
USR Builder: Tool for Automatic Generation of Universal Semantic
Representation

Anonymous ACL submission

Abstract001

This paper presents an integrated software USR002
Builder that automatically creates the multilay-003
ered Universal Semantic Representation (USR)004
from Hindi texts. The proposed software ap-005
plies a set of heuristics on the outputs of various006
NLP tools to produce the multilayered seman-007
tic representation, USR, for a given discourse.008
Since manual annotation of any text data is al-009
ways a labor-intensive, time-consuming, error-010
prone and expensive task, it is never a feasible011
option to manually annotate a text from scratch.012
USR Builder provides an automated generation013
option for USRs. It generates USR automat-014
ically, which the annotators can validate and015
correct to obtain the final version. The tool eval-016
uation scores validate the claim that this tool017
saves both time and effort compared to starting018
the manual annotation process from scratch and019
improves the quality of annotation by reducing020
the chances of manual error.021

1 Introduction022

Semantic Representation is a foundational compo-023

nent in natural language processing (NLP) (Reiter,024

2025), enabling machines to interpret and reason025

over human languages. One such representation,026

Universal Semantic Representation (USR), aims to027

abstract away from surface-level linguistic features028

and capture the underlying meaning in a language-029

agnostic manner. This can serve as an Interlingua030

for multilingual generation, a knowledge-rich re-031

source for question-answering systems, and cross-032

lingual understanding. Manual semantic annota-033

tion requires a high level of linguistic expertise and034

is often time-intensive and costly. These limita-035

tions have led to a scarcity of large-scale, richly036

annotated semantic resources in many non-English037

languages.038

To address this challenge, we present the USR039

Builder, a software system designed to assist in040

the semi-automated creation of USR datasets. The041

software integrates multiple NLP tools, including a 042

Concept Identifier, Dependency Parser, Named En- 043

tity Recognizer, Morphological Analyzer, and Dis- 044

course Connective Marker, to automatically gener- 045

ate draft semantic representations. Annotators can 046

then validate and refine these drafts, thus stream- 047

lining the annotation process and significantly re- 048

ducing manual workload. This paper outlines the 049

architecture and functionality of the USR Builder 050

Tool, evaluates its performance for Hindi texts, and 051

discusses its applicability in creating semantically 052

annotated corpora. 053

2 Related Work 054

There exist web-based annotation tools specifically 055

designed for annotating semantic resources. For 056

example, Charon is used to annotate FrameNet data 057

(Belcavello et al., 2022). UMR writer supports the 058

creation of the graphical representation of texts in 059

UMR (Uniform Meaning Representation) format 060

(Zhao et al., 2021). UCCAApp (Abend et al., 2017) 061

provides a web-application for syntactic and se- 062

mantic phrase-based annotation for UCCA (Abend 063

and Rappoport, 2013). To mitigate the cost of 064

manual annotation, several systems have explored 065

semi-automated annotation workflows. For exam- 066

ple, the PMB pipeline consists of a sequence of 067

NLP tools each serving for a specific annotation 068

layer (Abzianidze et al., 2020). Studies have shown 069

that such tools can significantly accelerate the an- 070

notation process while maintaining quality. Our 071

work builds on this body of research by introduc- 072

ing a novel, domain-independent tool tailored for 073

USR creation. By combining automatic NLP mod- 074

ules with human-in-the-loop validation, the USR 075

Builder Tool bridges the gap between automation 076

and accuracy in semantic dataset development. 077

1



3 Model Description078

This section presents the architecture of the USR079

Builder followed by a comprehensive overview of080

the individual NLP modules integrated into the081

system. A complete workflow of the model is illus-082

trated in Figure 1.083

The workflow begins with the input sentences be-084

ing processed by the Sentence Segmentor, a custom085

rule-based tool developed to break down complex086

sentences into simple, more manageable segments.087

Both automated parsers and human beings analyze088

simple sentences more accurately than complex089

