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Abstract

The hybrid language model (HLM) is an emerg-
ing architecture that efficiently distributes com-
putation between on-device small language mod-
els (SLMs) and remote large language models
(LLMs). In HLM, an SLM drafts tokens and its
paired LLM validates and refines them, thereby
achieving higher token throughput than LLMs
and higher inference accuracy than SLMs. Re-
cently, the uncertainty-aware opportunistic HLM
(U-HLM) has been proposed to improve commu-
nication and computation efficiency by skipping
LLM verification when the SLM’s uncertainty
is low. However, this approach has only been
evaluated on simple text prediction tasks under
a statistical channel model for theoretical anal-
ysis. To validate the practical feasibility of U-
HLM, in this paper, we implement U-HLM on
a real-world robot testbed, where an industrial-
grade robotic manipulator (high-precision robot
arm with gripper) runs an SLM and communicates
with a remote LLM over Wi-Fi. In this experimen-
tal setup, we observe that computing uncertainty
itself incurs non-negligible latency. To mitigate
this, we propose a conditional uncertainty calcula-
tion omission method, which skips the uncertainty
calculation when a lightweight logistic regression
model predicts the uncertainty to be sufficiently
low. Experimental results show that, compared
to HLM, the proposed U-HLM improves token
throughput by 24.9% and 41.8% under strong
and weak Wi-Fi coverage conditions, respectively,
while maintaining a 98.11% F1 score.
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Figure 1. Overall architecture uncertainty-aware opportunistic hy-
brid language model (U-HLM) consists of local SLM and remote
LLM. For every generated token, SLM estimates uncertainty; if the
uncertainty exceeds a predefined threshold, uplink transmission to
the server occurs for LLM to verify the draft token and resample it
if rejected.
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1. Introduction

Recent advancements in large language models (LLMs)
have led to systems that can provide high-level task plan-
ning for performing long-horizon robot tasks (Firoozi et al.,
2025). However, task planning frameworks with LLMs still
confront key limitations such as computational constraints
and inference time, even though onboard processing units
have limited resources and real-time capability is an es-
sential requirement for any robotic system interacting with
the environment (Ahn et al., 2022; Yang et al., 2024; Bom-
masani et al., 2021; Bender et al., 2021). Meanwhile, the
Uncertainty-Aware Opportunistic Hybrid Language Model
(U-HLM) (Oh et al., 2025) has been proposed as a practical
framework that not only reduces the computational overhead
of LLMs by leveraging both an on-device small language
model (SLM) and a remote LLM, but also improves token
throughput—by enhancing overall communication and com-
putation efficiency. As shown in Figure 1, U-HLM leverages
uncertainty—the model’s self-assessed confidence in its out-
puts—to decide whether uplink communication is necessary,
enabling the system to skip transmitting the full vocabulary
distribution and avoid remote LLM computation for ver-
ification and resampling when uncertainty is low. These
characteristics make U-HLM a feasible way to improve
latency and reduce computational load in LLM-integrated
robotic systems.
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While promising, prior evaluations of U-HLM have relied
on simulated networks and ignored the cost of on-device
uncertainty estimation, which may impact feasibility in real-
world deployments. Specifically:

(i) Simulated evaluations do not reflect real wireless chan-
nel variability, making it unclear to assess U-HLM’s
robustness under unstable or degraded network condi-
tions.

(i) Computing uncertainty via temperature perturbation
(Gao et al., 2024) adds non-trivial latency on resource-
constrained devices.

To this end, we implement a wireless robotic testbed that
consists of a local device, a remote server, and a robot in
which U-HLM is deployed for task sequence generation
over a wireless network to address (i) and verify its effec-
tiveness as a task planner for robotic systems, while further
reducing computational overhead by conditionally omitting
uncertainty calculation, resolving (ii).

Our scenario for U-HLM on the wireless robotic testbed is to
generate task plans for beverage preparations in a café-style
environment. For example, when given a natural-language
request “Prepare a medium caramel macchiato with an extra
shot of espresso,” U-HLM decomposes this into a sequence
of atomic actions such as “pour espresso,” “add ice,” and
“drizzle caramel syrup.” This setting exposes the model
to variability in user orders and real-world constraints, en-
abling an extensive evaluation of both planning accuracy

and execution latency.

In this work, we make the following contributions:

* We implement the wireless robotic testbed in which U-
HLM is deployed as a task planner, consisting of a local
device, a remote server, and a robot—all connected via
the wireless network.

