Defending Deep Neural Networks against Backdoor Attacks via Module Switching

Anonymous Author(s)

Affiliation Address email

Abstract

The exponential increase in Deep Neural Networks (DNNs) parameters has significantly raised the cost of independent training, particularly for resource-constrained entities, leading to a growing reliance on open-source models. However, the opacity of these training processes exacerbates security risks, making these models more susceptible to malicious threats, such as backdoor attacks, while also complicating defense strategies. Merging homogeneous models has emerged as a cost-effective post-training defense. Current approaches, such as weight averaging, only partially mitigate the impact of poisoned parameters and are largely ineffective in disrupting the pervasive spurious correlations embedded across model parameters. To address this, we propose a novel module-switching strategy and validate its effectiveness both theoretically and empirically on two-layer networks, showing its remarkable ability to break spurious correlations and achieve higher backdoor divergence than weight averaging. For deep learning models, we further design and develop evolutionary algorithms to optimize fusion strategies, along with selective mechanisms to identify the most effective combination. Experimental results demonstrate that our defense exhibits strong resilience against backdoor attacks in both text and vision tasks, even when merging only a couple of compromised models.

1 Introduction

2

3

4

5

6

8

9

10

11

12

13

14

15

16

17

- Deep neural networks (DNNs) draw much of their ability to learn from heterogeneous, real-world data.
 Although this diversity contributes to their remarkable performance across various tasks [4, 8, 48], it also leaves adversaries opportunities to implant carefully crafted patterns into training data, enabling malicious attacks. In particular, backdoor attacks poison a (small) portion of training samples with deceptive but stealthy triggers [6, 14]. As a result, the trained model behaves normally on 'clean' inputs but produces attacker-specified predictions when triggers appear at test time. The stealthiness of backdoor attacks raises serious security concerns and motivates effective defense research.
- Recent advances in backdoor defense span both *training-phase* and *test-phase* approaches. However, many existing methods face significant practical constraints: (1) growing reliance on unverified models from open platforms (*e.g.*, HuggingFace) makes the training process and assets opaque; (2) increasingly stealthy backdoor triggers (*e.g.*, invisible syntactic patterns [39]) hinder effective data filtering and trigger inversion; (3) auxiliary datasets required for purification are not always available [68]; and (4) re-tuning incurs additional computational overhead [67].
- Model combination techniques, such as model merging [19, 33], originally proposed for knowledge aggregation, have emerged as cost-effective defenses against backdoor attacks. For example, merging multiple compromised models can suppress textual backdoors [2]. However, naive weight averaging can still retain malicious behavior: merging a benign model with a compromised one may transfer the backdoor, while merging two poisoned models may preserve both backdoors [60]. An alternative

strategy seeks to combine models selectively, guided by trusted criteria, curated datasets, or reliable proxy models. For instance, Yang et al. [60] utilize perturbation methods associated with backdoor behaviors to iteratively mask related parameters, while Chen et al. [5] use auxiliary reference models to resolve information conflicts. Unfortunately, such trusted resources are not always available, and the reliability of newly identified resources is also questionable. Recent work [29, 45] shows that even compromised models can be leveraged to directly mitigate target backdoors, although there remain risks that the auxiliary model could introduce additional backdoor threats.

We propose *Module Switching*, a defense framework that selectively exchanges network modules among models trained on related domains. The intuition rests on the observation that backdoor attacks introduce "shortcuts" within DNNs, exploiting spurious correlations to trigger malicious behavior [13, 17, 61]. Because different attacks create distinct shortcuts, disrupting these pathways by swapping modules may effectively mitigate the corresponding vulnerabilities, as shown in Figure 1.

Identifying every shortcut is computationally challenging due to numerous parameter interactions and the requirement of extra data. We therefore reformulate shortcut disruption as an optimization problem, searching for an effective module-switching strategy that breaks shortcut connections within a given model ar-

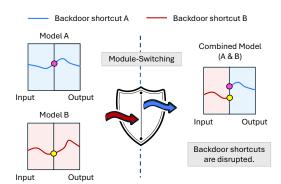


Figure 1: An illustration of Module-Switching Defense (MSD). By switching weight modules between compromised models (*left*), the spurious correlations (shortcuts) learned from backdoored tasks are effectively disrupted in the combined model (*right*).

chitecture. By combining heuristic scoring and an evolutionary algorithm, we obtain an index table that specifies which source model should fill each module slot. Since this module-switching scheme relies solely on architectural information, it generalizes across tasks and is transferable to any models sharing the same structure (*e.g.*, one strategy applicable to both *RoBERTa* [32] and *DeBERTa* [16]).

