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ABSTRACT

Unsupervised pretraining has been transformative in many supervised domains.
However, applying such ideas to reinforcement learning (RL) presents a unique
challenge in that fine-tuning does not involve mimicking task-specific data, but
rather exploring and locating the solution through iterative self-improvement. In
this work, we study how unlabeled prior trajectory data can be leveraged to learn
efficient exploration strategies. While prior data can be used to pretrain a set of
low-level skills, or as additional off-policy data for online RL, it has been unclear
how to combine these ideas effectively for online exploration. Our method SUPE
(Skills from Unlabeled Prior data for Exploration) demonstrates that a careful
combination of these ideas compounds their benefits. Our method first extracts
low-level skills using a variational autoencoder (VAE), and then pseudo-relabels
unlabeled trajectories using an optimistic reward model, transforming prior data
into high-level, task-relevant examples. Finally, SUPE uses these transformed
examples as additional off-policy data for online RL to learn a high-level policy
that composes pretrained low-level skills to explore efficiently. We empirically
show that SUPE reliably outperforms prior strategies, successfully solving a suite
of long-horizon, sparse-reward tasks.

1 INTRODUCTION

Unsupervised pretraining has been transformative in many supervised domains, such as lan-
guage (Devlin et al., 2018) and vision (He et al., 2022). Pretrained models can adapt with small
numbers of examples, and with better generality (Radford et al., 2019; Brown et al., 2020). How-
ever, in contrast to supervised learning, reinforcement learning (RL) presents a unique challenge
in that fine-tuning does not involve further mimicking task-specific data, but rather exploring and
locating the solution through iterative self-improvement. Thus, the key challenge to address in pre-
training for RL is not simply to learn good representations, but to learn an effective exploration
strategy for solving downstream tasks.

Pretraining benefits greatly from the breadth of the data. Unlabeled trajectories (i.e., those collected
from previous policies whose objectives are unknown) are the most abundantly available, but using
them to solve specific tasks can be difficult. It is not enough to simply copy behaviors, which can
differ greatly from the current task. There is an entanglement problem – general knowledge of the
environment is mixed in with task-specific behaviors. A concrete example is learning from unlabeled
locomotion behavior: we wish to learn how to move around the world, but not necessarily to the
locations present in the pretraining data. We will revisit this setting in the experimental section.

The entanglement problem can be alleviated through hierarchical decomposition. Specifically, tra-
jectories can be broken into segments of task-agnostic skills, which are composed in various ways
to solve various objectives. We posit that unlabeled trajectories thus present a twofold benefit, (1) as
a way to learn a diverse set of skills, and (2) as off-policy examples of composing such skills. No-
tably, prior online RL methods that leverage pretrained skills largely ignore the second benefit, and
discard the prior trajectories after the skills are learned (Ajay et al., 2021; Pertsch et al., 2021; Hu
et al., 2023; Chen et al., 2024). We instead argue that such trajectories are critical, and can greatly
speed up learning. We make use of a simple strategy of learning an optimistic reward model from
online samples, and pseudo-relabeling past trajectories with an optimistic reward estimate. The past
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Figure 1: SUPE utilizes unlabeled trajectory data twice, both for offline unsupervised skill pretraining and
for online high-level policy learning using RL. Left: in the offline pretraining phase (Stage 1), we unsuper-
visedly learn both a trajectory segment encoder (a) and a low-level latent conditioned skill policy (b) via
a behavior cloning objective where the policy is optimized to reconstruct the action in the trajectory segment.
Right: in the online exploration phase (Stage 2), the pretrained trajectory segment encoder (a) and an opti-
mistic reward module (d) are used to pseudo-label the prior data and transform it into high-level trajectories
(f) that can be readily consumed by a high-level off-policy RL agent. Leveraging these offline trajectories and
the online replay buffer (e), we learn a high-level policy (c) that picks the pretrained low-level skills online to
explore in the environment. Finally, the observed transitions and reward values are used to update the optimistic
reward module and the online replay buffer.

trajectories can thus be readily utilized as off-policy data, allowing for quick learning even with a
very small number of online interactions.

We formalize these insights as SUPE (Skills from Unlabeled Prior data for Exploration), a recipe for
maximally leveraging unlabeled prior data in the context of exploration. The prior data is utilized
in two capacities, the offline and online phases. In the offline pretraining phase, we extract short
segments of trajectories and use them to learn a set of low-level skills. In the online phase, we
learn a high-level exploration policy, and again utilize the prior data by labelling each trajectory
segment with an optimistic reward estimate. By “double-dipping” in this way, we can utilize both
the low-level and high-level structure of prior trajectories to enable efficient exploration online.

Our main contribution is a simple method that leverages unlabeled prior trajectory data to both
pretrain skills offline and compose these skills efficiently online for exploration. We instantiate
SUPE with a variational autoencoder (VAE) to extract low-level skills, and an off-the-shelf off-
policy RL algorithm (Ball et al., 2023) to learn a high-level policy from both online and offline
data (Figure 1). Our empirical evaluations on a set of challenging sparse reward tasks show that
leveraging the unlabeled prior data during both offline and online learning is crucial for efficient
exploration, enabling SUPE to find the sparse reward signal more quickly and achieve more efficient
learning over all prior methods (none of which are able to utilize the data both online and offline).

2 RELATED WORK

Unsupervised skill discovery. Unsupervised skill discovery methods first began in the online set-
ting, where RL agents were tasked with learning structured behaviors in the absence of reward
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signal (Gregor et al., 2016; Bacon et al., 2017; Florensa et al., 2017; Achiam et al., 2018; Eysenbach
et al., 2018; Sharma et al., 2020; Hansen et al., 2020; Park et al., 2023b). These insights naturally
transferred to the offline setting as a method of dealing with unlabeled trajectory data. Offline skill
discovery methods largely comprise of two categories, those who extract skills based on optimiz-
ing unsupervised reward signals (in either the form of policies (Touati et al., 2022; Hu et al., 2023;
Frans et al., 2024; Park et al., 2024b) or Q-functions (Chen et al., 2024)), and those who utilize
conditional behavior-cloning over subsets of trajectories (Paraschos et al., 2013; Merel et al., 2018;
Shankar & Gupta, 2020; Ajay et al., 2021; Singh et al., 2021; Pertsch et al., 2021; Nasiriany et al.,
2022). Closest to our method in implementation are Ajay et al. (2021) and Pertsch et al. (2021),
who utilize a trajectory-segment VAE to learn low-level skills, and learn a high-level policy online.
However, in contrast to prior methods which all utilize offline data purely for skill-learning and do
not keep it around during online training, we show that utilizing the data via relabeling is critical for
fast exploration.

Offline to online reinforcement learning. The offline-to-online reinforcement learning meth-
ods (Xie et al., 2021b; Song et al., 2023; Lee et al., 2022; Agarwal et al., 2022; Zhang et al., 2023;
Zheng et al., 2023; Ball et al., 2023; Nakamoto et al., 2024) focus on efficient online learning with
the presence of offline data (often labeled with the reward value). Many offline RL approaches can
be applied to this setting – simply run offline RL first on the offline data to convergence as an ini-
tialization and then continue training for online learning (using the combined dataset that consists
of both offline and online data) (Kumar et al., 2020; Kostrikov et al., 2021; Tarasov et al., 2024).
However, such approaches often result in slow online improvements as offline RL objectives tend
to overly constrain the policy behaviors to be close to the prior data, limiting the exploration capa-
bility. On the other hand, off-policy online RL methods can also be directly applied in this setting
by directly treating the offline data as additional off-policy data in the replay buffer and learning the
policy from scratch (Lee et al., 2022; Song et al., 2023; Ball et al., 2023). While related in spirit,
these methods cannot be directly used in our setting as they require offline data to have reward labels.

Data-driven exploration. A common approach for online exploration is to augment reward bonuses
to the perceived rewards and optimize the RL agent with respect to the augmented rewards (Stadie
et al., 2015; Bellemare et al., 2016; Houthooft et al., 2016; Pathak et al., 2017; Tang et al., 2017;
Ostrovski et al., 2017; Achiam & Sastry, 2017; Merel et al., 2018; Burda et al., 2018; Ermolov &
Sebe, 2020; Guo et al., 2022; Lobel et al., 2023). While most exploration methods operate in the
purely online setting and focus on adding bonuses to the online replay buffer, recent works also start
to explore a more data-driven approach that makes use of an unlabeled prior data to guide online
exploration. Li et al. (2024) explore adding bonuses to the offline data, allowing them to optimize
the RL agent to be optimistic about states in the data, encouraging exploration around the offline data
distribution. Our method explores a similar idea of adding bonuses to the offline data but for training
a high-level policy, allowing us to compose pretrained skills effectively for exploration. Hu et al.
(2023) explore a slightly different strategy of learning a number of policies using offline RL that
each optimizes for a random reward function. Then, it samples actions from these policies online to
form an action pool from which the online agent can choose to select for exploration. This approach
does not utilize offline data during the online phase and require all the policies (for every random
reward function) to be represented separately. In contrast, our method makes use of the offline data
as off-policy data for updating the high-level policy and our skills are represented using a single
network (with the skill latent being the input to our network). As we will show in our experiments,
being able to use offline data is crucial for learning to explore in the environment efficiently.

