system fires an accessi-
bility event. Such events include most UI state transitions by the user (agent) interactions, such as
button clicking, window changing, etc, which fulfills the needs of the proposed benchmark.

The overview of MobileAgentBench is shown in Fig. 2. The benchmarking apps run on real devices
from a device farm, which can either be a physical device or an emulator. The device talks to the
host machine of the benchmark and the agent via ADB. The benchmark and the agent use ADB
to retrieve app state information, such as screenshots, view hierarchy, and send control signals.
The benchmark invokes the agent with the current benchmarking task prompt and collects runtime
information from the agent, such as the LLM input and output. Whenever the event listener app
receives an app event, it forwards the event to the benchmark server via a socket, so the benchmark
can assess the task success status using both VH and the actions. At the top of Fig. 2, we show
a sample task workflow, “Create a new task Laundry” with the Calendar app. The agent needs to
perform 4 actions to complete the task: clicking the add button, clicking the task button, typing the
task name “Laundry”, and clicking the save button. The benchmark checks the content of the task
name input box view and listens to the save button clicking event to determine if the task is finished
successfully.

3.2 TASK DESCRIPTION

In our initial version of the benchmark, we implement 100 tasks over 10 daily apps. The 10 apps are
from SimpleMobileTools 4, an open-source project of Android apps. These apps have simple and
straightforward user interfaces, without any advertisements or unnecessary permissions, and thus
are great for benchmarking use cases. The full list of app names is shown in Fig. 3b.

We carefully design the benchmarking tasks, so that they can simulate a normal user’s daily activity
and have multi-level difficulties. The distribution of task difficulty levels is shown in Fig. 3. Diffi-
culties are defined by the minimum steps to finish a task, which is cross-verified by 3 human experts
independently. A task would be classified as an easy task if it can be done within 2 steps, medium if
greater or equal to 3 while less than 6, and otherwise, hard.

3.3 USAGE

The benchmark APIs are designed to be user-friendly and as less invasive as possible. For a standard
agent, it takes less than 10 lines of additional code to integrate. List. 1 shows the pseudo-code of
the benchmark usage. First, we need to import the benchmark Python library and initialize the
benchmark orchestrator. Next, the main agent entrance function should be defined. It takes and

4 https://simplemobiletools.com, GPL-3.0

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

only takes one parameter, the task prompt. The agent iteratively performs actions to finish the task.
Before and after the agent performs one action, the orchestrator functions are called, so information
such as the time spent and LLM output can be collected. The program starts with the orchestrator
run function. It calls the agent entrance function with each task prompt and automatically switches
to the next task after the task finishes. The task success status is judged on the fly.

1 from mobile_agent_benchmark.task_orchestrator import TaskOrchestrator
2 orchestrator = TaskOrchestrator() # the MobileAgentBench orchestrator
3 # the agent entrance function
4 def agent_run(task_prompt):
5 while not done:
6 orchestrator.before_one_action()
7 # the agent invokes a LLM to think about the next action
8 action = llm_think(task_prompt, screenshot)
9 agent_perform(action)

10 orchestrator.after_one_action(action)
11 orchestrator.run(agent_run)

Listing 1: Pseudo code of integrating MobileAgentBench into an existing Mobile LLM Agent.

4 EXPERIMENTS AND AGENT EVALUATIONS

4.1 METRICS

We define 6 metrics to comprehensively benchmarking mobile agents:

• Success Rate (SR): SR = Nsuccess/Mtasks, where Nsuccess is the number of successful
tasks, judged by the benchmark system. Mtasks is the number of total benchmarking tasks.
This metric reflects the agent’s ability to correctly finish a task end-to-end.

• Step-wise Efficiency (SE). SE = Sactual/Smin, where Sactual is the number of actual
steps the agent takes to successfully finish a task, and Smin is the minimum number of
steps. This metric tells us if the agent performs unnecessary or redundant actions and
reflects the efficiency of the agent. Failure tasks are not taken into account.

• Latency. The average time spent in seconds before and after one action. This metric tells
us how long a user needs to wait between two actions.