Our <u>Module-Switching Defense</u> (MSD) applies the strategy by assigning each module across the network a source-model index and recombining the selected modules to construct candidate models. Then, we identify the most robust candidate by comparing their representations on a small clean validation set (requiring only as few as 20–50 samples per class and no poisoned data). Because MSD is structure-driven, it is task-agnostic, counters a wide spectrum of backdoor threats, and preserves utility for downstream tasks. Our key contributions are as follows.

- We conduct an interpretable study on shallow networks, showing that module switching manages to effectively mitigate backdoor patterns while preserving semantics (Section 3).
- We propose and develop an MSD pipeline, which (1) establishes heuristic rules (Section 4.2) to guide an evolutionary algorithm search strategies that disrupt backdoor-related spurious correlations (Section 4.3), and (2) defines a feature-distance criterion to select the best model combination candidate (Section 4.4).
- We validate our method on DNNs in text and vision domains, showing it effectively mitigates various backdoor attacks, even when combining only compromised models (Section 5).

2 Related Work

Backdoor Attacks. Backdoor attacks implant hidden vulnerabilities in DNNs, activating only when specific triggers appear in the input while maintaining normal behavior on benign data. They can be broadly categorized into two types in accordance with implanting methods: (1) *Data-poisoning attacks* inject trigger patterns into a small portion of the datasets with manipulated labels to train compromised models. Since being first discovered by Gu et al. [14], these attacks have evolved with diverse trigger designs in both vision [27, 36, 58] and text domains [7, 22, 39, 40]. In contrast, (2) *Weight-poisoning attacks* directly modify model weights to embed backdoors [10, 22]. The backdoor attacks can be considered correlating trigger patterns with predefined predictions in machine learning models, activated in inference [13, 17]. Our work focuses on defending against *data-poisoning attacks* in both text and vision domains, given their widespread adoption and potential risks.

Backdoor Defense. Backdoor defenses are typically classified by their deployment stage into (1) 91 training-phase and (2) test-phase methods. Training-phase defenses treat poisoned data as outliers, 92 aiming at detecting and removing them based on distinctive activation or learning patterns [17, 18, 93 25]. Test-phase defenses operate on inputs or model itself: data-level approaches reverse-engineer 94 triggers [49] or filter anomalies [37], while model-level strategies detect trojaned models [31, 44, 50, 95 52] or purify models through pruning [30, 57, 67, 68] or unlearning [26, 56, 65]. While traditional 96 97 model purification demands proxy data and additional retraining, recent research has focused on model combination strategies that require fewer assumptions and lower computational costs [2, 5, 29, 45, 60]. 98 Building on this line of research, we propose a model confusion approach that reduces dependency on 99 trusted resources while mitigating threats by disrupting spurious correlations in constituent models. 100

3 Module Switching in Two-layer Neural Networks

101

We theoretically and empirically examine whether *module switching* in two-layer networks can disrupt backdoor patterns introduced during fine-tuning, while preserving pretrained semantics. We find that swapping layer weights leads to greater deviation from backdoor patterns than weight averaging (WAG) [2, 51], yielding improved robustness against backdoored inputs.

Setup and Notation. We consider two-layer networks defined as $f(x;\theta) = W_2 \sigma(W_1 x)$, with input $x \in \mathbb{R}^N$ and parameters $\theta := \{W_1, W_2\}$, and activation function $\sigma(\cdot)$ (linear or non-linear). Training progresses in two stages: a *pretraining* stage, where shared weights $W_1 \in \mathbb{R}^{K \times N}$ and $W_2 \in \mathbb{R}^{N \times K}$ learn general semantics, followed by a *fine-tuning* stage that introduces updates (ΔW_1^*) and (ΔW_2^*) to encode backdoor behavior in individual models (ΔW_1^*) .