ones. These segments are then simultaneously fed090

into four NLP modules: (a) the Dependency Parser091

and Mapper that determines syntactico-semantic092

structures by identifying POS tags, head words093

and generating dependency relations between the094

head and its children; (b) Morphological analyzer095

that provides detailed morphological information096

such as root forms, tense-aspect-modality (TAM),097

gender, number, and person (c) the Named Entity098

Recognition (NER) tool that identifies and classi-099

fies named entities present in each segment; and100

(d) the Discourse Connective Marker Tool that op-101

erates on the whole input text to detect discourse102

connectives and establish relationships between dif-103

ferent segments.104

All linguistic information obtained from the105

aforementioned NLP tools is then fed to two con-106

cept identifier modules: (a) the Complex Concept107

Identifier tool, which detects phrases with complex108

semantic information (see 3.4 for details) and (b)109

the Simple Concept Identifier tool that identifies110

atomic concepts and their associated grammatical111

features.112

In the final stage, the outputs from all previ-113

ous modules are passed to the Rule Applicator,114

which applies a predefined set of heuristics to inte-115

grate the linguistic and semantic information into116

the final USR format. The resulting USR cap-117

tures the underlying semantics of the input text118

in a language-independent, human-readable and119

machine-interpretable format.120

We now provide a detailed explanation of each121

individual NLP component integrated into the USR122

Builder123

3.1 Dependency Parser and Mapper124

3.1.1 Dependency Parser125

Dependency Parser identifies grammatical relation-126

ships between words in a sentence by linking each127

word (dependent) to its syntactic head. For this 128

work, we employed the Hindi ISC Parser, devel- 129

oped under the Indian Language Treebanking ini- 130

tiative (Begum et al., 2008). This parser is built on 131

the Pān. inian Dependency Grammar (PDG) frame- 132

work, which is particularly suitable for morphologi- 133

cally rich and free word-order languages like Hindi 134

(Bharati et al., 2006). 135

3.1.2 Dependency Mapper 136

Since some dependency labels (such as VMOD) 137

attested by the ISC parser are underspecified, we 138

have developed a mapper to map these relations to 139

more semantically grounded labels. 140

3.2 Named Entity Recognition (NER) Tool 141

To identify named entities within each segment, 142

we use IndicNER developed by AI4Bharat1. This 143

model is specifically trained to perform named en- 144

tity recognition for Indian languages, including 145

Hindi. IndicNER has been fine-tuned on data from 146

11 Indian languages and benchmarked against both 147

a human-annotated test set and several publicly 148

available Indian NER datasets. On the Hindi test 149

set, the model achieves an F1 score of 82.33 per- 150

cent, demonstrating its effectiveness in accurately 151

identifying named entities. 152

3.3 Discourse Relation Marker Tool 153

We developed a custom Discourse Relation Marker 154

Tool to identify discourse connectives within the 155

text segments and assign corresponding discourse 156

relations. This tool plays a crucial role in the USR 157

Builder by capturing the discourse-level connec- 158

tions between two or more segments, thus preserv- 159

ing coherence in the representation. 160

The tool has demonstrated a high accuracy of 94 161

percent on internal evaluation datasets, indicating 162

its reliability in detecting and labeling discourse 163

markers. By extracting these markers and their 164

associated relations, the tool enhances the USR 165

Builder’s ability to reflect how different segments 166

of a sentence—or multiple sentences—are seman- 167

tically and logically connected. 168

3.4 Morph Analyzer 169

To extract detailed morphological information such 170

as Tense-Aspect-Modality (TAM), root form, gen- 171

der, number, and person, we employ the Apertium 172

1AI4Bharat is a research lab at IIT Madras dedicated to ad-
vancing AI technology for Indian languages and contributing
to the field through open-source initiatives.

2

https://bitbucket.org/iscnlp/parser
https://huggingface.co/ai4bharat/IndicNER
https://github.com/apertium/apertium-hin
https://github.com/apertium/apertium-hin
https://github.com/apertium/apertium-hin
https://github.com/apertium/apertium-hin
https://github.com/apertium/apertium-hin


