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ABSTRACT

As attribution-based explanation methods are increasingly used to establish model
trustworthiness in high-stakes situations, it is critical to ensure that these explana-
tions are stable, e.g., robust to infinitesimal perturbations to an input. However,
previous works have shown that state-of-the-art explanation methods generate
unstable explanations. Here, we introduce metrics to quantify the stability of an
explanation and show that several popular explanation methods are unstable. In
particular, we propose new Relative Stability metrics that measure the change
in output explanation with respect to change in input, model representation, or
output of the underlying predictor. Finally, our experimental evaluation with three
real-world datasets demonstrates interesting insights for seven explanation methods
and different stability metrics.

1 INTRODUCTION

With machine learning (ML) models being increasingly employed in high-stakes domain such as
criminal justice, finance, and healthcare, it is essential to ensure that the relevant stakeholders
understand these models’ decisions. However, existing approaches to explain the predictions of
complex machine learning (ML) models suffer from several critical shortcomings. Recent works
have shown that explanations generated using attribution-based methods are not stable (Ghorbani
et al., 2019; Slack et al., 2020; Dombrowski et al., 2019; Adebayo et al., 2018; Alvarez-Melis &
Jaakkola, 2018; Bansal et al., 2020), e.g. that infinitesimal perturbations to an input can result in
substantially different explanations.

Existing metrics (Alvarez-Melis & Jaakkola, 2018) measure the change in explanation only with
respect to the input perturbations, e.g., they only assume black-box access to the predictive model,
and don’t leverage potentially meaningful information such as the model’s internal representations
to evaluate stability. To address these limitations of existing stability metrics, we propose Relative
Stability that measures the change in output explanation with respect to the behavior of the underlying
predictive model (Section 3.3). Finally, we present extensive theoretical and empirical analysis (Sec-
tion 4.2) for comparing the stability of seven state-of-the-art explanation methods using multiple
real-world datasets.

2 RELATED WORKS

This paper draws from two main areas of prior work: 1) attribution-based explanation methods, and
2) stability analysis of explanations.

Attribution-based Explanation Methods. While a variety of approaches have been proposed
to explain model decisions for classifiers, our work focuses on local feature attribution expla-
nations, which measure the contribution of each feature to the model’s prediction on a point.
In particular, we study two broad types of feature attribution explanations: gradient-based and
approximation-based. Gradient-based feature attribution methods like VanillaGrad (Simonyan et al.,

1



Published as a conference paper at ICLR 2022

2014), SmoothGrad (Smilkov et al., 2017), Integrated Gradients (Sundararajan et al., 2017), and
Gradient×Input (Shrikumar et al., 2017) leverage model gradients to quantify how a change in each
feature would affect the model’s prediction. Approximation-based methods like LIME (Ribeiro
et al., 2016), SHAP (Lundberg & Lee, 2017), Anchors (Ribeiro et al., 2018), BayesLIME, and
BayesSHAP (Slack et al., 2021) leverage perturbations of individual inputs to construct a local
approximation model from which feature attributions are derived.

Explanation Stability. Recent works have formalized desirable properties for feature attribution
explanations (Agarwal et al., 2022). Our work specifically focuses on the stability of explanations.
Alvarez-Melis & Jaakkola (2018) argued that “similar inputs should lead to similar explanations” and
is the first work to formalize a metric to measure the stability of local explanation methods. We high-
light potential issues with this stability metric that measures stability only w.r.t. the change in input.

3 STABILITY ANALYSIS FOR EVALUATING EXPLANATIONS

3.1 NOTATION AND PRELIMINARIES

Machine Learning Model. Given a feature domain X and label domain Y , we denote a classification
model f : X →Y that maps a set of features x∈X to labels y∈Y , where x ∈ Rd is a d-dimensional
feature vector, y ∈ {0, 1, . . . ,C} where C is the total number of classes in the dataset. We use X =
{x1,x2, . . . ,xN} to denote all the N instances in the dataset. In addition, we define f(x)=σ(h(x)),
where h : X →R is a scoring function (e.g., logits) and σ : R→Y is an activation function that maps
output logit scores to discrete labels. Finally, for a given input x, the output predicted class label is:
ŷx=argmaxc f(x). We assume access to the gradients and intermediate representations of model f .