In a linear network with identical activation, the fine-tuned model is $\mathcal{M}(x) = (W_2 + \Delta W_2^*)(W_1 + \Delta W_1^*)x$, which expands to a semantic term $S = W_2W_1$ and a backdoor component

$$B^* = W_2 \Delta W_1^* + \Delta W_2^* W_1 + \epsilon^*, \tag{1}$$

such that $\mathcal{M}^*(x) = (S + B^*)x$, where the ϵ -term $\epsilon^* = \Delta W_2^* \Delta W_1^*$ is a second-order interaction. It is typically much smaller in magnitude than first-order terms (*i.e.*, $W_2 \Delta W_1^* + \Delta W_2^* W_1$). We empirically verify this in Appendix C, and accordingly omit the ϵ -term in subsequent analysis.

Definition 1 (Weight-Averaged Model). Let i and j index two fine-tuned backdoor models. Averaging the weights of \mathcal{M}^i and \mathcal{M}^j defines the Weight-Averaged (WAG) model [2], with parameters:

$$heta^{ ext{wag}} := \left\{ rac{1}{2} \left(oldsymbol{W}_1 + \Delta oldsymbol{W}_1^i
ight) + rac{1}{2} \left(oldsymbol{W}_1 + \Delta oldsymbol{W}_1^j
ight), rac{1}{2} \left(oldsymbol{W}_2 + \Delta oldsymbol{W}_2^i
ight) + rac{1}{2} \left(oldsymbol{W}_2 + \Delta oldsymbol{W}_2^j
ight)
ight\}.$$

Assuming a linear network as above, we decompose the model as $\mathcal{M}^{\text{wag}}(x) = (S + B^{\text{wag}})x$, where S denotes the shared pretrained semantic component, and the backdoor component is equivalent to

$$\boldsymbol{B}^{\mathrm{wag}} = rac{1}{2} \boldsymbol{W}_2 \left(\Delta \boldsymbol{W}_1^i + \Delta \boldsymbol{W}_1^j \right) + rac{1}{2} \left(\Delta \boldsymbol{W}_2^i + \Delta \boldsymbol{W}_2^j \right) \boldsymbol{W}_1.$$

Definition 2 (Distance between Outputs from WAG and Constituent Models). Under identity activation, ℓ_2 distances between the WAG model and the two constituent models \mathcal{M}^i and \mathcal{M}^j are:

$$\begin{split} \|\mathcal{D}^{\text{wag},i}\| &= \|\mathcal{M}^{\text{wag}}(\boldsymbol{x}) - \mathcal{M}^i(\boldsymbol{x})\| = \frac{1}{2} \|\left(\boldsymbol{W}_2(\Delta \boldsymbol{W}_1^j - \Delta \boldsymbol{W}_1^i) + (\Delta \boldsymbol{W}_2^j - \Delta \boldsymbol{W}_2^i)\boldsymbol{W}_1\right)\boldsymbol{x}\|, \\ \|\mathcal{D}^{\text{wag},j}\| &= \|\mathcal{M}^{\text{wag}}(\boldsymbol{x}) - \mathcal{M}^j(\boldsymbol{x})\| = \frac{1}{2} \|\left(\boldsymbol{W}_2(\Delta \boldsymbol{W}_1^i - \Delta \boldsymbol{W}_1^j) + (\Delta \boldsymbol{W}_2^i - \Delta \boldsymbol{W}_2^j)\boldsymbol{W}_1\right)\boldsymbol{x}\|. \end{split}$$

Definition 3 (Module-Switched Models). Swapping one layer between \mathcal{M}^i and \mathcal{M}^j yields two possible switched models, each with its own parameters, semantic-backdoor decomposition:

$$egin{aligned} heta^{ij} &:= \{m{W}_1 + \Delta m{W}_1^i, \, m{W}_2 + \Delta m{W}_2^j\}, \quad \mathcal{M}^{ij}(m{x}) = (m{S} + m{B}^{ij})m{x}, \quad m{B}^{ij} &= m{W}_2 \Delta m{W}_1^i + \Delta m{W}_2^j m{W}_1, \\ heta^{ji} &:= \{m{W}_1 + \Delta m{W}_1^j, \, m{W}_2 + \Delta m{W}_2^i\}, \quad \mathcal{M}^{ji}(m{x}) = (m{S} + m{B}^{ji})m{x}, \quad m{B}^{ji} &= m{W}_2 \Delta m{W}_1^j + \Delta m{W}_2^i m{W}_1. \end{aligned}$$

