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ABSTRACT

Trade-based manipulation (TBM) undermines the fairness and stability of finan-
cial markets drastically. Spoofing, one of the most covert and deceptive TBM
strategies, exhibits complex anomaly patterns across multilevel prices, while often
being simplified as a single-level manipulation. These patterns are usually con-
cealed within the rich, hierarchical information of the Limit Order Book (LOB),
which is challenging to leverage due to high dimensionality and noise. To ad-
dress this, we propose a representation learning framework combining a cascaded
LOB representation architecture with supervised contrastive learning. Extensive
experiments demonstrate that our framework consistently improves detection per-
formance across diverse models, with Transformer-based architectures achieving
state-of-the-art results. In addition, we conduct systematic analyses and ablation
studies to investigate multilevel manipulation and the contributions of key com-
ponents for detection, offering broader insights into representation learning and
anomaly detection for complex time series data.

1 INTRODUCTION

As the backbone of modern economies, financial markets rely heavily on efficiency and integrity to
ensure stable and fair operations worldwide (Roodposhti et al., [2011)). However, market manipula-
tion, particularly trade-based manipulation (TBM) as classified in (Allen & Gale,|1992)), can severely
undermine market fairness and erode investor confidence. Increasingly sophisticated TBM strate-
gies have recently emerged amid the rapid growth of electronic markets and algorithmic trading.
These developments pose significant challenges for regulators and have heightened concerns among
market participants (Alexander & Cumming| 2022). Regulatory bodies, including the China Secu-
rities Regulatory Commission (CSRC) and the U.S. Securities and Exchange Commission (SEC),
actively monitor and penalize such behaviors to uphold market integrity and safeguard investors.

One of TBM’s most covert and difficult forms is spoofing (or named layering), a deceptive trad-
ing strategy involving non-bona fide order placements. Spoofing typically involves placing large
orders without the intention of execution, often hidden in deeper levels (after the 2nd level) of the
Limit Order Book (LOB) to avoid immediate fulfillment and mislead other market participants (Lee
et al., 2013} Tao et al., 2022). Traditionally, such manipulation is often detected by human experts,
leading to large labor costs and low efficiency. Recently, prior research for automatic detection
has explored various machine learning approaches, such as end-to-end (Cao et al.l 2014} |Chulla-
monthon & Tangamchit, 2022), or a two-stage framework (an encoder combined with a classifier)
(Poutré et al., 2024} [Safa et al., |2024). However, these methods often rely on level 1 tick data (i.e.,
the first level of LOB) anomaly modeling, overlooking manipulative behaviors that span multiple
LOB levels. In practice, such multilevel manipulation strategies are not only more prevalent but
also more covert and structurally complex, making them significantly harder to detect using models
designed for shallow or localized patterns.

An intuitively promising direction is to utilize the structural richness of multilevel LOB data. Unfor-
tunately, there still lacks a well-established way for the detection methods to deal with the multilevel
LOB data, due to its high dimensionality, noise, and hierarchy complexity (Lu & Abergel, 2018;
Marszatek & Burczynski, [2024). Hence, while manipulation detection has been approached using
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diverse inputs, many methods rely on level 1 tick data or statistical indicators (Abbas et al., 2018;
Rizvi et al.|, [2020b; [Poutré et al.l 2024; |Safa et al., |2024; |Liu et al., 2024a). Among approaches
incorporating LOB, most either extract handcrafted LOB-derived features (Cao et al.| 2015), use
incomplete price-volume subsets (Leangarun et al., [2018; (Chullamonthon & Tangamchit, [2023)), or
directly feed raw LOB sequences into models without explicitly modeling their hierarchical struc-
ture (Chullamonthon & Tangamchit, 2022). As a result, critical inter-level dynamics remain under-
exploited. A full review of related work is provided in Appendix[A.1]

To fill these gaps, we present a formalization of the multilevel manipulation detection task, accord-
ing to which a two-stage framework is adopted. Then we explicitly propose a Multilevel LOB En-
coder for automatically leveraging the hierarchical information in the LOB data, and subsequently
concatenate the learned vectors with traditional, well-designed, manual features. This combined
representation is then fed into a Contrastive Fusion Encoder, which employs supervised contrastive
learning to enhance representation quality. This stage incorporates limited supervisory signals by
oversampling rare anomalies and leverages a hybrid contrastive loss. In a nutshell, we design a
novel framework that detects multilevel manipulation with traditional classification-based detectors,
by cascading the LOB representation module and combining contrastive learning.

Building on this framework, we systematically analyze the problem of multilevel manipulation de-
tection with extensive experiments. The results clearly reveal (i) the greater difficulty of detecting
multilevel manipulation relative to single-level ones, and (ii) the tension between the informative
nature of multilevel LOB structures and the inherent difficulty of leveraging them effectively. Fur-
thermore, we show that this framework consistently improves multilevel manipulation detection per-
formance across a variety of representation models, where Transformer-based architectures achieve
the state-of-the-art results. To further demonstrate the effectiveness and generality of our frame-
work, we conduct comprehensive ablations on the cascaded LOB representation architecture and
the supervised contrastive learning component, assessing how each module and its training strategy
contribute to representation quality and multilevel detection performance.

In summary, our contributions are threefold:

* We present the first method for detecting multilevel manipulation, and demonstrate its ad-
vantages and challenges over traditional single-level detection.

* We propose a novel LOB-based representation learning framework that enhances multilevel
manipulation detection across diverse models, achieving state-of-the-art performance with
Transformer-based architectures.

* We empirically show that LOB’s hierarchical information can be effectively leveraged

through representation learning, and contrastive learning brings notable gains to detection
tasks.

2 BACKGROUND AND PROBLEM SETUP

2.1 LIMIT ORDER BOOK

The Limit Order Book (LOB) is a core component of the modern financial market microstructure,
which serves as a dynamic electronic record of all untraded limit orders (Abergel et al.,[2016). This
structure is crucial for understanding market depth and liquidity, by virtue of its highly granular
and deep structure and its ability to dynamically update in real time to reflect all market changes
(Foucault et al., |2005)).

The mathematical description of the LOB snapshot L; at any given time step ¢ can be written as:

L, = {pfz(t)a Ui(t)apé(t), vli;(t) é:l'
Here, [ denotes the number of levels in the order book. For each level i at time ¢, p’ (t) and p}(t)
represent the ask (i.e., selling) and bid (i.e., buying) prices, while v/ (¢) and v} (¢) represent their cor-
responding volumes. This multilevel representation, characterized by the parameter [, is particularly
relevant to our work, as it forms the basis for detecting multilevel manipulation.