Explainability Methods. An attribution-based explanation method E generates an explanation ex ∈
Rd to explain model prediction f(x). To calculate our stability metrics, we generate perturbations x′

by adding infinitesimal noise to x, and denote their respective explanation as ex′ .

3.2 EXISTING DEFINITION AND PROBLEMS

Alvarez-Melis & Jaakkola (2018) formalize the first stability metric for local explanation methods,
arguing that explanations should be robust to local perturbations of an input. To evaluate the stability
of an explanation for instance x, perturbed instances x′ are generated by adding infinitesimally small
noise to the clean instance x such that ŷx = ŷx′ :

S(x,x′, ex, ex′) = max
x′

|| ex − ex′ ||
|| x− x′ ||

, ∀x′ s.t. x′ ∈ Nx; ŷx = ŷx′ (1)

where Nx is a neighborhood of instances x′ similar to x, and ex and ex′ denote the explanations
corresponding to instances x and x′, respectively. For each point x′, the stability ratio in Equation 1
measures how the output explanation varies with respect to the change in the input. Because the
neighborhood of instances Nx are sampled to be similar to the original instance x, the authors
argue that points that are similar should have similar model explanations, e.g., we desire the ratio
in Equation 1 to be close to 1 (Alvarez-Melis et al., 2021). This stability definition relies on the
point-wise neighborhood-based local Lipschitz continuity of the explanation method ex around x.

Problems. We note two key problems with the existing stability definition: i) it only assumes
black-box access to the prediction model f , and does not leverage potentially meaningful information
such as the model’s internal representations for evaluating stability; and ii) it implicitly assumes that
f has the same behavior on inputs x and x′ that are similar. While this may be the case for underlying
prediction models that are smooth or robust, this assumption may not hold in a large number of
cases. In Figure 1, we discuss a toy example where perturbed samples Nx have drastically different
intermediate representations than the original point x. Note that since the goal of an explanation is to
faithfully and accurately represent the behavior of the underlying prediction model (Agarwal et al.,
2022), we argue that an explanation method should vary for points x and x′ where the prediction
model’s behavior differs. Thus, we argue for the inclusion of new stability metrics that measure how
much explanations vary with respect to the behavior of the underlying prediction model.
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Figure 1: Decision boundaries and embeddings of a two-layer neural network predictor f with
100 units trained on the circles dataset. The heatmaps (left and middle column) shows the models’
confidence for the positive-class (in blue), test set examples x ( , ), and a set of perturbed samples
x′ ( ). While all perturbed samples x′ are predicted to the same class as x′, the embeddings
(right column) for some x′ are far from the embeddings of x′ and similar to the embeddings of
Class 0, highlighting the need of incorporating the model behavior using its internal embeddings
(Equations 3,5).

3.3 PROPOSED METRIC: RELATIVE STABILITY

To address the aforementioned challenges, we propose Relative Stability that leverages model
information to evaluate the stability of an explanation with respect to the change in the a) input data,
b) intermediate representations, and c) output logits of the underlying prediction model.

a) Relative Input Stability. We extend the stability metric in Equation 1 and define Relative Input
Stability that measures the relative distance between explanations ex and ex′ with respect to the
distance between the two inputs x and x′.

RIS(x,x′, ex, ex′) = max
x′

|| (ex−ex′ )
ex

||p
max(|| (x−x′)

x ||p, ϵmin)
, ∀x′ s.t. x′ ∈ Nx; ŷx = ŷx′ (2)

where the numerator of the metric measures the ℓp norm of the percent change of explanation
ex′ on the perturbed instance x′ with respect to the explanation ex on the original point x, the
denominator measures the ℓp norm between (normalized) inputs x and x′ and the max term prevents
division by zero in cases when norm || (x−x′)

x ||p is less than some small ϵmin>0. Here, we use
the percent change from the explanation on the original point to the explanation on the perturbed
instance in contrast to the absolute difference between the explanations (as in Equation 1) to enable
comparison across different attribution-based explanation methods that have vastly different ranges or
magnitudes. Intuitively, one can expect similar explanations for points that are similar – the percent
change in explanations (numerator) should be small for points that are close, or have a small lp norm
(denominator). Note that the metric in Equation 2 measures instability of an explanation and higher
values indicate higher instability.

