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Abstract

The exponential increase in Deep Neural Networks (DNNs) parameters has signifi-
cantly raised the cost of independent training, particularly for resource-constrained
entities, leading to a growing reliance on open-source models. However, the opacity
of these training processes exacerbates security risks, making these models more
susceptible to malicious threats, such as backdoor attacks, while also complicating
defense strategies. Merging homogeneous models has emerged as a cost-effective
post-training defense. Current approaches, such as weight averaging, only partially
mitigate the impact of poisoned parameters and are largely ineffective in disrupting
the pervasive spurious correlations embedded across model parameters. To address
this, we propose a novel module-switching strategy and validate its effectiveness
both theoretically and empirically on two-layer networks, showing its remarkable
ability to break spurious correlations and achieve higher backdoor divergence than
weight averaging. For deep learning models, we further design and develop evolu-
tionary algorithms to optimize fusion strategies, along with selective mechanisms
to identify the most effective combination. Experimental results demonstrate that
our defense exhibits strong resilience against backdoor attacks in both text and
vision tasks, even when merging only a couple of compromised models.

1 Introduction

Deep neural networks (DNNs) draw much of their ability to learn from heterogeneous, real-world data.
Although this diversity contributes to their remarkable performance across various tasks [4, 8, 48], it
also leaves adversaries opportunities to implant carefully crafted patterns into training data, enabling
malicious attacks. In particular, backdoor attacks poison a (small) portion of training samples with
deceptive but stealthy triggers [6, 14]. As a result, the trained model behaves normally on ‘clean’
inputs but produces attacker-specified predictions when triggers appear at test time. The stealthiness
of backdoor attacks raises serious security concerns and motivates effective defense research.

Recent advances in backdoor defense span both training-phase and test-phase approaches. However,
many existing methods face significant practical constraints: (1) growing reliance on unverified
models from open platforms (e.g., HuggingFace) makes the training process and assets opaque;
(2) increasingly stealthy backdoor triggers (e.g., invisible syntactic patterns [39]) hinder effective
data filtering and trigger inversion; (3) auxiliary datasets required for purification are not always
available [68]; and (4) re-tuning incurs additional computational overhead [67].

Model combination techniques, such as model merging [19, 33], originally proposed for knowledge
aggregation, have emerged as cost-effective defenses against backdoor attacks. For example, merging
multiple compromised models can suppress textual backdoors [2]. However, naive weight averaging
can still retain malicious behavior: merging a benign model with a compromised one may transfer
the backdoor, while merging two poisoned models may preserve both backdoors [60]. An alternative
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strategy seeks to combine models selectively, guided by trusted criteria, curated datasets, or reliable
proxy models. For instance, Yang et al. [60] utilize perturbation methods associated with backdoor
behaviors to iteratively mask related parameters, while Chen et al. [5] use auxiliary reference models
to resolve information conflicts. Unfortunately, such trusted resources are not always available, and
the reliability of newly identified resources is also questionable. Recent work [29, 45] shows that
even compromised models can be leveraged to directly mitigate target backdoors, although there
remain risks that the auxiliary model could introduce additional backdoor threats.

We propose Module Switching, a defense

framework that selectively exchanges network T BackdoorshorteutA - T Backdoorshorteut
modules among models trained on related do- Model A ! Combined Modal
mains. The intuition rests on the observation \/J)/\ Module-Switching (A&B)
that backdoor attacks introduce “shortcuts” !

within DNNS, exploiting spurious correlations |

to trigger malicious behavior [13, 17, 61]. Be- Input Output ‘FA—ﬂ
cause different attacks create distinct short- Model B ~\7
Input Output

cuts, disrupting these pathways by swapping

modules may effectively mitigate the corre- Sackdoor shorout
sponding vulnerabilities, as shown in Figure 1. /_\T/\ : e
Identifying every shortcut is computationally Input Output 5

challenging due to numerous parameter inter-  gjoyre 1: An illustration of Module-Switching De-
actions and the requirement of extra data. We  fenge (MSD). By switching weight modules between
therefore reformulate shortcut disruption as  ompromised models (/eff), the spurious correlations
an optimization problem, searching for an ef-  (shorcuts) learned from backdoored tasks are effec-

fective module-switching strategy that breaks  jvely disrupted in the combined model (right).
shortcut connections within a given model ar-

chitecture. By combining heuristic scoring and an evolutionary algorithm, we obtain an index table
that specifies which source model should fill each module slot. Since this module-switching scheme
relies solely on architectural information, it generalizes across tasks and is transferable to any models
sharing the same structure (e.g., one strategy applicable to both RoBERTa [32] and DeBERTa [16]).

Our Module-Switching Defense (MSD) applies the strategy by assigning each module across the
network a source-model index and recombining the selected modules to construct candidate models.
Then, we identify the most robust candidate by comparing their representations on a small clean
validation set (requiring only as few as 20-50 samples per class and no poisoned data). Because MSD
is structure-driven, it is task-agnostic, counters a wide spectrum of backdoor threats, and preserves
utility for downstream tasks. Our key contributions are as follows.

* We conduct an interpretable study on shallow networks, showing that module switching
manages to effectively mitigate backdoor patterns while preserving semantics (Section 3).

* We propose and develop an MSD pipeline, which (1) establishes heuristic rules (Section 4.2)
to guide an evolutionary algorithm search strategies that disrupt backdoor-related spurious
correlations (Section 4.3), and (2) defines a feature-distance criterion to select the best model
combination candidate (Section 4.4).

* We validate our method on DNNSs in text and vision domains, showing it effectively mitigates
various backdoor attacks, even when combining only compromised models (Section 5).

2 Related Work

Backdoor Attacks. Backdoor attacks implant hidden vulnerabilities in DNNs, activating only when
specific triggers appear in the input while maintaining normal behavior on benign data. They can
be broadly categorized into two types in accordance with implanting methods: (1) Data-poisoning
attacks inject trigger patterns into a small portion of the datasets with manipulated labels to train
compromised models. Since being first discovered by Gu et al. [14], these attacks have evolved with
diverse trigger designs in both vision [27, 36, 58] and text domains [7, 22, 39, 40]. In contrast, (2)
Weight-poisoning attacks directly modify model weights to embed backdoors [10, 22]. The backdoor
attacks can be considered correlating trigger patterns with predefined predictions in machine learning
models, activated in inference [13, 17]. Our work focuses on defending against data-poisoning
attacks in both text and vision domains, given their widespread adoption and potential risks.
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Backdoor Defense. Backdoor defenses are typically classified by their deployment stage into (1)
training-phase and (2) test-phase methods. Training-phase defenses treat poisoned data as outliers,
aiming at detecting and removing them based on distinctive activation or learning patterns [17, 18,
25]. Test-phase defenses operate on inputs or model itself: data-level approaches reverse-engineer
triggers [49] or filter anomalies [37], while model-level strategies detect trojaned models [31, 44, 50,
52] or purify models through pruning [30, 57, 67, 68] or unlearning [26, 56, 65]. While traditional
model purification demands proxy data and additional retraining, recent research has focused on model
combination strategies that require fewer assumptions and lower computational costs [2, 5, 29, 45, 60].
Building on this line of research, we propose a model confusion approach that reduces dependency on
trusted resources while mitigating threats by disrupting spurious correlations in constituent models.

3 Module Switching in Two-layer Neural Networks

We theoretically and empirically examine whether module switching in two-layer networks can
disrupt backdoor patterns introduced during fine-tuning, while preserving pretrained semantics. We
find that swapping layer weights leads to greater deviation from backdoor patterns than weight
averaging (WAG) [2, 51], yielding improved robustness against backdoored inputs.

Setup and Notation. We consider two-layer networks defined as f(x;6) = Wy o(Wix), with
input z € RY and parameters 6 := {W;, W5}, and activation function o(-) (linear or non-linear).
Training progresses in two stages: a pretraining stage, where shared weights W; € RE>*Y and
W, € RV*XK Jearn general semantics, followed by a fine-tuning stage that introduces updates (AW
and AWY) to encode backdoor behavior in individual models M*.

In a linear network with identical activation, the fine-tuned model is M(x) = (W2 + AW )(W; +
AW*)a, which expands to a semantic term S = W2 W and a backdoor component

B* = WoAW; + AW W, + €, (1)

such that M*(x) = (S + B*)x, where the e-term ¢* = AW} AW/ is a second-order interaction.
It is typically much smaller in magnitude than first-order terms (i.e., Wo AW} + AW W7). We
empirically verify this in Appendix C, and accordingly omit the e-term in subsequent analysis.

Definition 1 (Weight-Averaged Model). Let i and j index two fine-tuned backdoor models. Averaging
the weights of M* and M7 defines the Weight-Averaged (WAG) model [2], with parameters:

1 . 1 N1 ) 1 )
gras .= {2 (W +AWY) + 5 (W1 + AW{) .3 (Wa+ AW) + 3 (W2 + Awg)} .

Assuming a linear network as above, we decompose the model as MY ?&(x) = (S + BY?8) x, where
S denotes the shared pretrained semantic component, and the backdoor component is equivalent to

Bv = %WQ (awi +awy) + % (awj + awi) w.

Definition 2 (Distance between Outputs from WAG and Constituent Models). Under identity activa-
tion, U5 distances between the WAG model and the two constituent models M* and M’ are:

wag,i wa, % 1 j i j i
D5 = M (@)~ Mi(@)] = 5| (Wa(AW] — AW]) + (AW] — AWHW1 ) al],
wag, ] wa, j 1 7 j i j
D27 = M2 (@) = M (@) | = S| (Wa( AW = AWY) + (AWS — AWH) W ) 2.
Definition 3 (Module-Switched Models). Swapping one layer between M* and M7 yields two
possible switched models, each with its own parameters, semantic-backdoor decomposition:
0 = (W) + AW}, Wo + AWY}, MY (z) = (S+ BY)x, B =W,AW] + AWIW,,
070 = (W), + AW/, Wy + AWS},  MI(x) = (S + Bz, B = WoAW! + AWiW,.

