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Abstract 

 

Medical image anonymization faces the critical 

challenge of balancing patient privacy protection, clinical 

feature preservation, and demographic fairness. Existing 

methods often compromise privacy, obscure essential 

disease information, or perpetuate demographic biases in 

the anonymized outputs. We propose " Derm-FairAnon" 

a comprehensive framework for dermatological image 

anonymization that addresses these challenges through a 

novel integration of Stable Diffusion-v2 Inpainting with 

two key contributions: (1) Self-Supervised Preference 

Optimization (SelfPO), a novel approach that eliminates 

the need for explicit preference labels by leveraging image 

augmentation to generate self-supervised ranking signals; 

and (2) a demographic fairness mechanism with Skin-Fair 

loss, ℒ𝑆𝑘𝑖𝑛−𝐹𝑎𝑖𝑟  that enables balanced demographic 

representation in generated images, effectively mitigating 

attribute biases while maintaining clinical utility. 

Evaluated on dermatological images from multiple 

hospitals, Derm-FairAnon outperforms existing methods 

in disease classification performance, anonymization 

success, demographic bias reduction, and clinical 

assessment by dermatologists.  

 

1. Introduction 

Medical image anonymization faces the critical 

challenge of balancing patient privacy protection with 

clinical feature preservation, particularly in dermatology 

where patient faces and skin lesions often appear in the 

same frame [1-3]. Traditional anonymization methods 

applying digital masks or blurring [4, 5] either compromise 

privacy or obscure disease information on facial regions, 

resulting in substantial loss of clinically valuable data. 
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GAN-based anonymization methods [6, 7] generate 

artifacts at boundary regions and fail to accurately 

represent disease characteristics. 

Diffusion models have demonstrated promising 

capabilities in medical image synthesis [8, 9], but still 

struggle with key limitations: they cannot reliably preserve 

disease-specific characteristics (such as scaling patterns in 

psoriasis versus erythematous patches in atopic dermatitis), 

and they create inconsistent transitions between preserved 

pathology and anonymized regions, often inheriting and 

amplifying demographic biases from training data [8]. 

The challenge is further complicated by demographic 

biases in medical image generation. Although face 

generation and editing can be used for anonymization, 

most work has relied on datasets with limited demographic 

diversity, such as CelebA [10] and FFHQ [11]. 

Consequently, these models fail to accurately represent 

diverse facial features, particularly those of 

underrepresented demographic groups. This leads to 

systematic disparities in anonymization quality across 

different demographic attributes, resulting in inconsistent 

performance when applied to diverse clinical populations 

[8, 12, 13]. 

We introduce Derm-FairAnon, a framework based on 

Stable Diffusion v2 Inpainting [14] with two key 

innovations. First, Self-Supervised Preference 

Optimization (SelfPO) [15] eliminates the need for human 

feedback by leveraging image augmentation hierarchies 

("original > slightly degraded > heavily degraded"), 

maintaining high-quality disease representations without 

costly annotation. Second, Skin-Fair loss combines 

distributional alignment for balanced demographic 

representation, semantic preservation for maintaining 

image structure, and diagnostic preservation for protecting 

critical disease features during bias mitigation. 

We evaluated our model using comprehensive clinical 

skin disease datasets and validated its generalization on 
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CelebA-HQ and FFHQ test sets. Results demonstrate that 

Derm-FairAnon significantly outperforms existing 

methods in clinical utility and feature preservation 

accuracy, as assessed by board-certified dermatologists, 

while effectively anonymizing patient identity across 

diverse skin conditions and demographics. 

Our main contributions are: (1) Self-Supervised 

Preference Optimization that enables disease-aware 

anonymization without human feedback through strategic 

self-supervision, and (2) Skin-Fair loss that maintains 

balanced demographic representations while preserving 

diagnostic information, avoiding the clinical feature 

compromise common in previous bias mitigation 

approaches. 