• Tokens. The number of LLM input and output tokens. For simplicity, we use the GPT-
4V (gpt-4-vision-preview) standard (OpenAI) to calculate the number of tokens
for all models, which gives us a rough estimation of the LLM cost. For text, 1 token is
4 characters. For an image, it’s divided into multiple 512× 512 tiles, and each tile is 170
tokens. 85 base tokens are applied to each image as well.

• False Finish Rate (FFR). FFR = Nearly/Mfailure, where Nearly is the number of early
stopped tasks and Mfailure is the total number of failure tasks. This metric represents how
likely the agent falsely thinks it has finished the task and stopped early.

• Over Execution Rate (OER). OER = Nlate/Msuccess, where Nlate is the number of late
stopped tasks and Msuccess is the total number of successful tasks. Symmetricly to FFR,
this metric reveals how likely the agent falsely thinks the task is not finished successfully.

4.2 ENVIRONMENT SETUP

Five popular mobile LLM agents, AndroidArena (Xing et al., 2024), AutoDroid (Wen et al., 2023),
AppAgent (Yang et al., 2023b), CogAgent (Hong et al., 2023), and MobileAgent (Wang et al., 2024)
are evaluated with the proposed benchmark. We choose the Google Pixel 3a emulator and Android
14 operating system to run the benchmarking apps. Besides, the Android 9 operating system is used
for AutoDroid as some of the dependency libraries do not support the newer Android systems.

As there are no local neural networks used in AndroidArena, AutoDroid, and AppAgents, these
agents are executed on an Apple Macbook Pro with the M1 Max chip. CogAgent and MobileAgent
require local model referencing, so they are executed on a workstation equipped with a single Nvidia
RTX 4090 GPU, with 24 GB GPU memory.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Agent performance results with multiple metrics

Agent Models SR ↑ SE ↓ Latency ↓ Tokens ↓ FFR ↓ OER ↓

AndroidArena
(Xing et al., 2024) GPT4-V (Achiam et al., 2023) 0.22 1.13 18.61 750.47 0.09 0.33

AutoDroid
(Wen et al., 2023)

GPT3.5
Instructor (Su et al., 2022) 0.27 3.10 4.85 963.48 0.93 0.01

AppAgent
(Yang et al., 2023b) GPT4-V (Achiam et al., 2023) 0.40 1.29 26.09 1505.09 0.17 0.40

CogAgent
(Hong et al., 2023) CogVLM (Wang et al., 2023a) 0.08 2.42 6.76 579.84 1.00 0.04

MobileAgent
(Wang et al., 2024)

GPT4-V (Achiam et al., 2023)
GroundingDINO (Liu et al., 2023)

ViT-B/32 (Radford et al., 2021)
DamoOCR (Wang et al., 2022)

0.26 1.33 15.91 1236.88 0.19 0.31

The self-exploration feature is turned on for AppAgent. When performing a task, it can reference
the previously summarized document. For CogAgent, we use 4-bit quantization to load the model
due to GPU memory limitation. CogAgent is implemented in its vanilla flavor, i.e., given the current
screenshot, ask for the next action. No history information is provided.

4.3 RESULTS

The main experiment results are shown in Tab. 2. We observe that AppAgent has the highest success
rate, benefiting from the self-exploration mechanism. CogAgent has the lowest success rate, most
likely caused by the naive agent implementation, which limits the usage of history information. Al-
though AutoDroid has a similar success rate to MobileAgent, the step-wise efficiency is significantly
lower, possibly caused by the weaker reasoning capability of the GPT-3.5 model used by AutoDroid.
Latency-wise, both AutoDroid and CogAgent have very low latency, indicating the high inferencing
cost with the GPT-4V model. AppAgent needs to look up the app document, thus consuming more
tokens than others. On the other hand, because of the naive agent implementation of CogAgent,
it consumes the least number of tokens. AutoDroid and CogAgent have very high FFR, indicating
they always stop early when the task is not finished yet. AppAgent, although having the highest task
success rate, is not good at determining the task success, it cannot stop gracefully after finishing a
task and has a high OER.