Hierarchical reinforcement learning. The ability of RL agents to explore and behave effectively
over a long horizon is an important research goal in the field of hierarchical RL (HRL) (Dayan
& Hinton, 1992; Dietterich, 2000; Vezhnevets et al., 2016; Daniel et al., 2016a; Kulkarni et al.,
2016; Vezhnevets et al., 2017; Peng et al., 2017; Riedmiller et al., 2018; Nachum et al., 2018; Ajay
et al., 2021; Shankar & Gupta, 2020; Pertsch et al., 2021; Gehring et al., 2021; Xie et al., 2021a).
HRL methods typically learn a high-level policy to leverage a space of low-level primitive policies
online. These primitives can be either manually specified (Dalal et al., 2021) or pre-trained using
unsupervised skill discovery methods as discussed above. While many existing works learn or fine-
tune the primitives online along with the high-level policy (Dietterich, 2000; Kulkarni et al., 2016;
Vezhnevets et al., 2016; 2017; Nachum et al., 2018; Shankar & Gupta, 2020), others opt for a less
flexible but simpler formulation where the primitives are kept fixed after an initial pre-training phase
and only the high-level policy is being learned online (Peng et al., 2017; Riedmiller et al., 2018; Ajay
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et al., 2021; Pertsch et al., 2021; Gehring et al., 2021). Our work adopts the later strategy where we
offline pre-train skills using a static, unlabeled dataset. None of prior HRL methods simultaneously
leverage offline data for skill pre-training and as additional off-policy data for high-level policy
learning online. As we show in our experiments, both of them are crucial in achieving sample
efficient learning on challenging sparse-reward tasks.

Options framework. Many existing works on building hierarchical agents also adopt the options
framework (Sutton et al., 1999; Menache et al., 2002; Chentanez et al., 2004; Mannor et al., 2004;
Şimşek & Barto, 2004; Şimşek & Barto, 2007; Konidaris, 2011; Daniel et al., 2016a; Srinivas
et al., 2016; Daniel et al., 2016b; Fox et al., 2017; Bacon et al., 2017; Kim et al., 2019; Bagaria
& Konidaris, 2019; Bagaria et al., 2024). Different from the approach we take that learns latent
skills with a fixed time horizon (H = 4 in all our experiments), the options framework provides
a more flexible way to learn skills with varying time horizon, often defined by learnable initiation
and/or termination conditions (Sutton et al., 1999). We opt for the simplified skill definition be-
cause it allows us to bypass the need to learn initiation or termination conditions, and frame the skill
pretraining phase as a simple supervised learning task.

3 PROBLEM FORMULATION

We consider a Markov decision process (MDP) M = {S,A,P , γ, r, ρ} where S is the set of all
possible states, A is the set of all possible actions that a policy π(a|s) : S 7→ P(A) may take,
P (s′|s, a) : S × A 7→ P(S) is the transition function that describes the probability distribution
over the next state s′ given the current state and the action taken at the state, γ is the discount factor,
r(s, a) : S × A 7→ R is the reward function, and ρ : P(S) is the initial state distribution. We
have access to a dataset of transitions that are collected from the same MDP with no reward labels:
D = {(si, ai, s′i)}. During online learning, the agent may interact with the environment by taking
actions and observes the next state and the reward specified by transition function P and the reward
function r. We aim to develop a method that can leverage the dataset D to efficiently explore in the
MDP to collect reward information, and outputs a well-performing policy π(a|s) that achieves good
cumulative return in the environment η(π) = E{s0∼ρ,at∼π(at|st),st+1∼P (·|st,at)}

∑∞
t=0 [γ

tr(st, at)].
Note that this is different from the zero-shot RL setting (Touati et al., 2022) where the reward
function is specified for the online evaluation (only unknown during the unspervised pretraining
phase). In our setting, the agent has zero knowledge of the reward function and must actively
explore in the environment to identify the task it needs to solve by receiving the reward through
environment interactions.

4 SKILLS FROM UNLABELED PRIOR DATA FOR EXPLORATION (SUPE)

In this section, we describe in detail how we utilize the unlabeled trajectory dataset to accelerate
online exploration. Our method, SUPE, can be roughly divided into two parts. The first part is an
offline pretraining phase where we extract skills from the unlabeled prior data with an trajectory-
segment VAE. The second part is the online learning phase where we train a high-level off-policy
agent to compose the pretrained skills leveraging examples from both prior data and online replay
buffer. Algorithm 1 describes our method.

Pretraining with trajectory VAE. Since we only have access to an unlabeled dataset of tra-
jectories, we must capture all the behaviors in the data as accurately as possible. At the same
time, we aim to make the dataset directly usable for training a high-level skill-setting policy
in hope that this high-level policy can be trained in a more sample-efficient way (compared to
only having access to the online samples). We achieve this by adopting a trajectory VAE design
from prior methods (Ajay et al., 2021; Pertsch et al., 2021) where a short segment of trajectory
τ = {s0, a0, s1, · · · , sH−1, aH−1} is first fed into a trajectory encoder fθ(z|τ) that outputs a distri-
bution over the latent skill z, then a skill policy πθ(a|s, z) is used to reconstruct the actions in the
trajectory segment. Such a design helps us directly map trajectory segments to their corresponding
skill policies, effectively allowing us to transform the segment into a high-level transition in the form
of (current state: s0, action: z, next state: sH). As result, such transition can be directly consumed
by any off-policy RL algorithm in the online phase to update the high-level policy πψ(z|s) (as we
will explain in the next section in more details). We also learn a state-dependent prior pθ(z|s),
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Algorithm 1 SUPE

1: Input: Unlabeled dataset of trajectories D, trajectory segment length H and batch size B.
2: for each pretraining step do
3: Sample a batch of trajectory segments of length H , {τ1, · · · , τB} from D
4: Optimize the skill policy πθ(a|s, z), the trajectory encoder fθ(z|τ), along with the state-

dependent prior pθ(z|s) with the VAE loss 1
B

∑B
i=1 Lθ(τi) (Equation 1)

5: end for
6: Dreplay ← ∅
7: Initialize the optimistic reward module rUCB(s, z) (following (Li et al., 2024))
8: for every H online environment steps do
9: Sample the trajectory latent z ∼ πψ(z|s)

10: Run the skill policy πθ(a|s, z) for H steps in the environment: {s0, a0, r0, · · · , sH}
11: Add the high-level transition to buffer Dreplay ← Dreplay ∪ {(s0, z, sH ,

∑H−1
i=0 [γiri])}.

12: Sample a batch of trajectory segments of length H , {τ1, · · · , τB} from D
13: Encode each trajectory segment using the trajectory encoder: ẑi ∼ fθ(z|τi)
14: Use fθ and rUCB to transform each unlabeled trajectory segment into a high-level transition

with pseudo-labels (Equation 2): Boffline = {(si0, ẑi, r̂i, siH)}Bi=1
15: Sample batch Bonline from Dreplay

16: Run off-policy RL update on Bonline ∪Boffline to train πψ(z|s).
17: end for
18: Output: A hierarchical policy consisting of a high-level πψ(z|s) and low-level πθ(a|s, z).

following the prior works (Pertsch et al., 2021), to help accommodate the difference in behavior
diversity of different states. Putting them all together, the loss is shown in Equation 1.

Lθ(τ) = βDKL(fθ(z|τ)||pθ(z|s0))− Ez∼fθ(z|τ)

[
H−1∑
h=0

log πθ(ah|sh, z)

]
. (1)

Online exploration with trajectory skills. Our main goal in the online phase is to learn a high-level
off-policy agent that decides which skill to use at a regular interval of H time steps to learn the task
quickly. The agent consumes high-level transitions where the state and the next state are separated
by H time steps and the action corresponds to the trajectory latent z that is used to retrieve the low-
level actions from the skill policy π(a|s, z). To make use of the prior data and generate high-level
transitions from it, we need both the action and the reward label for each pair of states (that are
separated by H steps) in the trajectory. For the action, we can simply sample from the trajectory
encoding of the trajectory segment enclosed by the state pair. For the reward, we maintain an upper-
confidence bound (UCB) estimate of the reward value for each state and skill pair (s, z) inspired
by the prior work (Li et al., 2024) (where it does so directly in the state-action space (s, a)), and
pseudo-label the transition with such an optimistic reward estimate. The optimistic reward estimate
is recomputed before updating the high level agent, since the estimate changes over time, while the
trajectory encoding is computed before starting online learning, since this label does not change.
The relabeling is summarized below:

( s0
state

, ẑ ∼ fθ(z|τ)
labeled action

, r̂ = rUCB(s0, ẑ)

labeled reward

, sH
next state

). (2)