2. Related Work 

Medical Face Anonymization. Traditional approaches 

to medical image anonymization have primarily relied on 

basic image processing techniques. Pixelation and blurring 

[16] are widely used in clinical publications but often 

compromise the clinical value of dermatological images by 

obscuring disease features alongside identifying 

characteristics. Studies have shown that these methods still 

pose privacy risks, as machine learning models can 

sometimes recover identity information from blurred 

images [16, 17]. More advanced methods employ digital 

masking techniques [1] that overlay black rectangles on 

specific facial features have become standard practice in 

many medical journals. While these methods preserve 

some clinical information, they fundamentally cannot 

maintain disease features in masked regions, creating an 

inherent trade-off between privacy and clinical utility. 

Additionally, research has demonstrated that partial 

masking often fails to prevent re-identification, especially 

when combined with other available information [17]. 

Recent advances in deep learning have led to GAN-based 

anonymization methods [18, 19] that replace real faces 

with synthetic ones. While promising for general medical 

imaging, these approaches were not designed for 

dermatological applications and typically replace the entire 

facial region, eliminating valuable disease information. 

They also often produce artifacts at the boundaries between 

preserved and generated regions [16], particularly 

problematic in dermatology where boundary 

characteristics are diagnostically significant. 

 

Fairness in Skin Image Generation. Skin disease 

image generation models exhibit significant demographic 

biases. Popular generative models heavily favor light skin 

tones and male representations [20]. Several approaches 

have attempted to address these issues: DermDiff [12] and 

FairSkin [8] mitigated racial bias through specialized text 

prompts and resampling strategies, while asymmetric 

quality bias related to skin tone in GANs has been analyzed 

[18]. Despite these advances, these approaches primarily 

focused on skin tone while insufficiently addressing other 

attributes like gender and age. DermDiT [13] employed 

vision-language models to reduce diagnostic bias but 

remained primarily focused on skin color variations. 

Performance gaps between genders have been reduced 

without addressing age-related biases [21,22]. While 

FEDD [23] demonstrated consistent performance across 

diverse skin tones, it lacked explicit fairness mechanisms 

for gender or age dimensions. The field still lacks 

integrated approaches that provide fairness across multiple 

demographic attributes and their intersections in 

dermatological contexts, particularly methods that balance 

demographic representation while preserving critical 

disease characteristics during anonymization. 

3. Method 

Our framework provides a comprehensive approach to 

 
Figure 1: The overview of Derm-FairAnon. The disease-preserving facial segmentation model generates masks that designate which 

clinical features to preserve during anonymization.  Our Self-PO approach creates a multi-level preference structure through controlled 

image degradation, enabling the model to learn high-quality disease representation without human feedback. The Skin-Fair loss integrates 

three components: Distributional Alignment Loss to balance demographic attributes, Semantic Preservation Loss to maintain image 

structure, and Skin-Diagnostic Preservation Loss to protect critical disease features. This comprehensive approach, implemented through 

LoRA adapters, transforms demographically biased representations into balanced outputs while preserving diagnostic value. 

    

       

           

                    

            

                  

            

                

                        

           

               

          

    

         

             

    

     

           

             

    

                       

                    

      

            

    

       

     

       

       

               

           

               

    

       

       

                       

              

           

          

      

          

      

          

      

                    

                     
 
 
 
  
  
  

  
 

           



 

 

dermatological image anonymization, designed to 

simultaneously achieve three competing objectives: 

privacy protection, clinical utility, and demographic 

fairness. Our methodology consists of three key 

components: (1) disease-preserving segmentation to 

differentiate diagnostically important regions from 

personally identifiable areas; (2) Self-supervised 

Preference Optimization (SelfPO) to learn high-quality 

anonymization that maximally preserves disease 

characteristics without external feedback; and (3) bias 

mitigation to generate balanced outputs across diverse 

demographic attributes. Figure 1 illustrates our overall 

approach. 