b) Relative Representation Stability. Previous stability definitions in Equation 1-2 do not cater to
cases where the model uses different logic paths (e.g., activating different neurons in a deep neural
network) to predict the same label for the original and perturbed instance. In addition, past works have
presented empirical evidence that the intermediate representations of a model are related to the under-
lying behavior or reasoning of the model (Agarwal et al., 2021). Thus, we leverage the internal features
or representation learned by the underlying model and propose Relative Representation Stability as:

RRS(x,x′, ex, ex′) = max
x′

|| (ex−ex′ )
ex

||p
max(|| (Lx−Lx′ )

Lx
||p, ϵmin)

, ∀x′ s.t. x′ ∈ Nx; ŷx=ŷx′ (3)

where L(·) denotes the internal model representation, e.g., output embeddings of hidden layers, and
δ is an infinitesimal constant. Due to insufficient knowledge about the data generating mechanism,
we follow the perturbation mechanisms described above to generate perturbed samples x′ but use
additional checks to ensure that for certain perturbations the model behaves similar to its training
behavior. For any given instance x, we generate m local perturbed samples such that ||x− x′||p ≤ ϵ,
and ŷx=ŷx′ . For every perturbed sample, we calculate the difference in their respective explanations
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and using Equation 3 calculate the relative stability of an explanation. Note that, as before, the metric
in Equation 3 measures instability of an explanation and higher values indicate higher instability.

Finally, we show that the Relative Input Stability can be bounded using the Lipschitzness of the
underlying model. In particular, we proof that RIS is upper bounded by a product of the Lipschitz
constant L1 of the intermediate model layer (assuming a neural network classifier) and our proposed
Relative Representation Stability. See Appendix A for the complete proof.

RIS(x,x′, ex, ex′) < λ1L1 × RRS(x,x′, ex, ex′) (4)

c) Relative Output Stability. Note that Relative Representation Stability assumes that the underlying
ML model is white-box, i.e., explanation method has access to the internal model knowledge. Hence,
for black-box ML models we define Relative Output Stability as:

ROS(x,x′, ex, ex′) = max
x′

|| (ex−ex′ )
ex

||p
max(||h(x)−h(x′)||p, ϵmin)

, ∀x′ s.t. x′ ∈ Nx; ŷx=ŷx′ (5)

where h(x) and h(x′) are the output logits for x and x′, respectively. Again, we proof that RRS is
upper bounded by a product of the Lipschitz constant L2 of the output model layer and our proposed
Relative Output Stability. See Appendix A for the complete proof.

RRS(x,x′, ex, ex′) < λ2L2 × ROS(x,x′, ex, ex′) (6)

4 EXPERIMENTS

To demonstrate the utility of relative stability, we systematically compare and evaluate the stability
of seven explanation methods using three real-world datasets using equations defined in Section 3.
Further, we show that, in contrast to relative input stability, relative representation and output stability
better captures the stability of the underlying black-box model.

4.1 DATASETS AND EXPERIMENTAL SETUP

Datasets. We use real-world structured datasets to empirically analyze the stability behavior of
explanation methods and consider 3 benchmark datasets from high-stakes domains: i) the German
Credit dataset (Dua & Graff, 2017) which has records of 1,000 clients in a German bank. The
downstream task is to classify clients into good or bad credit risks, ii) the COMPAS dataset (Mattu
et al., 2016) which has records of 18,876 defendants who got released on bail at the U.S state
courts during 1990-2009. The dataset comprises of features representing past criminal records and
demographics of the defendants and the goal is to classify them into bail or no bail, and iii) the
Adult dataset (Dua & Graff, 2017) which has records of 48,842 individuals including demographic,
education, employment, personal, and financial features. The downstream task is to predict whether
an individual’s income exceeds $50K per year.

Predictors. We train logistic regression (LR) and artificial neural network (ANN) as our predictive
models. Details in Appendix B.