Definition 4 (Distance between Outputs from Switched and Constituent Models). Under identity
activation, {5 distances between the switched model MY and the two constituent models are:

1D = M () — M ()| = [(AWS — AW3)Wizl],
D || = IMY(z) = M ()| = [W2(AW] — AW ).
The analogous results of |D?%*| and | D?%3 || hold with swapped indices (see Equation (5)).
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Theorem 1 (Module Switching Exceeds WAG in Backdoor Divergence). Under identity activation,
the total backdoor divergence of the Weight-Averaged (WAG) model is upper bounded by the average
divergence of the switched models:

HDwag,l | + ||1Dwag,,J|| < 5 ( ‘DZJ;I ‘ + ||'DU’]

|+ D7 + [ D757])) . 2)

This theorem confirms the rationale that module switching on average yields stronger suppression of
backdoor-specific patterns than weight averaging.

Proposition 1 (The Existence of a More Divergent Switched Model). Given Theorem 1, there is at
least one switched model with greater backdoor divergence than Weight-Averaged (WAG) model:

D8]+ D < max{ D] + D3], D7) + D7 }. @

This proposition shows that the least backdoor-aligned switched model exceeds the WAG model in
backdoor divergence, underscoring the importance of selecting the least aligned candidate and moti-
vating the selection step in Section 4.4. Appendix D details proofs of Theorem 1 and Proposition 1.

Empirical Study. We simulate 1000 two-layer networks (with both linear and non-linear activa-
tions), each pretrained on a shared semantic component S ~ N(0, 1) and fine-tuned with a backdoor
component B* ~ N(0,0.12). For each fine-tuned pair M? and M7, we construct the corresponding
WAG model M¥28 and switched models M% and MJ?. We evaluate output alignment with (1) the

semantic direction Sz, measured by dg = |[norm(f(x;#)) — norm(Sz)||; and (2) the backdoor
direction B*x, measured by dp = ||norm(f(z; ) — Sx) —norm(B*x)||, where norm(v) = v/||v|.
= Pretrained e Finetuned Switched (M;;) Switched (Mj;) + WAG $£3 Centre point
0175, Centres:| 0.30 (Centres:
3 Pretrained (1.38, 0.01) Pretrained (137, 0.11)
0.150 & Finetuned (0.00, 0.11) Finetuned (0.03, 0.11)
= H Switched (M) (0.92, 0.10) = 0.25 | switched (M) (1.03, 0.16)
3 » Switched (M;) (0.81,0.10)| O Switched (My) (1.1, 0.16)
s 0-1253 WAG (0.75,0.08)|  § 0.20 | WAG (0.77,0.08)
2 4 27 4 p i R
0.100 ¥ Al
o B 8 & L&
"é 007551 - E 0'15',"', " X ®Q
§ 0'050 ’ § 010 é}. : :\ 400 i i pe ,, Aflllll\lllll@llll\ll\l\lll
2 0. 122 e IS VY
< % KRS %&f}. ‘e
0.025 0.05 . = ‘> % A * o
Linear| T o — [ReLUJ
.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
dg (Backdoor distance) dg (Backdoor distance)

Figure 2: Euclidean distances between normalized output vectors of pretrained, fine-tuned, WAG,
and switched two-layer networks, relative to the semantic direction S and the backdoor directions
B*x, under linear (left) and ReL.U (right) activations.

Figure 2 presents 2D scatter plots comparing output distances across all model types under both linear
and ReLU [1, 35] activations. More results with various activations are provided in Appendix E. We
observe that while fine-tuned models stay close to their respective backdoor patterns B*, the WAG
model shifts farther away, and the switched models diverge even more, indicating stronger backdoor
suppression. All models remain near the semantic term .S, confirming preserved functionality.

4 Module Switching Defense

In this section, we extend the findings on module switching to more complicated deep neural
networks and develop a comprehensive defense pipeline. We begin by introducing the problem
setting in Section 4.1, followed by establishing a set of heuristic rules to guide the search for effective
module switching strategies in Section 4.2. Next, we adapt an evolutionary algorithm for searching
the optimal strategy in Section 4.3, guiding switched models construction and selection in Section 4.4.

4.1 Preliminaries

Threat Model. We study data poisoning attacks where an attacker modifies a subset of a clean
dataset D. = {(z., y.)} into poisoned samples D,, = {(x, = g¢(x.),yp)} using a trigger function
g and target label y,,. The poisoned data is used to train a backdoored model or shared with others
for training, resulting in trojaned models being widely available via model-sharing platforms.
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Defender Capability. The defender downloads potentially compromised models and aims to purify
them before deployment. They have white-box access and a small clean validation set (20-50 samples
per class), but no knowledge of the trigger or poisoned data. They can access multiple (as few as two)
domain-relevant models of uncertain integrity and may combine them using the validation set.

Neural Network Architecture. We adopt Transformer models [48] as the testbed in both text and
vision domains, given their strong performance and prevalence on model-sharing platforms. A typical
Transformer has L layers, each with a self-attention block and a feed-forward network (FFN). The
attention block includes {W,, Wy, W,,, W, } and the FFN includes {W;, W, }; we refer to these six
modules as {Q, K, V, O, I, P}. Residual connections [15] follow both blocks and link to later layers.

4.2 Scoring Rules for Module Switching

In Section 3, we studied weight switching in two-layer networks, where replacing weights disrupts
spurious correlations, eliminating undesired patterns while preserving semantic alignment. Extending
to DNNs, we hypothesize that breaking backdoor propagation paths can similarly deactivate them.

Given the structural complexity of deep networks, we define heuristic rules to guide the search for
module combinations that disrupt backdoor paths in both feedforward and residual streams [11]. We
identify three types of adjacency that may support poison transmission (illustrated in Figure 3): (1)
intra-layer (within the same layer), (2) consecutive-layer (adjacent layers), and (3) residual (via skip
connections). Additionally, we introduce a (4) balance penalty to avoid overusing any single model
and a (5) diversity reward to encourage varied combinations across layers.

TYPE 1 Intra-layer adjacencies : TYPE 2 Consecutive-layer adjacencies: TYPE 3 Residual-path adjacencies :
{(0,Q,(0,k"),(0,V),(P,1),
{Q.K). Q. V), (K,V),(v,0),(0,D,(,P)} {P,Q"), (P,K"), (P,V")} 0,@"),(0,K"),(0,v"), (P,Q")-.}

' '
Self-Attention FFN ! Self-Attention FFN H Self-Attention FFN
' '

>

layer i layeri+1 layeri+ 2 Residual stream

Figure 3: The confused model combines modules from different models, where red and blue nodes
indicate components from different models by considering three types of module adjacency in
Transformers, as shown in the upper part of the figure.

We adopt these heuristic rules as evaluation criteria to compute the overall score of a given module-
switching strategy, evaluating how well it adheres to the proposed principles. A summary of the rules
is presented in the box below (and more details are provided in Appendix F).

Heuristic-based Search Rules

1. Intra-layer adjacency penalty: Penalize if two adjacent modules within the same layer
(e.g., Q and K) are from the same source model.

2. Consecutive-layer adjacency penalty: Penalize if adjacent modules across consecutive
layers (e.g., P in layer ¢ and Q' or K’ in layer i+1) are from the same source model.

3. Residual-path adjacency penalty: Penalize if residually connected modules (e.g., O; —
@', Q") come from the same model, with reduced weight for longer-range links.

4. Balance penalty: Penalize if the selected modules are skewed toward a single model.

5. Diversity reward: Promote layer-wise diversity, aiming at using different source model
combinations across the network.

4.3 Evolutionary Module Switching Search

We frame the search for effective module-switching strategies as a discrete Neural Architecture
Search (NAS) problem [53]. Let S denote the space of switching strategies, where each s € S assigns
a source model index to each module: s : {1,..., L} x M — {1,..., N}, M ={Q, K,V,0,1, P},
where L is the number of layers and N the number of source models.
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Fitness Evaluation. Each strategy s is scored by:
F(S) = _/\lAimra(S) - /\2Ac0ns(5) - )\3Ares(3) - /\4Bbal(5) + )\5Rdiv(5)a 4

where Ajnira, Acons, and A penalize adjacency violations (Section 4.2), By, penalizes module
imbalance, and Rg;y, rewards diversity. By default, we set all \;, to 1.0. Higher F'(s) indicates stronger
disruption of potential backdoor paths. The formulations of all terms are provided in Appendix F.2.

Search Algorithm. As the scores
by F(s) is non-differentiable over a
large discrete space, we adopt evolu-
tionary search [34], well suited to op-
timizing implicit objectives [69]. We
adopt the aging regularized evolution
algorithm [41], modifying it in two
key ways: (1) fitness is computed di-
rectly using the heuristic scoring func- ; VLGS
tion F, without model training or val- popu%atzon.append(mdw)
idation; and (2) low-scoring strategies : end while

are discarded, replacing aging regu- 9 While gen_count < G do
larization [42]. As outlined in Al- 10:  fori«1toC do

Algorithm 1 Evolutionary Module-Switching Search

1: Input: population P, generations G, children per gener-
ation C', number of models IV, layers L, module set M.

. population < &

gen_count < 0

: while |population| < P do

indiv.strategy < RANDOMSTRATEGY(N, L, M)

indiv. fitness < CALCSCORE(indiv.strategy)

A A

gorithm 1, it evolves a population !l: parent <= TOURNAMENTSELECT(population)
through tournament selection (line 1% child.strategy < MUTATION(parent)

11), mutation (line 12), and fitness- 13 child. fitness + CALCSCORE(child.strategy)
based dropping (line 13). A hyper- 14 population.append(child)

parameter C' controls the number of 15 end for ‘ ‘ ‘
children per generation. Appendix I 16: sort(populatzon) > by descending fitness score
presents example searched strategies. 17 population < population|0 : P]

18: gen_count < gen_count + 1

19: end while

4.4 Switc.hed Models . 20: Output: BESTSTRATEGY < population[0].strategy
Construction and Selection

The searched strategy 7' can be Algorithm 2 Switched Model Selection

used to switch modules among a — Input: Victim models M = { My, ..., My}; clean set
group of victim models M = D.; switching strategy 7.