3.1. Disease-Preserving Segmentation 

For precise disease feature preservation, we employ 

PointRend [24] trained on 17,697 annotated facial images 

from A hospital (mIoU: 0.92). This approach efficiently 

segments both facial features and lesion boundaries—

critical for dermatological diagnosis—creating masks that 

designate which disease regions to preserve while 

anonymizing identifiable facial features.   

3.2. Self-supervised Preference Optimization for 

Diffusion Model 

Existing preference optimization techniques require human 

preference labels or external reward models. To overcome 

these limitations, we propose Self-supervised Preference 

Optimization (SelfPO), a diffusion model-specific 

approach that automatically generates preference learning 

signals through systematic image augmentations. 

The key insight of SelfPO is to generate natural 

preference rankings by intentionally injecting hierarchical 

degradations into image quality. Given an original image 

𝐼₀, we apply image augmentations of varying intensities to 

form a quality spectrum. When these transformed images 

are input to the model, the generated responses exhibit 

quality differences, forming an intrinsic preference ranking 

 ₀ ≻ y₁ ≻ y₂. 

We extend traditional Direct Preference Optimization 

[25] to a multi-level preference structure to better capture 

the nuanced quality characteristics of dermatological 

images. Our Multi-level DPO loss function is defined as: 

 

ℒ = − ∑ 𝐸 [𝑙𝑜𝑔𝜎 (𝛽 (𝑙𝑜𝑔𝜋(𝑦𝑖) − 𝑙𝑜𝑔𝜋(𝑦𝑗)))]𝑖<𝑗      (1) 

 

where x = 𝑖  represents the input image, 𝜋𝜃  is the model 

               σ     h                        𝛽  is a 

temperature scaling parameter. 

For image transformations, we selected clinically valid 

transformations including Gaussian noise, Gaussian blur, 

contrast adjustment, and color jitter. These transformations 

are applied at two intensity levels (weak and strong) to 

create quality differences while maintaining diagnostic 

viability. 

3.3. Bias Mitigation 

To address demographic biases in dermatological image 

generation, we develop the Skin-Fair loss (ℒ𝑆𝑘𝑖𝑛−𝐹𝑎𝑖𝑟) with 

three key components. First, we introduce a Distributional 

Alignment loss, ℒ𝐷𝐴  that aligns attribute distributions in 

generated images with predefined target distributions: 

 

ℒ𝐷𝐴 = ∑ |𝑓𝑟𝑒𝑞(𝑖) − 𝑡𝑎𝑟𝑔𝑒𝑡(𝑖)|𝑖,𝑗                 (2) 

 

where index 𝑖 represent different attribute groups (gender, 

age, skin tone), and target( 𝑖 ) represents the clinically-

appropriate target distribution for each attribute group.  

Second, we apply a Semantic Preservation loss, ℒ𝑆𝑃 [26] 

to ensure that structural integrity of images is not 

compromised during attribute adjustments. This loss 

measures cosine distances in CLIP and DINO feature 

spaces between our generated images and images from the 

original model generated with identical prompts. 

Third, we introduce the Skin Diagnostic Preservation 

loss ℒ𝑆𝑘𝑖𝑛−𝐷𝑃  to preserve diagnostically important 

information: 

 

ℒ = 𝜆1ℒ𝑓𝑒𝑎𝑡𝑢𝑟𝑒 + 𝜆2ℒ𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 + 𝜆3ℒ𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐    (3) 

 

The ℒ𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐  component uses a DenseNet-121 model 

specialized for skin disease classification to ensure disease 

characteristics are preserved during bias mitigation. 

To efficiently implement the Skin-Fair mechanism, we 

adopt a LoRA adapter-based approach, requiring less than 

1% additional parameters while maintaining flexibility to 

independently control various demographic factors. 

4. Experiments 

4.1. Experimental Settings 

Baseline. (1) traditional methods (blurring, masking), (2) 

face anonymization models (DeepPrivacy [27], AnonFaces 

[28]), and (3) ablated versions of our model. 