Explanation methods. We evaluate seven attribution-based explanation methods, including Vanilla-
Grad (Simonyan et al., 2014), Integrated Gradients (Sundararajan et al., 2017), SmoothGrad (Smilkov
et al., 2017), Input×Gradients (Shrikumar et al., 2017), LIME (Ribeiro et al., 2016), and SHAP (Lund-
berg & Lee, 2017). Following Agarwal et al. (2022), we also include a random assignment of
importance as a control setting. Details on implementation and hyperparameter selection for the
explanation methods are in Appendix B.

Setup. For each dataset and predictor, we: (1) train the prediction model on the respective dataset;
(2) randomly sample 100 points from the test set; (3) generate 50 perturbations for each point in
the test set; (4) generate explanations ex′ for each test set point and its perturbations using seven
explanation methods; and (5) evaluate the stability of the explanations for these test points using all
stability metrics (Equations 2,3,5).

4.2 RESULTS

Empirically verifying our theoretical bound. We empirically evaluated our theoretical bounds by
computing the LHS of Equation 4 for all seven explanation methods. Results in Figure 2 illustrate
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Figure 2: Theoretical upper bounds for the (log) relative input stability (RIS) computed using the
right-hand-side of Equation 4 across seven explanation methods for an ANN predictor trained on
Adult dataset. Results show that RIS is upper bounded by the product of L1 and RRS (relative
representation stability), where L1 is the Lipschitz constant between the input and hidden layer of the
ANN model. Results for the Compas and German dataset are shown in Appendix 5.
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Figure 3: Empirically calculated log stability of relative stability variants (Equations 2-5) across seven
explanation methods. Results on the Adult (a), Compas (b), and German (c) dataset trained with
ANN predictor show that SmoothGrad generates the most stable explanation across RRS and ROS
variants. Results for all datasets trained on Logistic Regression models are shown in Appendix 4.

the empirical and theoretical bounds for the Relative Input Stability, confirming that none of our
theoretical bounds are violated. In addition, we observe that, on average across all explanation
methods, our upper bounds are tight with the mean theoretical bounds being 233% higher than that of
the empirical values. Similar results are found for other datasets in Appendix 5.

Evaluating the stability of explanation methods. We compare the stability of explanation methods
by computing instability using all three variants as described in Section 3.3. Results in Figure 3 show
that the median instability of all explanation methods using Relative Input Stability (Figure 3; blue)
are lower than that for the Representation (Figure 3; green) and Output Stability (Figure 3; orange)
because the relative input stability (Equation 2) scores are highly influenced by the input differences
(x− x′), i.e., the median RIS scores across all explanation methods are always lower than RRS and
ROS. Finally, we observe that while no explanation method is completely stable, on average across
all datasets and representation stability variants, the SmoothGrad explanation method generates the
most stable explanation and outperforms other methods by 12.7%.
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5 CONCLUSION

We introduce Relative Stability metrics that measure the change in output explanation with respect to
the behavior of the underlying predictive model. To this end, we analyze the stability performance of
seven state-of-the-art explanation methods using multiple real-world datasets and predictive models.
Our theoretical and empirical analysis demonstrate that representation and output stability indicates
that SmoothGrad explanation method generates the most stable explanation. We believe that our
work is an important step towards developing a broader set of evaluation metrics that incorporate the
behavior of the underlying prediction model.
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A THEORETICAL INTERPRETATION

Prior works have shown that commonly used artificial neural network (ANN) models comprise of
linear and activation layers which satisfy Lipschitz continuity (Gouk et al., 2021). Let us consider a
2-layer ANN model f , where h1(·) and h2(·) represent the outputs of the first and second hidden
layers, respectively. For a given input x and its perturbed counterpart x′, we can write the Lipschitz
form for the first hidden layer as:

|| h1(x)− h1(x
′) ||p ≤ L1 || x− x′ ||p, (7)

where L is the Lipschitz constant of the hidden layer h1(·). Taking the reciprocal of Equation 7, we
get:

1

|| h1(x)− h1(x′) ||p
>

1

L1

1

|| x− x′ ||p
, (8)