* From the wireless robotic testbed, we identify com-
putational overhead from uncertainty calculation with
temperature perturbation and propose the conditional
uncertainty omission strategy.

* We empirically evaluate the performance of U-HLM
with conditional uncertainty calculation omission
across varying task complexities and Wi-Fi conditions,
measuring improvements in throughput, latency, and
task success.

2. System Model

As proposed in (Oh et al., 2025), U-HLM combines locally
deployed SLM with a remote server-based LLM, where
tokens are their basic units drawn from a shared vocabulary

V. For every token generation step, the SLM’s uncertainty
is monitored, and uplink transmission is invoked only when
necessary.

2.1. Local SLM’s Token Generation and Uncertainty
Calculation

At step ¢ to generate response token r(¢) given a input to-
ken sequence s(t — 1), the SLM computes logits z(t) =
[21(2), 22(t), ..., 2| (t)]T and derives a vocabulary dis-
tribution p(t) = [p1(t), p2(t), ..., pM(t)]T where it sam-
ples draft token d from. In parallel, with the use of the logits
z(t), N different vocabulary distributions with temperatures
Ty, T, ..., TN are computed where the v-th element of
n-th distribution is given as follows:

exp (zv (t) /Tn)

ey, d
oy exp(z(t)/Tn) ' v

ﬁv,n(t) =

From the vocabulary distributions, N different sample to-
kens, denoted by dy, do, ..., dy, are obtained. Conse-
quently, the uncertainty for the draft token d is calculated
as:

1 N
u(t) = D 1(dn #d) @)

where H(dn #* d) returns 1 if d,, # d and 0 otherwise. If
the uncertainty u(t) does not exceed a predefined threshold
Uy, the draft token is immediately accepted as the response
token r(t). Otherwise, uplink transmission to send the draft
token and the vocabulary distribution to the server occurs.

2.2. Remote LLM’s Draft Token Verification and
Resampling

Once the draft token and the vocabulary distribution are
transmitted to the server, LLM generates its own vocabulary
distribution q(t) = [q1(£), 2(t), ..., g (t)]". The
draft token’s probability by the SLM and the LLM is each
referred to as pgy(t) and q4(t). If py(t) < qq(t), the draft
token is accepted as the ¢-th response token r(t); otherwise,
the draft token is rejected with a probability of 1 — z 38 ,
which case a target token d* is sampled from an adjusted
distribution, where the v-th probability is given as follows:

in

max(q, (t) — pu(t), 0)
S max(gi(t) — pi(t), 0)

P,(t) = , Yuev. (3

The target token d* is transmitted back to the local device
and accepted as the ¢-th draft token r(t) to be concatenated
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Figure 2. Testbed implementation of U-HLM, consisting of laptop, remote server, and robotic manipulation.

into the token sequence, completing a single round of token
generation. This repeats until one of two stop conditions
is met: either the End-of-Sequence token is selected or the
maximum sequence length is reached.

Although this approach is an optimal solution in theory
and in a simulated environment, its effectiveness must be
empirically validated on an operational wireless robotic
testbed. Thus, in the following sections, we implement a
testbed to not only deploy U-HLM on an actual wireless
network but also to verify its ability to reliably generate
robotic task plans, and compare U-HLM as a task planner
against established baselines.

3. Wireless Robotic System
3.1. Testbed Implementation for U-HLM

In this proof-of-concept study to verify U-HLM’s effective-
ness on an actual wireless network and as a robotic task
planner, we implement a testbed consisting of the following
three main components: a laptop (local device), a remote
server, a the robot, connected over a wireless network, as
shown in Figure 2. U-HLM deployed on the testbed serves
as a task planner, generating sequences of action-object
pairs corresponding to given natural language orders to be
performed by the robot.

Experimental Setup. The local SLM, Tiny-Llama 1.1B
(Zhang et al., 2024), executes on a Windows-based laptop,
serving as the local device, equipped with a 6-core Intel Core
i7-10750H CPU, 8 GB of DDR4 RAM, and an NVIDIA
GeForce GTX 1650 Ti GPU connected to IEEE 802.11ac
Wi-Fi on a 5 GHz band, whereas the remote LLM, Llama 2

7B (Touvron et al., 2023), runs on a Linux server featuring
an 8-core Intel Xeon Silver 4215R CPU, 64 GB of DDR4
RAM, and three NVIDIA GeForce RTX 3090 GPUs, con-
nected to Ethernet. A Doosan A0912s robot arm equipped
with a GEP2016I10-00-A gripper interfaces with the same
Wi-Fi network directly with the laptop. Both the SLM and
the LLM are finetuned with LoRA (Hu et al., 2022) to pro-
duce structured and executable task sequences consisting of
action-object pairs for a given natural language order.