Definition 4 (Distance between Outputs from Switched and Constituent Models). Under identity activation, ℓ_2 distances between the switched model \mathcal{M}^{ij} and the two constituent models are:

$$\|\mathcal{D}^{ij,i}\| = \|\mathcal{M}^{ij}(x) - \mathcal{M}^{i}(x)\| = \|(\Delta W_2^j - \Delta W_2^i)W_1x\|,$$

 $\|\mathcal{D}^{ij,j}\| = \|\mathcal{M}^{ij}(x) - \mathcal{M}^{j}(x)\| = \|W_2(\Delta W_1^i - \Delta W_1^j)x\|.$

The analogous results of $\|\mathcal{D}^{ji,i}\|$ and $\|\mathcal{D}^{ji,j}\|$ hold with swapped indices (see Equation (5)).

Theorem 1 (Module Switching Exceeds WAG in Backdoor Divergence). *Under identity activation,* the total backdoor divergence of the Weight-Averaged (WAG) model is upper bounded by the average divergence of the switched models:

$$\|\mathcal{D}^{\text{wag},i}\| + \|\mathcal{D}^{\text{wag},j}\| \le \frac{1}{2} \left(\|\mathcal{D}^{ij,i}\| + \|\mathcal{D}^{ij,j}\| + \|\mathcal{D}^{ji,i}\| + \|\mathcal{D}^{ji,j}\| \right). \tag{2}$$

This theorem confirms the rationale that module switching on average yields stronger suppression of backdoor-specific patterns than weight averaging.

Proposition 1 (The Existence of a More Divergent Switched Model). *Given Theorem 1, there is at least one switched model with greater backdoor divergence than Weight-Averaged (WAG) model:*

$$\|\mathcal{D}^{\text{wag},i}\| + \|\mathcal{D}^{\text{wag},j}\| \le \max \{\|\mathcal{D}^{ij,i}\| + \|\mathcal{D}^{ij,j}\|, \|\mathcal{D}^{ji,i}\| + \|\mathcal{D}^{ji,j}\| \}.$$
 (3)

This proposition shows that the least backdoor-aligned switched model exceeds the WAG model in backdoor divergence, underscoring the importance of selecting the least aligned candidate and motivating the selection step in Section 4.4. Appendix D details proofs of Theorem 1 and Proposition 1.

Empirical Study. We simulate 1000 two-layer networks (with both linear and non-linear activations), each *pretrained* on a shared semantic component $S \sim \mathcal{N}(\mathbf{0}, 1)$ and *fine-tuned* with a backdoor component $B^* \sim \mathcal{N}(\mathbf{0}, 0.1^2)$. For each fine-tuned pair \mathcal{M}^i and \mathcal{M}^j , we construct the corresponding WAG model \mathcal{M}^{wag} and switched models \mathcal{M}^{ij} and \mathcal{M}^{ji} . We evaluate output alignment with (1) the semantic direction Sx, measured by $d_S = \|\text{norm}(f(x;\theta)) - \text{norm}(Sx)\|$; and (2) the backdoor direction S^*x , measured by $d_B = \|\text{norm}(f(x;\theta) - Sx) - \text{norm}(B^*x)\|$, where $\text{norm}(v) = v/\|v\|$.

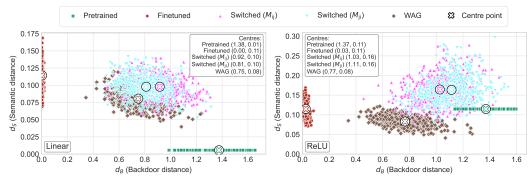


Figure 2: Euclidean distances between normalized output vectors of *pretrained*, *fine-tuned*, *WAG*, and *switched* two-layer networks, relative to the semantic direction Sx and the backdoor directions B^*x , under linear (left) and ReLU (right) activations.