Practical implementation details. Following prior work on trajectory-segment VAEs (Ajay et al.,
2021; Pertsch et al., 2021), we use a Gaussian distribution (with both mean and diagonal covariance
learnable) for the trajectory encoder, the skill policy, as well as the state-dependent prior. While
Pertsch et al. (2021) use a KL constraint between the high-level policy and the state-dependent
prior, we use a simpler design without the KL constraint that works much better (as we show in
Appendix F). To achieve this, we adapt the policy parameterization from (Haarnoja et al., 2018),
where the action value is enforced to be between−1 and 1 using a tanh transformation, and entropy
regularization is applied on the squashed space. We use this policy parameterization for the high-
level policy π(z|s) to predict the skill action in the squashed space zsqaushed. We then recover the
actual skill action vector by unsquashing it according to z = arctanh(zsqaushed), so that it can
be used by our skill policy πθ(a|s, z). For upper-confidence bound (optimistic) estimation of the
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a) AntMaze: three maze layouts (medium, large and ultra), and four goals for each layout.

b) HumanoidMaze: medium, large, and giant.
c) AntSoccer: arena and medium

d) Kitchen e) Cube f) Scene g) Visual AntMaze

Figure 2: We experiment on 7 challenging, sparse-reward domains. a): AntMaze with three different
layouts and the corresponding four goal locations (denoted as the red dots); b): HumanoidMaze with three
layouts; c): AntSoccer with two layouts d): Kitchen; e): Cube; f): Scene; g): Visual AntMaze with colored
floor and local 64× 64 image observations.

reward, (rUCB(s0, ẑ)), we directly borrow the UCB estimation implementation in Li et al. (2024)
(Section 3, practical implementation section in their paper), where they use a combination of the
random network distillation (RND) (Burda et al., 2018) reward bonus and the predicted reward from
a reward model (see Appendix C, Ours for more details). For the off-policy high-level agent, we
follow Li et al. (2024) to use RLPD (Ball et al., 2023) that takes a balanced number of samples from
the prior data and the online replay buffer for agent optimization. In addition to using the optimistic
offline reward label, we also find that adding the RND reward bonus to the online batch is also
helpful to encourage online exploration, so we use it in all our experiments.

5 EXPERIMENTAL RESULTS

We present a series of experiments to evaluate the effectiveness of our method to discover fast
exploration strategies. We specifically focus on long-horizon, sparse-reward settings, where online
exploration is especially important. In particular, we aim to answer the following questions:

1. Can we leverage unsupervised trajectory skills to accelerate online learning?
2. Is our method able to find goals faster than prior methods?
3. How sensitive is the performance of our method is to its hyperparameters?

5.1 EXPERIMENTAL SETUP

We conduct our experiments on 7 challenging sparse-reward domains (Figure 2, (a) - (g)). We
provide a brief description of each of the domains below with more details available in Appendix D.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

State-based locomotion domains: AntMaze (a), HumanoidMaze (b), AntSoccer (c). The first set
of domains involve controlling and navigating a robotic agent in a complex environment. AntMaze
is a standard benchmark for offline-to-online RL from D4RL (Fu et al., 2020). HumanoidMaze and
AntSoccer are locomotion domains from OGBench, a offline goal-conditioned RL benchmark (Park
et al., 2024a). The goal of agent (either ant or humanoid) is to navigate to a goal location in a fixed
maze layout. Each of the AntMaze and HumanoidMaze domains has three different maze layouts.
For AntMaze, we test on four different goal location for each maze layout. For HumanoidMaze and
AntSoccer we test on one goal, and for HumanoidMaze we use both the navigate and stitch
datasets. In the AntSoccer task, the agent needs to additionally dribble a soccer ball and move the
ball to the goal location as well.

State-based manipulation domains: Kitchen (d), Cube (e), Scene (f). Next, we consider a set
of manipulation domains that require a wide range of manipulation skills. Kitchen is a standard
benchmark from D4RL where a robotic arm needs to complete a set of manipulation tasks (e.g., turn
on the microwave, move the kettle) in sequence in a kitchen scene. Cube and Scene are two offline
goal-conditioned RL benchmark domains from OGBench (Park et al., 2024a). For Cube, the robotic
arm must arrange one or more cube objects to desired goal locations (e.g., stacking on top of each
other) that mainly involves pick and place motions. For Scene, the robotic arm can interact with a
more diverse set of objects: a window, a drawer, a cube and two locks that control the window and
the drawer. The tasks in Scene are also relatively longer, requiring a composition of multiple atomic
behaviors (e.g., locking and unlocking, opening the drawer/window, moving the cube).

In addition to the six state-based domains, we also experiment with a challenging visual-domain,
Visual AntMaze (g) introduced by Park et al. (2023a), where the agent must rely on 64× 64 image
observations of its surroundings, as well as the proprioceptive information to navigate the maze.

To evaluate our method on these domains, we simply take the datasets in these benchmarks and
remove the reward label. We also remove any information in the transition that may reveal the
information about the termination of an episode. For all of these tasks, we use a −1/0 sparse reward
function where the agent receives−1 when it has not found the goal and it receives 0 when it reaches
the goal location. For all of the domains above, we use the normalized return, a standard metric for
D4RL (Fu et al., 2020) environments, as the main evaluation metric. For the Kitchen domain, the
normalized return represents the average percentage of the tasks that are solved. For tasks in other
domains, the normalized return represents the average task success rate. For all our figures, the
shaded area indicates the standard error and the solid line indicates the mean over random seeds.

5.2 COMPARISONS

While there is no existing method in our setting that utilizes unlabeled prior data in both the pretrain-
ing phase and the online learning phase, there are methods that use the prior data in either phase.
We first consider two baselines that do not use pretraining and directly perform online learning.

Online. This baseline discards the offline data and the exploration is done with online reward bonus
implemented by random network distillation (RND) (Burda et al., 2018). For all the baselines below
(including our method), we add online RND bonus to the replay buffer to encourage exploration.

ExPLORe (Li et al., 2024). This baseline is similar to our method in the sense that it also uses
exploration bonus and offline data to encourage exploration. The one crucial difference is that it
does not perform unsupervised skill pretraining and learns a 1-step policy directly online. As we
will show, pretraining is crucial for our method to find goals faster and lead to more efficient online
learning. It is worth noting that the original ExPLORe method does not make use of online RND. To
make the comparison fair, we additionally add online RND bonus to this baseline to help it explore
better online. For completeness, we include the performance of the original ExPLORe in Figure 12.

We then consider additional baselines that use the prior data during a pretraining phase but do not
use the data during online learning.

Diffusion BC + JSRL. This baseline is an upgraded version of the BC + JSRL baseline used in
ExPLORe (Li et al., 2024). Instead of using a Gaussian policy (as used by Li et al. (2024)), we
use an expressive diffusion model to behavior clone the unlabeled prior data. At the beginning of
each online episode, we roll out the policy for a random number of steps from the initial state before
using switching to the online RL agent (Uchendu et al., 2023; Li et al., 2023). One might expect
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that an expressive enough policy class can model the behavior of the prior good enough such that it
can form a good prior for exploration online.

Online with Skills. We also consider two skill-based baselines where the prior data is discarded in
the online phase and the high-level policy is trained from scratch online with exploration bonus. We
experiment with two types of pretraining skills. The first one, is the trajectory VAE skill used in our
method. The second one is from a recently proposed unsupervised offline skill discovery method
where skills are pretrained to be able to traverse a learned Hilbert representation space (Park et al.,
2024b) (HILP). We use the exact same high-level RL agent as our method except that the agent no
longer makes use of the prior data online. It is worth noting that the baseline that uses the trajectory
VAE skill is very similar to SPiRL (Pertsch et al., 2021), a prior skill-based online RL method
that also pretrains skills with a trajectory VAE. The only difference is that we make two additional
improvements on top of SPiRL. The first improvement is replacing the KL constraint with entropy
regularization (same as our method as described in Section 4, practical implementation details). The
second improvement is the online RND bonus that is also added to all other methods.

Finally, we introduce a novel baseline that also uses prior data during pretraining and online explo-
ration, but uses HILP skills rather than trajectory-based skills.

HILP w/ Offline Data. We observe that HILP skills can also utilize the offline data via relabeling.
Recall that HILP learns a latent space of the observations (via an encoder ϕHILP) and learns skills
that move agent in a certain direction z (skill) in the latent space. For any high-level transition
(s0, sH), we simply take ẑ ← ϕHILP(sH)−ϕHILP(s0)

∥ϕHILP(sH)−ϕHILP(s0)∥2
, the normalized difference vector that points

from s0 to sH in the latent space. We use the normalized difference vector because the pretrained
HILP skill policy takes in normalized skill vectors. We use the exact same high-level RL agent as
our method except that the skill relabeling is done by computing the latent difference rather than
using the trajectory encoder (fθ(z|τ)).
For the visual antmaze environment, we use the same image encoder used in RLPD (Ball et al.,
2023). We also follow one of our baselines, ExPLORe (Li et al., 2024), to use ICVF (Ghosh et al.,
2023), a method that uses task-agnostic value functions to learn image/state representations from
passive data. ICVF takes in an offline unlabeled trajectory dataset with image observations and
pretrain an image encoder in an unsupervised manner. Following ExPLORe, we take the weights
of the image encoder from ICVF pretraining to initialize the image encoder’s weights in the RND
network. To make the comparison fair, we also apply ICVF to all baselines (details in Appendix E).

