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Abstract

The deployment of autonomous agents that interact with humans in safety-critical sit-
uations raises new research problems as we move towards fully autonomous systems in
domains such as autonomous vehicles or search and rescue. If autonomous agents are
placed in a dilemma, how would they act? The literature in computational ethics has
explored the actions and learning methods that emerge in ethical dilemmas. However,
our position paper examines how ethical dilemmas are not isolated in a social vacuum.
Our central claim in our position paper is that to enable trust among all human users,
a neurosymbolic verification of moral preference alignment is required. We propose that
the formal robustness properties be applied to social choice modelling. We outline how
robustness properties can help validate the formation of stable social preference clusters in
deep neural network classifiers. Our initial results highlight the vulnerabilities of models
in moral-critical scenarios to perturbations, suggesting a verification-training loop for im-
proved robustness. We position this work as an inquiry into the viability of verifying moral
preference alignment, based on our initial results. Ultimately, we aim to contribute to the
broader interdisciplinary effort that integrates formal methods, social choice theory, and
empirical moral psychology for interpretable computational ethics.

1. Introduction

As autonomous systems assume decision-making roles in critical domains, such as search
and rescue, autonomous vehicles, and air traffic control, ensuring their adherence to safety
constraints remains a growing challenge. While much of formal verification focuses on verify-
ing requirements in safety-critical domains. Our paper proposes a new term, moral-critical,
for robustness verification. Moral-critical circumstances arise when an autonomous decision
with ethically consequential outcomes. Decisions in these domains may be critical to estab-
lishing user trust. Our position paper proposes a neurosymbolic approach, providing formal
guarantees for deep learning to model the user’s moral norms. Our symbolic component
consists of a structured representation of moral dilemmas, with input encoded as labelled
choice alternatives from moral preference questionnaires. The input space has defined se-
mantic constraints constructed by standard error (SE). This symbolic element defines the
geometric bounds against which we verify our deep neural network (DNN) classifiers. The
application of robustness logic to cultural embeddings represents a novel approach that
enables formal verification of geometric boundaries in high-dimensional spaces.
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While clustering and threshold techniques in behavioural simulations are effective for
descriptive grouping, they lack the capacity to verify robustness against perturbations.
Having formal verification in embedded spaces of social behaviours in groups could provide
provable guarantees that the embeddings within the bounds are classified as belonging to
group norms. Moral preferences in this paper are the individual-level choice data, and the
emergent social norms are from aggregated culture level structures. We aim to critically
examine the feasibility and necessity of neurosymbolic verification for the deployment of
ethical AI. We advocate for a research agenda to bridge social choice theory, computational
modelling, and formal methods, outlining key challenges and focusing on the open research
questions in bridging formal methods with moral social choice reasoning.

2. Related Works

The concept of social preferences in group contexts in computational ethics (Kleiman-Weiner
et al., 2017; Kim et al., 2018) is based on the idea that there is no universal code of
ethics and that user preference in moral choice is key to deployment in domains with an
impact on an individual’s personhood and morality, which we have termed moral-critical.
Ensuring ethical compliance in autonomous systems requires interpretable and verifiable
models, particularly in high-stakes domains. While deep learning models have demonstrated
impressive predictive capabilities, their lack of interpretability and formal guarantees poses a
challenge for deployment in moral dilemmas. Traditional robustness verification methods,
including the use of geometric bounds, constrain acceptable input-output behaviours to
predefined regions of the feature space (Casadio et al., 2022; Flood et al., 2025). For
example, Casadio et al. (2022) demonstrates how formal properties, such as invariance
or bounded perturbation response, can be embedded into training objectives, creating a
feedback loop between training and verification with tools like Marabou (Wu et al., 2024)
that verify robustness at scale.

For further development in the verification of moral-critical domains, which applies
when moral reasoning spans both discrete symbolic logic and continuous inputs, the market
of hybrid system verifiers, such as KeYMaeraX, CORA, and Vehicle, suggests exciting
exploration (Daggitt et al., 2023; Teuber et al., 2024; Althoff, 2015). These tools enable
reasoning about systems that operate at the intersection of logical planning and continuous
control, which is characteristic of morally autonomous agents. Despite their theoretical
suitability, the literature on applying these models to social choice is limited. This paper
proposes the building blocks for their application to moral reasoning and potential cases
involving evolving or context-dependent values, which can be meaningfully explored.