During inference, each draft token generated by SLM is
paired with its vocabulary distribution, serialized as a JSON
object, and sent from the laptop to the LLM server via a
Flask REST endpoint over the Wi-Fi link. The network
switch forwards this JSON payload over Ethernet to the
server where the verification and probabilistic resampling of
the draft token occur before returning the finalized token—
again as a JSON object via Flask—over Ethernet and Wi-Fi
back to the laptop. Once all tokens are generated to form
a complete task plan, the laptop sends it in a single JSON
batch again via Flask over Wi-Fi to the robot.

In our task scenario, U-HLM receives a natural language
request for a beverage preparation task such as “Can I have
caramel macchiato?” and decomposes it into a structured,
numbered set of action-object pairs: “1. Place cup 2. Driz-
zle caramel syrup 3. Pour milk 4. Pour espresso 5. Garnish
caramel 6. Serve beverage 7. Done.” The robot processes
each numbered instruction sequentially: for every step (e.g.
“Drizzle caramel syrup”), the on-board controller parses the
first word as the action (“Drizzle”) and uses the remaining
phrase (“caramel syrup”) to identify the target object, which
are ingredients targeted in cups in our task scenario. Upon
encountering the “Done” instruction, the controller recog-
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(a) robot pouring ingredient to a cup

(b) experimental workspace

Figure 3. (a) An A0912s manipulator executing an ingredient-
pouring action into a selected cup under the guidance of the task
planner. (b) Top-down view of the experimental workspace, show-
ing six cups positioned at predefined, labeled target locations.

Table 1. Summary of per-token timing measurements

Stage Min (ms) Mean (ms) Max (ms)
Logit generation 53.156 95.040 151.210
Draft token sampling 0.0 0.871 2.003
Uncertainty calculation 5.995 8.066 16.025

nizes it as a termination command and signals successful
completion of the task sequence.

As shown in Figure 3a, cups representing the ingredients
are located on the experimental workspace with distinct
labels denoting the corresponding ingredients. To manipu-
late them, an onboard RGB-D sensor captures the top-down
view of the workspace as shown in Figure 3b, and the loca-
tions of the cups are identified by the onboard perception
module, while each detected cup is associated with its corre-
sponding label. Upon receiving a target ingredient from the
task planner, a cup with the corresponding label is selected,
and a predefined action, specified by the task planner and
parameterized by the cup’s pose and location, is executed
by the Doosan A0912s robot arm.

3.2. Latency and Computational Overhead during
Temperature Perturbation

During experiments over the testbed discussed in detail
in Section 3.1, we observed that computing uncertainty
through temperature perturbation in parallel significantly
increases memory-bandwidth usage. To isolate each pertur-
bation’s effect, we compute uncertainty with temperature
perturbation sequentially and break down the local device’s
per-token latency into the following three components: for-
ward propagation for logit generation, draft token sampling,
and uncertainty computation.

While logit generation accounts for most per-token process-
ing time as shown in Table 1—averaging 95.04 ms, uncer-

tainty computation through full temperature perturbation
contributes an additional 8.066 ms on average, peaking at
16.025 ms. Given that each temperature perturbation incurs
significant computational latency, approximately 10 % of
the total, the corresponding computational cost can be re-
duced if it is possible to omit the temperature perturbation
for uncertainty calculation.

4. Conditional Uncertainty Calculation
Omission with Probabilistic Classifier

As mentioned earlier, uncertainty computation with temper-
ature perturbation incurs non-negligible computational over-
head. A way to approach this is to evaluate the probability
that a draft token exceeds the predefined uncertainty thresh-
old and to evaluate the risk associated with the decision
to omit full uncertainty calculation based on the computed
probability.

4.1. Probability Estimation with Logistic Regression

To estimate the likelihood of the draft token d exceeding the
predefined uncertainty threshold u;,, we train the logistic
regression model (Cox, 1958) by extracting the tokens from
the previously generated sequences.

