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ABSTRACT

We introduce a conceptual framework for negotiative alignment in high-stakes
clinical AI, where human experts iteratively refine AI outputs rather than a bi-
nary accept/rejection. This approach uses graded feedback—including partial
acceptance of useful insights—to systematically flag and score different types
of clinical AI output errors. Although we do not present finalized experimen-
tal results, we outline a proof-of-concept using a chest radiograph image-report
dataset and a multimodal model. These severity-scored errors might guide future
targeted model updates. Negotiative alignment grounds each AI-generated report
in a continuous, co-adaptive dialogue with clinicians, which has the potential to
boost trust, transparency, and reliability in medical diagnostics and beyond.

1 INTRODUCTION

Artificial intelligence (AI) systems must continuously align with the evolving expertise of human
operators to ensure effective and safe deployment across diverse domains (Shen et al., 2024), in-
cluding high-stakes areas such as healthcare. Traditional methods optimize AI outputs against a
fixed objective, thus potentially neglecting the adaptive nature of expert decision-making. Clinical
users are dynamic in their interactions with AI—routinely refining or negotiating AI outputs rather
than simply accepting them (Savage et al., 2025; Liu et al., 2025); these incremental nuanced ad-
justments present unique challenges for bi-alignment (Han et al., 2024; Liao et al., 2024).

Effective alignment requires selectively adapting internal components rather than a monolithic ap-
proach. While individual model updates can improve performance in certain tasks, for example:
computer vision (e.g., continual learning (Parisi et al., 2019)) and large language models (e.g. re-
inforcement learning from human feedback (RLHF) (Ouyang et al., 2022; Christiano et al., 2023)
and modern preference tuning i.e. Proximal Policy Optimization (PPO) (Schulman et al., 2017),
Direct Preference Optimization (DPO) (Rafailov et al., 2024), and Group Relative Policy Opti-
mization (GRPO) (Shao et al., 2024))—however, in (medical) agentic systems there still remains a
gap in addressing its nuanced and complex human-AI alignment needs (Zhao et al., 2025).

We introduce negotiative alignment, a framework that leverages graded, iterative human feedback
to guide both holistic and modular updates, where each type of error identified by human clinical
input can appropriately help inform the appropriate adaptation of the sub-model within the agent
system. These modular corrections are flagged by computing severity scores to each feedback sig-
nal based on its impact on individual sub-model outputs, enabling a targeted correction mechanism
for precise adaptation. Negotiative alignment forms a continuous, bidirectional feedback loop be-
tween the AI system and its human expert, which leads to improved diagnostic accuracy and trust.
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Figure 1: Negotiative alignment framework for clinical AI agentic systems.

2 NEGOTIATIVE ALIGNMENT FRAMEWORK

We propose an interactive recommendation framework that situates each AI output within an in-
teractive feedback loop (Figure 1), in which AI-generated outputs – such as radiology reports or
annotated images – are evaluated for potential errors and flagged with graded feedback: full ac-
ceptance, partial acceptance, or rejection. This feedback system maps to severity scores for sub-
sequent targeted model adaptation. Our approach shifts from a static “accept/reject” paradigm,
toward a dynamically evolving, co-adaptive dialogue between the AI system and the clinical user.

3 METHODS AND PROPOSED EXPERIMENT

While we do not present finalized results, we outline a proof-of-concept approach.

3.1 DATASET & RADALIGN ERROR CATEGORIES

We propose and define nine (9) representative RadAlign error categories that may arise from AI-
generated radiology reports, along with example prompts and outputs (Figure 1). These prompts
elicit targeted scenarios (e.g., false positives, contradictory diagnoses, over-interpretation of arti-
facts) to provoke potential misalignments in the AI-driven clinical reasoning. A locally-deployed
large language model will be instructed to generate intentionally erroneous radiology outputs.
Alternatively, we will use ReXErr (Rao et al., 2024) which was built upon the well-established
MIMIC-CXR dataset (Johnson et al., 2019; 2024; Goldberger et al., 2000).

3.2 AUTOMATED ERROR DETECTION & SEVERITY SCORING

We propose a combined approach: incorporating a vision-language model (i.e. CXR-CLIP (You
et al., 2023)) with a multi-class attention framework to detect misalignments, while an NLU clas-
sifier (e.g., DeBERTa-Large-MNLI (He et al., 2021)) assigns error severities si ∈ [0, 1]. A total
summative severity score from 0 (close to ground truth) to 9 (severe mismatch) quantifies align-
ment. While severity signals could guide model re-training, we focus here on error flagging and
scoring, leaving adaptation to future work.
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4 DISCUSSION

Our conceptual framework outlines how graded error detection can facilitate negotiative alignment
for AI-assisted medicine, as mistakes arising from human-AI misalignment can be subtle yet clin-
ically impactful. By systematically detecting and scoring different clinical error types, clinicians
gain a transparent channel to correct AI outputs without discarding useful output elements. In fu-
ture work, we may use internal datasets and multimodal agents (i.e. MedRAX (Fallahpour et al.,
2025)) to validate our approach on diverse image-text scenarios. Moving forward, we plan to in-
tegrate radiologist feedback in prospective evaluations, exploring partial-layer model updates and
trust metrics that evolve over multiple feedback loops. Transparently quantifying error severity
and incorporating real-time clinician input can build trust in AI-assisted diagnostics and also help
continuously improve AI performance in real-world practice.
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