Easy Medium Hard
0.0

0.1

0.2

0.3

0.4

0.5 CogAgent
AutoDroid
AndroidArena
MobileAgent
AppAgent

(a) Task success rate with difficulty levels.

CogVLM GPT-3.5 GPT-4V
0.0

0.1

0.2

0.3

0.4

0.08

0.27

0.22
0.26

0.4
CogAgent
AutoDroid
AndroidArena
MobileAgent
AppAgent

(b) Task success rate with LLMs.

Figure 4: Task success rate.

The task success rates for each agent with difficulty levels are shown in Fig. 4a. From Fig. 4a, we
can see most agents have higher success rates when handling easier tasks, which is as expected.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Interestingly, AppAgent has a higher success rate when performing medium-level tasks. This is
because we set the maximum execution steps as twice the minimum steps, which would make the
agents have very limited steps to correct their earlier steps for easy tasks. For example, an agent can
only use 1 additional step to correct and finish the task for a 1-step easy task. However, for medium
and hard tasks, there is significantly more space to correct the previous actions.

Fig. 4b shows the averaged task success rate over the backbone LLM models. It is interesting that
AutoDroid, although using a text-based GPT-3.5 model, outperforms some other agents that use
the more advanced GPT-4V model. This reveals that the textual view hierarchy contains the most
important information for GUI navigation tasks. However, we believe that visual screenshots are
helpful for other types of tasks, for example, if the task involves recognizing an image on the screen,
or if the textual view hierarchy is not available.

5 LIMITATIONS AND FUTURE WORK

While the proposed MobileAgentBench is efficient, user-friendly, and addresses many issues of the
existing benchmarks for mobile LLM agents, there are two main limitations that the authors would
like to improve in the future. Firstly, although the use of Python code snippets as the configuration
of task success conditions is easy for researchers in the AI/ML community, it is still difficult for
people without a technical background. We will explore new methods to automatically build the
task configuration without writing any code in the future work.

6 CONCLUSION

In this paper, we propose a new benchmark, MobileAgentBench, for mobile LLM agents on the
Android platform. With the 100 built-in benchmarking tasks, researchers can test and evaluate
existing and new agents automatically on real Android devices. Extending the benchmark to support
customized tasks is also easy, as only basic Python coding skills are needed. Leveraging the Android
Accessibility Services and only checking the final app state, MobileAgentBench can detect task
completion status faithfully. We report the evaluation results of 5 popular agents across multiple
metrics, and they can be used as strong baselines to advance future mobile LLM agent development.

7 REPRODUCIBILITY

Our source code is anonymously available at https://anonymous.4open.science/r/
mobile-agent-bench-E727.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Amazon. Alexa. https://alexa.amazon.com, 2014.

Apple. Siri. https://www.apple.com/siri/, 2011.

Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao, Coline Devin, Alex X Lee, Maria Bauza,
Todor Davchev, Yuxiang Zhou, Agrim Gupta, Akhil Raju, et al. Robocat: A self-improving
foundation agent for robotic manipulation. arXiv preprint arXiv:2306.11706, 2023.

Wei Chen and Zhiyuan Li. Octopus v2: On-device language model for super agent. arXiv preprint
arXiv:2404.01744, 2024.

Allan de Barcelos Silva, Marcio Miguel Gomes, Cristiano André da Costa, Rodrigo da Rosa Righi,
Jorge Luis Victoria Barbosa, Gustavo Pessin, Geert De Doncker, and Gustavo Federizzi. Intelli-
gent personal assistants: A systematic literature review. Expert Systems with Applications, 147:
113193, 2020.

9

https://anonymous.4open.science/r/mobile-agent-bench-E727
https://anonymous.4open.science/r/mobile-agent-bench-E727
https://alexa.amazon.com
https://www.apple.com/siri/


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36, 2024.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. In International Conference on Machine Learning, pp. 8657–8677. PMLR, 2023.

Google. Google assistant. https://assistant.google.com, 2016.

Izzeddin Gur, Ulrich Rueckert, Aleksandra Faust, and Dilek Hakkani-Tur. Learning to navigate the
web. arXiv preprint arXiv:1812.09195, 2018.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents. arXiv
preprint arXiv:2312.08914, 2023.