However, the inherent complexity of LOB poses significant challenges for representation learning.
First, it is high-dimensional, represented by a 4 x [ matrix at each time step, which requires models
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capable of processing a large number of variables (Lu & Abergel, 2018)). Second, it exhibits notable
spatial heterogeneity, as the spread between different price levels is not constant (Gu et al., |2016).
Furthermore, LOB data is characterized by both high-frequency dynamics and strong autocorrela-
tion, as its rapid evolution reflects the complex interplay between numerous traders’ actions and
the market matching mechanism (Gould et al., 2013). Consequently, an effective representation is
crucial, as it must account for the high-dimensional, spatial-temporal patterns in LOB data in order
to detect subtle manipulative behaviors embedded across multiple levels.

2.2 MARKET MANIPULATION

Market manipulation is the intentional interference with market forces by an individual or group
to present an unreal picture of market activity to mislead other investors for personal profit. This
study focuses on Trade-Based Manipulation (TBM) (Allen & Galel [1992) that uses real trades to
execute manipulative schemes, making it difficult to detect as it seems to be legal in appearance
(Khodabandehlou & Golpayeganil, 2022)).

Among various TBM schemes, this paper specifically delves into spoofing, which is considered one
of the most covert, high-frequency, and harmful forms of abnormal trading. It is a form of market
manipulation in which an individual or group places large orders with no genuine intent to execute.
These orders are often submitted across multiple price levels within millisecond intervals, creating a
false impression of substantial supply or demand. This misleading signal induces other investors to
adjust their trading strategies accordingly. After triggering the desired market reaction, the manipu-
lators swiftly cancel the non-bona fide orders and execute bona fide orders at more favorable prices
to secure a profit (Cartea et al., [2020).

These deceptive activities leave a distinct fingerprint on the LOB, particularly at the multilevel scale
(Lee et al.,|2013} [Tao et al., [2022). The anomalies are often hidden in deeper levels, as these orders
are visible but less likely to be immediately executed, consistent with a lack of genuine trading
intent. Furthermore, a key indicator is a recurring pattern where orders are placed closer to the best
price to appear executable, but are canceled immediately before being filled. This cycle is repeated
to influence the market without a real trading commitment.

Therefore, a model capable of effectively analyzing these multilevel, high-frequency anomalies is
crucial for detecting such subtle manipulation, which motivates the design of our proposed method.

2.3  MULTILEVEL MANIPULATION DETECTION DEFINITION

The problem of Multilevel Manipulation Detection is formalized as a binary classification task where
the goal is to determine whether a pattern of multilevel manipulation occurs at a specific time step .

The input to our model is a T-length time-series of states, denoted as S; = {Xy,..., Xpyr—1}-
Each X; represents the LOB snapshot L; € R* and other possible manual features F; € R™
at time ¢, where [ is the number of levels in LOB and m is the number of manual features. The
combined input is X; € R**™, potentially containing multilevel manipulation patterns.

The detection process is a two-stage pipeline. First, we construct a representation model f. to map
the input sequence .S; into a single latent feature vector z;:

2 = fo(St), 2 € R, (1)

where D denotes the dimension of the latent representation. Then we build a discrimination function
gq to assess whether S; contains any manipulation based on its latent representation z;:

Y = ga(zt), yr € R, )

where y; denotes the anomaly score for the sequence S;, and binary predictions can be obtained by
applying a threshold during evaluation. The core challenge is building a representation model that
captures these intricate features to distinguish manipulation from complex market dynamics.

3 THE PROPOSED FRAMEWORK

Following the problem definition in Section [2.3] we adopt a two-stage framework that decouples
manipulation detection into a representation stage (Eq.|l)) and a subsequent anomaly detection stage
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Figure 1: The overall architecture of the decoupled framework for multilevel manipulation detection,
consisting of two core stages—representation and detection (Eqs. [T and 2).

(Eq.2). An overview of the entire framework is illustrated in Figure [, While this architecture is
common in anomaly detection, we identify representation as the key bottleneck in modeling multi-
level manipulation and introduce two approaches to enhance it. The next two sections elaborate on
each approach, and details of the remaining components are provided in Appendix [A.2]

3.1 CASCADED LOB REPRESENTATION ARCHITECTURE

Effectively encoding a combination of high-dimensional LOB data and manual features requires a
specialized approach, which stems from two primary factors. First, LOB data are inherently complex
and highly dynamic, making it difficult for models to directly process their rich latent information
without significant noise. Second, LOB data represent raw market activity, while manual features
are in a processed form, creating a fundamental mismatch when these two distinct data types are
simply concatenated. To address this dual challenge of LOB complexity and feature heterogeneity,
we propose a cascaded representation architecture.

The first phase employs a Multilevel LOB Encoder to extract a robust latent representation from
the high-dimensional LOB data. We implement this encoder using a Transformer (Vaswani et al.,
2017) architecture, selected for its strong capabilities in sequence modeling. The encoder is initially

pre-trained in a standalone manner to minimize the reconstruction error of the raw LOB input, for-
2

mulated as the mean squared error MSE): L5 = % Zthl HIA,t — L;|| ,where L; and I:t denote
2

the original and reconstructed LOB snapshots at time ¢, each comprising 4/ elements corresponding
to the price and volume of top [ bid and ask levels. The encoder is frozen after pre-training, aiming
to improve training efficiency and support modular replacement with more advanced architectures.

In the second phase of our architecture, the compact latent representation produced by the Multilevel
LOB Encoder is fused with the manual features. This process forms a composite feature vector
that serves as the input to the Contrastive Fusion Encoder. By integrating the high-level semantic
information from the LOB embedding with the structured manual features, our approach provides a
comprehensive and robust representation of the market state for subsequent anomaly detection.

3.2 SUPERVISED CONTRASTIVE LEARNING

The inherent variability of normal market behavior, coupled with the subtle nature of multilevel ma-
nipulation, poses a fundamental challenge for traditional reconstruction-based representation mod-
els, which often fail to learn a sufficiently discriminative latent space for effective anomaly detec-
tion. To address this, we adopt a supervised contrastive learning paradigm in the representation
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stage, which requires only a limited set of labeled anomalies and a modification to the loss function,
resulting in a highly discriminative latent representation crucial for robust anomaly detection.

To implement this paradigm, our overall training objective of the Contrastive Fusion Encoder is a
weighted combination of two complementary loss functions, defined as: £ = (1 — ) - Lysg + a -
Lscr- The reconstruction loss (£ ;5 ) serves as a foundational objective, ensuring the model learns
the fundamental structure and patterns of the data, while the supervised contrastive loss (Lsc 1) ex-
plicitly encourages a more discriminative latent space by pulling similar samples closer and pushing
dissimilar ones apart. The hyperparameter « is used to find the optimal trade-off between structural
learning and discriminative power.