My, ..., My} to fuse a candidate . .
1{)0011 which oﬁ }average exceeds the s wag < WAG(M) > weight averaging over M
’ : models < M U {wag}

2
. . 3
WAG model in backdoor divergence 4: score < ZEROVECTOR (num_classes)
(as Theorem 1) and guarantees the ex-
5: for m € models do
6.
7
8

istence of at least one candidate with .
for ¢ € candidate classes do

higher divergen Pr ition 1).
Tﬁg' er divergence (as Proposition 1) Ldummy < OPTIMIZEINPUT (17, Zrandom, €)
is motivates us to develop a feature-
Zdummy — FORWARD (M, Zaummy)

distance-based method to identify and

select the least-backdoor-aligned can- % Zelean €~ FOFWARD(m’ D, non-c)
. 10: scorelc] += MEANCOSINEDIST(Zgummy, Zclean)
didate from the pool. v
11: DUMMYFEATURE[m][c] <= Zqummy

Suspect-class Detection. We first use 12:  end for

the final-layer embedding of [CLS] to- 13: end for

ken to detect the suspect class, based 14: ¢* < arg max, scorec] > suspect target class
on the insight that trojaned models pri- 15: z* +~ DUMMYFEATURE[wag][c*]

oritize trigger features [12, 62]. For 16: candidates <~ MODULESWITCH(T', M)

each m € M U {WAG(M)} and 17: for m € candidates do

class ¢, we optimize a random input 18:  z <— FORWARD(m, D, non-c*)

to induce prediction of ¢, yielding a 19:  m.dist « MEANCOSINEDIST(z, z*)

dummy final-layer [CLS] feature zf,‘j“c‘ 20: end for

Its average cosine distance to clean 21: Output: arg max,, m.dist

features over a few non-c samples is
accumulated across models: S(c) = >, avg[l — cos(zi™, 25 )]. The class with the highest
score, ¢* = argmax, S(c), is deemed suspicious, and the corresponding WAG dummy feature

2* = zdum s used as a fixed reference.

WAG,c*
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Candidate Selection. Applying 7" to M gives candidates m € C(T, M) (e.g., M*, M7%). Each m is
scored by d(m) = avg[1l — cos(z*, fm(x))], the mean cosine distance between its [CLS] features on
a few clean, non-c* samples x and the WAG dummy z*. The winner m* = arg max,,cc(r,m) d(m)
is the one least aligned with backdoor features and, by Proposition 1, has better defense than WAG.

The complete pipeline, detailed in Algorithm 2, avoids exhaustive trojan detection process [31, 44,
49, 50, 52], yet reliably selects robust module-switching candidates.

5 Experiments
5.1 Experimental Setup

Datasets. We evaluate our method on three NLP datasets—SST-2 [24, 43], MNLI [54], and AG
News [66]—as well as vision datasets, CIFAR-10 [21, 46] and TinyImageNet [23], covering both
binary and multi-class classification. Dataset statistics are in Table 6 (Appendix G.1). For NLP,
following WAG [2], we use 20% poison in training (also testing 10% and 1%). For vision tasks, we
apply a 5% poison rate. Poisoned test sets are created by attacking non-target validation samples; only
the clean test set is available to the defender, while poisoned test data is used solely for evaluation.

Backdoor Attacks. We generate poisoned data by modifying clean samples and relabelling them to
a target class, using four representative attacks in both text and vision tasks, to evaluate our defense.

For the text domain, we consider (1) BadNet [22], (2) InsertSent [7], (3) Learnable Word Substitution
(LWS) [40], and (4) Hidden-Killer (Hidden) [38]. BadNet and InsertSent are token and sentence
insertion attacks, and we set the triggers as rare words { “cf”, “mn”, “bb”, “tq”, “mb”} and phrases
{ “I watched this movie”, “no cross, no crown”}. LWS and Hidden apply stealthier strategies such as
synonym substitution and syntactic paraphrasing.

For the vision domain, we examine (1) BadNet [14], (2) WaNet [36], (3) BATT [58], and (4)
PhysicalBA [27]. BadNet and BATT inject digital patterns such as fixed pixel triggers and subtle
visual changes, while PhysicalBA and WaNet are stealthier and use physical objects and warping
effects. We utilize the BackdoorBox [28] toolkit to generate poisoned datasets and train the models.

Defense Baselines. We compare against seven defense methods across text and vision: three
model-merging approaches applicable to both domains—TIES [59], DARE [63], and WAG [2]-and
two domain—specific data purification methods per modality. Z-Def. [17] and ONION [37] are outlier
detection methods in text domain. In vision, CutMix [64] disrupts triggers via patch mixing, and
ShrinkPad [27] reduces vulnerability by shrinking and padding inputs. All baselines use open-source
implementations with default settings. See Appendix G.3 for more details.

Evaluation Metrics. We assess the model’s utility and defense performance using Clean Accuracy
(CACC) and Attack Success Rate (ASR) [2, 17, 37, 40]. CACC measures the prediction accuracy
on clean samples, with a higher CACC indicating better model utility. ASR computes the attack
accuracy on a poisoned test set, where all test samples are attacked and their labels are modified to
the target class. A higher ASR reflects that the model is more vulnerable to the attack.

Implementation Details. We use RoBERTa-large [32], BERT-large [8], and DeBERTa-large [16]
for text experiments, and Visual transformers (ViT) [55] for vision tasks. NLP models are fine-tuned
on poisoned data for 3 epochs using Adam [20] with a learning rate of 2 x 10~?; ViT models for 10
epochs using SGD [3] at 1 x 10~2. We focus on two-model merging in both domains and include
three-model merging for text. All experiments are run with three random seeds on a single Nvidia
A100 GPU, reporting average results. The evolutionary search runs for 2 million generations on
a single CPU (6 hours for the setup with 24 layers times 6 modules per layer). As the strategy
is structure-driven and task-agnostic, it only requires single searched per architecture. For model
selection discussed in Section 4.4, we use 50 samples per class as the evaluation set for selecting
candidate models, and we further ablate the quantity to 20 samples per class in Section 5.3.

5.2 Main Results

Mitigation of Textual Backdoor Attacks. We evaluate our defense method using RoBERTa-large
on three datasets: SST-2, MNLI, and AG News. Partial results for SST-2 are shown in Table 1,
with full results in Appendix H.1. We consider two types of two-model combinations: (1) six
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Table 1: Performance comparison across backdoor attacks on SST-2 using RoBERTa-large. Best
results are in blue . * indicates results averaged over four variants; same for subsequent tables.

Attack Success Rate (ASR) | Attack Success Rate (ASR) |

Defense | CACC ‘ H Defense | CACC ‘

\ | BadNet Insert LWS Hidden | AVG. || \ | BadNet Insert LWS Hidden | AVG.

Benign 95.9 4.1 22 12.8 16.5 8.9 Z-Def 95.6* 4.6 1.8 97.3 35.7 34.9
Victim 95.9* 100.0 100.0 98.0 96.5 98.6 ONION | 92.8* 56.8 999  85.7 92.9 83.8

Combined: BadNet + InsertSent | Combined: BadNet + HiddenKiller

WAG 96.3 56.3 74 - - 31.9 WAG 96.1 63.9 - - 29.0 46.4
TIES 95.9 88.7 17.0 - - 529 TIES 96.0 90.4 - - 36.9 63.6

DARE 96.5 57.8 36.3 - - 47.1 DARE 96.7 36.5 - - 47.6 419
Ours 96.2 36.9 7.1 - - 22.0 Ours 96.1 | 405 - - 27.7 34.1

Combined: BadNet + LWS | Combined: Benign + BadNet

WAG 96.2 74.0 - 50.3 - 62.2 WAG 96.1 39.3 - - - 39.3
TIES 95.9 88.1 - 66.1 - 77.1 TIES 95.7 69.2 - - - 69.2

DARE 96.2 60.4 - 62.5 - 61.4 DARE 96.4 432 - - - 432
Ours 96.0 41.7 - 39.0 - 40.4 Ours 96.1 12.2 - - - 12.2

Table 2: Performance comparison across backdoor attacks on the CIFAR-10 dataset using ViT.

Defense | CACC | BadNet WaNet BATT PBA | AVG. || Defense | CACC | BadNet WaNet BATT PBA | AVG.

Benign 98.8 10.1 10.2 7.7 10.1 9.5 CutMix 97.7* 87.1 70.6 99.9 649 | 80.6
Victim | 98.5* 96.3 84.7 99.9 89.4 | 92.6 || ShrinkPad | 97.3* 14.4 51.3 99.9 883 | 63.5
Combined: BadNet + WaNet | Combined: BadNet + BATT
WAG 98.7 13.7 10.6 - -] 122 WAG 98.9 10.1 - 42.9 - 26.5
TIES 98.6 11.9 10.7 - - 11.3 TIES 98.9 10.1 - 47.9 - 29.0
DARE 98.8 833 10.2 - - 46.7 DARE 99.0 69.2 - 26.8 - 48.0
Ours 98.7 12.3 10.5 - - 11.4 Ours 98.7 10.2 - 32.6 - 214
Combined: BadNet + PhysicalBA | Combined: Benign + PhysicalBA
WAG 99.0 39.6 - - 39.5 | 39.6 WAG 99.0 - - - 101  10.1
TIES 99.0 389 - - 389 | 389 TIES 98.8 - - - 102 | 102
DARE 99.0 722 - - 722 | 722 DARE 99.9 - - - 10.1 | 10.1
Ours 98.7 18.5 - - 184 185 Ours 98.9 - - - 101 10.1

pairwise merges of four backdoored models, and (2) four cases where a benign model is combined
with backdoored ones to evaluate unintended vulnerability exposure. We employ a unified strategy
obtained via our evolutionary algorithm (see Figure 6) and apply it consistently across all settings.

Across all three datasets and different model pairs, our method consistently achieves strong defense
performance compared to baselines while maintaining high clean accuracy scores. For example,
when combining models with two insertion-based attacks BadNet and InsertSent, our method reduces
the average ASR to 22.0%, compared to 31.9% for the best baseline WAG. When combining BadNet
with LWS (a more stealthy attack), our method achieves an ASR of 40.4%, providing at least a 21.0%
absolute improvement over baselines (typically above 60%). This shows that even when merging
compromised models, our method effectively disrupts spurious correlations and defends against
backdoor attacks.