Figure 2 presents 2D scatter plots comparing output distances across all model types under both linear and ReLU [1, 35] activations. More results with various activations are provided in Appendix E. We observe that while *fine-tuned* models stay close to their respective backdoor patterns B^* , the WAG model shifts farther away, and the *switched* models diverge even more, indicating stronger backdoor suppression. All models remain near the semantic term S, confirming preserved functionality.

4 Module Switching Defense

In this section, we extend the findings on module switching to more complicated deep neural networks and develop a comprehensive defense pipeline. We begin by introducing the problem setting in Section 4.1, followed by establishing a set of heuristic rules to guide the search for effective module switching strategies in Section 4.2. Next, we adapt an evolutionary algorithm for searching the optimal strategy in Section 4.3, guiding switched models construction and selection in Section 4.4.

4.1 Preliminaries

Threat Model. We study data poisoning attacks where an attacker modifies a subset of a clean dataset $\mathcal{D}_c = \{(x_c, y_c)\}$ into poisoned samples $\mathcal{D}_p = \{(x_p = g_t(x_c), y_p)\}$ using a trigger function g_t and target label y_p . The poisoned data is used to train a backdoored model or shared with others for training, resulting in trojaned models being widely available via model-sharing platforms.

Defender Capability. The defender downloads potentially compromised models and aims to purify them before deployment. They have white-box access and a small clean validation set (20–50 samples per class), but no knowledge of the trigger or poisoned data. They can access multiple (as few as two) domain-relevant models of uncertain integrity and may combine them using the validation set.

Neural Network Architecture. We adopt Transformer models [48] as the testbed in both text and vision domains, given their strong performance and prevalence on model-sharing platforms. A typical Transformer has L layers, each with a self-attention block and a feed-forward network (FFN). The attention block includes $\{W_q, W_k, W_v, W_o\}$ and the FFN includes $\{W_i, W_p\}$; we refer to these six modules as $\{Q, K, V, O, I, P\}$. Residual connections [15] follow both blocks and link to later layers.

4.2 Scoring Rules for Module Switching

168

178

179

180

181

182

183

184

185

In Section 3, we studied weight switching in two-layer networks, where replacing weights disrupts spurious correlations, eliminating undesired patterns while preserving semantic alignment. Extending to DNNs, we hypothesize that breaking backdoor propagation paths can similarly deactivate them.

Given the structural complexity of deep networks, we define heuristic rules to guide the search for module combinations that disrupt backdoor paths in both feedforward and residual streams [11]. We identify three types of adjacency that may support poison transmission (illustrated in Figure 3): (1) intra-layer (within the same layer), (2) consecutive-layer (adjacent layers), and (3) residual (via skip connections). Additionally, we introduce a (4) balance penalty to avoid overusing any single model and a (5) diversity reward to encourage varied combinations across layers.

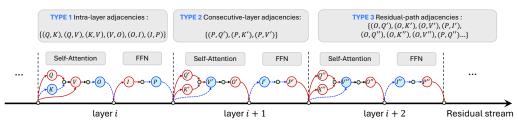


Figure 3: The confused model combines modules from different models, where red and blue nodes indicate components from different models by considering three types of module adjacency in Transformers, as shown in the upper part of the figure.

We adopt these heuristic rules as evaluation criteria to compute the overall score of a given module-switching strategy, evaluating how well it adheres to the proposed principles. A summary of the rules is presented in the box below (and more details are provided in Appendix F).

Heuristic-based Search Rules

- 1. **Intra-layer adjacency penalty:** Penalize if two adjacent modules within the same layer (e.g., Q and K) are from the same source model.
- 2. Consecutive-layer adjacency penalty: Penalize if adjacent modules across consecutive layers (e.g., P in layer i and Q' or K' in layer i+1) are from the same source model.
- 3. **Residual-path adjacency penalty:** Penalize if residually connected modules (e.g., $O_i \rightarrow Q', Q''$) come from the same model, with reduced weight for longer-range links.
- 4. **Balance penalty:** Penalize if the selected modules are skewed toward a single model.
- Diversity reward: Promote layer-wise diversity, aiming at using different source model combinations across the network.

