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Abstract

This paper presents an integrated software USR
Builder that automatically creates the multilay-
ered Universal Semantic Representation (USR)
from Hindi texts. The proposed software ap-
plies a set of heuristics on the outputs of various
NLP tools to produce the multilayered seman-
tic representation, USR, for a given discourse.
Since manual annotation of any text data is al-
ways a labor-intensive, time-consuming, error-
prone and expensive task, it is never a feasible
option to manually annotate a text from scratch.
USR Builder provides an automated generation
option for USRs. It generates USR automat-
ically, which the annotators can validate and
correct to obtain the final version. The tool eval-
uation scores validate the claim that this tool
saves both time and effort compared to starting
the manual annotation process from scratch and
improves the quality of annotation by reducing
the chances of manual error.

1 Introduction

Semantic Representation is a foundational compo-
nent in natural language processing (NLP) (Reiter,
2025), enabling machines to interpret and reason
over human languages. One such representation,
Universal Semantic Representation (USR), aims to
abstract away from surface-level linguistic features
and capture the underlying meaning in a language-
agnostic manner. This can serve as an Interlingua
for multilingual generation, a knowledge-rich re-
source for question-answering systems, and cross-
lingual understanding. Manual semantic annota-
tion requires a high level of linguistic expertise and
is often time-intensive and costly. These limita-
tions have led to a scarcity of large-scale, richly
annotated semantic resources in many non-English
languages.

To address this challenge, we present the USR
Builder, a software system designed to assist in
the semi-automated creation of USR datasets. The

software integrates multiple NLP tools, including a
Concept Identifier, Dependency Parser, Named En-
tity Recognizer, Morphological Analyzer, and Dis-
course Connective Marker, to automatically gener-
ate draft semantic representations. Annotators can
then validate and refine these drafts, thus stream-
lining the annotation process and significantly re-
ducing manual workload. This paper outlines the
architecture and functionality of the USR Builder
Tool, evaluates its performance for Hindi texts, and
discusses its applicability in creating semantically
annotated corpora.

2 Related Work

There exist web-based annotation tools specifically
designed for annotating semantic resources. For
example, Charon is used to annotate FrameNet data
(Belcavello et al., 2022). UMR writer supports the
creation of the graphical representation of texts in
UMR (Uniform Meaning Representation) format
(Zhao et al., 2021). UCCAApp (Abend et al., 2017)
provides a web-application for syntactic and se-
mantic phrase-based annotation for UCCA (Abend
and Rappoport, 2013). To mitigate the cost of
manual annotation, several systems have explored
semi-automated annotation workflows. For exam-
ple, the PMB pipeline consists of a sequence of
NLP tools each serving for a specific annotation
layer (Abzianidze et al., 2020). Studies have shown
that such tools can significantly accelerate the an-
notation process while maintaining quality. Our
work builds on this body of research by introduc-
ing a novel, domain-independent tool tailored for
USR creation. By combining automatic NLP mod-
ules with human-in-the-loop validation, the USR
Builder Tool bridges the gap between automation
and accuracy in semantic dataset development.



3 Model Description

This section presents the architecture of the USR
Builder followed by a comprehensive overview of
the individual NLP modules integrated into the
system. A complete workflow of the model is illus-
trated in Figure 1.

The workflow begins with the input sentences be-
ing processed by the Sentence Segmentor, a custom
rule-based tool developed to break down complex
sentences into simple, more manageable segments.
Both automated parsers and human beings analyze
simple sentences more accurately than complex
ones. These segments are then simultaneously fed
into four NLP modules: (a) the Dependency Parser
and Mapper that determines syntactico-semantic
structures by identifying POS tags, head words
and generating dependency relations between the
head and its children; (b) Morphological analyzer
that provides detailed morphological information
such as root forms, tense-aspect-modality (TAM),
gender, number, and person (c) the Named Entity
Recognition (NER) tool that identifies and classi-
fies named entities present in each segment; and
(d) the Discourse Connective Marker Tool that op-
erates on the whole input text to detect discourse
connectives and establish relationships between dif-
ferent segments.