When merging a benign model with compromised ones, our method achieves a low ASR across
four combinations, with the BadNet-controlled group achieving 12.2%, which is 27.1% better than
the best baseline WAG. This suggests that our method effectively prevents unintended backdoor
effects, unlike other approaches that prioritize downstream utility but inadvertently introduce such
vulnerabilities. Additionally, while the baseline Z-Def demonstrates strong effectiveness against the
insertion-based attacks BadNet and InsertSent (with access to training data), it is less effective at
defending against the LWS and HiddenKiller attacks due to their subtle trigger pattern design.

Mitigation of Vision Backdoor Attacks. We assess our method on the CIFAR-10 and TinyIma-
geNet datasets using a 12-layer ViT [55] model. Partial results for CIFAR-10 are shown in Table 2,
with full results presented in Appendix H.2. The evolutionary search yields the module-switching
strategy in Figure 12, applied across all vision experiments.

Our method consistently defends against all attack combinations while preserving utility. For example,
in the BadNet + PhysicalBA case, it lowers ASR to 18.5%, outperforming all baselines by at least
20.4%. These results demonstrate the robustness of our strategy in disrupting spurious correlations
and its effectiveness across domains with different input characteristics.

Three-Model Fusion Defense. We further evaluate our method fusing three models tested in the
text domain, applying the strategy shown in Figure 11. The results are presented in Table 3.
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Table 3: Results of combining three backdoored models on SST-2. Best results are highlighted.

Defense | CACC | BadNet Insert LWS Hidden | AVG. || Defense | CACC | BadNet Insert LWS Hidden | AVG.

BadNet + InsertSent + LWS I BadNet + InsertSent + HiddenKiller
WAG 96.3 9.5 34 21.6 - 11.5 WAG 96.7 5.9 2.7 - 19.1 9.2
Ours 96.0 9.2 3.8 259 - ‘ 13.0 Ours 96.2 5.9 1.6 - 18.7 8.7
BadNet + LWS + HiddenKiller I InsertSent + LWS + HiddenKiller
WAG 96.0 10.8 - 30.9 20.3 ‘ 20.7 WAG 96.0 2.7 25.5 19.6 15.9
Ours 96.2 7.9 - 25.7 20.7 18.1 Ours 96.2 2.1 24.1 19.4 15.2

Among the four possible combinations from our victim model pool, our method identified the optimal
configuration in three cases. Even in the remaining case (BadNet, InsertSent, and LWS), the defense
remained strong, achieving a low average ASR of 13.0%. For the optimal combinations, our method
consistently outperformed a strong baseline with ASRs already below 20%, demonstrating improved
defense effectiveness. These results highlight our approach’s ability to disrupt multiple spurious
correlations and maintain robustness in multi-model fusion.

Comparison of Different Strategies. We compare two evolutionary search strategies—with and
without early stopping—shown in Figures 6 and 7, and report their fitness scores in Table 12 of Ap-
pendix H.3. The early stopping terminates the search when no improvement in fitness score is
observed over 100,000 iterations. We observe a positive correlation between the fitness score and
defense performance: the adopted strategy without early stopping achieves a higher score and reduces
the ASR by 27.2%. Based on score breakdowns and visualizations, we attribute the improvement to
fewer residual rule violations, which more effectively disrupt subtle spurious correlations.

Candidate Selection Results. Our method generates multiple asymmetric module allocation
candidates, with selection guided by the process in Section 4.4. While the selected candidate
consistently performs well, we also analyze the unselected ones (see Table 13 in Appendix H.4).
In most cases, our method correctly identifies the top-performing candidate, outperforming other
options by a significant margin. Even when an unselected candidate achieves a lower ASR in specific
cases, our chosen candidate remains competitive with both the best alternative and the WAG baseline.

5.3 Ablation Studies

Importance of Heuristic Rules. We ablate each of the first three rules from Section 4.2 to evaluate
their individual contributions. As shown in Table 14 (Appendix H.5), removing any rule typically
degrades performance, highlighting the complementary effect of the full rule set. Visualizations
in Figures 8 to 10 show that each ablation yields distinct strategy patterns.

Generalization across Architectures. We apply our method to RoBERTa-large, BERT-large,
and DeBERTa-v3-large under three settings. As shown in Table 15 (Appendix H.6), our approach
consistently outperforms WAG across all tests. Importantly, we reuse the same searched strategy
from Figure 6, demonstrating strong cross-model generalization and supporting practical scalability.

Minimum Clean Data Requirement. We examine the impact of reducing clean supervision from
50 to 20 samples per class on SST-2 across three architectures. Results in Table 15 (Appendix H.7)
show our method still selects low-ASR candidates, suggesting effectiveness with limited clean data.

Performance under Varying Poisoning Rates. We test robustness under 20%, 10%, and 1%
poisoning rates on SST-2 using RoBERTa-large. As shown in Table 16 (Appendix H.8), our method
consistently achieves lower ASR than WAG across different attacks and poisoning levels.

6 Conclusion

In this paper, we propose Module-Switching Defense (MSD), a post-training backdoor defense
that disrupts shortcuts of spurious correlations by strategically switching weight modules between
(compromised) models. MSD does not rely on trusted reference models or training data and remains
effective with a couple of models. Using heuristic rules and evolutionary search, we establish a
transferable module confusion strategy that mitigates various backdoor attacks while preserving their
task utility. Empirical results on text and vision tasks confirm its outstanding defense performance,
and strong generalization capability, highlighting its practicality in real-world applications.
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A Limitations

While our study demonstrates the effectiveness of Module-Switching Defense (MSD) across a range
of classification tasks in NLP and CV, we identify two main limitations. First, our focus is restricted
to classification-based settings. Backdoor attacks in generative models operate through notably
different mechanisms, and extending MSD to such scenarios remains an important direction for
future research. Second, our method is designed and evaluated primarily within Transformer-based
architectures, which dominate current text and vision benchmarks. The applicability of MSD to other
model families, such as convolutional neural networks (CNNs) or emerging architectures, is left for
future exploration.

B Broader Impacts

This paper presents an efficient post-training defense against backdoor attacks on deep neural
networks. By strategically combining model weight modules from either clean or compromised
models, our approach disrupts backdoor propagation while preserving model utility. We demonstrated
the usage of MSD to strengthen the security of machine learning models in both natural language
processing and computer vision. All models and datasets used in this study are sourced from
established open-source platforms. The discovered MSD templates will be released to facilitate further
research on defense study. While we do not anticipate any direct negative societal consequences, we
hope this work encourages further research into more robust defense mechanisms.

C Empirical validation of the second-order interaction magnitude

We empirically validate the condition adopted in Section 3, where the second-order interaction term
e = AW,AW, is omitted due to its negligible magnitude relative to the first-order terms. This
validation proceeds from three perspectives.

First, Figure 4 compares the Frobenius norms of the semantic term S = W, W, the first-order
adaptation term B = W)y AW, + AW, W71, and the second-order residual e = AW, AW across
five derived networks. The left subfigure confirms that ||e| is consistently two orders of magnitude
smaller than ||.S|| and well below 4% of || B||. The right subfigure further reveals that the element-wise
values of e concentrate tightly around zero, contrasting with the heavier tails of B and S.

Term Norms Across Networks 20.0 Element-wise Distributions (M;)
= Y[ e 1= R = Y ] — S=WaW:
m— B = W2AW1 + AW2W1

2
10 17.51 — = AWAW1
15.0
12.5
101 4
10.0
7.51
100 5.0

Frobenius norm (log scale)
Density

€/B = €/B = €/B = €/B = €/B =
2.90% 2.68% 3.46% 3.20% 3.00% 2.5
(e B B e W I " | |
M M; Muag Mj; M; -3 -2 -1 0 1 2 3

Figure 4: Frobenius norm and element-wise distribution of the semantic, first-order, and second-order
terms across five network configurations. While the first-order term dominates the residual behavior,
the second-order interaction ¢ = AW, AW, remains negligible in both scale and distribution.

Second, Table 4 reports ||e|| /|| BY| ratios across five network variants under varying backdoor strengths,
where perturbations are sampled from zero-mean Gaussian noise with increasing variance. The
inclusion of error bars (mean £ standard deviation) reflects variation across multiple runs. In
typical scenarios where the backdoor signal is weak or comparable to the main semantic component,
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the second-order interaction consistently remains below 4% of the first-order term. Even under
exaggerated settings where the backdoor signal is scaled to 1.5x or 2x the semantic strength,
|lell/||-B|| remains within a stable range of 5%—7%, reaffirming the negligible and bounded nature of
second-order interactions across regimes.

Table 4: Relative magnitude of second-order interactions, reported as ||¢|| /|| Bl|, across networks and
backdoor strengths. All models are evaluated with § ~ N(0, 1) and perturbations B ~ N(0, o).

|le]l/||BY]| for Different Shallow Models

Semantic Dist Backdoor Dist
Mz’ Mj Mwag Mij Mji
B ~ N(0,0.1%) 2.8240.19% 2.7040.20% 3.424+0.23% 2.9540.15% 3.14+£0.21%
B ~ N(0,0.5%) 1.984+0.21% 1.90+0.28% 1.7840.18% 1.75+0.12% 1.76+0.18%
S ~N(0,1.02) B~ N(0,1.0%) 3.24+0.22% 3.1040.32% 2.3340.17% 2.33+£0.12% 2.3040.17%
B ~ N(0,1.5%) 4.7740.25% 4.4840.33% 3.1840.14% 3.0940.15% 2.97+0.12%
B ~ N(0,2.0%) 6.314+0.27% 6.2840.35% 4.144£0.29% 4.06+0.14% 3.92+0.18%

Additionally, we extend this analysis to deep transformer-based [48] models by computing ||e||/|| B]|
for the attention weight product, where W7 and W5 denote the key (K) and query (QQ) projection
matrices, respectively, and QK | := W,W,. The weight changes AW, AW, are computed
relative to the original pretrained RoBERTa-large [32] weights. All models are trained on SST-2 [43],
including both benign and backdoored variants such as BadNet [22], InsertSent [7], learnable word
substitution (LWS) [40], and Hidden-Killer (Hidden) [38].