5.3 CAN WE LEVERAGE UNSUPERVISED TRAJECTORY SKILLS TO ACCELERATE ONLINE
LEARNING?

Figure 3 shows the aggregated performance of our approach on all seven domains. Our method
outperforms all prior methods on domains except Scene, where our novel baseline HILP with Of-
fline Data performs slightly better. It is worth noting that HILP with Offline Data also leverages
offline data twice (one of the key ideas behind our method), both during offline and online learning.
Both HILP-based methods (Online with HILP Skills and HILP with Offline Data) perform well
on Scene, Single Cube, and AntSoccer, but struggle to learn on other tasks. The Online with Tra-
jectory Skills baseline also consistently performs worse than our method across all seven domains,
which demonstrates the importance of using prior data for online learning of the high-level policy,
since that is only difference between this baseline and Ours. ExPLORe uses offline data during
online learning, but does not pretrain skills, leading to slower learning on all seven environments
and difficulty achieving any significant return on any domains other than the easier AntMaze and
Single Cube tasks. We also report the performance on individual AntMaze mazes and Kitchen tasks
in Figure 11, and observe that our method outperforms the baselines more on harder environments.
This trend continues with HumanoidMaze, where individual results in Figure 16 show that Ours is
the only method to achieve nonzero final return on the more difficult large and giant mazes. These
experiments suggest that pretraining skills and the ability to leverage the prior data are both cru-
cial for achieving efficient online learning, especially in more challenging environments. For the
visual domain, we additionally perform an ablation study to assess the importance of the ICVF pre-
trained representation, which we include in Appendix E. While ICVF combines synergistically with
our method to further accelerate learning and exploration, initializing RND image encoder weights
using ICVF is not critical to its success.
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Figure 3: Aggregated normalized return across seven different domains (Single-Cube and Double-Cube
are two sub-domains of Cube). Ours achieves the best performance on all domains except on Scene where
HILP w/ Offline Data achieves better performance. HILP w/ Offline Data is a novel baseline that we in-
troduce which also uses the offline data both during offline skill pre-training and online learning. Section 5.2
contains details on the baselines we compare with. We omit the Online baseline on the harder domains (Cube,
Scene, HumanoidMaze, and AntSoccer) as it is consistently worst than other methods. For Kitchen, we
use 16 seeds. For AntMaze, Visual AntMaze, HumanoidMaze, and AntSoccer, we use 8 seeds. For
the rest, we use 4 seeds. All of the aggregated plots use the interquantile mean (IQM) metric following Agarwal
et al. (2021) with 95% stratified bootstrap confidence intervals.
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Figure 4: Interquartile mean (IQM) of the number of environment steps taken to reach the goal (smaller
the better). The first goal time is considered to be 300×103 steps if the agent never finds the goal. Our method
is the most consistent, achieving performance better than all other baselines on all layouts (4 tasks/goals for
each layout and 8 seeds for each task). The plot is generated using the rliable library with 95% stratified
bootstrap confidence intervals (Agarwal et al., 2021).

5.4 IS OUR METHOD ABLE TO FIND GOALS FASTER THAN PRIOR METHODS?

Even though we have demonstrated that our method is able to achieve higher success rate faster than
prior works, it is still not clear if our method can actually lead to better exploration (instead of simply
learning the high-level policy better). In this section, we study the exploration aspect in isolation
in the AntMaze domain. Figure 4 reports the number of online environment interaction steps for
the agent to reach the goal for the first time. Such a metric allows us to assess how efficiently the
agent explores in the maze whereas the success rate metric only measures how good the agent is at
reaching the desired goal. It is possible for an agent to be good at exploration, but bad at reaching
goals consistently and vice-versa. Figure 4 shows that our method reaches goals faster than every
baseline on all three maze layouts, which confirms that our method not only learns faster, but does
so by exploring more efficiently. For completeness, Table 3 reports the same metric but for each
individual goal location and maze layout, and we also include the success rate for each maze layout
and goal location in Appendix I.2.
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Figure 5: Sensitivity analysis on the RND coefficient (α) and the skill horizon length (H) on a subset of
tasks. We report the interquantile mean (IQM) of the normalized return across seven domains (we select one
representative task per domain) for different hyperparameter values. The performance of our method is not very
sensitive to the magnitude of α as long as it is within a reasonable range (2, 16) (Ours uses α = 8). Without
the bonus (α = 0), our method performs significantly worse. A skill horizon length of 4 performs significantly
better than a horizon length of 2 or 8. We use a skill length of 4 for all skill experiments. The normalized return
for each individual task we use for this analysis can be found in Appendix H.

5.5 HOW SENSITIVE IS THE PERFORMANCE OF OUR METHOD IS TO ITS HYPERPARAMETERS?

In this section, we study the sensitivity of two hyperparameters, 1) α: the amount of optimism (RND
coefficient) used when labeling offline data with UCB rewards (Equation 2), and 2) H: the length
of the skill. We select one representative task from each domain and study the how different α and
H values affect our performance on these tasks (Figure 5). For the RND coefficient, we test a wide
range of values. When α = 0, the RND exploration bonus is turned off, it significantly lowers the
performance of our method, highlighting the importance of optimistic labeling on efficient online
exploration. While we observe some variability across individual tasks (Appendix 5, Figure 9), our
method is generally not very sensitive to the RND coefficient value. The aggregated performance is
similar for α ∈ {2, 4, 8, 16}. Another key hyperparmeter in our method is the skill horizon length
(see Figure 5, right). We find that while there is some variability across individual tasks (Appendix
5, Figure 10), a skill horizon length of 4 generally performs the best, and that shorter or longer
horizons perform much worse on certain tasks. We use H = 4 for all experiments in the paper.

6 DISCUSSION AND LIMITATIONS

In this work, we propose a novel method, SUPE, that leverages unlabeled prior trajectory data to
accelerate online exploration and learning. The key insight is to use unlabeled trajectories twice,
to 1) extract a set of low-level skills offline, and 2) serve as additional data for a high-level off-
policy RL agent to compose these skills to explore in the environment. This allows us to effectively
combine the strengths from unsupservised skill pretraining and sample-efficient online RL methods
to solve a series of challenging long-horizon sparse reward tasks significantly more efficiently than
existing methods. Our work opens up avenues in making full use of prior data for scalable, online
RL algorithms. First, our pre-trained skills remain frozen during online learning, which may hinder
online learning when the skills are not learned well or need to be updated as the learning progresses.
Such problems could be alleviated by utilizing a better skill pretraning method, or allowing the low-
level skills to be fine-tuned online. A second limitation of our approach is the reliance on RND to
maintain an upper confidence bound on the optimistic reward estimate. Although we find that RND
works without ICVF on high-dimensional image observations in Visual AntMaze, the use of RND
in other high dimensional environments may require more careful consideration. Possible future
directions include examining alternative methods of maintaining this bound.
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7 REPRODUCIBILITY STATEMENT

We include all the implementation details in Appendix B and C, and we include the code in the
supplementary material along with the commands to reproduce all the experiments in our paper.
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A COMPUTE RESOURCES

We run all our experiments on NVIDIA A5000 GPU and V100 GPUs.

We first calculate required compute for AntMaze experiments. For each maze-goal configuration,
each of our pretraining run takes about two hours and online training also takes about two hours each.
To reproduce the results of our methods, it requires 8 (seeds) ×3 (maze layouts)×(1 (pretraining)+
4 (online learning) )×2 (hours per run) = 240 GPU hours. We have eight baselines that take similar
GPU hours, which bring the total estimated GPU hours required to be around 2160.

The runtime per Kitchen experiment is similar. There are only 3 environments, but we do 16 seeds.
This means we need about 16 (seeds)×3 (Kitchen tasks) ×(1 (pretraining) +1 (online learning) )×
2 (hours per run) = 192 GPU hours for our method. We only train six baselines (we do not run Ex-
PLORe (No Online RND) ablation, or KL ablation), so this gives 1344 hours. We also calculate the
compute used for the Visual AntMaze experiments. On average it takes approximately 8 hours to
train a pretraining checkpoint and approximately 24 hours to do online learning. This means it re-
quires 8 (seeds) ×(1 (pretraining) ×8 (hours per run)+4 (online learning) ×24 (hours per run)) =
832 hours for our method. We have six baselines in the main figure. Additionally, we add 4 addi-
tional baselines in the ICVF ablation. This gives a total of 9152 hours for the Visual AntMaze
results.

For computing the runtime of remaining experiments on OGBench environments, we approximate
skill checkpoint as taking 4 hours to train, and running online to take about 4 hours as well. For
the 15 manipulation tasks, we train 4 seeds per tasks, for the locomotion tasks, we train 8 seeds.
We have 2 methods to pretrain (Traj. skills and HILP), and need to train checkpoints for each Hu-
manoid dataset (6), AntSoccer maze (2), and manipulation task suite (3). This means 8 (seeds) ×
4 (hours per run) × 2 (methods) × 8 (tasks) + 4 (seeds) × 4 (hours per run) × 2 (methods) ×
3 (tasks) = 608 hours. We have 15 tasks (manipulation) trained with four seeds per task online, 8
(locomotion) trained with eight seeds, and six methods. This means 8 (seeds) × 4 (hours per run)×
6 (methods) ×8 (tasks) +4 (seeds) ×4 (hours per run) ×6 (methods) ×15 (tasks) = 2976 hours.
This gives a total compute of 3585 hours for OGBench results.