All linguistic information obtained from the
aforementioned NLP tools is then fed to two con-
cept identifier modules: (a) the Complex Concept
Identifier tool, which detects phrases with complex
semantic information (see 3.4 for details) and (b)
the Simple Concept Identifier tool that identifies
atomic concepts and their associated grammatical
features.

In the final stage, the outputs from all previ-
ous modules are passed to the Rule Applicator,
which applies a predefined set of heuristics to inte-
grate the linguistic and semantic information into
the final USR format. The resulting USR cap-
tures the underlying semantics of the input text
in a language-independent, human-readable and
machine-interpretable format.

We now provide a detailed explanation of each
individual NLP component integrated into the USR
Builder

3.1 Dependency Parser and Mapper
3.1.1 Dependency Parser

Dependency Parser identifies grammatical relation-
ships between words in a sentence by linking each

word (dependent) to its syntactic head. For this
work, we employed the Hindi ISC Parser, devel-
oped under the Indian Language Treebanking ini-
tiative (Begum et al., 2008). This parser is built on
the Paninian Dependency Grammar (PDG) frame-
work, which is particularly suitable for morphologi-
cally rich and free word-order languages like Hindi
(Bharati et al., 2006).

3.1.2 Dependency Mapper

Since some dependency labels (such as VMOD)
attested by the ISC parser are underspecified, we
have developed a mapper to map these relations to
more semantically grounded labels.

3.2 Named Entity Recognition (NER) Tool

To identify named entities within each segment,
we use IndicNER developed by AI4Bharat'. This
model is specifically trained to perform named en-
tity recognition for Indian languages, including
Hindi. IndicNER has been fine-tuned on data from
11 Indian languages and benchmarked against both
a human-annotated test set and several publicly
available Indian NER datasets. On the Hindi test
set, the model achieves an F1 score of 82.33 per-
cent, demonstrating its effectiveness in accurately
identifying named entities.

3.3 Discourse Relation Marker Tool

We developed a custom Discourse Relation Marker
Tool to identify discourse connectives within the
text segments and assign corresponding discourse
relations. This tool plays a crucial role in the USR
Builder by capturing the discourse-level connec-
tions between two or more segments, thus preserv-
ing coherence in the representation.

The tool has demonstrated a high accuracy of 94
percent on internal evaluation datasets, indicating
its reliability in detecting and labeling discourse
markers. By extracting these markers and their
associated relations, the tool enhances the USR
Builder’s ability to reflect how different segments
of a sentence—or multiple sentences—are seman-
tically and logically connected.

3.4 Morph Analyzer

To extract detailed morphological information such
as Tense-Aspect-Modality (TAM), root form, gen-
der, number, and person, we employ the Apertium

' Al4Bharat is a research lab at IIT Madras dedicated to ad-
vancing Al technology for Indian languages and contributing
to the field through open-source initiatives.
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Figure 1: Complete Workflow of the USR Builder Tool

Hindi Morph tool. This is a monolingual language
package specifically designed for Hindi, available
as part of the open-source Apertium platform. It
performs morphological analysis using a finite-
state transducer (FST) approach, implemented via
Lttoolbox (Forcada et al., 2011).

Due to its high accuracy, Hindi-specific de-
sign, and open-source availability, Apertium Hindi
Morph is a key component of the USR Builder,
ensuring reliable morphological analysis for gener-
ating semantically rich representations.

3.5 Complex Concept Identifier

To automatically identify complex concepts within
the Hindi corpus, we have developed a rule-based
Complex Concept Identifier Tool. This tool lever-
ages the outputs from the Dependency Parser, De-
pendency Mapper, and Named Entity Recognition
(NER) modules. By applying a set of predefined
linguistic and syntactic rules to these outputs, the

tool extracts instances of complex concepts such
as rates (10 hours per day), measuring expressions
(10 inches, 5 kg, 4 It), calendric expressions (10th
January 2025; 10th day of January, 2025), tem-
poral (at 7 pm evening) along with their relevant
components.

The Complex Concept Identifier has been evalu-
ated on a manually annotated dataset and achieves
an F1 score of 73.42%, demonstrating its effective-
ness in capturing semantically complex constructs.