As shown in Table 5, across all pairwise combinations of these models, the relative magnitude of
second-order interactions consistently remains below 4%. Each reported value reflects the mean
and standard deviation computed across all 24 layers of RoBERTa-large. This pattern holds across
both original and recombined variants (MY, MU MY, confirming the stability of second-order
contributions in practical transformer settings.

Table 5: Relative magnitude of second-order interactions, reported as ||¢||/||B]||, computed from the
key (K) and query (Q)) projection matrices in RoBERTa-large models trained on SST-2.

Combination llell/ | B| for Attention Weight Product (QK ) in RoBERTa-large Models
(M + MI) M MI Mwed M M
BadNet + InsertSent 3.53+0.77% 3.24+0.61% 2.43+0.39% 2.68+£0.51% 2.61+0.50%
BadNet + LWS 3.53+0.77% 3.30+0.65% 2.46+£0.4% 2.71+£0.46%  2.684+0.49%
BadNet + Hidden — 3.53+0.77% 3.30+0.61% 2.49+0.43% 2.77+£0.45%  2.72+0.45%
BadNet + Benign ~ 3.53+£0.77% 3.27+0.58% 2.52+0.42% 2.78+0.47%  2.73£0.48%

Accordingly, we omit the second-order term € in our definitions and proofs throughout the paper
without loss of generality.
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D Proofs of Theorem 1 and Proposition 1

Theorem 1 (Module Switching Exceeds WAG in Backdoor Divergence). Under identity activation,
the total backdoor divergence of the Weight-Averaged (WAG) model is upper bounded by the average
divergence of the switched models:

DYasi| 4 (|pYesd|| < L (||| 4 DI
2

|+ D7 + D7) . 2)

Proposition 1 (The Existence of a More Divergent Switched Model). Given Theorem 1, there is at
least one switched model with greater backdoor divergence than Weight-Averaged (WAG) model:

D8 4 D5 || < max{ D + |DUI], DI+ D7} ©

Proof. From Definition 2 and 4, we have the following expressions for the backdoor divergences:

|Dwas|| = % H (WQ(AWf —AWY) + (AW — AWg)Wl) z

)

. 1 ; ; ; j
|| = 2 H (WQ(AWIZ — AWY) + (AW; — Ang)Wl) £

)

(&)

9

ID9) = [[(aws — AW Wi

e S AN AN e

|7 = |Wa(aw - AWz

|7 = (AW - awE) Wi

Linear relationships. By regrouping terms in the above definitions, we obtain the following vector
identities:

rDWag,’L — 5(Dlj,l + D]Z,’L)’ rDWag,] — i(DZ‘]’] _|_1Djl,])' (6)

Bounding the average switched model backdoor divergence. Substituting equation 6 into the
norms and applying the triangle inequality [47], we have:

|Dves | — ”%(,Dij,i D[ < % (1D + || D7), )
D] = |4 + D) < L (a4 Doy ®

Summing both inequalities gives:
D" 4 D83 < 2 (ID5] + D54 + D59 + [ D7), ©)

which proves Theorem 1.

Bounding the maximum switched model backdoor divergence. Let:

Cy = [[D9|| + D],  Co:= D"+ | D/,  G:=max{Cy,C2}. (10)

Since C7 + C5 < 2@, it follows that:
D8] 4+ [ D53 < 2(Cy +Ca) < max{C, Cal, (i
which proves Proposition 1. [

E Module Switching with Additional Activation Functions

We extend the experiments from Section 3 to two additional activation functions: tanh and sigmoid [9],
in addition to the linear and ReLU results discussed in the main text. For each activation, we
simulate 1000 pairs of fine-tuned models M* and M/ with a shared pretrained semantic component
S ~ N(0,1?) and individual backdoor shifts B* ~ N(0,0.1%). We then construct the weight-
averaged model M™?& and the module-switched models M and M7?, as defined in Definitions 1
and 3.

Figure 5 visualizes the semantic and backdoor alignment of each model type across the four activation
functions. Consistently across activations, we observe that:
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* Fine-tuned models remain closely aligned with their respective backdoor direction B*x;

* WAG models deviate more from the backdoor pattern;

* Switched models exhibit the larger distance to backdoor patterns, indicating stronger mitiga-
tion;

* All model types maintain proximity to the semantic output Sz, confirming that semantic
information is preserved.
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Figure 5: Euclidean distances between normalized output vectors of pretrained, fine-tuned, WAG, and
switched networks, relative to semantic output Sx and backdoor output B*«, under linear, ReLU,
tanh, and sigmoid activations.

These results generalize the findings in Figure 2 to a broader range of nonlinear activations, reinforcing

the conclusion that module switching more effectively disrupts backdoor behavior while retaining
semantic utility.
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F Fitness Score Calculation for Evolutionary Search

Building upon the heuristic rules established in Section 4.2 for disrupting backdoor connections in
compromised models, we develop a comprehensive fitness function. This function incorporates five
key components that collectively evaluate the quality of a module composition strategy.

F.1 Heuristic Rules

Our fitness function implements the following rules through penalties and rewards:
* Intra-layer adjacency penalty: Penalizes adjacent modules from the same source model
within a specific layer i (e.g., Q; and K;).

* Consecutive-layer adjacency penalty: Discourages direct connections between modules
from the same source model across consecutive layers ¢ and ¢ + 1 (e.g., P; to Q;+1).

* Residual-path adjacency penalty: Applies a distance-weighted penalty to modules from
the same source model connected via residual connections between layers ¢ and j (e.g., O;
to (), where j > 1), with diminishing impact as j — % increases.

* Balance penalty: Promotes uniform distribution of modules {Q, K,V, O, I, P} across
source models to prevent any single model from dominating the architecture.

* Diversity reward: Encourages varied module combinations across layers to enhance
architectural diversity.

F.2 Mathematical Formulation

As introduced in Section 4.3, the total fitness score for a given module composition strategy s is:
F(S) = _)\lAintra(3> - /\2Acons(5) - )\3Ares(5) - )\4Bbal(s) + )\5Rdiv(5)7 (12)

where all \; are weight factors (default to 1.0) that control the relative importance of each component
in the overall fitness score.

Each component is calculated as follows:

1. Intra-layer Adjacency (Aintra(s))

Is]

Ajnra(s) = — Y INTRAVIOLATION(s[I]) (13)
=1

Here, INTRAVIOLATION quantifies the number of adjacent module pairs from the same source model
within layer s[l].
2. Consecutive-layer Adjacency (Acons(s))

|s]—1
Acons(s) = — Z CONSECVIOLATION(s[l], s[l + 1]) (14)
=1

The function CONSECVIOLATION counts module pairs from the same source model that are directly
connected between consecutive layers.

3. Residual Connections (Ayes(s))

[s|  Is]
Aws(s) ==Y ) RESIDUALVIOLATION(sI], s[k]) x (0.5)" (15)
=1 k=I+1

This term evaluates residual connections between layers s[l] and s[k], with RESIDUALVIOLATION
weighted by (0.5)*~! to reduce the impact of long-range connections.
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4. Module Balance (Bpa(s))

TMmodels

Bbal(s) = — Z Z |counti7m — countideal\ (16)

i=1 meM
where count; ,,, is the count of module type m from model i, M = {Q, K,V, O, I, P} is the set of
module types, and countigeas = |$|/Tmodels represents the ideal count per module type per model.
5. Layer Diversity (Raiy(s))
Rygiv(s) = |unique(s)| (17)

where unique(s) is the set of unique layer compositions in strategy s.
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G Additional Experiment Setup

G.1 Dataset Statistics

We evaluate our method on four text and two vision datasets. The statistics of each dataset and the
settings of backdoor target class are shown in Table 6.

Table 6: The statistics of the evaluated text and vision datasets.

Test

Domain Dataset Classes Train """ Target Class
Clean Poison
SST-2 2 67,349 872 444 Negative (0)
Text MNLI 3 100,000 400 285 Neutral (1)
AGNews 4 120,000 7,600 5,700 Sports (1)
CIFAR-10 10 50,000 10,000 9,000 Automobile (1)

Vision TinyImageNet 200 100,000 10,000 9,950 European Fire Salamander (1)

G.2 Dataset Licenses

We evaluate our method on the following datasets: SST-2 [43], MNLI [54], AG News [66], CIFAR-
10 [21], and TinyImageNet [23].

The MNLI dataset is released under the Open American National Corpus (OANC) license, which
permits free use, as stated in the original paper [54]. The AG News dataset is distributed with a
disclaimer stating it is provided "as is" without warranties and does not impose explicit restrictions on
academic use.! No public licensing information was found for SST-2, CIFAR-10, or TinyImageNet.
We use all datasets solely for academic, non-commercial research purposes, in accordance with
standard practice in the machine learning community.

G.3 Defense Baselines

We evaluate seven defensive approaches across text and vision domains: three model-merging
techniques common to both domains, plus two domain-specific data purification methods for each—
one applied during training and another during inference.

The three model-merging methods are: (1) TIES [59], (2) DARE [63], and (3) WAG [2]. These
methods are chosen because they are applicable to both text and vision domains, do not rely on
assumptions about backdoor priors, and eliminate the need for large-scale proxy clean or compromised
data used for model purification or retraining. Their alignment with our setting makes them suitable
for comparison. For conventional baselines, we use Z-Def. [17] and ONION [37] in the text domain,
which detect outlier trigger words during training and testing, respectively. For the vision domain,
we select CutMix [64] and ShrinkPad [27]. CutMix mitigates backdoor attacks by mixing image
patches, disrupting the spatial integrity of triggers. ShrinkPad defends by shrinking the image and
padding it, altering trigger placement, and reducing its effectiveness. For the vision domain, we use
the BackdoorBox toolkit [28] to apply these defenses. Specifically, for CutMix, we use 30 epochs
to repair the model. While these well-established methods are representative in terms of usage and
performance, their dependence on data access may limit practicality in some scenarios. All baseline
methods use their open-source codebases with default hyperparameters.

G.4 Experiment Resources

We conduct the model training and module switching experiments using three seeds on a single
Nvidia A100 GPU , reporting the average performance. We run the evolutionary search for 2,000,000
generations on a CPU, which takes six hours for a given merging configuration (e.g., two models with
24 layers and six modules per layer). This search only needs to be performed once, as the discovered
strategy can serve as an artifact that applies to all future combinations of the same architecture.