Juyong Lee, Taywon Min, Minyong An, Changyeon Kim, and Kimin Lee. Benchmarking mobile
device control agents across diverse configurations. arXiv preprint arXiv:2404.16660, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu, Jiacheng Liu,
Wenxing Xu, Xiang Wang, Yi Sun, et al. Personal llm agents: Insights and survey about the
capability, efficiency and security. arXiv preprint arXiv:2401.05459, 2024.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

Microsoft. Cortana. https://www.microsoft.com/en-us/cortana, 2014.

OpenAI. Gpt token calculation. https://openai.com/api/pricing/.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei
Huang, and Huajun Chen. Reasoning with language model prompting: A survey. arXiv preprint
arXiv:2212.09597, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android in the
wild: A large-scale dataset for android device control. arXiv preprint arXiv:2307.10088, 2023.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Mary-
beth Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A
dynamic benchmarking environment for autonomous agents. arXiv preprint arXiv:2405.14573,
2024.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Maayan Shvo, Zhiming Hu, Rodrigo Toro Icarte, Iqbal Mohomed, Allan D Jepson, and Sheila A
McIlraith. Appbuddy: Learning to accomplish tasks in mobile apps via reinforcement learning.
In Canadian AI, 2021.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, Yushi Hu, Mari Ostendorf, Wen-tau Yih,
Noah A Smith, Luke Zettlemoyer, and Tao Yu. One embedder, any task: Instruction-finetuned
text embeddings. arXiv preprint arXiv:2212.09741, 2022.

10

https://assistant.google.com
https://www.microsoft.com/en-us/cortana
https://openai.com/api/pricing/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Daniel Toyama, Philippe Hamel, Anita Gergely, Gheorghe Comanici, Amelia Glaese, Zafarali
Ahmed, Tyler Jackson, Shibl Mourad, and Doina Precup. Androidenv: A reinforcement learning
platform for android. arXiv preprint arXiv:2105.13231, 2021.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception. arXiv
preprint arXiv:2401.16158, 2024.

Peng Wang, Cheng Da, and Cong Yao. Multi-granularity prediction for scene text recognition. In
European Conference on Computer Vision, pp. 339–355. Springer, 2022.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
Lei Zhao, Xixuan Song, et al. Cogvlm: Visual expert for pretrained language models. arXiv
preprint arXiv:2311.03079, 2023a.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with large language models enables open-world
multi-task agents. arXiv preprint arXiv:2302.01560, 2023b.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yun-
hao Liu, Yaqin Zhang, and Yunxin Liu. Empowering llm to use smartphone for intelligent task
automation. arXiv preprint arXiv:2308.15272, 2023.

Mingzhe Xing, Rongkai Zhang, Hui Xue, Qi Chen, Fan Yang, and Zhen Xiao. Understanding the
weakness of large language model agents within a complex android environment. arXiv preprint
arXiv:2402.06596, 2024.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023a.

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu. Appagent:
Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023b.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
multimodal large language models. arXiv preprint arXiv:2306.13549, 2023.

Danyang Zhang, Hongshen Xu, Zihan Zhao, Lu Chen, Ruisheng Cao, and Kai Yu. Mobile-env:
an evaluation platform and benchmark for llm-gui interaction. arXiv preprint arXiv:2305.08144,
2023.

Li Zhang, Shihe Wang, Xianqing Jia, Zhihan Zheng, Yunhe Yan, Longxi Gao, Yuanchun Li, and
Mengwei Xu. Llamatouch: A faithful and scalable testbed for mobile ui automation task evalua-
tion. arXiv preprint arXiv:2404.16054, 2024.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 BENCHMARKING APPS

We choose 10 open-source daily apps from SimpleMobileTools5 in our initial benchmark, a collec-
tion of simple Android apps without advertisements or unnecessary permissions. However, users
can easily add their customized tasks with other apps. The reason that we choose open-source apps
is that they are static and reproducible. Commercial apps often employ online A/B testing (?) mech-
anisms and may display UI elements and functionalities differently to different users, or change
them over time.