3. Verification of Classified Group Norms

We extend the robustness verification framework (Casadio et al., 2022; Flood et al., 2025) to
the domain of emergent social preferences. While robustness in neural networks is defined
in terms of stability under small, norm-bounded perturbations, such as ϵ-ball constraints
around an input, this framework is extended in order to capture morally relevant variation
observed in human cultural judgments. Therefore, to evaluate semantic stability across
culturally grounded input variability we compare two types of verification bounds:
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1. Epsilon-ball robustness, representing traditional, tightly bounded perturbations
useful for adversarial threat models.

2. Semantically grounded geometric robustness, where verification regions are
defined by hyperrectangles constructed from the standard error (SE) of culturally
clustered groups in the Moral Machine dataset (Awad et al., 2018).

These hyperrectangles encode bounded moral diversity observed across cultural clusters.
For example, a Western cluster with a high SE produces a larger region, capturing the
broader internal disagreement among its members. The output provides a form of cultural
robustness that better aligns with ethical generalisation requirements of regions. We aim to
offer a more interpretable and socially relevant extension to robustness verification: one that
allows for bounded behavioural guarantees under meaningful, morally salient perturbations,
rather than abstract geometric constraints alone.

Definition 1 (Classification Robustness (CR)) Let N : Rn → Rm be a neural network
classifier. Let (x̂, y) be a data point, where y is the true label associated with x̂, and let ϵ > 0
be a perturbation bound. Then N is classification-robust around x̂ if:

CR(ϵ, x̂, y) ≡ ∀x : ∥x− x̂∥ ≤ ϵ ⇒ argmaxN(x) = y

In other words, for all inputs close to x̂, the classifier’s predicted label remains equal to the
label of x̂.

Following the principles laid out in Casadio et al. (2022), we will utilise the same CR
verification workflow. This reframes group norm classification as a verifiable, constraint-
driven task rather than a purely empirical statistical one.

3.1. Additional Robustness Properties

While CR is discrete and interpretable, it is non-differentiable and may fail near decision
boundaries. We therefore define additional, complementary robustness notions:

• Standard Robustness (SR): Requires small input changes to induce small output
changes:

SR(ϵ, δ, x̂) ≡ ∀x : ∥x− x̂∥ ≤ ϵ ⇒ ∥f(x)− f(x̂)∥ ≤ δ

where f(x) ∈ Rm is the vector of output scores over all classes, and δ > 0 bounds the
change.

• Lipschitz Robustness (LR): A stronger condition that linearly bounds output vari-
ation by input variation:

LR(ϵ, L, x̂) ≡ ∀x : ∥x− x̂∥ ≤ ϵ ⇒ ∥f(x)− f(x̂)∥ ≤ L · ∥x− x̂∥

where L is the Lipschitz constant controlling the sensitivity of f .

• Strong Classification Robustness (SCR): A differentiable approximation to CR
that enforces a minimum confidence in the correct class:

SCR(ϵ, η, x̂, y) ≡ ∀x : ∥x− x̂∥ ≤ ϵ ⇒ fy(x) ≥ η

where fy(x) is the predicted score (e.g., softmax probability) assigned to the true class
y, and η ∈ [0, 1] is a confidence threshold.
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3.2. Robustness Metrics

Each robustness property trades off three key dimensions: interpretability, logical strength,
and verifiability. Table 1 summarizes the relative strengths of four conditions: Constant
Robustness (CR), Soft Constant Robustness (SCR), Soft Robustness (SR), and Lipschitz
Robustness (LR).