Figure 1: Complete Workflow of the USR Builder Tool

Hindi Morph tool. This is a monolingual language173

package specifically designed for Hindi, available174

as part of the open-source Apertium platform. It175

performs morphological analysis using a finite-176

state transducer (FST) approach, implemented via177

Lttoolbox (Forcada et al., 2011).178

Due to its high accuracy, Hindi-specific de-179

sign, and open-source availability, Apertium Hindi180

Morph is a key component of the USR Builder,181

ensuring reliable morphological analysis for gener-182

ating semantically rich representations.183

3.5 Complex Concept Identifier184

To automatically identify complex concepts within185

the Hindi corpus, we have developed a rule-based186

Complex Concept Identifier Tool. This tool lever-187

ages the outputs from the Dependency Parser, De-188

pendency Mapper, and Named Entity Recognition189

(NER) modules. By applying a set of predefined190

linguistic and syntactic rules to these outputs, the191

tool extracts instances of complex concepts such 192

as rates (10 hours per day), measuring expressions 193

(10 inches, 5 kg, 4 lt), calendric expressions (10th 194

January 2025; 10th day of January, 2025), tem- 195

poral (at 7 pm evening) along with their relevant 196

components. 197

The Complex Concept Identifier has been evalu- 198

ated on a manually annotated dataset and achieves 199

an F1 score of 73.42%, demonstrating its effective- 200

ness in capturing semantically complex constructs. 201

The overall workflow of the tool is illustrated in 202

Figure 2 203

3.6 Simple Concept Identifier 204

The Simple Concept Identifier module is respon- 205

sible for detecting atomic concepts within each 206

segment, which is generally represented by a sin- 207

gle word. This module processes the pruned output 208

from the Morphological Analyzer and identifies 209

relevant linguistic features for individual words, in- 210

3

https://github.com/apertium/apertium-hin
https://github.com/apertium/apertium-hin
https://github.com/apertium/apertium-hin


Figure 2: Workflow of Complex Concept Identifier Tool

cluding the Tense-Aspect-Modality (TAM) of finite211

verbs present in the segment. Accurate identifica-212

tion of TAM is essential for capturing the grammat-213

ical structure and temporal characteristics of the214

sentence within the USR framework. The identi-215

fied simple concepts are then passed to the Rule216

Applicator for further processing.217

3.7 Rule Applicator218

The Rule Applicator filters information from the219

output of all aforementioned tools and organize220

them in the USR format for human evaluation and221

correction through a validation interface. USR is222

a 9-row feature-value matrix format with an XML223

tag delimiting the USR block. The features are224

specified below. The values of each feature are225

determined from the analysis performed on a given226

input sentence:227

<sent_id=...>228

concept229

index230

semantic_cat 231

morpho_semantic 232

dependency 233

discourse 234

speaker's view 235

scope 236

CC component 237

%sentence_type 238

</sent_id> 239

The most important task of the rule applicator
is to postulate the legitimate concepts in the USR,
both simple and complex. Root form represents the
concept in USR. Not all words in a sentence are
valid concepts in USR. For example, post-positions,
auxiliaries, connectives, comparative and superla-
tive degree markers, and discourse particles do not
occur as concepts in USR. The semantics of these
words are captured in other rows against the ap-
propriate concept. For example, the tense-aspect-
modality is marked on the verb. The causative and

4



degree of adjective (for -er and -est) are marked
on the morphophonemics row for the verb and ad-
jective, respectively. Dependency relations are at-
tested on the dependent in the dependency row
along with the head index. The semantics of the
coordinate conjunction is assigned to the main verb
of the sentence that has the connective along with
the main verb index of the other conjoined sen-
tence; whereas the semantics of the subordinate
conjunction is assigned to the main verb of the
subordinate clause along with the head index of
the main clause. This is done to keep consistency
in marking relations both at the dependency layer
and the discourse layer. Here are two USRs gen-
erated by the Rule Applicator for the given small
discourse:

(1) a. rAma aura mohana so rahe hEM.240

Ram and Mohan sleep-3pr cont241

"Ram and Mohan are sleeping."242

b. lekina mili jagI huI hE.243

but Mili awake be-pres244

"But Mili is awake."245

Figure 3: USR for segment 1a

Figure 4: USR for segment 1b

4 Experiments246

To evaluate the effectiveness of the USR Builder247

Tool, we conducted experiments using datasets248

from the health domain. As part of the experimen-249

tal setup, we first applied the workflow described250

in Section 3 to a set of input texts. After processing251

these texts through the Sentence Segmentor, we252

obtained a total of 260 segments, which served as 253

the input for the USR Builder Tool. 254

The tool was then used to automatically generate 255

USRs for these segments. Once the representations 256

were generated, they were reviewed by human an- 257

notators, who were tasked with validating the se- 258

mantic correctness and completeness of the output. 259

These validated representations formed our gold- 260

standard data, which we used to assess the tool’s 261

accuracy. 262

The evaluation methodology and results, based 263

on comparison with the gold data, are discussed in 264

the next section. 265

5 Evaluation 266

5.1 Layer-wise Evaluation 267

In this section, we perform a layer-wise evaluation 268

of the USR Builder. A total of 260 segments were 269

processed, and the automatically generated USRs 270

were compared against a manually annotated gold 271

standard. The evaluation was conducted across 272

four core layers of the USR: Concept, Dependency 273

Relation, Discourse, and Construction. The results 274

are summarized in Table 1 275

Layer Precision Recall F1-Score Accuracy
Concept 1.000 1.000 1.000 1.000
Dependency 0.570 0.545 0.532 0.797
Discourse 0.627 0.523 0.560 0.667
Complex 0.688 0.556 0.603 0.728
Concept