For the ablations on other AntMaze environments, including the play dataset and dataset qual-
ity ablation, each pretraining and online run took about 3 hours. We did four seeds, and 6
environments. This gives approximately 4 (seeds) × (1 (pretraining) + 1 (online learning) ) ×
3 (hours per run) × 6 (mazes) × 4 (methods) = 576 hours. We also did an RND ablation,
were we evaluated 6 additional RND coefficients with 8 seeds on one goal, which requires
8 (seeds) ×3 (hours per run)×6 (coefficients) = 144 hours, as well as a horizon ablation test which
used approximately 4 (seeds) × (1 (pretraining) + 1 (online learning) ) × 3 (hours per run) = 24
hours. Ground truth experiments used a similar amount of time, with 2 methods that did not re-
quire additional pretraining and 4 seeds, giving 24 more hours. This gives about 768 hours of other
ablations on AntMaze.

Next, we look at the compute required for the data ablation experiments. These are additional
AntMaze experiments on just the goals in antmaze-large maze. Thus, we have approximately
8 (seeds) × 1 (maze layouts) × 2 (data ablations) × (1 (pretraining) + 4 (online learning) ) ×
2 (hours per run) = 160 GPU hours to reproduce our method. We include 5 additional baselines,
bringing the total compute for data ablations to 960 GPU hours.

Thus, in total the results in this paper required approximately 16, 625 GPU hours, or about
1.9 GPU years. Note this is an approximate upper bound, since not all methods required training
checkpoints, and checkpoints were shared between different baselines that both uses trajectory
skills or both used HILP skills.

B VAE ARCHITECTURE AND HYPERPARAMETERS

We use a VAE implementation from Park et al. (2024b). The authors kindly shared with us their
OPAL implementation (which produces the results of the OPAL baseline in the paper). In this
implementation, the VAE encoder is a recurrent neural network that uses gated-recurrent units (Cho
et al., 2014) (GRU). It takes in a short sequence of states and actions, and produces a probabilistic
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output of a latent z. The reconstruction policy decoder is a fully-connected network with ReLU
activation (Nair & Hinton, 2010) that takes in both the state in the sequence as well as the latent z
to output an action distribution.

Parameter Name Value
Batch size 256
Optimizer Adam
Learning rate 3× 10−4

GRU Hidden Size 256 (AntMaze, Kitchen, VisualAntMaze)
512 (AntSoccer, HumanoidMaze, Scene, Cube)

GRU Layers 2 hidden layers (AntMaze, Kitchen, VisualAntMaze)
3 hidden layers (AntSoccer, HumanoidMaze, Scene, Cube)

KL Coefficient (β) 0.1 (AntMaze, HumanoidMaze, Kitchen, VisualAntmaze, AntSoccer)
0.2 (Cube, Scene)

VAE Prior state-conditioned isotropic Gaussian distribution over the latent
VAE Posterior isotropic Gaussian distribution over the latent
Reconstruction Policy Decoder isotropic Gaussian distribution over the action space
Latent Dimension 8
Trajectory Segment Length (H) 4
Image Encoder Latent Dim 50

Table 1: VAE training details.

In the online phase, our high-level policy is a Soft-Actor-Critic (SAC) agent (Haarnoja et al., 2018)
with 10 critic networks, entropy backup disabled and LayerNorm added to the critics following the
architecture design used in RLPD (Ball et al., 2023). We follow a similar strategy in ExPLORe (Li
et al., 2024) where we sample 128 offline samples and 128 online samples and add RND reward
bonus to all of the samples. The main difference is in the original ExPLORe paper is that they only
add reward bonus to the offline data as additionally adding the bonus to the online replay buffer does
not help for the maze goals they tested. In our experiments, we add the reward bonus to both offline
data and online data, as it leads to better performance in goals where there is limited offline data
coverage (see Appendix I.2).

Parameter Value
Batch size 256
Discount factor (γ) 0.99 (AntMaze, VisualAntmaze, Kitchen)

0.995 (HumanoidMaze, Cube, Scene, AntSoccer)
Optimizer Adam
Learning rate 3× 10−4

Critic ensemble size 10
Critic minimum ensemble size 1 for all methods on AntMaze HumanoidMaze, AntSoccer;

2 for all methods on Kitchen, Scene, Cube;
1 for non-skill based methods on Visual AntMaze,

2 for skill-based methods on Visual AntMaze.
UTD Ratio 20 for state-based domains, 40 for Visual AntMaze
Actor Delay 20
Network Width 256 (AntMaze, Kitchen, Visual AntMaze)

512 (HumanoidMaze, AntSoccer, Cube, Scene)
Network Depth 3 hidden layers.
Initial Entropy Temperature 1.0 on Kitchen, 0.05 on all other environments
Target Entropy −dim(A)/2
Entropy Backups False
Start Training after 5K env steps (RND update starts after 10K steps)
RND coefficient (α) 2.0 for non-skill based, 8.0 for skill based methods

Table 2: Hyperparameters for the online RL agent following RLPD (Ball et al., 2023)/ExPLORe (Li
et al., 2024). For Diffusion BC + JSRL on AntMaze, we use an initial entropy temperature of 1.0
because it works much better than 0.05. We use a 4× larger RND coefficient in skill-based methods
such that the reward bonus we get for each step in the skill horizon stays roughly proportional to the
non-skill-based methods.
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C IMPLEMENTATION DETAILS FOR BASELINES

Diffusion BC + JSRL. We use the diffusion model implementation from (Hansen-Estruch et al.,
2023). Following the paper’s implementation, we train the model for 3 million gradient steps with
a dropout rate of 0.1 and a cosine decaying learning rate schedule from the learning rate of 0.0003.
In the online phase, in the beginning of every episode, with probability p, we rollout the diffusion
policy for a random number of steps that follows a geometric distribution Geom(1 − γ) before
sampling actions from the online agent (inspired by (Li et al., 2023)). A RND bonus is also added
to the online batch on the fly with a coefficient of 2.0 to further encourage online exploration of
the SAC agent. The same coefficient is used in all other non-skill based baselines. For skill based
baselines, we scale up the RND coefficient by the horizon length (4) to account for different re-
ward scale. Following the BC + JSRL baseline used in ExPLORe (Li et al., 2024), we use a SAC
agent with an ensemble of 10 critic networks, one actor network, with no entropy backup and Lay-
erNorm in the critic networks. This configuration is used for all baselines on all environments. On
AntMaze, We perform a hyperparameter sweep on both p = {0.5, 0.75, 0.9} and the geometric
distribution parameter γ = {0.99, 0.995, 0.997} on the large maze with the top right goal and find
that p = 0.9 and γ = 0.99 works the best. We also use these parameters for the Visual AntMaze
experiments. On AntSoccer, we use the same p but raise the discount γ to match the environ-
ment discount rate of 0.995. On HumanoidMaze, we perform a sweep over p = {0.5, 0.75, 0.9}
on humanoidmaze-medium-navigate-v0 and find that p = 0.75 works best. We still use
γ = 0.995. On Scene and Cube, we do a similar sweep for p on the first task of Scene, Single
Cube, and Double Cube, and find that p = 0.5 works best. We still use γ = 0.995. For Kitchen,
we perform a sweep on the parameter p = {0.2, 0.5, 0.75, 0.9} and find that 0.75 works best. We
use γ = 0.99. We take the minimum of one random critic for AntMaze, Visual AntMaze, AntSoc-
cer, and HumanoidMaze, and the minimum of two random critics for Kitchen, Scene, and Cube.
For all methods, we use the same image encoder used in RLPD (Ball et al., 2023) for the Visual
AntMaze task, with a latent dimension of 50 (encoded image is a 50 dimensional vector), which is
then concatenated with proprioceptive state observations.

ExPLORe. We directly use the open-source implementation from https://github.com/
facebookresearch/ExPLORe/. The only difference we make is to adjust the RND coef-
ficient from 1.0 to 2.0 and additionally add such bonus to the online replay buffer (the original
method only adds to the offline data). Empirically, we find a slightly higher RND coefficient im-
proves performance slightly. The SAC configuration is the same as that of the Diffusion BC + JSRL
agent. We found that taking the minimum of one random critic on Visual AntMaze worked better for
ExPLORe than taking the minimum of two, so all non-skill based baselines use this hyperparameter
value.

Online RL with trajectory skills. This baseline is essentially our method but without using the
trajectory encoder in the VAE to label trajectory segments (with high-level skill action labels), so
all stated implementation decisions also apply to Ours. Instead, we treat it directly as a high-level
RL problem with the low-level skill policy completely frozen. The SAC agent is the same as the
previous agents, except for on Visual AntMaze, where taking the minimum of 2 critics from the
ensemble leads to better performance for Ours, so we use this parameter setting for all skill-based
benchmarks. We compute the high-level reward as the discounted sum of the rewards received every
H environment steps. During the 5 × 103 steps before the start of training, we sample random
actions from the state-based prior. For Visual AntMaze, we use the learned image encoder from the
VAE to initialize both the critic image encoder and the RND network. If using ICVF, we initialize
the RND network with the ICVF encoder instead.