While £);sE here extends the earlier version to reconstruct both LOB representations and manual
features, our primary focus lies in Lgc, (Khosla et al.l [2020), defined per training batch as:

1 > icP(i) €
Lscr =Y —1 J : .
SCL |D| ZGZ; 0g ZkeA(i) esim(z;,zx) /T

sim(z;,2;)/T

In the formula, z represents the L2-normalized feature embeddings, sim(-, -) is the cosine similarity,
and 7 is a temperature hyperparameter. The set D contains all samples in the batch that have at
least one positive pair, while P () represents the set of positive pairs for a given anchor ¢, and A(%)
includes all other samples in the batch. Crucially, in the context of our anomaly detection task,
a positive pair is one in which both samples are normal or anomalous, whereas a negative pair is
composed of one normal sample and one anomalous.

In practice, a key challenge is the severe data imbalance, where anomalous samples are extremely
rare. This is mitigated by employing an oversampling strategy during batch construction, which en-
sures a sufficient number of anomalous samples in each training batch for the supervised contrastive
objective to operate effectively.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP
4.1.1 DATASET

The raw data comes from the LOBSTER platform (LOBSTER| |n.d.), which has been widely used
in multiple market manipulation detection investigations (Cao et al., 2015} |Rizvi et al., [2020a; Safa
et al., 2024} |Poutré et al.l 2024). It provides tick-by-tick trades and millisecond-level limit order
books for multiple NASDAQ stocks. For our study, we selected three stocks representing different
industries and liquidity characteristics: Cisco Systems (CSCO), Tesla (TSLA), and Intel (INTC) on
January 2, 2015, with millions of entries providing sufficient data for our study. Through careful
examinations, all selected data do not contain any reported market manipulation events.

Given the scarcity of real-world manipulation in high-frequency trading, we follow a widely adopted
approach in both academia and industry (Cao et al.|[2015) by injecting multilevel manipulation into
the selected datasets. The full data processing procedure—including anomaly insertion, manual
feature construction, dataset partitioning, and summary statistics—is detailed in Appendix

4.1.2 BASELINES AND METRICS

To comprehensively evaluate the performance improvements enabled by the proposed mode (the
cascaded LOB representation architecture and the combined training loss) over the original mode
(the MSE training loss), we select a diverse set of 6 representation learning models as the Con-
trastive Fusion Encoder and two classic detectors for downstream evaluation. The representa-
tion models include classical architectures applied to LOB data (CNN2 (Tsantekidis et al., [2020),
LSTM (Tsantekidis et al.l 2017)), LOB-specific models for anomaly detection or representation
learning (JFDS (Poutré et al., 2024), SimLOB (Li et al., 2024))), and state-of-the-art time-series
models developed on general benchmarks (FEDformer (Zhou et al., 2022), TimesNet (Wu et al.,
2023))). For downstream detectors, Isolation Forest (Liu et al.l |2008) and OC-SVM (Scholkopf
et al., [1999) are employed to assess the effectiveness of the learned representations and perform
end-to-end comparisons on the raw data.
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Table 1: Performance comparison of proposed and original modes on multilevel manipulation de-
tection

Detection ~ Representation ~ Mode AUC-PRT  AUROCT  F4-Score T  PrecisionT  Recall T
OC-SVM 0.163 0.759 0.609 0.160 0.739
CNN2 Original 0.176 0.777 0.604 0.155 0.738
Proposed 0.198 0.855 0.707 0.149 0.923
LSTM Original 0.160 0.795 0.601 0.158 0.728
Proposed 0.375 0.902 0.734 0.166 0.935
JFDS Original 0.252 0.854 0.653 0.238 0.733
Proposed 0.675 0.975 0.881 0.402 0.952
SimLOB Original 0.164 0.768 0.603 0.144 0.754
Proposed 0.210 0.894 0.748 0.170 0.950
FEDformer Original 0.226 0.823 0.633 0.218 0.719
Proposed 0.105 0.787 0.647 0.106 0.949
TimesNet Original 0.186 0.829 0.611 0.186 0.713
Proposed 0.222 0.646 0.534 0.068 0.937
Isolation Forest 0.101 0.736 0.562 0.133 0.705
CNN2 Original 0.169 0.780 0.609 0.186 0.710
Proposed 0.209 0.893 0.732 0.177 0911
LSTM Original 0.162 0.807 0.607 0.171 0.722
Proposed 0.364 0.914 0.750 0.201 0.904
JFDS Original 0.232 0.846 0.646 0.227 0.730
Proposed 0.631 0.970 0.855 0.373 0.930
SimLOB Original 0.160 0.779 0.610 0.163 0.737
Proposed 0.189 0.883 0.733 0.168 0.928
FEDformer Original 0.224 0.835 0.637 0.189 0.749
Proposed 0.247 0.817 0.664 0.114 0.949
TimesNet Original 0.187 0.837 0.625 0.200 0.721
Proposed 0.219 0.607 0.529 0.062 0.994

For performance evaluation, we employ a suite of widely-used metrics: Area Under the Precision-
Recall Curve (AUC-PR), Area Under the Receiver Operating Characteristic Curve (AUROC), F-
score, Recall, and Precision. Given the extreme class imbalance in our financial anomaly detection
dataset, we place particular emphasis on the AUC-PR, as it provides a more reliable assessment by
being sensitive to the minority class. Furthermore, as the cost of misclassifying anomalous orders is
significantly higher, we utilize the F-beta measure with 3 = 4 to heavily weight recall and penalize
false negatives.

4.2 EXPERIMENT 1: OVERALL PERFORMANCE EVALUATION

This set of experiments assesses our proposed representation mode to effectively exploit multilevel
LOB data for multilevel manipulation detection. Both modes take 5-level LOB data and manual
features as input. The original mode relies solely on MSE loss without a Multilevel LOB Encoder,
while our proposed mode integrates the cascaded LOB representation architecture and supervised
contrastive learning.

From Table [T} JFDS under the proposed mode achieves state-of-the-art results for both OC-SVM
and Isolation Forest, demonstrating the clear superiority of our methods for multilevel manipulation
detection. This significant finding is also consistent with the overall positive trend observed across
most other representation models. For models such as CNN2, LSTM, and SimLOB, the proposed
mode consistently leads to improvements across all evaluated metrics, which fully demonstrates its
effectiveness in enhancing the representational learning capabilities. In contrast, FEDformer and
TimesNet show mixed results, with some metrics improving while others decline, which implies a
lack of compatibility between these general-purpose representation models and the specific charac-
teristics of LOB data.