The overall workflow of the tool is illustrated in
Figure 2

3.6 Simple Concept Identifier

The Simple Concept Identifier module is respon-
sible for detecting atomic concepts within each
segment, which is generally represented by a sin-
gle word. This module processes the pruned output
from the Morphological Analyzer and identifies
relevant linguistic features for individual words, in-
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Figure 2: Workflow of Complex Concept Identifier Tool

cluding the Tense-Aspect-Modality (TAM) of finite
verbs present in the segment. Accurate identifica-
tion of TAM is essential for capturing the grammat-
ical structure and temporal characteristics of the
sentence within the USR framework. The identi-
fied simple concepts are then passed to the Rule
Applicator for further processing.

3.7 Rule Applicator

The Rule Applicator filters information from the
output of all aforementioned tools and organize
them in the USR format for human evaluation and
correction through a validation interface. USR is
a 9-row feature-value matrix format with an XML
tag delimiting the USR block. The features are
specified below. The values of each feature are
determined from the analysis performed on a given
input sentence:

<sent_id=...>

concept

index

semantic_cat
morpho_semantic
dependency
discourse
speaker's view
scope

CC component
%»sentence_type
</sent_id>

The most important task of the rule applicator
is to postulate the legitimate concepts in the USR,
both simple and complex. Root form represents the
concept in USR. Not all words in a sentence are
valid concepts in USR. For example, post-positions,
auxiliaries, connectives, comparative and superla-
tive degree markers, and discourse particles do not
occur as concepts in USR. The semantics of these
words are captured in other rows against the ap-
propriate concept. For example, the tense-aspect-
modality is marked on the verb. The causative and



degree of adjective (for -er and -est) are marked
on the morphophonemics row for the verb and ad-
jective, respectively. Dependency relations are at-
tested on the dependent in the dependency row
along with the head index. The semantics of the
coordinate conjunction is assigned to the main verb
of the sentence that has the connective along with
the main verb index of the other conjoined sen-
tence; whereas the semantics of the subordinate
conjunction is assigned to the main verb of the
subordinate clause along with the head index of
the main clause. This is done to keep consistency
in marking relations both at the dependency layer
and the discourse layer. Here are two USRs gen-
erated by the Rule Applicator for the given small
discourse:

rAma aura mohana so rahe hEM.
Ram and Mohan sleep-3pr cont
"Ram and Mohan are sleeping."

b. lekina mili jagl hul hE.
but Mili awake be-pres
"But Mili is awake."

1) a
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Figure 3: USR for segment 1a
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Figure 4: USR for segment 1b

4 Experiments

To evaluate the effectiveness of the USR Builder
Tool, we conducted experiments using datasets
from the health domain. As part of the experimen-
tal setup, we first applied the workflow described
in Section 3 to a set of input texts. After processing
these texts through the Sentence Segmentor, we

obtained a total of 260 segments, which served as
the input for the USR Builder Tool.

The tool was then used to automatically generate
USRs for these segments. Once the representations
were generated, they were reviewed by human an-
notators, who were tasked with validating the se-
mantic correctness and completeness of the output.
These validated representations formed our gold-
standard data, which we used to assess the tool’s
accuracy.

The evaluation methodology and results, based
on comparison with the gold data, are discussed in
the next section.

5 Evaluation

5.1 Layer-wise Evaluation

In this section, we perform a layer-wise evaluation
of the USR Builder. A total of 260 segments were
processed, and the automatically generated USRs
were compared against a manually annotated gold
standard. The evaluation was conducted across
four core layers of the USR: Concept, Dependency
Relation, Discourse, and Construction. The results
are summarized in Table 1

Layer Precision | Recall | F1-Score | Accuracy
Concept 1.000 1.000 1.000 1.000
Dependency 0.570 0.545 0.532 0.797
Discourse 0.627 0.523 0.560 0.667
Complex 0.688 0.556 0.603 0.728
Concept

Table 1: Evaluation metrics across different layers

From the results, we observe perfect perfor-
mance on the Concept layer, with 100% precision,
recall, F1-score, and accuracy. This indicates that
the USR Builder is highly effective in accurately
identifying and representing both simple and com-
plex concepts within each segment.