Table 1: Evaluation metrics across different layers

From the results, we observe perfect perfor- 276

mance on the Concept layer, with 100% precision, 277

recall, F1-score, and accuracy. This indicates that 278

the USR Builder is highly effective in accurately 279

identifying and representing both simple and com- 280

plex concepts within each segment. 281

For the Dependency Relation layer, the system 282

achieved a moderate F1-score of 0.532 and an accu- 283

racy of 79.7%. Although not perfect, these results 284

suggest that the tool correctly captures a signifi- 285

cant portion of syntactico-semantic relationships. 286

This performance could potentially be improved 287

by integrating more accurate or robust dependency 288

parsers. 289

In the Discourse layer, the tool attained an F1- 290

score of 0.560 and accuracy of 66.7%. Given the 291

inherent complexity and variability of discourse 292

connectives in natural language, these scores reflect 293

a reasonable ability to detect discourse relations. 294

5



However, further refinements, particularly in iden-295

tifying implicit or less frequent connectives, could296

improve both precision and recall.297

The Complex Concept Component layer, which298

captures structural components of complex con-299

cepts (e.g., complex predicates and noun com-300

pounds), achieved an F1-score of 0.603 and ac-301

curacy of 72.8%. These results are promising and302

indicate the tool’s effectiveness in recognizing com-303

mon syntactic constructions, though improvements304

may still be made by expanding the rule base or305

refining feature extraction.306

Overall, the evaluation demonstrates that the307

USR Builder performs exceptionally well in con-308

cept identification and delivers moderate to good309

performance across other semantic and structural310

layers. These results validate its practical utility311

for large-scale USR generation, particularly in low-312

resource language contexts, where manual annota-313

tion from scratch is both expensive and time con-314

suming.315

5.2 Complete USR Evaluation316

We evaluated the performance of the USR Builder317

with a focus on two primary aspects: format consis-318

tency and efficiency in reducing manual annotation319

effort. Human annotators, however experienced,320

are prone to certain types of errors during the anno-321

tation process, especially in large-scale, complex322

datasets and using text editors. In contrast, the USR323

Builder consistently avoids such issues, delivering324

100% accuracy in format-related tasks. Below are325

the key areas where the USR Builder outperforms326

manual annotation:327

Format Consistency328

• Missing or Incorrect Cell Values: Human329

annotators often omit required values in the330

USR’s 9-column structure. In cases where a331

linguistic value is not applicable, a hyphen (-)332

must be used. Annotators occasionally forget333

to insert this, resulting in format violations.334

The USR Builder, however, enforces this rule335

strictly, ensuring every cell is properly popu-336

lated or explicitly marked.337

• Index Duplication Errors: Each concept in338

the USR must have a unique index. Manual339

annotations sometimes contain duplicate in-340

dices, leading to semantic ambiguity. The341

USR Builder automatically assigns and ver-342

ifies unique indices, eliminating this type of343

error. 344

• Incorrect Feature Formatting: When mul- 345

tiple linguistic features are present in a sin- 346

gle cell, they must be separated by a forward 347

slash (/). Human annotators sometimes use in- 348

correct separators such as hyphens or spaces, 349

violating the USR format. The USR Builder 350

follows the correct formatting standard con- 351

sistently. 352

• Incorrect Root Identification: Annotators 353

may struggle to correctly identify the root 354

form of a word, especially in morphologi- 355

cally rich languages like Hindi. In contrast, 356

the USR Builder ensures 100% accuracy by 357

automatically generating concepts in proper 358

WX notation and retrieving their correct root 359

forms directly from the Morphological Ana- 360

lyzer, thereby eliminating human error in this 361

aspect. 362

Reduction in Manual Effort 363

In addition to improving accuracy, the USR Builder 364

significantly reduces annotation time and effort. A 365

controlled experiment on 100 Hindi segments, with 366

an average of 9 concepts per segment revealed the 367

following: 368

• The USR Builder generated the complete USR 369

representations in approximately 20 minutes. 370

• When the same task was performed manually 371

from scratch, annotators required nearly 8.3 372

hours. 373

• When human annotators were asked to vali- 374

date the system-generated output instead of 375

annotating from scratch, it took only 2.5 376

hours. 377

This demonstrates a 5.8-hour time savings, high- 378

lighting the tool’s potential for scaling dataset cre- 379

ation—especially in low-resource language con- 380

texts where manual annotation is expensive and 381

time-consuming. 382

6 Error Analysis 383

While the USR Builder shows strong perfor- 384

mance—particularly in concept identification—it 385

exhibits some limitations in more linguistically 386

complex layers, such as dependency relations, dis- 387

course marking, and Complex concept component 388

detection. Below, we outline the key sources of 389

errors observed during evaluation: 390

6



• Dependency Layer Errors: Errors in the de-391

pendency layer primarily stem from parser392

limitations. The dependency parser occasion-393

ally mislabels head–child relations in sen-394

tences with free word order or long-distance395

dependencies, which are common in Hindi.396

These inaccuracies propagate into the USR397

structure, affecting the semantic layer. Addi-398

tionally, coordination and nested clauses often399

confuse the parser, resulting in incorrect de-400

pendency mappings.401

• Discourse layer Errors: The identification402

of discourse relations showed moderate per-403

formance due to the implicit nature of many404

discourse connectives. The tool currently fo-405

cuses on explicit markers, and may fail to cap-406

ture coherence when connectives are inferred407

rather than stated. Additionally, the absence408

of a coreference resolution module limits the409

system’s ability to fully annotate discourse-410

level phenomena, as coreference information411

is also crucial in the discourse layer.412

• Complex Concept Component Layer Chal-413

lenges: The construction layer includes com-414