In conclusion, our experiments demonstrate that the proposed mode consistently enhances the per-
formance of various representation models, except for two models for the general time series repre-
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sentation learning. Furthermore, with JFDS as the Contrastive Fusion Encoder, our method success-
fully achieves the state-of-the-art results for the multilevel manipulation detection task.

4.3 EXPERIMENT 2: ANALYSIS OF THE MULTILEVEL MANIPULATION DETECTION
CHALLENGE

This set of experiments investigates the challenges of multilevel manipulation detection. We first

compare it with single-level manipulation to highlight its complexity, and then examine the value
and challenges of using multilevel LOB data.

4.3.1 COMPARISON WITH SINGLE-LEVEL MANIPULATION

As discussed in previous sections, multilevel manipulation is

subtler and more prone to being overlooked or misclassified than Level-1 Anomaly Insertions
the single-level type. To investigate this challenge more con- B Level-5 Anomaly Insertions
cretely, we vary the distribution of anomaly insertions and evalu- CNN2
ate all representation models combined with OC-SVM under the LST™

original mode. Notably, we exclude multilevel LOB inputs in
this setting to avoid introducing noise into reconstruction-based
methods with limited capacity. We focus on the AUC-PR met-
ric, which is particularly informative for imbalanced datasets.
Results are summarized in Figure 2] with complete results in ~ TimesNe

Appendix @ 0 0.1 02 03 04

AUC-PR

JFDS
SimLOB

FEDformer

Figure 2] reveals a consistent performance gap between models

trained on single-level versus multilevel insertions, with the for-  Figyure 2: Impact of anomaly in-
mer achieving higher AUC-PR scores. It highlights the inherent  gertion depth on AUC-PR.
difficulty of detecting multilevel manipulation: the anomalous

signals are more dispersed across multiple levels of the order

book, making them harder to localize and distinguish from normal fluctuations. These findings
reinforce our hypothesis that multilevel manipulation is more complex and subtle, requiring more
advanced and expressive modeling methods to detect effectively.

4.3.2 THE VALUE AND CHALLENGES OF LOB REPRESENTATION

Building on earlier findings that multilevel manipulation is harder to detect, we now examine
whether incorporating multilevel LOB as input improves detection performance. We evaluate three
types of inputs with the OC-SVM detector for multilevel manipulation: without LOB, with raw
LOB, and with embedded LOB from the Multilevel LOB Encoder. To avoid underestimating the
potential of LOB modeling, we also compare the results between the two training losses of the
Contrastive Fusion Encoder. We consider the AUC-PR among two groups of outputs: (i) all de-
tected anomalies across five levels, and (ii) detected anomalies limited to levels 2-5, highlighting
the model’s ability to detect subtler patterns beyond level 1. Results are shown in Figure 3] with full
details in Appendix[A.6]

The experimental results on both metrics reveal that simply adding LOB data with MSE loss does
not yield a positive performance gain. This suggests that without specialized handling, the direct
inclusion of LOB data may introduce more noise, thereby underscoring the inherent challenges of
LOB representation. In contrast, under our proposed combined loss, the majority of models show a
significant performance improvement when using LOB or embedded LOB data, especially the latter.
The only exceptions are FEDformer and TimesNet, which consistently perform better without LOB
data, a finding that aligns with our conclusions from Experiment 1 regarding their incompatibility
with LOB data. Furthermore, a closer look at these two metrics reveals that while proper LOB rep-
resentation improves performance, the consistently lower AUC-PR evaluated in levels 2-5 compared
to all-5-level reaffirms that detecting multilevel manipulation is inherently more challenging.

Overall, these results demonstrate that LOB data is indeed valuable for multilevel manipulation
detection, but its effective utilization is contingent upon proper representation.
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Figure 3: AUC-PR performance comparison with different loss functions and input on multilevel
manipulation detection (OC-SVM): evaluated on all detected anomalies across five levels (left) and
detected anomalies limited to levels 2—5 (right).

4.4 EXPERIMENT 3: ABLATION STUDY AND FRAMEWORK ANALYSIS

This section analyzes the representation stage of our detection framework, focusing on the cascaded
architecture and the impact of supervised contrastive learning on multilevel manipulation detection.

4.4.1 ANALYSIS OF THE REPRESENTATION STAGE

Table [T highlights the critical role of the representation stage in our detection framework. Across
both OC-SVM and Isolation Forest, models with learned representations consistently outperform
their non-representational counterparts, with the effect particularly pronounced for Isolation Forest
due to its weaker native detection capability.

Examining individual architectures, Transformer-based JFDS benefits most from the proposed ap-
proaches, followed by LSTM, while CNN and SimLOB gain modestly. General-purpose models
like TimesNet and FEDformer are less compatible with LOB data; in some cases, excluding incom-
patible inputs yields greater improvements than architectural or training changes (Figure[3).

These observations confirm that representation learning improves detection overall, but its impact
differs across models, reflecting variations in architecture and compatibility with LOB data.

4.4.2 ABLATION STUDY OF THE CASCADED ARCHITECTURE

This experiment investigates the contribution of the Multilevel

LOB Encoder in a cascaded architecture through an ablation ¥ srmtosErbaeng B TarstomerEnosdng
study. We further examine how different architectural choices af- B NoCascaded o3 Emoecang

fect the multilevel manipulation detection performance. All set-

tings use JFDS as the Contrastive Fusion Encoder with OC-SVM
under the combined loss to ensure comparability.

0.5

As shown in Figure[d] the Multilevel LOB Encoder leads to con-
sistent performance improvements, with the Transformer-based
representation achieving the best results. While LSTM and Sim-
LOB perform better, CNN2 exhibits performance degradation,
suggesting that not all architectures are equally compatible for
LOB representation. TimesNet and FEDformer are excluded due
to their incompatibility with LOB inputs, as demonstrated in prior
experiments.

AUC-PR AUROC F4-Score

Figure 4: Ablation study on
the cascaded architecture using
JFDS with OC-SVM.

Notably, the gains are most prominent in AUC-PR, with relatively

smaller effects on AUROC and F4-score, indicating that the cas-

caded architecture is particularly effective for rare-event detection.
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Table 2: Performance of JFDS with OC-SVM  Table 3: Performance of JFDS with OC-SVM
under varying oversampling ratios () using the  under different contrastive loss weight (a)
combined loss function

a AUC-PRT AUROC?T F4-Score T

B AUC-PRT AUROCT  F4-Score 1

1 0.252 0.583 0.498
0.5 0.470 0.956 0.852 0.8 0.540 0.962 0.868
0.3 0.470 0.946 0.828 0.5 0.526 0.958 0.851
0.1 0.483 0.950 0.834 0.2 0.470 0.946 0.828
0 - - - 0 0.252 0.854 0.653

A detailed architectural exploration of the Multilevel LOB Encoder is beyond the scope of this work
and is left for future investigation.