Table 1: Comparison of interpretability, logical strength, and verifiability

Condition Interpretability Logical Strength Verifiability

CR Highest (label constancy) Weakest Low (non-differentiable)
SCR High (soft version of CR) Moderate High (differentiable)
SR Moderate (output similarity) Strong High (differentiable)
LR Lower (based on distances) Strongest High (Lipschitz-encodable)

Interpretability reflects how intuitively meaningful the condition is to a human reader.
Logical strength refers to how strongly one condition implies others. Verifiability indicates
whether the property can be encoded into differentiable optimization or SMT solving.

3.3. Preliminary Results

While this position paper is primarily conceptual, we conducted preliminary experiments
to demonstrate the feasibility of applying formal verification techniques to moral decision-
making systems. Our aim is to encourage broader exploration of verifiability in domains
not traditionally subject to formal guarantees, such as moral AI.

We trained a simple feed-forward neural network to classify countries into three moral-
cultural clusters: Western, Southern, and Eastern. Clusters were derived using Agglom-
erative Clustering on AMCE features provided in CountriesChangePr.csv (Awad et al.,
2018). Experiments revealed that even a simple, high-performing neural network failed
most verification tests, with only one property was verified at ϵ = 0.01 in Table 2.

Table 2: Verification results using Marabou across clusters and perturbation strategies

Cluster Perturbation Type ϵ Result

Western Uniform Box 0.01 Verified (2/2 safe)
Southern Uniform Box 0.01 Counterexample Found
Eastern Uniform Box 0.01 Counterexample Found

Western Uniform Box 0.1 Counterexample Found
Southern Uniform Box 0.1 Counterexample Found
Eastern Uniform Box 0.1 Counterexample Found

Western Semantic (Hyperrectangle) SE-scaled Counterexample Found
Southern Semantic (Hyperrectangle) SE-scaled Counterexample Found
Eastern Semantic (Hyperrectangle) SE-scaled Counterexample Found
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4. Discussion

Formal verification emerges as a promising yet underutilised tool in assessing the reliability
of social decision-making processes in autonomous systems. The symbolic layer of analy-
sis enables stronger claims about why certain autonomous decisions align or fail to align
with culturally defined moral preferences. The preliminary results exhibited the lack of
robustness across cultures and validated the core hypothesis that culturally variant data
clusters require attention. Specifically, clusters with lower representation in the data. We
first verified the classifier for ϵ = 0.01, assuming this small perturbation would yield posi-
tive verification results. Robustness was confirmed only for the Western cluster, likely due
to its greater representation in the training data. In contrast, Marabou found counterex-
amples for both the Eastern and Southern clusters, revealing vulnerabilities in the model.
The larger bound ϵ = 0.01 and nuanced Hyperrectangle verification approach also found
vulnerabilities in the model.

These counterexamples could involve a minimal perturbation in the input that flipped
the model’s decision. An example from the Southern cluster is a scenario where an au-
tonomous vehicle must choose between saving a child pedestrian or an elderly passenger.
The classifier, trained on culturally mixed data, receives a minor perturbation to just one
feature, such as slightly reducing their preference for saving younger individuals, causes the
classifier to flip its prediction from Southern to Western. Although the change in input is
minimal, its moral significance is considerable: the decision reverses in a way that directly
violates the group norm. Group preferences are not just statistical patterns; they represent
a form of collective moral will, aggregating individual preferences to protect decision-makers
from guilt and social responsibility. If the model fails to uphold this aggregated choice under
realistic cultural variation, it introduces moral instability into the system. In this case, the
model’s vulnerability is not merely a technical failure but an ethical one; it undermines the
legitimacy of the decision from the perspective of the society in which it is deployed.

Our results suggest that future work should integrate verification-guided training strate-
gies to enforce region-specific and value-sensitive robustness. Models must not only be
robust in an adversarial sense but must also remain stable under socially plausible shifts
in moral input. One promising direction is to combine robustness verification with model
interpretability techniques such as LIME or SHAP. These tools can help determine whether
the model is learning meaningful and human-aligned representations or merely overfitting
to statistical regularities in overrepresented clusters.

