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Abstract

We study a ranking and selection problem of learning from choice-based feedback
with dynamic assortments. In this problem, a company sequentially displays a set
of items to a population of customers and collects their choices as feedback. The
only information available about the underlying choice model is that the choice
probabilities are consistent with some unknown true strict ranking over the items.
The objective is to identify, with the fewest samples, the most preferred item or
the full ranking over the items at a high confidence level. We present novel and
simple algorithms for both learning goals. In the first subproblem regarding best-
item identification, we introduce an elimination-based algorithm, NESTED ELIM-
INATION (NE). In the more complex subproblem regarding full-ranking identifi-
cation, we generalize NE and propose a divide-and-conquer algorithm, NESTED
PARTITION (NP). We provide strong characterizations of both algorithms through
instance-specific and non-asymptotic bounds on the sample complexity. This is
accomplished using an analytical framework that characterizes the system dynam-
ics through analyzing a sequence of multi-dimensional random walks. We also
establish a connection between our nested approach and the information-theoretic
lower bounds. We thus show that NE is worst-case asymptotically optimal, and
NP is optimal up to a constant factor. Finally, numerical experiments from both
synthetic and real data corroborate our theoretical findings.

Understanding customer preferences is fundamental to decision-making across domains such as
marketing, e-commerce, and recommendation systems. Advances in internet and computing tech-
nologies have significantly enhanced the sophistication of preference learning systems, enabling
them to operate in real time, adapt dynamically, deliver personalized results, and scale efficiently.
These developments have unlocked novel applications. For example, a business model innovation
in e-commerce is crowdvoting, where companies systematically collect consumer feedback on new
product prototypes to decide which to bring to market (see 14, 17, 1). More broadly, digital sur-
veys have become increasingly prevalent, allowing firms to better understand customer preferences.
These trends underscore the importance of designing efficient preference learning systems. For
instance, well-designed feedback mechanisms can help crowdvoting avoid delays in product intro-
duction and reduce the risk of launching poorly received products. In digital surveys, efficient data
collection is crucial, as participant compensation makes sample inefficiency financially burdensome.

Motivated by those preference learning applications, we investigate a class of ranking-and-selection
problems from a specific feedback structure, which we refer to as choice-based feedback. To illus-
trate, consider a company seeking to understand customer preferences among a set of items (e.g.,
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product prototypes for commercialization). The company may pursue one of two objectives: identi-
fying the best item or ranking the entire set of items. To achieve these goals, the company can present
subsets of items to customers, asking them to select their favorite within each set. The company can
dynamically adjust these display sets based on previous feedback. The central challenge lies in de-
signing these display sets to make the learning process efficient – minimizing the cost of feedback
collection while ensuring high accuracy in the final outcomes; see Figure 1 for an illustration and
the full paper for a formal description.

Figure 1: A Visualization of The Learning to Select (and Rank) Problem.
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Choice-based feedback offers both opportunities and challenges. On the one hand, choices and
comparisons provide a natural and intuitive form of feedback. Its advantages over alternative formats
such as ratings or scores are discussed across various disciplines such as opinion research (15),
psychology (9) and computer science (19). On the other hand, the combinatorial nature of display
sets (also known as assortments) introduces significant complexity, especially when combined with
dynamic learning aspects. Systematic studies of this problem remain relatively nascent.

In this regard, our paper contributes to an emerging literature that brings machine learning and oper-
ations research tools to this type of problem (see, e.g., 18, 3, 6, 1, 7). Among these, the work by [6]
is most closely related to ours. They introduced a relatively general framework for modeling cus-
tomer preferences through discrete choice probabilities. Instead of parametric choice models such
as Multinomial Logit (MNL), they only imposed certain consistency and separability conditions
on the choice probabilities, namely, a more preferred item is chosen with strictly higher probabil-
ities. Under this modeling framework, they studied a best-item identification problem under the
fixed-confidence setting, i.e., aiming to minimize the feedback required to guarantee a desired level
of confidence. Leveraging an information-theoretic measure dating back to [4], they proposed a
randomized policy, MYOPIC TRACKING POLICY (MTP), and showed that it is worst-case asymp-
totically optimal. Their work also highlighted a useful trade-off in this problem: larger display sets
increase coverage by comparing more items simultaneously but may reduce the precision of indi-
vidual comparisons. Conversely, smaller sets (e.g., pairwise displays) enhance precision but limit
coverage. Hence an optimal procedure should harvest the benefit of both.

Summary of Main Results and Contributions

The first part of our paper revisits the best-item identification problem, also referred to as “learning-
to-select.” It is motivated by several notable limitations of the MTP policy by [6]. One pressing
issue is that it requires repeatedly solving combinatorial optimization problems throughout the time
horizon, which restricts the scalability of the algorithm. Furthermore, the theoretical guarantee of
MTP has two important drawbacks: (i) it focuses on the hardest-to-learn instances with limited
insights for general cases, and (ii) it allows a residual term on the order of o(log(1/δ)), where δ is
the target error probability. These two limitations imply that the guarantees of MTP may be weak
for general instances and when the target error probability is only moderately small.

We propose a surprisingly simple algorithm, NESTED ELIMINATION (NE). It significantly improves
upon earlier approaches by (i) being computationally simpler and (ii) offering stronger theoretical
guarantees. Our main contributions are as follows:
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Figure 2: A Conceptual Illustration of Theoretical Contributions of NE.
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Notes: The horizontal axis represents different preference instances f ; the vertical axis represents the asymptotic sample complexity.