For the Dependency Relation layer, the system
achieved a moderate F1-score of 0.532 and an accu-
racy of 79.7%. Although not perfect, these results
suggest that the tool correctly captures a signifi-
cant portion of syntactico-semantic relationships.
This performance could potentially be improved
by integrating more accurate or robust dependency
parsers.

In the Discourse layer, the tool attained an F1-
score of 0.560 and accuracy of 66.7%. Given the
inherent complexity and variability of discourse
connectives in natural language, these scores reflect
a reasonable ability to detect discourse relations.



However, further refinements, particularly in iden-
tifying implicit or less frequent connectives, could
improve both precision and recall.

The Complex Concept Component layer, which
captures structural components of complex con-
cepts (e.g., complex predicates and noun com-
pounds), achieved an F1-score of 0.603 and ac-
curacy of 72.8%. These results are promising and
indicate the tool’s effectiveness in recognizing com-
mon syntactic constructions, though improvements
may still be made by expanding the rule base or
refining feature extraction.

Overall, the evaluation demonstrates that the
USR Builder performs exceptionally well in con-
cept identification and delivers moderate to good
performance across other semantic and structural
layers. These results validate its practical utility
for large-scale USR generation, particularly in low-
resource language contexts, where manual annota-
tion from scratch is both expensive and time con-
suming.

5.2 Complete USR Evaluation

We evaluated the performance of the USR Builder
with a focus on two primary aspects: format consis-
tency and efficiency in reducing manual annotation
effort. Human annotators, however experienced,
are prone to certain types of errors during the anno-
tation process, especially in large-scale, complex
datasets and using text editors. In contrast, the USR
Builder consistently avoids such issues, delivering
100% accuracy in format-related tasks. Below are
the key areas where the USR Builder outperforms
manual annotation:

Format Consistency

* Missing or Incorrect Cell Values: Human
annotators often omit required values in the
USR'’s 9-column structure. In cases where a
linguistic value is not applicable, a hyphen (-)
must be used. Annotators occasionally forget
to insert this, resulting in format violations.
The USR Builder, however, enforces this rule
strictly, ensuring every cell is properly popu-
lated or explicitly marked.

* Index Duplication Errors: Each concept in
the USR must have a unique index. Manual
annotations sometimes contain duplicate in-
dices, leading to semantic ambiguity. The
USR Builder automatically assigns and ver-
ifies unique indices, eliminating this type of

C€ITOor.

Incorrect Feature Formatting: When mul-
tiple linguistic features are present in a sin-
gle cell, they must be separated by a forward
slash (/). Human annotators sometimes use in-
correct separators such as hyphens or spaces,
violating the USR format. The USR Builder
follows the correct formatting standard con-
sistently.

Incorrect Root Identification: Annotators
may struggle to correctly identify the root
form of a word, especially in morphologi-
cally rich languages like Hindi. In contrast,
the USR Builder ensures 100% accuracy by
automatically generating concepts in proper
WX notation and retrieving their correct root
forms directly from the Morphological Ana-
lyzer, thereby eliminating human error in this
aspect.

Reduction in Manual Effort

In addition to improving accuracy, the USR Builder
significantly reduces annotation time and effort. A
controlled experiment on 100 Hindi segments, with
an average of 9 concepts per segment revealed the
following:

* The USR Builder generated the complete USR
representations in approximately 20 minutes.

* When the same task was performed manually
from scratch, annotators required nearly 8.3
hours.

* When human annotators were asked to vali-
date the system-generated output instead of
annotating from scratch, it took only 2.5
hours.

This demonstrates a 5.8-hour time savings, high-
lighting the tool’s potential for scaling dataset cre-
ation—especially in low-resource language con-
texts where manual annotation is expensive and
time-consuming.