The full list of the currently built-in apps is shown as follows:

• Calculator

• Calendar

• Contacts

• FileManager

• Gallery

• AppLauncher

• Messager

• MusicPlayer

• Notes

• Recorder

A.2 CUSTOMIZATION

The 100 built-in tasks make the benchmark work out of the box. However, third-party researchers
may want to implement their customized tasks. For example, benchmarking their agent performance
on commercial apps. This can be done easily without modifying the benchmark library. First, imple-
ment the customized task class inheriting the Task class provided by the benchmark framework. The
most important method to implement is check finish, which defines how to judge if the given
task is finished successfully. If necessary, the setup and teardown function can also be imple-
mented to prepare and reset the environment to execute the current task. Then, add the task names
to a JSON file and pass it to the benchmark’s task orchestrator. When running, the task orchestrator
will invoke each task (built-in or customized) one by one, automatically.

A.3 EXPERIMENTS WITH ONLINE APPS

In this paper, we use open-source and offline apps because we want to create a fully controlled
and reproducible environment for all agents. We picked apps such as Calendar and SMS that are
commonly used by people for everyday tasks. Online apps, on the contrary, have dynamic content,
which may make the agent’s performance non-deterministic. Furthermore, even if the online app
versions are the same (e.g. installing apps with the same APK), modern apps often have online A/B
testing systems, which means the functionality or even UI appearance may not be the same for every
user.

However, some researchers might be interested in benchmarking their agents with online apps. The
proposed benchmark is designed to be easy to extend, so researchers can freely add their customized
tasks with online apps. To demonstrate the extensibility of MobileAgentBench, we have imple-
mented 6 tasks across 3 popular online apps: CNN News, Amazon Shopping, and Google Maps.
Here is the full list of the currently implemented tasks.

• [Google Map] navigate from Bellevue, WA to Redmond, WA
• [Google Map] search Redmond, WA
• [Amazon Shopping] search nike and then show me shoes

5 https://simplemobiletools.com

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

• [Amazon Shopping] show me the size guide for nike shoes
• [CNN News] show news under the climate section
• [CNN News] enable the CNN sound effect when opening the app

Tab. 3 shows experiment results on the subset of online apps. The metrics are the same as defined in
Sec. 4.1.

Table 3: Agent performance results on Online Apps

Agent SR ↑ SE ↓ Latency ↓ Tokens ↓ FFR ↓ OER ↓

AndroidArena (Xing et al., 2024) 0.33 2.40 13.95 2305.31 1.00 0.50

AutoDroid (Wen et al., 2023) 0.00 N/A 2.49 524.96 N/A 0.00
AppAgent (Yang et al., 2023b) 0.50 1.78 19.8 1518.62 0.33 0.33

CogAgent (Hong et al., 2023) 0.17 2.33 7.23 587.91 1.00 0.00
MobileAgent (Wang et al., 2024) 0.50 1.33 13.65 1225.67 0.33 0.00

A.4 TASK SUCCESS CONDITION

List 2 shows a simple example of the check finish function. To eliminate the difficulty of
dealing with multiple possible action paths to success, we determine if the task is successful by only
observing the final state. In this example, the task is to open the About page of the current app.
We check if the Frequently Asked Questions text view (a child view in the About page) exists in
the current UI page. If it exists, it means the About page is opened successfully and the task is
completed. Otherwise, the task is not completed yet. It gives faithful results no matter how many
ways there are to open the About page.

MobileAgentBench automatically invokes the check finish function at the proper time: after
one agent action, and when getting one app event. The check finish function can be either
stateless or stateful, depending on the task. The function has two parameters, the view client
and the app event. view client provides a set of useful functions to obtain the current page’s
view hierarchy. app event provides the most recent user action sent from the Android Accessi-
bility Service, such as a button-clicking event. It helps to check the task-finishing status when it’s
not directly reflected in the current UI view.