For every draft token d from the previously generated to-
ken sequences to train the logistic regression model, we
construct a fixed-length feature vector as follows:

xe = [u(t—1), ..., u(t — k), @
p(t—l), ap(t_k)vd]
where u(t — 1), ..., u(t — k) and p(t — 1), ..., p(t — k),

denote uncertainty estimates and their probabilities of &
tokens preceding d, respectively. At the same time, we label
each feature vector x; as:

1, ifu(d) > u;

Yyt = {O,

where u(d) denotes the uncertainty of d. We then train a
logistic regression model g(x;) with the cross-entropy loss
defined as:

&)

otherwise.

- 1
min Z[— yrIng(xe) — (1—yt)ln(1—g(><t))} + 5wl
Tot=1
(6)

where g(x;) = o(w ' x; +b) is the predicted probability, m
is the number of input-label pairs, x; € R?¥*1 is the feature
vector at d, y; € {0, 1} is the true label, and w € R?#+!
and b € R are the weight vector and bias.
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4.2. Threshold for Uncertainty Calculation Omission
Decision

To construct the probabilistic classifier with the trained lo-
gistic regression model, we define the rule that uses the
probability the regression model outputs to decide whether
to omit the uncertainty calculation or not:

T = ?u, omit calculation if g(x;) < 7. @)

This rule is derived from Chow’s rejection threshold of
minimum-risk rule (Chow, 1970) as the rejection threshold
T is given by

W, — W,
= r— e 8
T W, W, )

where W, is the cost incurred when the system makes a
recognition error, W, is the cost of issuing a reject decision,
and W, is the cost of a correct recognition. Mapping our de-
cision into this tri-cost framework , we observe that W, = 0
as there is no realistic cost or delay for classifier operation as
its computational cost is negligible compared to logit gener-
ation and uncertainty calculation, and W,., which we denote
to be C,,, is the time of calculating uncertainty via tempera-
ture perturbation. Lastly, W, which we denote C,, is the
average latency encompassing both the initial generation of
the token without uncertainty perturbation with erroneously
omission of temperature perturbation and the re-generation
of the token with proper uncertainty calculation:

_WT*WC_Cu*O_Cu (9)
TS W.—w.  C.—0  C.

4.3. Integration to the U-HLM Framework

For every token generation step ¢, the trained logistic regres-
sion model outputs the probability that the uncertainty of
the draft token d exceeds wuyy, right before it continues to the
uncertainty calculation with the temperature perturbation.
If g(x;) < 7 for d, the uncertainty calculation with temper-
ature perturbation is omitted, and all subsequent operations
are skipped, accepting draft token d as the response token
r(t) of the round. Otherwise, it proceeds to regular opera-
tion, calculating the actual uncertainty and opportunistically
verifying and resampling d with the LLM.

5. Numerical Evaluations

This section demonstrates the effectiveness of U-HLM as a
task planner for wireless robotic systems. First, we exam-
ine the effectiveness of conditional uncertainty calculation
omission and then calibrate the uncertainty threshold to
maximize the overall utility. Consequently, we compare the

Table 2. Conditional Temperature Perturbation Omit Performance

Metric Count Rate (%)
Total tokens evaluated 2500 -
Uncertainty calculation omissions 227 9.1
Wrong omission decisions 20 0.8

accuracy and the latency of U-HLM deployed on the testbed
implementation discussed in Section 3.1 under varying tasks
and network conditions against established baselines.

5.1. Conditional Uncertainty Calculation Omission for
Latency Reduction

As mentioned in Section 4.1, the probabilistic classifier
g(x:) computes the probability that the next token’s un-
certainty exceeds the calibration threshold ws, = 0.15.
w € R2! is the learned weight vector, b is the scalar bias
term, and x; € R?! is the input that concatenates a window
of the £ = 10 preceding tokens’ uncertainty and proba-
bility values with the current token embedding. At each
token generation step, the output g(x;) € [0, 1] is compared
against 7 = % ~ 0.228, and if it does not exceed T, the
uncertainty calculation with the temperature perturbation is
omitted, with following actions skipped and the draft token
being accepted as the response token.

In this subsection, we numerically examine the performance
of the conditional uncertainty calculation omission. For ev-
ery draft token generated, the classifier assesses the feature
vector x;, and the full uncertainty calculation is executed
regardless of the classifier’s output. If the classifier decides
to omit the full uncertainty calculation and the measured
uncertainty does not exceed the uncertainty threshold, it is
recorded as a correct omission, while it is recorded as a
wrong omission otherwise.