plex predicates, noun compounds, and other415

multi-word expressions. Mistakes in this layer416

often occur when such expressions are non-417

contiguous or not easily distinguishable based418

on surface features alone. Furthermore, the419

rule-based nature of the Complex Concept420

Identifier means that edge cases—especially421

idiomatic or less frequent constructions—are422

not always captured correctly.423

• Manual Annotation Discrepancies: Some424

of the performance discrepancies between425

system-generated and gold-standard data arise426

from inconsistencies at the level of decision-427

making during the preparation of the gold428

data. Variability in annotators’ decisions re-429

garding compound boundaries, complex pred-430

icate identification, and compound analysis431

may not always indicate system failure but432

rather subjectivity in the reference data.433

7 Conclusion and Future Work434

In this paper, we presented the USR Builder Tool,435

an automated system designed to generate high-436

quality Universal Semantic Representation (USR)437

datasets, particularly for low-resource languages438

such as Hindi. The tool integrates several natural439

language processing tools, including the sentence 440

segmentor, dependency parser, morphological ana- 441

lyzer, named entity recognizer, and discourse ana- 442

lyzer, into a unified pipeline. It further incorporates 443

custom modules like the Complex Concept Identi- 444

fier, Simple Concept Identifier, and Rule Applica- 445

tor to transform linguistic features into a structured, 446

multi-layered USR format. 447

Through detailed layer-wise evaluation, we 448

demonstrated that the USR Builder achieves per- 449

fect performance in concept identification and per- 450

forms reasonably well in identifying dependency 451

relations, discourse markers, and construction-level 452

features. Compared to manual annotation, the sys- 453

tem not only improves consistency and adherence 454

to the USR format but also significantly reduces 455

annotation time and human effort, making it a prac- 456

tical and scalable solution for building semantic 457

datasets in linguistically diverse contexts. 458

The error analysis revealed that the primary lim- 459

itations of the system lie in parsing complex syn- 460

tactic structures, detecting implicit discourse re- 461

lations, and handling non-standard or idiomatic 462

expressions. 463

Overall, the USR Builder represents a signifi- 464

cant step toward automating semantic annotation 465

in low-resource settings, offering both speed and 466

reliability. It can serve as a foundational tool for 467

various downstream NLP tasks such as machine 468

translation, information extraction, and question 469

answering in Indian languages. 470

In the future, we aim to integrate a coreference 471

resolution tool for Hindi into the USR Builder and 472

replace the current parser with a more accurate 473

dependency parser to further improve the overall 474

performance and accuracy of the generated repre- 475

sentations. 476

Limitations 477

Despite the effectiveness of the USR Builder Tool 478

in generating Universal Semantic Representations, 479

several limitations remain. One major challenge 480

is the reliance on an existing dependency parser, 481

which does not always yield accurate syntactic 482

structures for complex or non-canonical sentences, 483

thereby affecting the accuracy of downstream com- 484

ponents like the Complex Concept Identifier. Ad- 485

ditionally, the system lacks a coreference resolu- 486

tion module, which limits its ability to fully cap- 487

ture discourse-level phenomena, especially in texts 488

where entity references span multiple segments. 489

7



The Discourse Marker Tool currently focuses only490

on explicit discourse connectives and struggles to491

handle implicit or inferred relations, which are com-492

mon in natural language. The Construction Layer493

and many other components are based on manually494

defined heuristic rules, which, although effective495

in many cases, may not generalize well to unseen496

data or diverse linguistic structures.497

References498

Omri Abend and Ari Rappoport. 2013. Universal con-499
ceptual cognitive annotation (ucca). In Proceedings500
of the 51st Annual Meeting of the Association for501
Computational Linguistics (Volume 1: Long Papers),502
pages 228–238.503

Omri Abend, Shai Yerushalmi, and Ari Rappoport. 2017.504
Uccaapp: Web-application for syntactic and semantic505
phrase-based annotation. In Proceedings of ACL506
2017, System Demonstrations, pages 109–114.507

Lasha Abzianidze, Rik Van Noord, Chunliu Wang, and508
Johan Bos. 2020. The parallel meaning bank: A509
framework for semantically annotating multiple lan-510
guages. arXiv preprint arXiv:2012.14854.511

Rafiya Begum, Samar Husain, Arun Dhwaj, Dipti Misra512
Sharma, Lakshmi Bai, and Rajeev Sangal. 2008. De-513
pendency annotation scheme for indian languages.514
In Proceedings of the Third International Joint Con-515
ference on Natural Language Processing: Volume-II.516

Frederico Belcavello, Marcelo Viridiano, Ely Edison517
Matos, and Tiago Timponi Torrent. 2022. Charon:518
A framenet annotation tool for multimodal corpora.519
arXiv preprint arXiv:2205.11836.520

Akshar Bharati, Rajeev Sangal, Dipti Misra Sharma, and521
Lakshmi Bai. 2006. Anncorra: Annotating corpora522
guidelines for pos and chunk annotation for indian523
languages. LTRC-TR31, pages 1–38.524

Mikel L Forcada, Mireia Ginestí-Rosell, Jacob Nord-525
falk, Jim O’Regan, Sergio Ortiz-Rojas, Juan An-526
tonio Pérez-Ortiz, Felipe Sánchez-Martínez, Gema527
Ramírez-Sánchez, and Francis M Tyers. 2011. Aper-528
tium: a free/open-source platform for rule-based ma-529
chine translation. Machine translation, 25(2):127–530
144.531

Ehud Reiter. 2025. Natural Language Generation.532
Springer Nature Switzerland.533

Jin Zhao, Nianwen Xue, Jens Van Gysel, and Jinho D534
Choi. 2021. Umr-writer: A web application for anno-535
tating uniform meaning representations. In Proceed-536
ings of the 2021 Conference on Empirical Methods537
in Natural Language Processing: System Demonstra-538
tions, pages 160–167.539

8

https://doi.org/10.1007/978-3-031-68582-8

	Introduction
	Related Work
	Model Description
	Dependency Parser and Mapper
	Dependency Parser
	Dependency Mapper

	Named Entity Recognition (NER) Tool
	Discourse Relation Marker Tool
	Morph Analyzer
	Complex Concept Identifier
	Simple Concept Identifier
	Rule Applicator

	Experiments
	Evaluation
	Layer-wise Evaluation
	Complete USR Evaluation

	Error Analysis
	Conclusion and Future Work