4.4.3 ANALYSIS OF THE CONTRASTIVE SUPERVISED LEARNING

This section analyzes key hyperparameters in contrastive supervised learning, focusing on oversam-
pling and loss function weighting. To isolate their effects, we evaluate JFDS with OC-SVM using
raw multilevel LOB data as input, excluding the Multilevel LOB Encoder.

As shown in Table 2| the oversampling module plays a crucial role. Without it, the contrastive
loss fails due to extreme class imbalance. When the anomaly ratio is set to 0.1 (i.e., anomalies
comprise 10% of each batch), the model becomes consistently trainable, and further tuning has
limited impact. This indicates that the presence of oversampling, rather than the precise ratio, is
essential for enabling contrastive learning.

Table 3] further highlights the necessity of combining MSE and contrastive loss. Performance drops
sharply when either loss is removed (o = 0 or 1), confirming their complementarity. The contrastive
loss sharpens anomaly discrimination, while MSE helps preserve structural fidelity, making the
hybrid formulation critical for optimal results.

5 CONCLUSION

This work is the first to systematically address the challenge of detecting multilevel spoofing, a
sophisticated form of trade-based manipulation, by leveraging the hierarchical information in Limit
Order Book (LOB) data. We propose a representation learning framework that integrates a cascaded
LOB representation architecture with supervised contrastive learning, effectively capturing complex
multilevel anomaly patterns.

Experimental results demonstrate the effectiveness of our approach: our framework consistently im-
proves detection performance across diverse models, with Transformer-based architectures achiev-
ing state-of-the-art results. We show that multilevel anomalies are inherently more subtle and chal-
lenging than single-level ones, and that LOB data, when properly represented, provides critical
information for detection. Ablation studies further clarify the complementary contributions of the
cascaded LOB architecture and the combined loss with limited oversampling, providing guidance
for the design of robust anomaly detection.

Looking forward, future work could explore: (i) designing LOB-specific architectures for Multilevel
LOB Encoder to better capture hierarchical patterns and sequential dependencies, enabling a syn-
ergistic combination of handcrafted and automatically learned features; (ii) refining the definition
of supervisory signals or contrastive objectives to enhance representation quality further; and (iii)
extending the framework to other types of market manipulation or more general sequential anomaly
detection tasks. These directions have the potential to improve the accuracy, robustness, and appli-
cability of the detection to various financial and sequential data scenarios.
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no personally identifiable information. To study manipulative behaviors, we synthetically generate
manipulation cases by following procedures documented in prior literature. These simulated behav-
iors are designed solely for defensive research purposes, and do not reflect the actions or strategies
of any real market participants. Our study strictly adheres to the ICLR Code of Ethics, and we have
taken necessary precautions to minimize the risk of misuse or unintended consequences.

REPRODUCIBILITY STATEMENT

To support reproducibility, we will release the complete source code as anonymous supplementary
material, including data preprocessing scripts, model implementations, and configuration files for
all experimental settings. Appendix provides comprehensive details of the data preparation
pipeline, including manipulation injection procedures, manual feature construction, normalization,
and dataset partitioning, along with relevant parameter settings and statistics. Appendix [A.4]docu-
ments the model architectures, training configurations, software environment, and implementation
details for all methods used. All experiments follow a standardized training pipeline, and fair com-
parisons are ensured through faithful reproduction of benchmark models. We aim to make all results
fully reproducible with minimal effort.
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A APPENDIX

A.1 RELATED WORK
A.1.1 ANOMALY DETECTION OF MARKET MANIPULATION

Early studies on market manipulation detection are primarily rule-based or statistical (Jarrow, 1992}
Kirkland et al., [1999; |Aggarwal & Wu, 2006; [Mongkolnavin & Tirapat, [2009), relying heavily on
expert-defined heuristics or handcrafted indicators. While interpretable, these methods suffer from
poor adaptability and generalization, making them ineffective against evolving or subtle manipula-
tion strategies (Chullamonthon & Tangamchit, 2023)).

To overcome these limitations, classical machine learning techniques such as support vector ma-
chines and decision trees have been explored (Ogiit et al.,[2009; |Diaz et al.,2011). A representative
example is the Adaptive Hidden Markov Model with Anomaly States (AHMMAS) proposed by (Cao
et al.| 2015)), which achieves improved performance over previous methods by modeling transitions
between normal and anomalous states. However, AHMMAS suffers from exponential growth in
computational complexity as the number of input features increases, making it difficult to scale. In
general, these methods remain limited in capturing complex patterns in high-dimensional settings,
motivating the adoption of deep learning approaches.

To better analyze recent deep learning efforts in manipulation detection, we organize existing meth-
ods into two main categories: end-to-end models and autoencoder-based two-stage frameworks.
While the former directly learns decision boundaries from raw inputs, the latter focuses on extract-
ing informative embeddings to support downstream detection.

Regarding end-to-end models, one study employs a multilayer perceptron (MLP) to detect syn-
thetic pump-and-dump patterns from level-1 data (Leangarun et al. [2016)), while another uses a

13
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Transformer-based classifier to improve detection on both synthetic and real-world cases by captur-
ing richer temporal dependencies (Chullamonthon & Tangamchit, 2022). These methods demon-
strate the ability of deep learning to model complex dependencies in high-dimensional data without
relying on handcrafted features. However, most end-to-end approaches rely on fully supervised
training, which requires large volumes of labeled data that are often unavailable in real markets.
In addition, they generally lack adaptability, as a separate model must be retrained from scratch to
handle each new type of manipulation.

In parallel, two-stage methods aim to extract informative representations from market data, typi-
cally trained in an unsupervised manner and used in conjunction with downstream classifiers for
anomaly detection. An LSTM-based autoencoder detects manipulation in the Thai market using
reconstruction error and shows superior performance over an LSTM-GAN in capturing pump-and-
dump (Leangarun et al.,2021)). Another approach learns representation using affinity matrices, with
manipulation detected via kernel density—based clustering, showing notable improvements on LOB-
STER data (Rizvi et al., [2020a). WALDATA transforms stock price time series into 2D scalogram
images using wavelet transforms and applies a GAN to learn normal trading behavior, with the dis-
criminator detecting manipulation (Safa et al., 2024). A transformer encoder is also explored to
extract representations from high-frequency LOB data, with an OC-SVM applied to identify manip-
ulation (Poutré et al., |2024). Overall, two-stage frameworks can extract informative representations
from high-dimensional market data, enabling downstream detection methods that would otherwise
struggle with such inputs. In addition, they reduce reliance on labeled data compared to fully su-
pervised models and allow greater flexibility for adapting to new manipulation types with lower
retraining cost.