As shown in Table 2, the classifier chooses to omit the un-
certainty computation with temperature perturbation for 227
or 9.1% of tokens. Of these, 207 are correct and 20 are
wrong, yielding a false-skip rate of 8.8% among skip deci-
sions. These results demonstrate that the proposed strategy
can eliminate nearly 10% of full uncertainty evaluations,
which is substantial considering that uncertainty calculation
with temperature perturbation takes on average 8.066 ms,
as mentioned earlier and in Table 1, while keeping the risk
of erroneous skips below 1% of total token generations,
indicating that performance degradation from skipping is
negligible.

5.2. Threshold Selection via Utility Maximization

Here, we derive the uncertainty threshold value that bal-
ances the accuracy and the token throughput. To quantify
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Figure 4. Threshold sensitivity: Precision, Recall, and F; (left axis)
vs. token throughput (right axis).

the accuracy of the generated plans, we first parse both
the model’s output and ground truth recipe into lists of the
action-object pairs. We count the number of predicted pairs
exactly matching the ground-truth pairs (true positives, 1'P),
the number of predicted pairs having no counterpart (false
positives, F'P), and the number of pairs in the ground truth
recipe the model failed to generate (false negatives, F'N).
Then, based on the counted numbers of TP, F'P, and F'N,
precision, which measures the correctness of positive pre-
dictions, recall, which measures the completeness of finding
all positives, and the F1 score of each generated task plan
are calculated (Rijsbergen, 1979):

TP
ision = ——— 10
precision TP+ FP’ (10)
TP
l=——— 11
reca TPLFN’ an
isi 11
Fl—2. precision X reca. (12)

precision + recall’

To evaluate the performances of the model at a given uncer-
tainty threshold, uncertainty threshold values ranging from 0
to 1 in increments of 0.05 are tested with 100 sample orders.
As shown in Figure 4, increasing u;;, gradually decreases
the performance measured in precision, recall, and F1.

In task planning for robotic systems, any misclassification
of action—object pairs can lead to failed executions or physi-
cal hazards. We capture this trade-off by constructing the
following utility function:

U(uen) = ap P(ugm) + ar R(um) + ap F(um)

_A{l_m}

Kmax

(13)

Table 3. Utility U (u.p) computed across uncertainty thresholds
for robotic task planning under reliability-driven weighting

Uth P(Uth) R(Uth) Fy (Uth) K(Uth) U(Uth)
0.00 0.9479 0.9495 0.9472 1.7184 0.8748
0.05 0.9466 0.9441 0.9448 1.9000 0.8906
0.10 0.9305 0.9246 0.9263 1.9878 0.8815
0.15 09235 09372 09293 1.9653 0.8821
0.20 09213 0.9166 0.9189 2.0439  0.8793
0.25 0.8992 0.9049 0.8998 2.0796  0.8650
030 0.8964 0.9011 0.8988 2.1367 0.8687
0.35 0.8865 0.8788 0.8821 2.1469  0.8533
0.40 0.8510 0.8300 0.8400 2.1531 0.8119
045 0.8477 0.8331 0.8364 2.1874 0.8135
0.50 0.8494 0.8244 0.8328 2.1638 0.8076
0.55 0.8316 0.8063 0.8126  2.2224  0.7945
0.60 0.8164 0.8211 0.8120 2.1102 0.7826
0.65 0.8178 0.7932  0.8018 2.1694 0.7769
0.70 0.8018 0.7898 0.7920 2.2306 0.7735
0.75 0.7926  0.8057 0.7968 2.2245  0.7769
0.80 0.8039 0.7976 0.7969 2.1464  0.7697
0.85 0.7679 0.7280 0.7414  2.2571 0.7270
090 0.7534 0.7229 0.7322 2.2245 0.7141
095 0.7555 0.7021 0.7205 2.3837  0.7200
1.00 0.6588 0.6344 0.6400 2.4290 0.6433

where P, R, F are precision, recall, and F1 at uncertainty
threshold wp; K (uep,) is the token throughput; K. its
maximum across u, values, which is 2.429 tokens/sec) at
usp, = 1; ap g, r and A weight the contributions of accuracy
metrics and latency.