"http://groups.di.unipi.it/~gulli/AG_corpus_of _news_articles.html
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H Additional results

H.1 Overall Defense Performance for Textual Backdoor Attacks

Due to space constraints, we present comprehensive experimental results for three datasets (SST-2,
MNLI, and AG News) in Table 7, Table 8, and Table 9. All experiments follow the controlled settings
described in Section 5.1, utilizing RoBERTa-large as the victim model, with results averaged across
three random seeds.

We observe that our method yields decent performance on the SST-2 dataset: it achieves top
performance in 8 out of 10 attack combinations, with the remaining 2 combinations ranking second
best. In cases where our method ranks first, it significantly outperforms baseline approaches. For
instance, when combining BadNet with LWS attacks, our method achieves an average ASR score
21% lower than the second-best defense method. Moreover, our method consistently achieves the
lowest individual ASR scores across both attacks in most combinations, highlighting its effectiveness
in simultaneously mitigating multiple threats when merging compromised models.

Even in scenarios where our method ranks second, it maintains comparable defense performance to
the top-performing approach. Furthermore, when combining clean models with compromised ones,
our method demonstrates strong resistance against malicious attack injection, as evidenced by the
lowest ASR scores. Notably, our method maintains good utility preservation across all combinations,
showing minimal impact to the model performance.

Table 7: Performance comparison on the SST-2 dataset using the RoBERTa-large model.

Defense | CACC | BadNet Insert LWS Hidden | AVG. || Defense | CACC | BadNet Insert LWS Hidden | AVG.

Benign 95.9 4.1 22 12.8 16.5 8.9 Z-Def | 95.6* 4.6 1.8 973 35.7 349
Victim 95.9* 100.0 100.0  98.0 96.5 98.6 ONION | 92.8* 56.8 99.9 857 929 83.8
Combined: BadNet + InsertSent I Combined: InsertSent + LWS
WAG 96.3 56.3 7.4 - - 319 WAG 96.1 - 151 433 - 29.2
TIES 95.9 88.7 17.0 - - 52.9 TIES 96.1 - 358 649 - 50.3
DARE 96.5 57.8 36.3 - - 47.1 DARE 96.4 - 444 315 - 379
Ours 96.2 36.9 71 - - 22.0 Ours 96.0 - 119 39.7 - 25.8

Combined: BadNet + LWS I Combined: InsertSent + HiddenKiller
WAG 96.2 74.0 - 50.3 - 62.2 WAG 96.3 - 12.5 - 28.5 20.5
TIES 95.9 88.1 - 66.1 - 77.1 TIES 95.9 - 37.5 - 39.0 38.3
DARE 96.2 60.4 - 62.5 - 61.4 DARE 96.6 - 38.7 - 29.1 339
Ours 96.0 41.7 - 39.0 - 40.4 Ours 95.8 - 10.1 - 28.7 19.4
Combined: BadNet + HiddenKiller I Combined: LWS + HiddenKiller
WAG 96.1 63.9 - - 29.0 46.4 WAG 96.4 - - 60.5 41.7 51.1
TIES 96.0 90.4 - - 36.9 63.6 TIES 96.0 - - 77.8 55.8 66.8
DARE 96.7 36.3 - - 47.6 41.9 DARE 96.7 - - 67.7 433 55.5
Ours 96.1 40.5 - - 27.7 34.1 Ours 96.0 - - 58.6 47.2 529
Combined: Benign + BadNet I Combined: Benign + LWS
WAG 96.1 39.3 - - - 39.3 WAG 96.1 - - 433 - 433
TIES 95.7 69.2 - - - 69.2 TIES 95.8 - - 60.7 - 60.7
DARE 96.4 43.2 - - - 43.2 DARE 96.6 - - 72.3 - 72.3
Ours 96.1 12.2 - - - 12.2 Ours 95.9 - - 39.0 - 39.0
Combined: Benign + InsertSent I Combined: Benign + HiddenKiller
WAG 96.1 - 5.5 - - 5.5 WAG 96.0 - - - 24.9 24.9
TIES 96.1 - 9.0 - - 9.0 TIES 96.1 - - - 30.0 30.0
DARE 96.6 - 4.7 - - 4.7 DARE 96.7 - - - 382 382
Ours 96.1 - 4.1 - - 4.1 Ours 96.0 - - - 255 255

For the results of MNLI dataset Table 8, our method demonstrates more balanced and robust defense
performance across different attack combinations. While DARE occasionally achieves lower ASR
on individual attacks (e.g., 11.6% ASR for BadNet in BadNet+InsertSent combination), it shows
significant vulnerability to the other attack type (90.6% ASR for InsertSent), indicating potential risks
when merging with new models. In contrast, our method maintains consistently lower average ASRs
across various combinations (e.g., 23.7% for BadNet+InsertSent, 43.7% for InsertSent+LWS, and
40.2% for InsertSent+Hidden), demonstrating its effectiveness in simultaneously defending against
multiple attack types.

For the results of AG NEWS dataset Table 9, we observe a similar pattern, where our method provides
more balanced defense capabilities. Notably, for the InsertSent+LWS combination, while DARE
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achieves a low ASR of 1.2% on LWS, it remains highly vulnerable to InsertSent attacks (99.6%
ASR). In contrast, our method maintains consistently lower ASRs for both attacks (9.5% and 16.7%),
resulting in a better average performance of 13.1%.

Table 8: Performance comparison on the MNLI dataset using the RoBERTa-large model.

Defense | CACC | BadNet Insert LWS Hidden | AVG. || Defense | CACC | BadNet Insert LWS Hidden | AVG.

Benign 87.6 12.3 126 264 36.9 22.1 Z-Def 89.2* 11.1 1.6 922 50.6 41.4
Victim 89.5* 100.0  100.0  96.0 99.9 99.0 || ONION | 86.3* 64.3 98.6  89.0 98.8 87.7
Combined: BadNet + InsertSent H Combined: InsertSent + LWS
WAG 90.3 39.8 27.6 - - 33.7 WAG 90.6 - 36.1  62.6 - 49.4
TIES 90.3 73.6 56.1 - - 64.9 TIES 90.3 - 60.0 653 - 62.7
DARE 91.3 11.6 90.6 - - S51.1 DARE 91.4 - 88.8  40.2 - 64.5
Ours 90.5 24.8 22.5 - - 23.7 Ours 91.0 - 248 0625 - 43.7
Combined: BadNet + LWS I Combined: InsertSent + Hidden
WAG 89.8 59.3 - 69.3 - 64.3 WAG 91.5 - 36.6 - 46.9 41.8
TIES 90.0 87.3 - 73.1 - 80.2 TIES 90.9 - 65.1 - 55.2 60.2
DARE 90.5 71.7 - 56.4 - 64.1 DARE 91.8 - 90.8 - 40.2 65.5
Ours 90.1 45.1 - 68.9 - 57.0 Ours 91.1 - 24.3 - 56.1 40.2
Combined: BadNet + Hidden I Combined: LWS + Hidden
WAG 89.9 61.6 - - 51.7 56.7 WAG 89.8 - - 70.2 55.1 62.7
TIES 90.0 89.4 - - 64.0 76.7 TIES 90.1 - - 73.8 59.1 66.5
DARE 90.9 334 - - 81.8 57.6 DARE 91.0 - - 41.5 88.7 65.1
Ours 90.2 32.5 - - 59.3 459 Ours 89.9 - - 70.3 573 63.8
Combined: Benign + BadNet H Combined: LWS + Benign
WAG 90.2 47.8 - - - 47.8 WAG 89.0 - - 65.6 - 65.6
TIES 89.8 64.9 - - - 64.9 TIES 89.8 - - 69.3 - 69.3
DARE 91.0 41.8 - - - 41.8 DARE 90.1 - - 48.9 - 48.9
Ours 90.1 433 - - - | 433 Ours 89.3 - - 64.1 - 64.1
Combined: InsertSent + Benign I Combined: Hidden + Benign
WAG 90.4 - 232 - - 232 WAG 90.3 - - - 47.0 47.0
TIES 90.4 - 40.6 - - 40.6 TIES 89.8 - - - 54.3 543
DARE 91.3 - 423 - - 423 DARE 90.9 - - - 63.3 63.3
Ours 90.5 - 18.3 - - 18.3 Ours 89.4 - - - 479 479

H.2 Overall Defense Performance for Vision Backdoor Attacks

We present the full results for the CIFAR-10 and TinyImageNet datasets with the ViT model
in Table 10 and Table 11, respectively.

While most methods achieve relatively low ASRs for many attack types, our approach is particularly
effective against stealthier attacks like PhysicalBA. This is most evident in the BadNet+PhysicalBA
combination, where our method reduces the ASR to 18.5% for both attacks while maintaining a
high clean accuracy of 98.7% in CIFAR-10 dataset. These results highlight our method’s strength in
defending against more sophisticated visual backdoor attacks.

H.3 Fitness Score Comparison of Different Strategy

We investigate the defense performance using two different evolutionary search strategies, with and
without early stopping, as illustrated in Figure 7 and 6, and present their fitness score breakdown
in Table 12. The early stopping criterion terminates the search when no improvement in fitness score
is observed over 100,000 iterations. We observe a positive correlation between the fitness score and
defense performance: the adopted strategy without early stopping achieves a lower fitness score and
reduces the ASR by 27.2%. By examining the score breakdowns and the visualized combinations,
we attribute this improvement to fewer violations of residual connection rules in the adopted strategy,
which helps disrupt subtle spurious correlations more effectively.

H.4 Results of Candidate Selection

As our method asymmetrically allocates modules to models, a set of candidates is generated, for
which we design a selection method illustrated in Section 4.4. While the chosen candidate consis-
tently performs well, we analyze unselected candidates’ performance, as shown in Table 13. Our
selection method correctly identifies the best candidates in most cases, outperforming alternatives by
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Table 9: Performance comparison on the AG NEWS dataset using the RoBERTa-large model.

Defense | CACC | BadNet Insert LWS Hidden | AVG. || Defense | CACC | BadNet Insert LWS Hidden | AVG.