Although these deep learning approaches achieve notable results, they primarily focus on single-
level anomalies and often overlook covert manipulative behaviors that span multiple LOB levels.
Such cross-level manipulations are both structurally complex and widely distributed, making them
difficult to detect with conventional methods. However, high-frequency multilevel LOB data en-
codes rich hierarchical signals that can be critical for identifying these subtle patterns. To this end,
two-stage representation learning offers a natural solution, as it is well-suited for capturing structure
in high-dimensional, noisy, and unlabeled data. Motivated by these strengths, we explore a two-stage
framework tailored to LOB, aiming to improve the detection of multilevel market manipulation.

A.1.2 REPRESENTATION LEARNING FOR LOB

Representation learning plays a central role in modeling multivariate time series (MTS), enabling
the extraction of compact and informative features from noisy, high-dimensional, and non-stationary
sequences (Zhang et al., [2024). This capability supports a wide range of downstream tasks such as
classification (Middlehurst et al., [2024)), forecasting (Cai et al., [2024), and anomaly detection (Chot1
et al) [2021), and has become fundamental in many domains, including finance, healthcare, and
industrial systems (Trirat et al.l [2024). Among them, Limit Order Book (LOB) data represents
a particularly complex form of MTS—characterized by high dimensionality, spatial heterogene-
ity, and rapid temporal dynamics—making effective representation learning especially critical for
downstream modeling.

Recent progress in time series representation learning has led to a diverse set of architectures de-
signed to model multivariate temporal dependencies. MLP-based models such as TimeMixer (Wang
et al.,[2024a)) exploit structured mixing over time and features; convolutional approaches like Times-
Net (Wu et al., [2023) leverage hierarchical receptive fields to capture multi-scale patterns; recurrent
frameworks such as Mamba (Gu & Daol [2024) introduce state-space modeling for long-range dy-
namics; and Transformer variants, including FEDformer (Zhou et al., [2022)), PatchTST (Nie et al.,
2023)), and iTransformer (Liu et al., 2024b), enable efficient sequence modeling with enhanced scal-
ability and global context integration. While these models have achieved state-of-the-art results
across forecasting and classification benchmarks, they are often developed with general-purpose
or task-specific objectives, and their direct applicability to domain-specific settings such as LOB
modeling remains limited due to the latter’s unique structural properties (Zhong et al.l 2025).

Meanwhile, several studies have developed models specifically tailored for LOB data. CNN2 (Tsan-
tekidis et al.,2020) and LSTM (Tsantekidis et al.,2017) serve as foundational baselines, with CNN2
leveraging convolutional filters to extract local features and LSTM capturing sequential dependen-
cies. DeepLOB (Zhang et al., |2019) integrates a CNN module for spatial feature extraction with
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an LSTM layer to model temporal dynamics, effectively handling the high-frequency volatility and
sequential structure of LOB data. TransLOB (Wallbridge, [2020) further incorporates a Transformer
encoder to capture long-range dependencies, with CNNs modeling short-term fluctuations. More
recently, SimLOB (Li et al.,2024)) adopts a Transformer-based encoder-decoder architecture, apply-
ing fully connected layers before and after attention modules to enhance representation capacity. By
reconstructing LOB sequences from latent embeddings, it emphasizes representation learning more
explicitly.

However, most existing LOB-specific models remain task-specific and end-to-end, typically de-
signed for applications such as price forecasting or market simulation. Even the approach with
explicit representation learning objectives, like SimLOB, is generally oriented toward calibration
rather than manipulation detection. As a result, there remains a significant gap in leveraging LOB
representations for market manipulation detection, where the structural complexity of multilevel
LOBs demands more flexible, representation-centric modeling approaches.

A.2 FRAMEWORK DETAILS

In Section |3| of the main text, we introduce the core innovations of our framework, including the
cascaded LOB representation architecture and supervised contrastive learning. The overall structure
is illustrated in Figure [T} which serves as a reference throughout this section. In this appendix, we
provide additional details from the perspective of the general architecture, offering a more compre-
hensive explanation of each component and its integration into the overall framework.

A.2.1 REPRESENTATION

The representation stage in our framework is designed to compress complex, high-dimensional mar-
ket data into compact latent vectors suitable for downstream anomaly detection.

This stage takes both raw LOB data and a set of manual features as input. Unlike conventional
methods that typically construct training sets using only normal data, we incorporate a small portion
of labeled anomalies and perform oversampling to address extreme class imbalance. The resulting
dataset is then partitioned into overlapping time-series sequences via a sliding-window mechanism.
These sequences are subsequently processed by a configurable autoencoder-based module, which
serves as the core of our representation stage.

Within the core module, our framework extends the traditional autoencoder-based representation
learning paradigm in two key ways. First, instead of directly concatenating raw LOB data with
manual features as in conventional methods, we introduce a Multilevel LOB Encoder that separately
encodes LOB inputs to extract hierarchical information before combining them with manual fea-
tures. Second, rather than relying solely on a reconstruction loss (e.g., MSE), we employ a hybrid
training objective in the Contrastive Fusion Encoder that integrates supervised contrastive learning
with reconstruction, thereby improving the discriminative quality of the learned latent space. The fi-
nal latent vector is obtained from the Contrastive Fusion Encoder’s output and used for downstream
anomaly detection.

It is worth noting that the process described above corresponds to the training phase. During infer-
ence, labels are no longer required: the pretrained and frozen representation stage directly transforms
incoming sequences into latent vectors for use by the downstream detection module.

A.2.2 ANOMALY DETECTION

The final stage of our framework is the anomaly detection module, which operates on the latent
vectors produced by the frozen representation stage. Its goal is to identify whether each market
behavior is normal or manipulated.

During training, we adopt unsupervised learning by fitting a detector—such as OC-SVM (Scholkopf
et al.,[1999) or Isolation Forest (Liu et al., 2008)—on latent vectors derived exclusively from normal
data of the training set used in the previous stage. This approach allows the model to learn the under-
lying distribution of typical market dynamics without relying on scarce anomaly labels. We choose
these detectors for their compatibility with high-dimensional latent spaces and their computational
efficiency, which makes them preferable to fully end-to-end alternatives in this context.
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At inference time, new data are first passed through the same frozen representation stage to obtain
latent vectors. These are then evaluated by the trained detection model to produce segment-level
anomaly scores. To generate point-wise anomaly scores for each time step, we aggregate overlap-
ping window predictions following the method in (Poutré et al.,|2024). Any time step with a score
exceeding a predefined threshold is then labeled as manipulated.