For a robotic system—where consistent, reliable execution
is essential while throughput reduction is desirable—we
choose the the following values:

arp =050, ap=0.25, ar=0.25, X=0.25.

thereby placing greatest emphasis on F1 while still valuing
precision and recall, and limiting the throughput penalty to
at most 25% of the normalized loss. Using these values, we
evaluate U (up,) across candidate thresholds and obtain.

As Table 3 shows, F1 reaches their global maxima at u;, =
0.15, while throughput K remains 80.9% of K,,,.. Most
importantly, U (uyp,) is maximized at uy, = 0.15. This
confirms 0.15 as the optimal uncertainty threshold value,
delivering peak reliability in robotic task planning with only
a negligible throughput trade-off.
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Table 4. Wi-Fi performance under strong vs. weak coverage
Metric

Strong Coverage Weak Coverage

Average RTT (ms) 12.0540 17.5905
RTT jitter (ms) 0.3020 3.5568
Throughput (Mbit/s) 554 7.58

Table 5. Model Accuracy (Precision, Recall, F1)

Model Precision Recall F1-score
In-Distribution

U-HLM 0.9235 0.9372  0.9293
HLM 0.9479 0.9495  0.9472
Rand-HLM 0.7152 0.7028  0.7030
Out-of-Distribution

U-HLM 0.8320 0.8335  0.8297
HLM 0.8303 0.8351 0.8316
Rand-HLM 0.7196 0.6968  0.7031

5.3. Comparative Performance and Latency Breakdown
of Baselines under Varying Network Conditions

In this section, we compare the established baselines by
measuring the average per-token latency and the accuracy
under varying network conditions and two types of tasks—
in-distribution and out-of-distribution. In-distribution tasks
include natural language orders for requesting beverages the
model has seen during the finetuning of the SLM and the
LLM, while out-of-distribution tasks contain requests for
beverages that are not included in the training datasets. In
terms of network conditions, we characterized the Wi-Fi link
between the local device and the remote verification server
in two conditions—strong coverage and weak coverage—to
account for network fluctuations. For each condition, we
derive the round trip time (RTT), the RTT jitter, and the
throughput. Table 4 summarizes the key wireless perfor-
mance indicators. At the same time, we define the per-token
latency as follows:

Ttotal = TSLM + TLLM + Tcomm7 (14)

where Tq1,\ denotes the mean on-device SLM compute
time including token drafting and uncertainty estimation,
T1um denotes the mean remote LLM compute time, and
T comm denotes the mean round-trip communication latency.
The baseline methods include SLM, HLM (Hao et al., 2024),
and Rand-HLM, which randomly transmits draft tokens for
LLM verifications. In Rand-HLM, the transmission rate
is fixed at 0.20 to match the average transmission rate of
U-HLM, and the uplink transmission for LLM verification
and sampling occurs randomly. Each baseline generates 100
task sequences each.

Strong Coverage Weak Coverage

e e
o o

e
=

Per-token time (s)

BsivOLLM B comm

Figure 5. Per-token latency breakdown for four methods under the
strong coverage and the weak coverage.

As Figure 5 shows, under the strong coverage, U-HLM re-
quires on average 0.213 s per token—roughly 20 % less
than HLM’s 0.266 s and only marginally over Rand-HLM’s
0.220 s. Under the weak coverage, on the other hand, U-
HLM maintains 0.232 s of per token latency, which is 29
% faster than HLM’s 0.329 s and still comparable to Rand-
HLM’s 0.219 s. Transitioning from the strong to the weak
coverage, per-token latencies of HLM and U-HLM have
been increased by 23.7% and 8.9% respectively, while that
of Rand-HLM remains essentially flat. As such, by oppor-
tunistically skipping uplink transmission and conditionally
omitting uncertainty calculation, U-HLM remains far less
sensitive to network degradation compared to HLM while
remaining comparable to Rand-HLM.

From an accuracy standpoint as presented in Table 5, U-
HLM achieves F1 of 0.9293 for in-distribution tasks—
marginally lower than HLM’s 0.9472 while significantly
outperforming Rand-HLM’s 0.7030. For out-of-distribution
tasks, U-HLM’s F1 only falls to 0.8297, trailing HLM’s
0.8316 and still outperforming Rand-HLM’s 0.7031.