 

Datasets.  We evaluated our approach on 6,000 facial skin 

disease images from three hospitals, encompassing five 

common conditions: psoriasis, atopic dermatitis, acne, 

rosacea, and seborrheic dermatitis. The dataset includes 

diverse demographic attributes: gender, age groups. We 

used an 8:1:1 train-validation-test split while ensuring 

demographic balance. To verify generalization capability, 

we additionally evaluated our models on standard 

benchmark datasets CelebA-HQ and FFHQ. 

 



 

 

Evaluation. Diagnostic preservation was quantified 

through Disease Classification Performance (DCP) using a 

DenseNet-121 [29] classifier to compare AUC scores 

before and after anonymization. Anonymization Success 

Accuracy was measured using the InsightFace [30] face 

recognition model. Image quality was measured using FID 

and PSNR metrics. Demographic fairness was evaluated 

through three bias metrics: Gender Bias, Age Bias, and 

Gender-Age Intersectional Bias, measuring frequency 

disparities between demographic groups. Clinical 

validation was conducted by two board-certified 

dermatologists evaluating disease feature preservation and 

image naturalness on a 5-point scale (1: poor - 5: excellent). 

4.2. Comparison with the Baselines 

Table 1 presents our approach outperforming baselines in 

both disease preservation, image quality and 

Anonymization Success Accuracy. Clinical validation 

confirmed 4.5 of our anonymized images maintained 

 
Figure 2: Qualitative results of Derm-FairAnon across diverse skin conditions and demographics. Our approach effectively anonymizes 

facial images while preserving disease-specific features across different age groups (10y to ≥60y) and genders. The results demonstrate 

the model's ability to maintain balanced demographic representation while accurately preserving condition-specific characteristics for 

various dermatological conditions: acne, rosacea, atopic dermatitis, seborrheic dermatitis, and psoriasis. 

                     

  
  
 
  
 

 
  
 
  
 

  
  
 
  
 

 
  
 
  
 

                                  

  
  
 
  
 

 
  
 
  
 

                                     

  
  
 
  
 

 
  
 
  
 

                      

                      

                                   

  
  
 
  
 

 
  
 
  
 

                                        

                        

                      

                                       

Methods D. AUC ↑ Ano. Acc ↑ FID ↓ PSNR ↑ G. Bias ↓ A. Bias ↓ G x A. Bias ↓ Clinical Score ↑ 

Blurring 54.8 0.89 157.9 19.3 - - - 0.5 

Masking 61.2 1.00 183.4 17.8 - - - 1.0 

DeepPrivacy 72.3 0.98 99.8 25.7 - - - 0.5 

AnonFaces 68.5 0.97 101.3 26.2 - - - 0.5 

SD-v2-I 83.2 1.00 134.7 28.3 0.36 0.33 0.40 2.5 

DL-I 82.7 1.00 94.4 27.9 0.35 0.34 0.39 2.0 

SD-XL-I 85.4 1.00 95.2 27.6 0.38 0.35 0.41 2.5 

Ours 94.7 1.00 94.9 30.3 0.15 0.14 0.13 4.5 

Table 1: Comparison with the baseline methods. 
 

D: Disease, Ano: Anonymization, G: Gender, A: Age, SD-v2-I: Stable Diffusion-v2 Inpainting, DL-I: DreamLike Inpainting, SD-XL-I: Stable Diffusion XL Inpainting 

 



 

 

diagnostic equivalence to originals. Figure 2 shows 

Quantitative results of Dermatological Image 

anonymization. 

5. Conclusion 

We presented Derm-FairAnon that integrates SelfPO and 

ℒ𝑆𝑘𝑖𝑛−𝐹𝑎𝑖𝑟  to achieve high-quality anonymization without 

human feedback while ensuring balanced demographic 

representation without compromising diagnostic value. 

This work represents an important step toward ethical 

medical data sharing without compromising clinical value. 
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