Online RL with HILP skills. This baseline is the same as the one above but with the skills from
a recent unsupervised offline skill discovery method, HILP (Park et al., 2024b). We use the official
open-source implementation https://github.com/seohongpark/HILP and run the pre-
training to obtain the skill policies. Then, we freeze the skill policies and learn a high-level RL
agent to select skills every H steps.

HILP w/ offline data. This novel baseline is the same as Online w/ HILP Skills, except that we
also relabel the offline trajectories and use them as additional data for learning the high-level policy
online (similar to our proposed method). To relabel trajectories with the estimated HILP skill, we
compute the difference in the latent representation of the final state sH and initial state s0 in the
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Figure 6: Success rate on Visual AntMaze environment with and without ICVF. Ours works well without
ICVF, almost matching the original performance. However, the other baselines Online w/ Trajectory Skills
and ExPLORe achieve far worse performance without ICVF, which shows that using offline data both for ex-
tracting skills and online learning leads to better utilization of noisy exploration bonuses. Initializing ExPLORe
critic with ICVF helps, but does not substantially change performance.

trajectory, so ẑ ← ϕHILP(sH)−ϕHILP(s0)
∥ϕHILP(sH)−ϕHILP(s0)∥2

. We normalize the skill vector since the pretrained HILP
policies use a normalized vector as input. The high-level RL agent is the same as our method, except
the skill relabeling is done using the latent difference rather than the trajectory encoder.

Ours. We follow Li et al. (2024) (ExPLORe) to relabel offline data with optimistic reward estimates
using RND and a reward model. For completeness, we describe the details below. We initialize two
networks gϕ(s, z), ḡ(s, z) that each outputs an L-dimensional feature vector predicted from the state
and (tanh-squashed) high-level action. During online learning, ḡ(s, z) is fixed and we only update
the parameters of the other network gϕ(s, z) to minimize the L2 distance between the feature vectors
predicted by the two networks on the new high-level transition (snew0 , znew, rnew, snewH ):

L(ϕ) = ∥gϕ(snew0 , znew)− ḡ(snew0 , znew)∥22.
In addition to the two networks, we also learn a reward model rψ(s, z) that minimizes the reward
loss below on the transitions (s0, z, r, sH) from online replay buffer:

L(ψ) = ∥rψ(s0, z)− r∥22.
We then form an optimistic estimate of the reward value for the offline data as follows:

rUCB(s, z)← rψ(s0, z) + α∥gϕ(s0, z)− ḡ(s0, z)∥22,
where α controls the strength of the exploration tendency (RND coefficient). For AntMaze envi-
ronments (both state-based and visual), we find that it is sufficient to use the minimum reward, −1,
to label the offline data without a performance drop, so we opt for such a simpler design for our
experiments.

D DOMAIN DETAILS

D4RL AntMaze with Additional Goal Locations. D4RL AntMaze is a standard benchmark
for offline-to-online RL (Fu et al., 2020; Ball et al., 2023) where an ant robot needs to navigate
around a maze to a specified goal location. We benchmark on three mazes of increasing size,
antmaze-medium, antmaze-large, and antmaze-ultra. We take the D4RL dataset for
medium and large mazes as well as the dataset from Jiang et al. (2022) for the ultra maze (we use
the diverse version of the datasets for all these layouts). We then remove the termination and
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reward information from the dataset such that the agent does not know about the goal location a
priori. For each of the medium, large, ultra mazes, we test with four different goal locations that are
hidden from the agent. See Figure 2a for a visualization of the mazes and the four goal locations
that we use for each of them. We use a −1/0 sparse reward function where the agent receives −1
when it has not found the goal and it recieves 0 when it reaches the goal location and the episode
terminates. The ant always starts from the left bottom corner of the maze, and the goal for the RL
agent is to reach the goal consistently from the start location. It is worth noting that the goal is not
known a priori and the offline data is unlabeled. In order to learn to navigate to the goal consistently,
the agent first needs to traverse in the maze to gather information about where the goal is located.

D4RL Kitchen is another standard benchmark for offline-to-online RL (Fu et al., 2020; Nakamoto
et al., 2024), where a Franka robot arm is controlled to interact with various objects in a simu-
lated kitchen scenario. The desired goal is to complete four tasks (open the microwave, move
the kettle, flip the light switch, and slide open the cabinet door) in sequence. In the pro-
cess, the agent attains a reward equal to the number of currently solved tasks. The benchmark
contains three datasets, kitchen-mixed, kitchen-partial, and kitchen-complete.
kitchen-complete is the easiest dataset, which only has demonstrations of the four tasks com-
pleted in order. kitchen-partial adds additional tasks, but the four tasks are sometimes com-
pleted in sequence. kitchen-mixed is the hardest, where the four tasks are never completed
in sequence. To adapt this benchmark in our work, we remove all the reward labels in the offline
dataset.

We also include four additional domains repurposed from a goal-conditioned offline RL bench-
mark (Park et al., 2024a).

OGBench HumanoidMaze is a navigation task similar to AntMaze, but with the Ant agent replaced
by a Humanoid agent. HumanoidMaze is much more challenging than AntMaze because Humanoid
control is much harder with much higher action dimensionality (21 vs. 8). We benchmark on all
six datasets in the benchmark. They involve three mazes of increasing size, humanoid-medium,
humanoid-large, and humanoid-giant, and two types of datasets, navigate (collected
by noisy expert policy that randomly navigates around the maze) and stitch (containing only
short segments that test the algorithm’s ability to stitch them together).

OGBench AntSoccer is a navigation task similar to AntMaze, but with the added complexity where
the Ant agent must first travel to the location of a soccer ball, then dribble the soccer ball to the goal
location. We benchmark on the two navigate datasets, antsoccer-arena-navigate and
antsoccer-medium-navigate.

OGBench Cube and Scene are two manipulation domains with a range of manipulation tasks for
each domain. Cube involves using a robot arm to arrange blocks from an initial state to a goal state,
which requires pick and place actions to move and/or stack blocks. We benchmark on the two sub-
domains, cube-single and cube-double which include one and two blocks, respectively. We
also benchmark on the Scene environment with two buttons, a drawer, and a window. The most
difficult task requires the agent to perform 8 atomic actions: unlock the drawer and window, open
drawer, pick up block, place block in drawer, close drawer, open window, lock drawer and window.
We benchmark on all 5 tasks for cube-single, cube-double, and scene, and use the play
datasets collected by non-Markovian expert policies with temporally correlated noise.

Aside from the state-based domains above, we also consider a visual domain below to test the ability
of our method in scaling up to high-dimensional image observations.

Visual AntMaze is a benchmark introduced by Park et al. (2023a), where the agent must rely on
64 × 64 image observations of its surroundings, as well as proprioceptive information including
body joint positions and velocities to navigate the maze. In particular, the image is the only way for
the agent to locate itself within the maze, so successfully learning to extract location information
from the image is necessary for successful navigation. The floor is colored such that any image
can uniquely identify a position in the maze. The maze layout is the same as the large layout in
the state-based D4RL AntMaze benchmark above and we also use the same additional goals. The
reward function and the termination condition are also the same as the state-based benchmark.
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Figure 7: Normalized return on three AntMaze mazes, comparing Ours with a KL regularized alterna-
tive (Ours (KL)). We that Ours consistently outperforms Ours (KL) on all three mazes, with initial learning
that is at least as fast and significantly improved asymptotic performance. Only Ours is able to meet or surpass
the asymptotic performance of ExPLORe on all mazes.

E ICVF IMPLEMENTATION DETAILS AND ABLATION EXPERIMENTS FOR
VISUAL ANTMAZE

We use the public implementation from the authors of (Ghosh et al., 2023) at https://github.
com/dibyaghosh/icvf_release and run the ICVF training for 75, 000 gradient steps to ob-
tain the pre-trained encoder weights, following (Li et al., 2024). Then, we initialize the encoder of
the RND network with these weights before online learning. It is worth noting that this is slightly
different from the prior work (Li et al., 2024) that initializes both the RND network and the critic
network. In Figure 6, we examine the performance of Ours, Online w/ Trajectory Skills, and
ExPLORe with and without ICVF. Both of the baselines perform much better with the ICVF ini-
tialization, suggesting that ICVF might play an important role in providing more informative explo-
ration signal. Ours, without using ICVF, can already outperform the baselines with ICVF. By both
extracting skills from offline data and training with offline data, we are able to learn better from less
informative exploration signals. We also observe that initializing the critic with ICVF (as done in
the original paper (Li et al., 2024)) helps improve the performance of ExPLORe some, but does not
substantially change performance.