Thus, as summarized by Figure 6, U-HLM effectively bal-
ances accuracy and latency, unlike HLM, which sacrifices
throughput for marginal gains in F1, and SLM and Rand-
HLM, which achieve high token rates only by compromising
accuracy. This balance between accuracy and latency and
the reliability in varying network conditions ensure that U-
HLM meets the strict timing and accuracy required by the
wireless robotic systems to serve as a task planner.

5.4. Robotic System Integration and Deployment on
Wireless Network

In this section, we evaluate U-HLM as a task planner by
determining how reliably it outputs task plans that can be
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Figure 6. F1 vs. Token Throughput.

Table 6. Comparison of U-HLM, SLM, Rand-HLM and HLM on
Planning Success Rate (PSR), Inference latency (in seconds), True
Skip Rate (TSR) and Transmission Rate (TR).

Method Difficulty PSR  Latency TSR TR
U-HLM Easy 0.80 17.3461 0.9480 0.0967
Medium  0.65 26.0011 0.9427 0.2036
Hard 0.16 17.3494 09311 0.2499
Rand-HLM Easy 0.14 17.8705 0.9930 0.2036
Medium  0.13  26.5631 0.9891 0.2046
Hard 0.10 16.7155 0.9915 0.2007
HLM Easy 0.81 18.1062 0.9629 0.2916
Medium  0.70 28.8667 0.9320 0.4972
Hard 0.16 21.8640 0.9346 0.5335

correctly executed by the wireless robotic system under vary-
ing difficulties of the tasks, as implemented in Section 3.1.

Similar to the previous experiments, we compare the pro-
posed architecture for the following methods: U-HLM,
Rand-HLM, and HLM. There are four evaluation metrics to
be considered. The first is the planning success rate (PSR),
calculated as follows:

N
1 § A~ *
PSR = N £ ]I(7T7, = ﬂ-i) (15)

where N is the total number of plans generated, 7; is the
plan produced by the U-HLM for task i, and 7 is the
corresponding ground-truth plan for task ¢. The second
is the inference latency, which is defined as the total time
taken to generate a plan 7;. Additionally, true skip ratio
(TSR), the probability of skipping an uplink transmission,
and transmission rate (TR), the proportion of tokens that
undergo an uplink transmission, are considered.

We categorize tasks into three difficulties: easy, medium,
and hard. The easy tasks involve known beverage requests
to measure in-distribution performance, the medium tasks
involve known beverages with simple modifications to as-
sess adaptability, and the hard tasks consist of requests for
beverages unseen during training.

Table 6 shows that U-HLM significantly cuts uplink traffic,

preserving low latency across all difficulties. Compared to
HLM, U-HLM reduces the transmission rate by 66% from
0.2916 to 0.0967 and lowers inference latency from 18.11
seconds to 17.35 seconds for the easy tasks. On the medium
tasks, U-HLM halves the transmission rate from 0.4972
to 0.2036 and speeds up planning by approximately 10%,
cutting the latency from 28.87 seconds to 26.00 seconds. A
similar trend is shown in the hard tasks as the transmission
rate is reduced from 0.4967 to 0.2499, while decreasing
the latency from 21.86 seconds to 17.35 seconds. These
communication and latency savings result in only a modest
loss in accuracy. U-HLM’s planning success rate for the
medium tasks falls from 0.70 under HLM to 0.65, while it
remains unchanged for easy and hard tasks.

By contrast, Rand-HLM achieves a low planning success
rate below 0.15 across all difficulties. Those poor planning
success rates stem directly from the strict requirement that
the generated plan must match the ground-truth plan exactly.
This experiment again demonstrates U-HLM’s reliability
in generating accurate task plans while lowering latency
against baselines with comparable accuracy.

6. Conclusions

In this paper, we proposed conditional skipping of uncer-
tainty calculation in U-HLM to further reduce computa-
tional overhead, verified its relative performance against
baseline methods on a real wireless network, and showcased
a practical implementation in robotics. Experimental results
confirmed that our implemented U-HLM can significantly
reduce both end-to-end latency and uplink traffic with a
negligible drop in success rate, demonstrating its real-time
viability on robotic platforms and motivating future work on
further reducing communication overhead in interference-
prone channel environments and expanding to broader task
scenarios.
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ever, incorrect or maliciously altered plans could damage
equipment or harm bystanders; to mitigate this, we require
rigorous testing before any real-world deployment. We also
recognize that large-scale adoption could displace some
manual-labor roles even as it creates new opportunities.
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