1 def check_finish(self, view_client, app_event) -> bool:
2 title_views = view_client.findViewWithText("Frequently asked

questions")
3 if title_views is not None:
4 return True
5 return False

Listing 2: A simple example of the check finish function

A.5 VIEW HIERARCHY AND ACCESSIBILITY EVENTS

MobileAgentBench utilizes AndroidViewClient, a popular Android automation framework, to
obtain view hierarchy. AndroidViewClient has multiple backends, including UIAutomator,
ViewServer, and CulebraTester2. In this paper, we use the UIAutomator as the backend to con-
duct experiments. However, it’s worth exploring other backends that may have better performance.
After getting the view hierarchy, the benchmark can access the properties of the views displayed on
the screen. This provides a strong signal to check the current app status. For example, the benchmark
can check if the query was correctly entered in a search bar.

To listen to the Android UI events, including button clicks, page changes, etc., we implement an
Android app, AndroidEventListener. It uses the AccessibilityService and registers an event handler.
Before launching the benchmark, the AndroidEventLinstener needs to be turned on on the system

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

settings, accessibility page. Then the process runs in the background and does not affect the fore-
ground testing apps. Once an event is captured, it serializes the event object into JSON and sends
it to the benchmark server using a socket. The benchmark consumes all events one by one after the
agent performs an action.

A.6 TASK DESCRIPTION

The full list of tasks is shown in Tab. 4. All tasks are carefully designed to reflect the functions of
the corresponding app, with different difficulty levels. The difficulty levels are determined by the
minimum steps to accomplish the task.

Table 4: Sample task prompts with their difficulty levels

App Name Difficulty Level Task Prompt

Calculator Medium Calculate the result of ’3 + 5’

Calculator Medium Use Unit converter function to
calculate how many kilometers 1mile is equal to

Calculator Medium Calculate the result of ‘3 ∧ 3’

Calculator Medium Calculate the result of ’12 ÷ 3’

Calculator Medium Calculate the result of ’12 - 4’

Calculator Hard Calculate the result of ’18+(24×3)-(9÷3)’

Calculator Medium Calculate the result of ’12*4’

Calculator Hard Calculate the result of ’19.7 - 81.3’

Calculator Medium

Calculate the result of ’12 × 5’.
However, during the input process,

the number ’4’ was mistakenly entered instead of ’5’.
Correct this by first enter ’C’ to delete ’4’

and re-entering ’5’ and then perform the calculation

Calculator Medium Calculate the result of ’
√
16 + 3’

Calendar Medium Create a new event ’laundry’ and then search for it

Calendar Easy switch to daily view

Calendar Medium Show events in simple event list,
delete the laundry and meeting events.

Calendar Medium Create a new event ’laundry’

Calendar Medium
Create a new task, named ’laundry’,

with the description of ’wash all my clothes’.
Mark it as all-day.

Calendar Easy show events of next month

Calendar Easy open about page

Calendar Easy search event ’laundry’

Calendar Medium change snooze time to 1 minute

Calendar Medium go to settings and make weeks start on Monday

Contacts Easy open About View

Contacts Medium
Create a new contact,

his First Name is Yuzai, and his Phone Number is
123456789

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Contacts Medium Delete contact Yuzai

Contacts Easy Set the contact Yuzai to Favorite

Contacts Medium
Change phone filter,

which means don’t show phone storage
in contacts view

Contacts Medium Set not show contact’s Email in the contact profile screen

Contacts Medium Change the contact Yuzai’s number to
987654321 and save it

Contacts Medium Remove the dialog button,
and then return to the main view

Contacts Easy Search contact Yuzai

Contacts Medium Sort contacts by Data created time, Descending

File Manager Easy open the folder ’Downloads’ and
check the properties of the file ’testfile.txt’

File Manager Easy check the storage page

File Manager Medium Create a new file named ’testfile.txt’ in the ’Downloads’ folder

File Manager Medium Delete file named ’testfile.txt’ in the ’Downloads’ folder

File Manager Medium Delete the txt file in Download folder

File Manager Hard Delete all videos in Download folder

File Manager Medium Hide the folder named ’hidden’
and make sure File Manager Stop showing hidden media

File Manager Medium open the folder ’Downloads’
and rename the file ’Testfile.txt’ to ’testfile1.txt’

File Manager Easy Search a file named ’testfile.txt’

File Manager Medium In the main page, sort the folder by size in descending order