1. Simpler Implementation. NE employs a “nested” structure, shrinking display sets on a path-wise
basis. This is combined with a carefully designed (but easy-to-implement) sequence of hitting
times that determine when and how suboptimal items are eliminated. By avoiding the need to
solve combinatorial optimization problems, NE achieves a running time reduction of up to three
orders of magnitude compared to MTP; see the full paper.

2. Stronger Theoretical Guarantee. We provide a thorough theoretical analysis of NE’s perfor-
mance. For every preference instance f (not just worst-case one) and every error tolerance δ, we
derive a non-asymptotic and instance-specific bound on its sample complexity.

Theorem. For every confidence level δ ∈ (0, 1), NE identifies the top-ranked item with probabil-
ity at least 1− δ. Furthermore, for every preference instance f , the sample complexity satisfies

E[τ ] ≤ log(1/δ)
IN(f) + Cf ,

where IN(f) is an explicit function of the instance f and Cf is a constant independent of δ.

This bound universally outperforms that of MTP, where the improvement can be up to the order
of Ω(log(1/δ)). Furthermore, by comparing with the information-theoretical lower bound, we
show that NE achieves higher-order worst-case optimality than MTP, where the “sensitivity” of
the optimality criterion sharpens from O(log(1/δ)) to O(1). (See the full paper for more details.)

In the second part of the paper, we consider the more challenging full-ranking identification prob-
lem, which we refer to as “learning-to-rank.” We introduce a divide-and-conquer algorithm named
NESTED PARTITION (NP); see the full paper. The elimination procedure NP mirrors that of the
well-known Quicksort algorithm [10] and similarly recursively partitions the active set into two
parts, where items in one part are deemed superior to those in the other. We theoretically establish
NP’s sample complexity.

Theorem. For every confidence level δ ∈ (0, 1), NP identifies the full ranking with probability at
least 1− δ. Furthermore, for every preference instance f , the sample complexity satisfies

E[τ ] ≤ log(1/δ)
JN(f) + C ′

f ,

where JN (f) is an explicit function of the instance f and C ′
f is a constant independent of δ

By comparing with the information-theoretic lower bound for the full-ranking identification problem,
we show that NP attains (nearly) worst-case asymptotic optimality.

Methodological Innovations. We also find it helpful to briefly outline the main technical challenges
and describe how we address them methodologically. Let us begin with the challenges:
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1. While the nested approach is intuitive and offers simple structures, it is not immediately clear a
priori whether such nested structures are optimal. and if so, in what precise sense.

2. Even within the nested framework, many important design choices remain unresolved. For in-
stance, when should an item be eliminated? And if upon elimination, which item should be
removed? These questions ultimately reduce to a sequence of stopping problems, the solutions
to which are also not evident a priori.

3. Although NE and NP are apparently simple to implement, they are nontrivial to analyze. The
history-dependent elimination rules and the requirement to “transfer” information across different
assortments complicate efforts to decouple the dynamics across items or stages. This interdepen-
dence renders the overall system dynamics difficult to characterize analytically.

We address the first challenge by drawing a connection between our nested approach and the nested
structure of the optimal solution to a max-min problem involving a [4]-type information-theoretic
criterion. In this light, our strategy of pathwise shrinking of display sets is not ad hoc. Rather, the
optimal allocation among display sets exhibits a “natural” nested structure. To tackle the second
challenge, we relate our elimination rules to a specific class of sequential probability ratio tests
(SPRTs), with the appropriate hypotheses to test and the right choice model classes.

Figure 3: A Visualization of the Nested Random Walk Dynamics Under NE.
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Notes: The NE algorithm maintains an active set, denoted by Sactive, which initially contains all items and shrinks over time. At each time
step t, NE displays Sactive to the next customer and records the observed choice Xt ∈ Sactive. The algorithm relies on a simple sufficient
statisticthe voting scores {W (i)} for each item i ∈ [K]which count the number of times each item is chosen.

In the illustrated case with K = 3, the first stage starts with the active set [3] = {1, 2, 3}. The systems dynamics are visualized by pro-
jecting {W (i)} onto the two-dimensional space spanned by (W (1) − W (3), W (2) − W (3)). This yields a two-dimensional random
walk originating at the origin. The walk evolves via i.i.d. increments of (0, 1), (1, 0), or (−1,−1), occurring with respective probabilities
f(1 | [3]), f(2 | [3]), and f(3 | [3]). The first stage ends when the random walk hits the boundary of a triangle with vertices (0,M),
(M, 0), and (−M,−M), each face corresponding to the elimination of one item. In the example path, item 3 is eliminated, reducing the
active set to [2] = {1, 2}.

In the second stage, the state is further projected onto the one-dimensional space defined by W (1) − W (2), yielding a one-dimensional
random walk. This walk starts from the endpoint inherited from the first stage and evolves by increments of +1 or −1, with probabilities
f(1 | [2]) and f(2 | [2]), respectively. The stage concludes when the walk reaches either M or −M , signifying the selection of item 1 or
2, respectively.

To address the third challenge, we represent the system dynamics by a sequence of multi-
dimensional random walks, with each later-stage walk initialized at the terminal state of the pre-
vious stage. Figure 3 illustrates this for NE; a corresponding illustration for NP is provided in the
full paper. This reformulation enables us to reduce the analysis to characterizing the hitting times
and hitting distributions of these random walks at each stage. Leveraging tools such as martingale
theory, we are able to derive sharp performance bounds, leading to residual terms on the order of
O(1), as opposed to the more conventional order of o(1/ log(δ)).

Both our algorithmic design and analytical techniques depart significantly from classical successive
elimination-based methods for multi-armed bandits or the widely adopted track-and-plug-in strate-
gies in pure-exploration problems. As such, we believe our approach holds independent value and
serves as a useful ground for the development of online learning algorithms for other purposes.
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