F KL PENALTY ABLATION

In Figure 7, we compare the performance of Ours with a version of our method that uses a KL-
divergence penalty with the state-based prior (as used in a previous skill-based method (Pertsch
et al., 2021)), Ours (KL). In Ours, as discussed in Section 4, we borrow the policy parameteriza-
tion from Haarnoja et al. (2018) and adopt a tanh policy parameterization with entropy regulariza-
tion on the squashed space. Pertsch et al. (2021) parameterize the higher level policy as a normal
distribution and is explicitly constrained to a learned state-dependent prior using a KL-divergence
penalty, with a temperature parameter that is auto-tuned to match some target value by using dual
gradient descent on the temperature parameter. They do not use entropy regularization. Keeping
everything else about our method the same, we instantiate this alternative policy parameterization in
Ours (KL). We sweep over possible target KL-divergence values (5, 10, 20, 50) and initial values
for the temperature parameter (100, 1, 0.1) using the performance on antmaze-large, but find
that these parameters do not substantially alter performance. As shown in Figure 7, Ours performs
at least as well as Ours (KL) in the initial learning phase, and has better asymptotic performance
on all three mazes, matching or beating ExPLORe, on all three mazes. It seems likely that not
having entropy regularization makes it difficult to appropriately explore online, and that explicitly
constraining to the prior may prevent further optimization of the policy. Attempts at combining
an entropy bonus and KL-penalty lead to instability and difficulty tuning two separate temperature
parameters. Additionally, in the Kitchen domain, the KL objective is unstable, since at some states
the prior standard deviation is quite small, leading to numerical instability. In contrast, adopting the
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Figure 8: Comparison to best methods in the offline-to-online RL setting. Our method with the ground
truth offline reward outperforms state-of-the-art offline-to-online methods such as Cal-QL (Nakamoto et al.,
2024) and IDQL (Hansen-Estruch et al., 2023) in six of the seven tasks. Both the curves of Cal-QL and IDQL
are directly taken from their papers. For Ours (Ground Truth) and RLPD, 4 seeds are used and standard error
is shown.

tanh policy parameterization from Haarnoja et al. (2018) is simple, performs better, and encounters
none of these issues in our experiments.

G COMPARISON WITH OFFLINE-TO-ONLINE RL METHODS

Our setting is different from the typical offline-to-online RL setting since we do not have reward
label in the offline data. However, our method can be easily adapted to the offline-to-online RL
setting by simply removing the online reward prediction model and replacing the reward predic-
tion (of the offline transitions) with the ground truth reward. As shown in Figure 8, on the four
AntMaze tasks (top right goal), our method with ground truth outperforms all baselines considered
(CalQL (Nakamoto et al., 2024), RLPD (Ball et al., 2023), IDQL (Hansen-Estruch et al., 2023)).
In Kitchen, our method with ground truth outperforms all baselines on the kitchen-mixed and
kitchen-complete datasets, but performs slightly worse than CalQL on kitchen-partial.

H SENSITIVITY ANALYSIS

We picked one representative task from each domain: AntMaze Large top right goal, Kitchen Mixed,
HumanoidMaze Giant Stitch, Single Cube Task 1, Double Cube Task 1, Scene Task 1, and AntSoc-
cer Medium Navigate. Figure 9 shows the performance of our method with different RND coeffi-
cients. We see that an RND coefficent of zero is very bad for performance on the locomotion tasks,
and that the best nonzero RND coeffcient varies between environments. For all experiments in the
paper, we selected the middle value of eight, and kept it the same across all domains. Figure 10
shows the performance of our method with different skill horizon lengths. We see that while a hori-
zon length of 2 attains better final performance on AntMaze Large Top Right at the cost of slower
initial exploration, it performs worse than a horizon length of 4 on all other environments. A longer
horizon length of 8 seems like it could be slightly better in Kitchen Mixed and Scene, but performs
much worse in all other tasks. We found that using a horizon length of 4 generally worked well on
all tasks, so we used this length for all trajectory-skill based experiments in this paper.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2 0.3
0.00

0.25

0.50

0.75

1.00
AntMaze Large Top Right

0.0 0.1 0.2 0.3

Kitchen Mixed

0.0 0.1 0.2 0.3

HumanoidMaze Giant Stitch

0.0 0.1 0.2 0.3

Single Cube Task 1

0.0 0.1 0.2 0.3
0.00

0.25

0.50

0.75

1.00
Double Cube Task 1

0.0 0.1 0.2 0.3

Scene Task 1

0.0 0.1 0.2 0.3

AntSoccer Medium

Environment Steps (×106)

N
or

m
al

iz
ed

 R
et

ur
n

Ours Ours (  = 0) Ours (  = 2) Ours (  = 16)

Figure 9: Sensitivity analysis for the RND coefficient. RND is essential to strong performance on the
lomotion tasks (AntMaze, AntSoccer, HumanoidMaze). The best coefficient varies between tasks. We use the
middle value of 8 for all experiments in this paper, scaled accordingly based on horizon length. All curves use
4 seeds, and standard error is shown.
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Figure 10: Sensitivity analysis for the skill horizon length. A horizon length of 4 generally performs the
best across all environments. A horizon length of 2 performs relatively well in AntMaze Large Top Right, but
performs poorly in all other environments. A longer horizon length of 8 performs slightly better than a horizon
length of 4 in Kitchen Mixed and Scene Task 1, but performs poorly in all other tasks. We used a horizon length
of 4 for all experiments in this paper. All curves use 4 seeds, and standard error is shown.

I STATE-BASED D4RL RESULTS

In this section, we summarize our experimental results on two state-based D4RL domains: AntMaze
and Kitchen. Figure 11 shows the comparison of our method against all the baselines.
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Maze Layout Goal Location Methods without Pretraining Methods with Pretraining

Online + RND ExPLORe
Diffusion BC w/

JSRL
Online w/

Trajectory Skills
Online w/

HILP Skills
HILP w/

Offline Data
Ours

Medium

Top Left 71 ± 5.0 27 ± 3.2 60 ± 8.1 21 ± 4.1 120 ± 47 27 ± 6.2 14 ± 3.1
Top Right 100 ± 16 29 ± 2.8 85 ± 19 76 ± 26 160 ± 40 72 ± 36 22 ± 3.2
Bottom Right 230 ± 38 35 ± 4.9 99 ± 15 77 ± 34 300 ± 0 270 ± 33 22 ± 4.4
Center 210 ± 32 71 ± 8.0 260 ± 28 26 ± 3.4 260 ± 28 300 ± 0.0 18 ± 1.7
Aggregated 150 ± 14 40 ± 2.0 130 ± 10 50 ± 11 210 ± 17 170 ± 13 19 ± 1.8

Large

Top Left 72 ± 10 33 ± 2.9 52 ± 3.3 22 ± 4.2 300 ± 0 300 ± 0.0 21 ± 2.8
Top Right 220 ± 20 49 ± 7.7 220 ± 28 190 ± 27 280 ± 20 110 ± 36 27 ± 2.6
Bottom Right 280 ± 15 34 ± 1.8 160 ± 22 140 ± 22 280 ± 21 260 ± 19 21 ± 1.8
Top Center 220 ± 28 48 ± 5.2 120 ± 8.8 59 ± 12 240 ± 23 33 ± 8.5 39 ± 6.2
Aggregated 200 ± 8.9 41 ± 2.7 140 ± 13 100 ± 13 270 ± 12 180 ± 13 27 ± 1.7

Ultra

Top Left 76 ± 7.0 34 ± 4.9 91 ± 11 36 ± 11 39 ± 21 15 ± 5.3 17 ± 3.6
Top Right 300 ± 0.0 92 ± 20 290 ± 7.8 120 ± 14 260 ± 19 150 ± 32 37 ± 5.5
Bottom Right 300 ± 0.0 70 ± 8.0 300 ± 0.0 130 ± 16 240 ± 28 67 ± 12 34 ± 6.0
Top Center 230 ± 35 29 ± 5.5 230 ± 29 75 ± 16 100 ± 32 17 ± 1.7 22 ± 4.4
Aggregated 230 ± 9.3 56 ± 5.4 230 ± 9.1 90 ± 7.1 160 ± 14 61 ± 8.2 27 ± 2.4

Aggregated 190 ± 6.9 46 ± 2.3 160 ± 6.3 80 ± 5.9 210 ± 11 130 ± 7.4 25 ± 1.4

Table 3: The number of environment steps (×103) taken before the agent find the goal. Lower is better.
The first goal time is considered to be 300× 103 steps if the agent never finds the goal. We see that our method
is the most consistent, achieving performance as good as or better than all other methods in each of the 4
goals across 3 different maze layouts. The error quantity indicated is standard error over 8 seeds. The method
that has the lowest mean is in bold and all the other methods with values that are not statistically significantly
higher are also in bold. We used the t-test with p = 0.05 to determine the statistical significance.
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Figure 11: Normalized return on individual AntMaze and Kitchen tasks. Ours achieves the strongest
performance on all tasks. Online w/ Trajectory Skills learns much slower on all AntMaze tasks, and is
asymptotically worse on two of the three more challenging Kitchen tasks. ExPLORe struggles to learn on
Kitchen, and performs worse as maze size increases. None of the other baselines are competitive on any tasks.
Each curve is an average over four goals with 8 seeds for AntMaze, and 16 seeds for Kitchen.

I.1 EXPLORATION EFFICIENCY

Figure 14 shows the percentage of the maze that the agent has covered throughout the training. The
coverage of skill-based methods that do not use prior data during online learning, Online w/ Trajec-
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tory Skills and Online w/ HILP Skills, significantly lags behind baselines that use offline data after
50,000 environment steps. Many methods achieve similar coverage on antmaze-medium, likely
because the maze is too small to differentiate the different methods. Ours is able to achieve the
highest coverage on the antmaze-ultra, and is only surpassed on antmaze-large by HILP
w/ Offline Data, which has high first goal times and slow learning. Thus, the coverage difference
can likely be at least partially attributed to HILP w/ Offline Data struggling to find the goal and
continuing to explore after finding the goal. All non-skill based methods struggle to get competi-
tive coverage levels on antmaze-large and antmaze-ultra. This suggests both pretraining
skills and the ability to leverage prior data online are crucial for efficient exploration, and our method
effectively compounds their benefits.