5. Conclusion

The position paper proposed viewing group norms as properties to be verified, quantified,
and tested for the stability of social group boundaries in embedding spaces. While still in
its early stages, the synergy between formal verification and computational social choice is
poised to make a significant contribution to future AI ethics research, ensuring that as social
norms shift, technologies remain not only verified but also interpretable in terms of moral
alignment. This opens utilising features in empirical moral psychology in neurosymbolic
approaches for computational ethics, highlighting the interdisciplinary efforts required for
morally aligned autonomous agents.
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6. Supplementary Material

6.1. Verification Output

For ϵ = 0.01:

Ve r i f y i ng p r op e r t i e s :
property−western [ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ] 2/2 qu e r i e s

r e s u l t : − Marabou proved no counterexample e x i s t s
Ve r i f y i ng p r op e r t i e s :

property−southern [ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ] 0/2 qu e r i e s
r e s u l t : X − Marabou found a counterexample

x : [ 1 . 0 e−2, 1 . 0 e−2, −4.654e−3, 1 . 0 e−2, −1.0e−2,
−1.0e−2, 1 .104 e−3, 9 . 4 e−5, −1.0e−2 ]

Ve r i f y i ng p r op e r t i e s :
property−ea s t e rn [ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ] 0/2 que r i e s

r e s u l t : X − Marabou found a counterexample
x : [ 1 . 0 e−2, 1 . 0 e−2, −1.0e−2, 1 . 0 e−2, −1.0e−2,

−1.0e−2, −1.0e−2, 5 .695 e−3, −1.0e−2 ]

For ϵ = 0.1:

Ve r i f y i ng p r op e r t i e s :
property−western [ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ] 1/2 qu e r i e s

r e s u l t : X − Marabou found a counterexample
x : [ 5 .3715 e−2, −1.5213e−2, 4 .1891 e−2, 6 .869 e−3, −2.8956e−2,

−1.7541e−2, −2.8409e−2, 4 .5439 e−2, −4.2906e−2 ]
Ve r i f y i ng p r op e r t i e s :

property−southern [ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ] 0/2 qu e r i e s
r e s u l t : X − Marabou found a counterexample

x : [ 2 .3003 e−2, 2 .3255 e−2, −1.36e−2, −9.61e−4, 9 .787 e−3,
−8.395e−3, 2 .0861 e−2, 9 .66 e−3, −2.4799e−2 ]

Ve r i f y i ng p r op e r t i e s :
property−ea s t e rn [ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ] 0/2 que r i e s

r e s u l t : X − Marabou found a counterexample
x : [ 2 .3003 e−2, 2 .3255 e−2, −1.36e−2, −9.61e−4, 9 .787 e−3,

−8.395e−3, 2 .0861 e−2, 9 .66 e−3, −2.4799e−2 ]

Hyperrectangle from SE:

Ver i f y i ng p r op e r t i e s :
property−western [ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ] 0/2 qu e r i e s

r e s u l t : X − Marabou found a counterexample

7



Ciupa Belle Komendantskaya

x : [ 4 .8541 e−2, −1.3644e−2, 3 .7494 e−2, 2 .2753 e−2, −1.0351e−2,
−1.2661e−2, −2.2838e−2, 2 .0656 e−2, −5.0068e−2 ]

Ve r i f y i ng p r op e r t i e s :
property−southern [ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ] 0/2 qu e r i e s

r e s u l t : X − Marabou found a counterexample
x : [ 3 .1378 e−2, 2 .2682 e−2, 3 .5604 e−2, 4 .151 e−3, −7.506e−3,

−8.681e−3, 1 .92 e−2, 1 .5135 e−2, −6.4713e−2 ]
Ve r i f y i ng p r op e r t i e s :

property−ea s t e rn [ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ] 0/2 que r i e s
r e s u l t : X − Marabou found a counterexample

x : [ 3 .449 e−2, 1 .3795 e−2, −1.6207e−2, −3.9535e−2, 1 .085 e−2,
−9.544e−3, 2 .4348 e−2, 2 .2493 e−2, 2 .273 e−2 ]

8


	Introduction
	Related Works
	Verification of Classified Group Norms
	Additional Robustness Properties
	Robustness Metrics
	Preliminary Results

	Discussion
	Conclusion
	Supplementary Material
	Verification Output