6 Error Analysis

While the USR Builder shows strong perfor-
mance—particularly in concept identification—it
exhibits some limitations in more linguistically
complex layers, such as dependency relations, dis-
course marking, and Complex concept component
detection. Below, we outline the key sources of
errors observed during evaluation:



* Dependency Layer Errors: Errors in the de-
pendency layer primarily stem from parser
limitations. The dependency parser occasion-
ally mislabels head—child relations in sen-
tences with free word order or long-distance
dependencies, which are common in Hindi.
These inaccuracies propagate into the USR
structure, affecting the semantic layer. Addi-
tionally, coordination and nested clauses often
confuse the parser, resulting in incorrect de-
pendency mappings.

* Discourse layer Errors: The identification
of discourse relations showed moderate per-
formance due to the implicit nature of many
discourse connectives. The tool currently fo-
cuses on explicit markers, and may fail to cap-
ture coherence when connectives are inferred
rather than stated. Additionally, the absence
of a coreference resolution module limits the
system’s ability to fully annotate discourse-
level phenomena, as coreference information
is also crucial in the discourse layer.

* Complex Concept Component Layer Chal-
lenges: The construction layer includes com-
plex predicates, noun compounds, and other
multi-word expressions. Mistakes in this layer
often occur when such expressions are non-
contiguous or not easily distinguishable based
on surface features alone. Furthermore, the
rule-based nature of the Complex Concept
Identifier means that edge cases—especially
idiomatic or less frequent constructions—are
not always captured correctly.

* Manual Annotation Discrepancies: Some
of the performance discrepancies between
system-generated and gold-standard data arise
from inconsistencies at the level of decision-
making during the preparation of the gold
data. Variability in annotators’ decisions re-
garding compound boundaries, complex pred-
icate identification, and compound analysis
may not always indicate system failure but
rather subjectivity in the reference data.

7 Conclusion and Future Work

In this paper, we presented the USR Builder Tool,
an automated system designed to generate high-
quality Universal Semantic Representation (USR)
datasets, particularly for low-resource languages
such as Hindi. The tool integrates several natural

language processing tools, including the sentence
segmentor, dependency parser, morphological ana-
lyzer, named entity recognizer, and discourse ana-
lyzer, into a unified pipeline. It further incorporates
custom modules like the Complex Concept Identi-
fier, Simple Concept Identifier, and Rule Applica-
tor to transform linguistic features into a structured,
multi-layered USR format.

Through detailed layer-wise evaluation, we
demonstrated that the USR Builder achieves per-
fect performance in concept identification and per-
forms reasonably well in identifying dependency
relations, discourse markers, and construction-level
features. Compared to manual annotation, the sys-
tem not only improves consistency and adherence
to the USR format but also significantly reduces
annotation time and human effort, making it a prac-
tical and scalable solution for building semantic
datasets in linguistically diverse contexts.

The error analysis revealed that the primary lim-
itations of the system lie in parsing complex syn-
tactic structures, detecting implicit discourse re-
lations, and handling non-standard or idiomatic
expressions.

Overall, the USR Builder represents a signifi-
cant step toward automating semantic annotation
in low-resource settings, offering both speed and
reliability. It can serve as a foundational tool for
various downstream NLP tasks such as machine
translation, information extraction, and question
answering in Indian languages.

In the future, we aim to integrate a coreference
resolution tool for Hindi into the USR Builder and
replace the current parser with a more accurate
dependency parser to further improve the overall
performance and accuracy of the generated repre-
sentations.

Limitations

Despite the effectiveness of the USR Builder Tool
in generating Universal Semantic Representations,
several limitations remain. One major challenge
is the reliance on an existing dependency parser,
which does not always yield accurate syntactic
structures for complex or non-canonical sentences,
thereby affecting the accuracy of downstream com-
ponents like the Complex Concept Identifier. Ad-
ditionally, the system lacks a coreference resolu-
tion module, which limits its ability to fully cap-
ture discourse-level phenomena, especially in texts
where entity references span multiple segments.



The Discourse Marker Tool currently focuses only
on explicit discourse connectives and struggles to
handle implicit or inferred relations, which are com-
mon in natural language. The Construction Layer
and many other components are based on manually
defined heuristic rules, which, although effective
in many cases, may not generalize well to unseen
data or diverse linguistic structures.
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