I.2 FULL D4RL ANTMAZE RESULTS

We evaluate the success rate of the our algorithm compared to the same baseline suite as in the main
results section for each individual goal and maze layout and report the results in Figure 12. We also
include ExPLORe both with and without an online RND bonus. Online RND helps ExPLORe the
most for the antmaze-medium bottom-right goal, where there is sparse offline data coverage for
a considerable radius around the goal. We hypothesize that with the absence of online RND, the
agent is encouraged to only stay close to the offline dataset, making it more difficult to find goals in
less well-covered regions. On the flip side, for some other goals with better offline data coverage,
like the antmaze-large top-right goal, online RND can make the performance worse. For every
goal location, Ours consistently matches or outperforms all other methods throughout the training
process.

We also evaluate the coverage at every goal location for every method for each maze layout and
show the result in Figure 13. The coverage varies from goal location to goal location as some goal
locations are harder to reach. Generally, the agent stops exploring once it has learned to reach the
goal consistently. Ours consistently has the best initial coverage for 11 out of 12 goals, though
sometimes has lower coverage compared to other methods later in training. However, this is likely
due in large part to successfully learning how to reach that goal quickly, and thus not exploring
further.

I.3 D4RL PLAY DATASET

Since there is limited performance difference between the diverse and the play datasets, we only
report the performance on the diverse datasets. For completeness, we also include the results of the
play datasets in Figure 15. The results on the play datasets are consistent with our results in the main
body of the paper where our method outperforms all baseline approaches consistently with better
sample efficiency.

J OGBENCH RESULTS

In this section, we include the full results on individual tasks for each of the four OGBench domains
(HumanoidMaze, Cube, Scene, and AntSoccer) (Park et al., 2024a).

J.1 HUMANOIDMAZE

As shown in Figure 16, our method substantially outperforms all prior methods on the difficult
HumanoidMaze environment. It is the only method to achieve nonzero return on the more diffi-
cult large and giant mazes, and performs approximately four times better than the next best
baseline, Online w/ Traj. Skills, on the medium environments. These results show that on diffi-
cult, long horizon tasks, using offline data during online learning is essential for strong exploration
performance.

J.2 CUBE AND SCENE

As shown in Figure 17, Ours matches or outperforms the next best baseline on 11 of the 15 tasks.
The novel baseline that we introduce HILP w/ Offline Data which also uses offline data for skill
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Figure 12: Success rate by goal location. The addition of online RND in ExPLORe leads to better perfor-
mance on goals with less offline data coverage, and slightly worse performance on goals well-represented in
the dataset. Ours consistently matches are outperforms all other methods on all goals throughout training.
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Figure 13: Coverage for every goal location on three antmaze environments. There is significant variation
between goals, and Ours consistently has the best initial coverage performance on 11 of 12 goals. Flattening
coverage compared to other methods can be at least partially attributed to having already found the goal, and
sucessfully optimizing reaching that goal, rather than continuing to explore after already finding the goal.
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Figure 14: Coverage on three different AntMaze mazes, averaged over runs on four goals. Ours has
the best coverage performance on the challenging antmaze-ultra, and is only passed by HILP w/ Offline
Data on antmaze-large. Online w/ Traj. Skills and Online with HILP Skills struggle to explore after
initial learning, and Online and Diffusion BC + JSRL generally perform poorly at all time steps.
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Figure 15: Performance of our method on the play datasets. Ours outperforms all baselines, similar to the
results on the diverse datasets (Figure 11). We average over 4 seeds.

pretraining and online learning outperforms Ours on four of the Scene tasks, which further shows
how using offline data twice is critical. Additionally, on two of the difficult Double Cube manipula-
tion tasks, Ours is the only method to achieve nonzero reward. Non-skill based methods ExPLORe
and Diffusion BC + JSRL performs reasonably well on the easier Cube Single and Scene task 1,
but struggle to achieve significant return on the more difficult tasks, which shows how extracting
structure from skills is critical for solving challenging tasks.

J.3 ANTSOCCER

As shown in Figure 18, Ours matches or outperforms all baselines on AntSoccer Medium, and
achieves higher final performance than all baselines on AntSoccer Arena. We also see that on
both tasks, Ours and HILP w/ Offline Data outperform Online w/ Traj. Skills and Online w/
HILP Skills, which demonstrates the importance of using offline data twice to accelerate online
exploration.
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Figure 16: Normalized return on six HumanoidMaze tasks. Our method is the only method that solves
the task with more than 50% success rate. All baselines either completely fail or only achieve less than 20%
success rate on easier mazes (Online w/ Traj. Skill on medium-navigate and medium-stitch). We
average over 8 seeds.

K SENSITIVITY TO OFFLINE DATA QUALITIES

To provide more insights on how different offline data qualities affect the performance of our
method, we perform additional analysis on the AntMaze-Large environment.

K.1 EXPERT DATA TO RANDOM EXPLORATORY DATA

In Figure 19, we consider four additional offline datasets for the antmaze-large task with de-
creasing dataset quality:

1. Expert: collected by a non-noisy expert policy that we train ourselves.
2. Navigate: collected by a noisy expert policy that randomly navigates the maze (from OG-

Bench (Park et al., 2024a)).
3. Stitch: collected by the same noisy expert policy but with much shorter trajectory length

(from OGBench (Park et al., 2024a))
4. Explore: collected by moving the ant in random directions, where the direction is re-

sampled every 10 environment steps. A large amount of action noise is also added (from
OGBench (Park et al., 2024a)).

As expected, the baseline ExPLORe shows a gradual performance degradation from Expert to
Navigate, to Stitch, and to Explore. All skill-based methods (including our method) fail
completely on Explore. This is to be expected because the Explore dataset contains too much
noise and the skills extracted from the dataset are likely very poor and meaningless. The high-level
policy then would have trouble composing these bad skills to perform well in the environment. On
Navigate and Stitch, our method outperforms other baselines, especially on the more challeng-
ing Stitch dataset where it is essential to stitch shorter trajectory segments together. On Expert,
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Figure 17: Normalized return on individual tasks in Cube and Scene domains. Cube has 10 tasks in total
(5 on Cube-Single and 5 on Cube-Double). Scene has 5 tasks in total. We average over 4 seeds.
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Figure 18: Normalized return on individual tasks in the AntSoccer domain. We average over 4 seeds.
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Figure 19: Performance comparison on AntMaze-Large with different offline datasets (top-right goal).
Expert: collected by a non-noisy expert policy; Navigate: collected by a noisy expert policy that randomly
navigates the maze from OGBench (Park et al., 2024a); Stitch: collected by the same noisy expert policy but
with much shorter trajectory length (also from OGBench (Park et al., 2024a)); Explore: random exploratory
trajectories collected by moving the ant in random directions re-sampled every 10 environment steps, with large
action noise added (also from OGBench (Park et al., 2024a)).

all methods perform similarly with ExPLORe doing slightly better. We hypothesize that this is be-
cause with the expert data, online learning does not require as much exploration, and skill-based
methods are mostly beneficial when there is a need for structured exploratory behaviors. Since the
expert dataset has a very different distribution (much narrower) than the others, we performed a
sweep over the KL coefficient in VAE training over {0.01, 0.05, 0.1, 0.2, 0.4, 0.8}, and found that
0.2 performed best, so we used these skills for both Ours and Online w/ Traj. Skills on this dataset.

K.2 DATA CORRUPTIONS

In this section, we study how robust our method is against offline dataset corruptions. We perform
an ablation study on the AntMaze domain on the large maze layout with two types of data corruption
applied to the offline data:

1. Insufficient Coverage: All the transitions close to the goal (within a circle with a radius of
5) are removed.

2. 5% Data: We subsample the dataset where only 5% of the trajectories are used for skill
pretraining and online learning.
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We report the performance on both settings in Figure 20. For the Insufficient Coverage setting, our
method learns somewhat slower than the full data setting, but can still reach the same asymptotic
performance, and outperforms or matches all baselines in the same data regime throughout the
training process. For the 5% Data setting, our method also reaches the same asymptotic performance
as in the full data regime, and outperforms or matches all baselines throughout training. The gap
between Ours and baseline performance (in particular, ExPLORe) is smaller than in the full data
regime, which is to be expected as we have less data to learn the prior skills, so the skills are likely
not as good. Overall, among the top performing methods in the AntMaze domain, our method is the
most robust, consistently outperforming the other baselines that either do not use pre-trained skills
(ExPLORe) or do not use the offline data during online learning (Online w/ Trajectory Skills) in
these data corruption settings.
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Figure 20: Data corruption ablation on state-based antmaze-large. Top: The success rate of different
methods on these data corruption settings. Bottom: Visualization of the data distribution for each corruption
setting. We experiment with two data corruption settings. Our method performs worse than the full data setting
but still consistently outperforms all baselines.
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