Benign 95.4 1.9 0.5 0.5 1.1 1.0 Z-Def 95.4* 1.6 0.4 97.9 100.0 50.0
Victim 95.0* 99.9 99.6  99.6 100.0 99.8 ONION | 92.3* 59.4 97.8 84.8 99.6 85.4
Combined: BadNet + InsertSent I Combined: InsertSent + LWS
WAG 95.4 75.2 60.2 - - 67.7 WAG 95.2 - 39.5 17.8 - 28.7
TIES 95.3 92.4 95.6 - - 94.0 TIES 95.1 - 90.5 557 - 73.1
DARE 95.6 33.7 66.6 - - 50.1 DARE 95.4 - 99.6 1.2 - 50.4
Ours 95.3 72.3 42.5 - - ‘ 574 Ours 95.1 - 9.5 16.7 - 13.1
Combined: BadNet + LWS I Combined: InsertSent + Hidden
WAG 95.2 76.1 - 28.1 - 52.1 WAG 95.4 - 61.4 - 43.6 52.5
TIES 95.1 95.6 - 64.4 - 80.0 TIES 95.3 - 93.4 - 75.3 84.4
DARE 95.4 99.3 - 35 - 51.4 DARE 95.5 - 84.0 - 15.8 49.9
Ours 95.2 75.8 - 26.0 - 50.9 Ours 95.3 - 41.7 - 47.5 44.6
Combined: BadNet + Hidden I Combined: LWS + Hidden
WAG 95.2 73.2 - - 37.2 55.2 WAG 95.1 - - 31.7 62.6 47.2
TIES 95.3 91.9 - - 71.9 81.9 TIES 95.1 - - 67.5 92.2 79.9
DARE 95.4 66.7 - - 40.4 53.6 DARE 95.3 - - 2.5 99.9 512
Ours 95.2 56.5 - - 38.1 47.3 Ours 95.2 - - 33.5 60.5 47.0
Combined: Benign + BadNet I Combined: Benign + LWS
WAG 95.4 65.4 - - - 65.4 WAG 95.2 - - 14.0 - 14.0
TIES 95.4 87.4 - - - 87.4 TIES 95.2 - - 47.1 - 47.1
DARE 95.6 33.6 - - - 33.6 DARE 95.6 - - 2.6 - 2.6
Ours 95.4 46.4 - - - | 464 Ours 95.2 - - 15.7 - 15.7
Combined: Benign + InsertSent H Combined: Benign + Hidden
WAG 95.4 - 56.6 - - 56.6 WAG 95.3 - - - 36.4 36.4
TIES 95.3 - 93.2 - - 93.2 TIES 95.3 - - - 68.8 68.8
DARE 95.6 - 3.1 - - 3.1 DARE 95.5 - - - 74 74
Ours 95.3 - 16.6 - - ‘ 16.6 Ours 95.3 - - - 48.0 48.0

a significant margin. Although some unselected candidates achieve a lower ASR in certain cases, our
selected candidate maintains comparable performance.

H.5 Importance of Heuristic Rules

We introduce five heuristic rules in Section 4.2 to guide the evolutionary search for module switching
strategies. To assess the contribution of each rule, we perform ablation experiments by individually
removing the first three rules, which aim to disconnect adjacent modules at different structural levels,
and measure the resulting defense performance under three settings. As shown in Table 14, removing
any of these rules generally leads to performance degradation, supporting the complementary nature of
the full rule set. We further visualize the searched strategies resulting from each ablation in Figures 8
to 10.

H.6 Generalization across Model Architectures

We evaluate our method across three model architectures—RoBERTa-large, BERT-large, and DeBERTa-
v3-large—under three backdoor settings. As shown in Table 15, our defense consistently achieves lower
ASR compared to the baseline WAG across all models. Notably, we apply the same unified searched
strategy (presented in Figure 6) to all architectures, demonstrating the strong generalization and
transferability of our method. This supports its scalability and practicality in real-world applications.

H.7 Minimum Clean Data Requirement

By default, we use 50 clean data points per class to guide the candidate selection process (as described
in Section 4.4). To further investigate the minimum clean data required for effective defense,
we reduce this to 20 samples per class across all three model architectures on SST-2. As shown
in Table 15, our approach continues to select candidates with low ASR even under this constrained
setting. These results indicate that the method remains effective in low-resource scenarios with
limited clean supervision.
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Table 10: Performance comparison on the CIFAR-10 dataset using the ViT model.

847

848

Defense | CACC | BadNet WaNet BATT PBA | AVG. || Defense | CACC | BadNet WaNet BATT PBA | AVG.
Benign 98.8 10.1 10.2 7.7 10.1 9.5 CutMix 97.7* 87.1 70.6 99.9 64.9 | 80.6
Victim 98.5* 96.3 84.7 99.9 89.4 | 92.6 ShrinkPad | 97.3* 14.4 51.3 99.9 88.3 | 63.5
Combined: BadNet + WaNet | Combined: WaNet + BATT
WAG 98.7 13.8 10.6 - - 12.2 WAG 98.7 - 10.2 22.3 - 16.3
TIES 98.6 11.9 10.6 - - 11.3 TIES 98.9 - 10.2 23.9 - 17.0
DARE 98.8 83.3 10.2 - - 46.7 DARE 98.9 - 10.2 45.8 - 28.0
Ours 98.7 12.3 10.5 - - 114 Ours 98.7 - 10.3 19.1 - 14.7
Combined: BadNet + BATT | Combined: WaNet + PhysicalBA
WAG 98.9 10.1 - 42.7 - 26.4 WAG 98.8 - 10.2 - 102 10.2
TIES 98.9 10.1 - 55.8 - 33.0 TIES 98.9 - 10.1 - 10.3 10.2
DARE 99.0 69.2 - 26.8 - 48.0 DARE 98.9 - 10.1 - 21.0 | 15.6
Ours 98.7 10.2 - 32.6 - 214 Ours 98.7 - 10.3 - 10.2 | 10.2
Combined: BadNet + PhysicalBA | Combined: BATT + PhysicalBA
WAG 99.0 39.5 - - 39.5 39.5 WAG 98.9 - - 26.8 10.0 18.4
TIES 98.9 43.1 - - 43.1 | 43.1 TIES 98.7 - - 234 10.0 | 16.7
DARE 99.0 72.2 - - 722 | 722 DARE 98.9 - - 23.0 10.1 16.5
Ours 98.7 18.5 - - 184 | 185 Ours 98.8 - - 9.8 10.0 9.9
Combined: Benign + BadNet | Combined: Benign + WaNet
WAG 98.8 19.4 - - - 19.4 WAG 98.9 - 10.2 - - 10.2
TIES 98.8 10.2 - - - 10.2 TIES 98.6 - 10.3 - - ‘ 10.3
DARE 98.8 10.3 - - - 10.3 DARE 98.8 - 10.2 - - 10.2
Ours 98.7 10.3 - - - 10.3 Ours 98.7 - 10.3 - - \ 10.3
Combined: Benign + BATT | Combined: Benign + PhysicalBA
WAG 98.8 - - 194 - 194 WAG 99.0 - - - 10.1  10.1
TIES 98.8 - - 234 - 23.4 TIES 98.8 - - - 10.2 10.2
DARE 99.0 - - 28.2 - 28.2 DARE 99.9 - - - 10.1 10.1
Ours 98.8 - - 15.8 - 15.8 Ours 98.9 - - - 101 10.1

Table 11: Performance comparison on the TinyImageNet dataset using the ViT model.

Defense \ CACC \ BadNet WaNet BATT PBA \ AVG.
Benign 89.1 0.51 0.01 0.04 003 | 0.15
Victim 85.8* 97.8 98.9 100.0 90.0 | 96.6
Combined: BadNet + WaNet
WAG 88.2 11.7 5.5 - - 8.6
Ours 84.2 0.6 0.2 - - 0.4
Combined: BadNet + BATT
WAG 87.3 0.11 - 0.15 - 0.13
Ours 86.8 0.03 - 0.07 - 0.05
Combined: BadNet + PhysicalBA
WAG 88.5 58.5 - - 359 | 472
Ours 84.8 48.2 - - 29.1 | 38.7

H.8 Performance under Varying Poisoning Rates

We further evaluate the robustness of our method under varying poisoning rates (20%, 10%, and 1%)
on SST-2 dataset using the RoBERTa-large model. As shown in Table 16, our method consistently
achieves lower ASR than WAG across settings that combine models poisoned with different attack
methods and poisoning ratios.
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Table 12: Comparison of strategy fitness scores and performance in combining Benign with BadNet
model.

Early Stopping Strategy I Adopted Strategy
Fitness Score Components
Intra Layer Score -42.00 || Intra Layer Score -48.00
Inter Layer Score -21.00 || Inter Layer Score -15.00
Residual Connection Score | -48.24 || Residual Connection Score | -24.02
Balance Score 0.00 || Balance Score 0.00
Diversity Score 17.00 || Diversity Score 12.00
Total Score -94.24 || Total Score | -75.01
Performance Metrics
CACC (1) 96.70 || CACC (1) 96.10
ASR () 39.40 || ASR () 12.20

Table 13: Performance comparison of selected and unselected candidates on SST-2.

| Selection candidate || Unselected candidate || Overall || WAG

Setting CACC | AVG.ASR || CACC | AVG.ASR || Mean ASR || Mean ASR
‘ ) () H ) ‘ () H ¢ H ¢
BadNet+InsertSent | 962 | 22.0 || 965 | 31.2 I 26.6 I 31.9
BadNet+\LWS | 960 | 404 || 959 | 724 || 564 || 622
BadNet+Hidden | 961 | 341 | 960 | 485 | 413 || 465
InsertSent+LWS | 960 | 258 | 960 | 303 | 281 | 292
InsertSent+Hidden | 958 | 194 | 961 | 192 | 193 | 205
LWS+Hidden | 960 | 529 | 92 | 496 | 513 | 5LI
Average | 960 | 324 | 9.1 | 419 || 372 | 402

Table 14: Impact of heuristic rule ablations under different combinations of backdoor settings on
SST-2 using the RoBERTa-large model. A denotes the change in average ASR relative to the full
rule set.