A.3 DATA PREPARATION

Original
Mode

! Train/Valid
| Dataset 1
Normal |
Raw tick-by- Multilevel Group

tick data . Manipulation ‘ Mcir:;;Feature . Normalization ‘

& orderbook Injection fuction N Proposed
) Manipulation | |1 ! Mode
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1
N
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Figure 5: The overall pipeline of data preparation for the multilevel manipulation detection task.

To support the novel task of multilevel manipulation detection, we construct a comprehensive and
challenging dataset from raw limit order book (LOB) snapshots and tick-by-tick transaction records.
The overall data preparation pipeline consists of four key phases: multilevel manipulation injection,
manual feature construction, normalization, and dataset partitioning. An overview of the pipeline is
shown in Figure [5]

Our approach to manipulation injection is particularly noteworthy as it diverges from prior stud-
ies. Rather than targeting a single LOB level, we inject manipulation events across all five levels,
following empirically derived distribution patterns to better reflect realistic behavior. A detailed
description of the injection process and parameter configurations is provided in Appendix[A.3.1]

Following the manipulation injection, we construct a set of manual features derived from both LOB
and transaction-level information. These features, commonly used in related work, are intended to
complement the raw LOB input and enhance the interpretability and performance of the model. A
complete description of these features is provided in Appendix All input features are then
standardized using Z-score normalization to facilitate stable model training.

Finally, we adopt two dataset partitioning approaches aligned with different experimental setups.
The standard partitioning approach, used for conventional reconstruction-based methods, trains only
on normal data. In contrast, our proposed setup includes a small fraction of labeled anomalies in
the training set—critical for enabling supervised contrastive learning discussed in Section (3| Full
statistics for each dataset are also summarized in Appendix

A.3.1 MANIPULATION INSERTIONS

Given a sequence of LOB snapshots { L, ..., Lt }, we simulate multilevel synthetic manipulation
by injecting anomalous patterns into the sequence, which is adapted from the work of (Poutré et al.,
2024). These patterns are designed to emulate spoofing/layering strategies commonly observed in
real-world financial markets. We detail the insertion procedure using bid-side as an example; the
ask-side counterpart follows the same logic with reversed directionality. The full insertion procedure
is outlined below, and the specific parameter configurations used in our simulation are summarized
in Table

1. Index Selection:
Candidate time steps ¢ are selected as the start of manipulation if they satisfy the following
condition:
BidPricel(t)
AskPricel (¢)
Additionally, ¢ must not be within a window of existing anomalies to avoid interference
between events.

> 1.0008
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Table 4: Parameters for multilevel manipulation injection

Parameter Bona Fide Non-Bona Fide
Order Side {Bid, Ask} {Bid, Ask}

Order Price Pricel + (0, 3) bps (Prize$, Pricel &£ (0, 7) bps]
Total Volume [2, 3] x Avg. order size [5,6]x Avg. order size
Number of Orders 1 [10, 15]
Interarrival time [1,5] ms [10, 20] ms
Cancellation Delay

- [100, 500] ms
Trade Delay [10, 20] ms -

2. Insertion of a Bona Fide Order:
At 1-5 ms after time ¢, a bona fide order is inserted on the ask side, typically priced 0-3
bps below the best ask price and sized at 2-3 times the average order volume. This order
reflects the manipulator’s true trading intent and is expected to be executed during the
manipulation.

3. Placement of Non-Bona Fide Orders:

A sequence of 10-15 non-bona fide orders is placed on the bid side, spanning LOB levels
5 to 1. These orders are submitted at progressively higher prices, uniformly distributed
between the BidPrice5 and BidPricel plus 0.7 bps, with each order spaced 10-15 ms apart.
All orders have equal volume, and the total volume of the sequence is scaled to approxi-
mately 5-6 times the average order volume. The intent is to create a deceptive appearance
of strong buying pressure, thereby influencing other participants to adjust their orders or
market expectations in response to the perceived demand.

4. Execution of the Bona Fide Order:
Approximately 10-20 ms after the non-bona fide sequence is initiated, market participants
begin reacting to the apparent demand. As a result, the previously placed bona fide order is
fully executed, allowing the manipulator to complete a favorable transaction.

5. Cancellation of Non-Bona Fide Orders:
After the bona fide order is executed, the manipulator waits approximately 100-500 ms
before canceling all non-bona fide orders in a single batch. This delayed cancellation helps
avoid unintentional fulfillment and marks the completion of the manipulation operation.

A.3.2 DATASET STATISTICS AND INPUT FEATURES

To complement the raw LOB input, we incorporate a set of manual features into the representation
stage. These features are selected based on their widespread use in prior studies on single-level
anomaly modeling, allowing for a fair and consistent comparison with existing approaches. They
also provide a structured way to incorporate domain knowledge, helping the model to better capture
indicative market behaviors.

The selected features can be grouped into four categories, including return-based dynamics, trade
and cancellation volumes, event indicators, and time intervals between market events. A complete
list of these manual features is summarized in Table

With the feature representation defined, we next detail the overall dataset statistics used in our ex-
periments. To support the evaluation of our framework, we prepare two versions of the dataset under
different training configurations: the original setting, which includes only normal data in the training
set (commonly used in reconstruction-based methods), and our proposed setting, which includes a
small proportion of labeled anomalies to enable supervised contrastive learning. Both versions share
the same testing dataset but differ in training/validation.

Table [6] summarizes the data distribution across the training, validation, and testing splits under
both settings. Notably, the proposed training mode maintains a highly imbalanced structure, with
anomalies comprising only 0.03% of the training set. At the same time, the total number of orders
exceeds 1.2 million in the training set alone, providing sufficient scale to support representation
learning on high-dimensional LOB data.
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Table 5: List of manual features for manipulation detection

Feature Description
ReturnBid1 Best bid-price return at event ¢
ReturnAsk1 Best ask-price return at event ¢

DerivativeReturnBidl ~ Difference quotient of best bid-price return w.zz. time, at event ¢
DerivativeReturnAskl  Difference quotient of best ask-price return w.rz. time, at event ¢

TradeBidSize Moving average of trade size consuming liquidity at best bid
TradeAskSize Moving average of trade size consuming liquidity at best ask
CancelledBidSize Moving average of cancellation size at best bid-price
CancelledAskSize Moving average of cancellation size at best ask-price
TradeBidIndicator Indicator of trade rapidity at best bid-price
TradeAskIndicator Indicator of trade rapidity at best ask-price

CancelledBidIndicator  Indicator of cancellation rapidity at best bid-price
CancelledAskIndicator Indicator of cancellation rapidity at best ask-price
DeltaTime the time delta between market events ¢t and ¢t — 1

Table 6: Distribution of training, validation, and testing sets under original and proposed training
modes

Dataset Training Mode Total Orders Manipulated Orders ~ Anomaly Ratio (%)
Training Original 1254707 0 0.00
Proposed 1239632 388 0.03
Validation Original 295482 0 0.00
Proposed 324807 74 0.02
Testing Original/Proposed 66524 3350 5.04

A.4 IMPLEMENTATION DETAILS

All experiments are implemented in Python 3.12 using PyTorch 2.6.0 (Paszke et al. [2019) and
Lightning 2.5.0ﬂ Training is conducted on a workstation equipped with dual NVIDIA RTX A5000
GPUs (24GB each), with experiment management and logging handled via the CometE]platform.