Gallery Medium filter media in the gallery and only show images and videos

Gallery Medium Go to the downloads folder, group the images by file type

Gallery Medium Change the view type to list view

Gallery Medium Go to Gallery settings and enable play videos automatically

Gallery Medium Enable remember the last video playback position in settings

Gallery Medium Go to Downloads Folder and set the first image as favorite

Gallery Medium Go to Downloads Folder
and set the first image as Home screen wallpaper

Gallery Medium show hidden items in the gallery in settings

Gallery Medium sort the gallery by size ascendingly

Gallery Medium Change the date and time format to
24-hour format in gallery settings

App Launcher Medium Add Chrome and Camera to launcher

App Launcher Medium Check who is the contributor of the app

App Launcher Easy Hide app name in Launcher

App Launcher Medium Open About page and go Frequently Asked Questions

App Launcher Medium Remove Chrome from Launcher

App Launcher Medium Rename Chrome in Launcher to MyChrome

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

App Launcher Easy Search for Chrome in Launcher

App Launcher Medium Change Setting Close this app at launching a different one to false

App Launcher Medium Sort apps by custom

App Launcher Medium Sort apps by title descending

SMS Messenger Medium Add a number ’123456789’ to block list

SMS Messenger Medium Change the Font size to ’Large’ in the settings interface

SMS Messenger Medium open the conversation with contact number ’123456789’,
and check for a random message’s properties

SMS Messenger Hard start a conversation with number ’123456789’,
send a message ’i luv u’, and check for message properties

SMS Messenger Hard

start a conversation with number ’123456789’,
and send a message ’i luv u’,

back to the main page and
search for the contact ’123456789’

SMS Messenger Medium make the conversation with number ’123456789’ archived

SMS Messenger Easy search for the contact ’123456789’ at top search bar

SMS Messenger Easy search message ’i luv u’ at the top search bar

SMS Messenger Easy show me the archived conversations

SMS Messenger Hard start a conversation with number ’123456789’,
and send a message ’i luv u’

Music Player Medium sort the album by ’year’

Music Player Medium config equalizer to Heavy Metal

Music Player Medium create a new playlist:test

Music Player Hard create a new playlist: test, and search for it

Music Player Hard create a new playlist: test,
and sort all playlist by descending order

Music Player Medium open faq page

Music Player Easy open setting page

Music Player Medium sort the playlist by ’desc’

Music Player Easy rescan media files

Music Player Easy search playlist ’Test’

Notes Medium add a new note named ’TODO List’

Notes Medium delete the “to do list” and “meeting” note

Notes Easy Check the item ‘eggs’ for shopping list

Notes Medium use the pin ‘2580’ to open the locked note ‘password list’

Notes Medium add a new Checklist named ‘TODO List’

Notes Hard create a checklist named
’Shopping list’ and add an item named ’Milk’

Notes Easy open the note ’meeting’

Notes Easy open about page

Notes Medium rename the current note to ‘finished task’

Notes Easy search ’secret’ in note ’Charles’s secrets’

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Voice Recorder Medium change bitrate to 32 kbps

Voice Recorder Medium delete the last recorded audio

Voice Recorder Hard delete all recorded audio

Voice Recorder Medium go to settings and empty the recycle bin

Voice Recorder Medium use mp3 as the format for new recordings

Voice Recorder Easy go to recycle bin page

Voice Recorder Medium change settings, so that the deleted items
will not go to recycle bin

Voice Recorder Medium rename the first audio to ’voice.m4a’

Voice Recorder Hard rename all audio to voice1.m4a, voice2.m4a, and so on

Voice Recorder Medium change app theme to dark red

17


	Introduction
	Related Work
	Mobile LLM Agents
	Benchmarks for Mobile LLM Agents

	MobileAgentBench
	Method
	Task Description
	Usage

	Experiments and Agent Evaluations
	Metrics
	Environment Setup
	Results

	Limitations and Future Work
	Conclusion
	Reproducibility
	Appendix
	Benchmarking Apps
	Customization
	Experiments with Online Apps
	Task Success Condition
	View Hierarchy and Accessibility Events
	Task Description