ASR
Setting ‘ Ablation ‘ CACC ‘ W

| | D | Akl Atk2 | AVG. A

Allrules (full) | 962 | 369 7.1 | 220 -
worle ] | 960 | 332 187 | 259 439
BadNet +InsertSent | ()0 ieo0 | 963 | 60.6 141 | 373  +153
worale3 | 963 | 431 62 | 246  +2.6

All rules (full) | 960 | 417 39.0 | 404 -
worule | | 959 | 462 512 | 487 483
BadNet + LWS w/o rule 2 960 | 68.1 628 | 654 +25.0
worule3 | 960 | 691 463 | 577 +173

All rules (full) | 961 | 405 277 | 341 -
. w/o rule 1 95.9 14.0 32.8 23.4 -10.7
BadNet + Hidden | (0,0 100 | 961 | 594 204 | 444 +103
worule3 | 960 | 566 291 | 429 488
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Table 15: Cross-model evaluation under varying clean data budgets on SST-2. N = 50 and N = 20
indicate the number of clean samples per class used for validation.

‘ RoBERTa-large ‘ BERT-large ‘ DeBERTa-v3-large

Setting ‘ Defense | cacc ASR (]) | cacc ASR (}) | cacc ASR (})
| | M Akl Atk2 AVG. | (D Akl Atk2 AVG. | (D Atkl Atk2 AVG.
BadNet + WAG 96.3 56.3 7.4 31.9 93.3 40.2  60.1 50.2 96.1 474 52 26.3
InsertSent Ours (N = 50) 96.2 36.9 7.1 22.0 93.5 39.7 381 38.9 96.3 40.4 52 22.8
s Ours (N =20) | 96.2 47.7 6.6 27.1 93.5 39.7 381 389 96.3 328 51 19.0
BadNet + WAG 96.2 740 503 62.2 93.1 769 63.0 699 96.2 634 795 715
LWS Ours (N =50) | 96.0 41.7 390 404 93.0 739 613 67.6 96.0 48.7 730 608
Ours (N =20) | 96.0 41.7 390 404 93.0 76.5 63.6  70.0 96.0 48.7 730 608
BadNet + WAG 96.1 639 290 465 93.3 569 438 503 96.2 483  39.6 439
Hidden Ours (N =50) | 96.1 40.5 277 341 93.4 503 379 441 96.1 227 410 318
Ours (N =20) | 96.2 349 256 303 93.4 503 379 441 96.3 227 410 318

Table 16: Performance comparison under varying poison rates on SST-2 using the RoBERTa-large
model.

\ Poison Rate: 20% Poison Rate: 10% Poison Rate: 1%

\ \ \
Setting ‘ Defense | cacc ASR () | cAcc ASR (}) | cacc ASR (})
| | M A1 Atk2 | AVG. | (D Akl Atk2 | AVG. | (D Atkl Atk2 | AVG.
BadNet WAG 963 563 74 | 319 | 961 666 89 | 379 | 964 583 272 428
+InsertSent | Ours (MSD) | 962 | 369 7.1 | 220 | 960 551 93 | 323 | 963 | 574 444 | 509
BadNet WAG 962 740 503 | 622 | 951 837 463 | 650 | 963 627 289 | 458
+LWS | Ours(MSD) | 960 | 417 39.0 | 404 | 949  70.6 401 | 553 | 964 599 276 437
BadNet WAG 96.1 639 290 | 465 | 959  67.9 269 | 474 | 96.1 649 305 | 47.7
+Hidden | Ours(MSD) | 96.1 405 27.7 | 341 | 955 519 258 | 389 | 961 592 300 44.6
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I Examples of Searched Strategy

We present several examples of module switching strategies discovered by our evolutionary algorithm,
listed as follows:

* QOur adopted merging strategy for two-model combinations using RoBERTa-large (24 layers),
presented in Figure 6, achieves a fitness score of -75.0.

* An early-stage merging strategy for RoBERTa-large (24 layers), shown in Figure 7, yields a
fitness score of -94.2.

* The adopted strategy for merging three RoBERTa-large models (24 layers), illustrated in
Figure 11, obtains a fitness score of -26.2.

* An alternative merging strategy designed for ViT model (12 layers), depicted in Figure 12,
achieves a fitness score of -39.5.

v v v

Figure 6: Adopted merging strategy (with a fitness Figure 7: Early stopping strategy (with a fitness
score of -75.0). score of -94.2).

Figure 8: Strategy of ablating Figure 9: Strategy of ablating Figure 10: Strategy of ablating
rule 1. rule 2. rule 3.
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Figure 11: Adopted merging strategy (fitness score -26.2).

39.5).

Figure 12: Adopted merging strategy (fitness score
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We ensure that the main claims in the abstract and introduction accurately
reflect the contributions and scope of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the main limitations of our work in a separate "Limitations" section
in Appendix A.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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915 Answer: [Yes]

916 Justification: We provide complete proofs for Theorem | and Proposition 1 in Appendix D,
917 along with justification for the underlying conditions in Appendix C.

918 Guidelines:

919 * The answer NA means that the paper does not include theoretical results.

920  All the theorems, formulas, and proofs in the paper should be numbered and cross-
921 referenced.

922 * All assumptions should be clearly stated or referenced in the statement of any theorems.
923 * The proofs can either appear in the main paper or the supplemental material, but if
924 they appear in the supplemental material, the authors are encouraged to provide a short
925 proof sketch to provide intuition.

926 ¢ Inversely, any informal proof provided in the core of the paper should be complemented
927 by formal proofs provided in appendix or supplemental material.

928 * Theorems and Lemmas that the proof relies upon should be properly referenced.

929 4. Experimental result reproducibility

930 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
931 perimental results of the paper to the extent that it affects the main claims and/or conclusions
932 of the paper (regardless of whether the code and data are provided or not)?

933 Answer: [Yes]

934 Justification: We provide detailed descriptions of our method in Section 4, including two key
935 algorithms in Algorithm | and Algorithm 2. Experimental settings are thoroughly described
936 in Section 5.1, and the searched outputs for the algorithms are presented in Appendix I,
937 allowing others to reproduce our main results.

938 Guidelines:

939 * The answer NA means that the paper does not include experiments.

940 * If the paper includes experiments, a No answer to this question will not be perceived
941 well by the reviewers: Making the paper reproducible is important, regardless of
942 whether the code and data are provided or not.

943 * If the contribution is a dataset and/or model, the authors should describe the steps taken
944 to make their results reproducible or verifiable.

945 * Depending on the contribution, reproducibility can be accomplished in various ways.
946 For example, if the contribution is a novel architecture, describing the architecture fully
947 might suffice, or if the contribution is a specific model and empirical evaluation, it may
948 be necessary to either make it possible for others to replicate the model with the same
949 dataset, or provide access to the model. In general. releasing code and data is often
950 one good way to accomplish this, but reproducibility can also be provided via detailed
951 instructions for how to replicate the results, access to a hosted model (e.g., in the case
952 of a large language model), releasing of a model checkpoint, or other means that are
953 appropriate to the research performed.

954 * While NeurIPS does not require releasing code, the conference does require all submis-
955 sions to provide some reasonable avenue for reproducibility, which may depend on the
956 nature of the contribution. For example

957 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
958 to reproduce that algorithm.

959 (b) If the contribution is primarily a new model architecture, the paper should describe
960 the architecture clearly and fully.

961 (c) If the contribution is a new model (e.g., a large language model), then there should
962 either be a way to access this model for reproducing the results or a way to reproduce
963 the model (e.g., with an open-source dataset or instructions for how to construct
964 the dataset).

965 (d) We recognize that reproducibility may be tricky in some cases, in which case
966 authors are welcome to describe the particular way they provide for reproducibility.
967 In the case of closed-source models, it may be that access to the model is limited in
968 some way (e.g., to registered users), but it should be possible for other researchers
969 to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The code and data are not released during the peer review phase to preserve
anonymity. We will make them publicly available with detailed instructions upon acceptance.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide full details of our experimental setup, including datasets, models,
baselines, implementation details, in Section 5.1.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report mean and standard deviation in Table 4 and Table 5 (Appendix C)
to support our theoretical justification. For experiments in Section 5 and Appendix H, each
test is run three times, but full error bars are not included due to computational constraints.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the compute resources used in our experiments, including hardware
type and runtime, in Section 5.1 and Appendix G.4.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research adheres to the NeurIPS Code of Ethics. It does not involve human
subjects, private data, or high-risk model releases. We have considered societal impact and
licensing in accordance with the guidelines.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide a discussion of the broader impact in Appendix B, where we focus
on defensive research and anticipate no negative impact.
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve releasing pretrained language models, image
generators, or scraped datasets that pose a high risk of misuse. All models and datasets
used are from established open-source sources. The code we plan to release is intended for
defensive research and does not introduce foreseeable misuse risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use only publicly available datasets, each properly cited in the paper. The
known licensing terms are explicitly stated in Appendix G.2.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We do not introduce new datasets or models. While the code is not released at
submission time, it will be made publicly available with accompanying documentation upon
acceptance.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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1178 Guidelines:

1179 * The answer NA means that the paper does not involve crowdsourcing nor research with
1180 human subjects.

1181 * Depending on the country in which research is conducted, IRB approval (or equivalent)
1182 may be required for any human subjects research. If you obtained IRB approval, you
1183 should clearly state this in the paper.

1184 * We recognize that the procedures for this may vary significantly between institutions
1185 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1186 guidelines for their institution.

1187 * For initial submissions, do not include any information that would break anonymity (if
1188 applicable), such as the institution conducting the review.

1189 16. Declaration of LLM usage

1190 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1191 non-standard component of the core methods in this research? Note that if the LLM is used
1192 only for writing, editing, or formatting purposes and does not impact the core methodology,
1193 scientific rigorousness, or originality of the research, declaration is not required.

1194 Answer: [NA]

1195 Justification: LLMs were only used for editing purposes (e.g., grammar, spelling, and word
1196 choice) and for visualizing results in preparation for submission. They were not involved in
1197 the core methodology or scientific contributions of this work.

1198 Guidelines:

1199 * The answer NA means that the core method development in this research does not
1200 involve LLMs as any important, original, or non-standard components.

1201 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1202 for what should or should not be described.
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