To ensure consistent evaluation across models, we adopt a unified training pipeline with a fixed
sequence length of 25 and a batch size of 256. Each model is optimized using Adam (Kingma &
Ba, 2015) with a learning rate of 1 x 10~* for 10 epochs.

All baseline models are faithfully adapted from the standardized Time Series Library (Wang et al.,
2024b)), which provides standardized implementations of a wide range of deep time series models.
For models not included in this benchmark, we follow the original official code. All model struc-
tures and hyperparameters are kept consistent with the original implementations unless otherwise
specified, ensuring a fair and reproducible comparison.

A.5 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs), specifically ChatGPT, as a writing assistant to improve the
fluency and clarity of English expressions throughout the paper. This includes grammar corrections,
sentence rephrasings, and consistency adjustments. The LLM was not involved in any part of the
research process, such as ideation, experimental design, data analysis, literature review, or content
generation. All substantive content and scientific contributions were conceived and developed by
the authors. The authors bear full responsibility for the accuracy and integrity of the content.

'nttps://lightning.ai
Thttps://www.comet .com
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Table 7: Performance comparison with different anomaly insertion depths (OC-SVM) without LOB
input under the original mode

Representation Anomaly Insertion AUC-PR1T AUROC 1 F4-Score 1

CNN2 1 level 0.290 0.747 0.533
5 levels 0.186 0.777 0.606
LSTM 1 level 0.262 0.839 0.613
5 levels 0.174 0.837 0.622
JFDS 1 level 0.308 0.868 0.648
5 levels 0.260 0.889 0.680
SimLOB 1 level 0.274 0.736 0.541
5 levels 0.184 0.793 0.605
FEDformer 1 level 0.396 0.891 0.697
5 levels 0.280 0.913 0.762
TimesNet 1 level 0.222 0.853 0.638
5 levels 0.229 0.857 0.633

A.6 FULL RESULTS

This section provides the full results for Experiment II, which are partially reported in Section
Specifically, Table [/| reports the performance under different anomaly insertion depths, while Ta-
ble [8] and Table 0] summarize the effects of different loss functions and input modes for multilevel
manipulation detection. These results complement our analysis in the main text by offering a more
detailed view of the evaluation.
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Table 8: Performance comparison with different loss functions and input on multilevel manipulation
detection (OC-SVM): all-5-levels anomalies

Representation Loss LOB AUC-PR T AUROC T F4-Score T
CNN2 MSE No 0.186 0.777 0.606
MSE Yes 0.176 0.777 0.604
combinedLoss No 0.166 0.735 0.540
combinedLoss Yes 0.204 0.874 0.770
combinedLoss Yes (Embed) 0.198 0.855 0.707
LSTM MSE No 0.174 0.837 0.622
MSE Yes 0.160 0.795 0.601
combinedLoss No 0.294 0.927 0.805
combinedLoss Yes 0.308 0.910 0.782
combinedLoss Yes (Embed) 0.375 0.902 0.734
JFDS MSE No 0.260 0.889 0.680
MSE Yes 0.252 0.854 0.653
combinedLoss No 0.508 0.952 0.861
combinedLoss Yes 0.470 0.946 0.828
combinedLoss Yes (Embed) 0.675 0.975 0.881
SimL.OB MSE No 0.184 0.793 0.605
MSE Yes 0.164 0.768 0.603
combinedLoss No 0.164 0.809 0.669
combinedLoss Yes 0.175 0.841 0.722
combinedLoss Yes (Embed) 0.210 0.894 0.748
FEDformer MSE No 0.280 0913 0.762
MSE Yes 0.226 0.823 0.633
combinedLoss No 0.609 0.966 0.862
combinedLoss Yes 0.095 0.769 0.660
combinedLoss Yes (Embed) 0.105 0.787 0.647
TimesNet MSE No 0.229 0.857 0.633
MSE Yes 0.186 0.829 0.611
combinedLoss No 0.428 0.909 0.752
combinedLoss Yes 0.286 0.690 0.507
combinedLoss Yes (Embed) 0.222 0.646 0.534
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Table 9: Performance comparison with different loss functions and input modes on multilevel ma-
nipulation detection (OC-SVM): anomalies detected in levels 2-5 only

Representation Loss LOB AUC-PR L2-51 AUROC L2-51 F4-Score L2-5 1
CNN2 MSE No 0.109 0.797 0.542
MSE Yes 0.103 0.800 0.530
combinedLoss No 0.087 0.711 0.440
combinedLoss Yes 0.107 0.863 0.629
combinedLoss Yes (Embed) 0.109 0.851 0.558
LSTM MSE No 0.095 0.848 0.541
MSE Yes 0.088 0.818 0.526
combinedLoss No 0.137 0.916 0.661
combinedLoss Yes 0.144 0.899 0.640
combinedLoss Yes (Embed) 0.205 0.897 0.611
JFDS MSE No 0.161 0.899 0.621
MSE Yes 0.157 0.876 0.623
combinedLoss No 0.316 0.948 0.754
combinedLoss Yes 0.278 0.943 0.721
combinedLoss Yes (Embed) 0.451 0.973 0.811
SimLLOB MSE No 0.108 0.821 0.533
MSE Yes 0.097 0.800 0.534
combinedLoss No 0.083 0.789 0.528
combinedLoss Yes 0.087 0.824 0.572
combinedLoss Yes (Embed) 0.109 0.889 0.600
FEDformer MSE No 0.157 0.910 0.671
MSE Yes 0.134 0.847 0.592
combinedLoss No 0.382 0.960 0.762
combinedLoss Yes 0.051 0.780 0.484
combinedLoss Yes (Embed) 0.052 0.784 0.483
TimesNet MSE No 0.134 0.870 0.576
MSE Yes 0.107 0.845 0.563
combinedLoss No 0.262 0.902 0.607
combinedLoss Yes 0.16 0.665 0.342
combinedLoss Yes (Embed) 0.107 0.615 0.360
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