Multiplying both sides with || (ex−ex′ )
ex

||p, we get:

|| (ex−ex′ )
ex

||p
|| h1(x)− h1(x′) ||p

>
1

L1

|| (ex−ex′ )
ex

||p
|| x− x′ ||p

, (9)

With further simplifications, we get:

|| (ex−ex′ )
ex

||p
||h1(x)||p||h1(x)−h1(x′)

h1(x)
||p

>
1

L1

|| (ex−ex′ )
ex

||p
||x||p||x−x′

x ||p
(10)

For a given x′ and representations from model layer h1(·), using Equations 2-3, we get:
RRS(x,x′, ex, ex′)

||h1(x)||p
>

1

L1

RIS(x,x′, ex, ex′)

||x||p
, (11)

⇒ RIS(x,x′, ex, ex′) <
(
L1

||h1(x)||p
||x||p

)
× RRS(x,x′, ex, ex′), (12)

where we find that the Relative Input Stability score is upper bounded by L1 times λ1=
||h1(x)||p

||x||p
times the Relative Representation Stability score. Finally, we can also extend the above analysis by
substituting h1(·) with the output logit layer h2(·) and show that the same relation holds for Relative
Output Stability:

RRS(x,x′, ex, ex′) < λ2L2 × ROS(x,x′, ex, ex′), (13)
where λ2 = ||h1(x)||p.
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B IMPLEMENTATION DETAILS

Predictors. We train logistic regression (LR) and artificial neural network (ANN) models. Details
in Appendix B. The ANN models have 1 hidden layer of width 100 followed by a ReLU activation
function and the output Softmax layer.

Predictor Training. To train all predictive models, we used a 80-10-10 train-test-validation split.
We used the RMSProp optimizer with learning rate 2e− 03, the binary cross entropy loss function,
and batchsize 32. We trained for 100 epochs and selected the model at the epoch with the highest
validation set accuracy as the final prediction model to be explained in our experiments.

Explanation Method Implementations. We used existing public implementations of all expla-
nation methods in our experiments. We used the following captum software package classes:
i) captum.attr.Saliency for VanillaGrad; ii) captum.attr.IntegratedGradients
for IntegratedGradients; iii) captum.attr.NoiseTunnel; iv) captum.attr.Saliency
for SmoothGrad; v) captum.attr.InputXGradient for Gradients×Input; and vi)
captum.attr.KernelShap for SHAP. We use the authors’ LIME python package for LIME.

Metric hyperparameters. For all metrics, we generate a neighborhood Nx of size 50 for each
point x. The neighborhood points were generated by perturbing the clean sample x with noise from
N (x, 0.05). For data sets with with discrete binary inputs we used independent Bernoulli random
variables for the pertubations: for each discrete dimension, we replaced the original values with
those that were drawn from a Bernoulli distribution with parameter p = 0.03. Choosing a small p
ensures that only a small fraction of samples are perturbed to reduce the likelihood of sampling an
out-of-distribution point. For internal model representations Lx we use the pre-softmax input linear
layer output embedding for the LR models, and the pre-ReLU output embedding of the first hidden
layer for the ANN.

Explanation Method Hyperparameter Value
n samples 1000

LIME kernel width 0.75
std 0.05

SHAP n samples 500

SmoothGrad std 0.05

Integrated Gradients baseline train data means

Random Baseline attributions from N (0, 1)

Table 1: Hyperparameters used for explanation methods. For hyperparameters not listed, we used
their package defaults.
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Figure 4: Empirically calculated log stability of all three relative stability variants (Equations 2-5)
across seven explanation methods. Results on the Adult dataset trained with Logistic Regression
predictor show that SmoothGrad generates the most stable explanation across representation and
output stability variants.
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(b) German credit dataset

Figure 5: Theoretical upper bounds for the (log) relative input stability (RIS) computed using the
right-hand-side of Equation 4 across seven explanation methods for an ANN predictor trained on the
Compas and German credit datasets. Results show that RIS is upper bounded by the product of L1

and RRS (relative representation stability), where L1 is the Lipschitz constant between the input and
hidden layer of the ANN model.
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