4.3 Evolutionary Module Switching Search

We frame the search for effective module-switching strategies as a discrete Neural Architecture Search (NAS) problem [53]. Let $\mathcal S$ denote the space of switching strategies, where each $s \in \mathcal S$ assigns a source model index to each module: $s:\{1,\ldots,L\}\times M \to \{1,\ldots,N\}, M=\{Q,K,V,O,I,P\}$, where L is the number of layers and N the number of source models.

Fitness Evaluation. Each strategy s is scored by:

$$F(s) = -\lambda_1 A_{\text{intra}}(s) - \lambda_2 A_{\text{cons}}(s) - \lambda_3 A_{\text{res}}(s) - \lambda_4 B_{\text{bal}}(s) + \lambda_5 R_{\text{div}}(s), \tag{4}$$

where A_{intra} , A_{cons} , and A_{res} penalize adjacency violations (Section 4.2), B_{bal} penalizes module 188 imbalance, and R_{div} rewards diversity. By default, we set all λ_k to 1.0. Higher F(s) indicates stronger 189 disruption of potential backdoor paths. The formulations of all terms are provided in Appendix F.2. 190

Search Algorithm. As the scores 191 by F(s) is non-differentiable over a 192 large discrete space, we adopt evolu-193 tionary search [34], well suited to op-194 timizing implicit objectives [69]. We 195 adopt the aging regularized evolution 196 algorithm [41], modifying it in two 197 key ways: (1) fitness is computed di-198 rectly using the heuristic scoring func-199 tion F, without model training or val-200 idation; and (2) low-scoring strategies 201 are discarded, replacing aging regu-202 larization [42]. As outlined in Al-203 gorithm 1, it evolves a population 204 through tournament selection (line 11), mutation (line 12), and fitness-206 based dropping (line 13). A hyper-207 parameter C controls the number of 208 children per generation. Appendix I 209 presents example searched strategies. 210

4.4 Switched Models **Construction and Selection**

211

226

227

228

229

230

231

232

233

234

235

236

238

The searched strategy T can be 213 used to switch modules among a group of victim models \mathcal{M} 215 $\{\mathcal{M}_1,\ldots,\mathcal{M}_N\}$ to fuse a *candidate* 216 pool, which on average exceeds the 217 WAG model in backdoor divergence 218 (as Theorem 1) and guarantees the ex-219 istence of at least one candidate with 220 higher divergence (as Proposition 1). 221 This motivates us to develop a feature-222 distance-based method to identify and 223 select the least-backdoor-aligned can-224 didate from the pool. 225

Suspect-class Detection. We first use the final-layer embedding of [CLS] token to detect the suspect class, based on the insight that trojaned models prioritize trigger features [12, 62]. For each $m \in \mathcal{M} \cup \{WAG(\mathcal{M})\}$ and class c, we optimize a random input to induce prediction of c, yielding a dummy final-layer [CLS] feature $z_{m,c}^{\text{dum}}$ Its average cosine distance to clean features over a few non-c samples is

```
Algorithm 1 Evolutionary Module-Switching Search
```

```
1: Input: population \overline{P}, generations \overline{G}, children per gener-
    ation C, number of models N, layers L, module set M.
   population \leftarrow \emptyset
 3: qen\ count \leftarrow 0
 4: while |population| < P do
      indiv.strategy \leftarrow \texttt{RandomStrategy}(N, L, M)
 5:
      indiv.fitness \leftarrow CALCSCORE(indiv.strategy)
 7:
      population.append(indiv)
 8: end while
 9:
    while gen\_count < G do
      for i \leftarrow 1 to C do
10:
         parent \leftarrow TOURNAMENTSELECT(population)
11:
         child.strategy \leftarrow Mutation(parent)
12:
         child.fitness \leftarrow CALCSCORE(child.strategy)
13:
14:
         population.append(child)
       end for
15:
       sort(population) 
ightharpoonup by descending fitness score
16:
      population \leftarrow population[0:P]
17:
       qen\ count \leftarrow qen\ count + 1
18:
19: end while
20: Output: BestStrategy \leftarrow population[0].strategy
```

Algorithm 2 Switched Model Selection

```
1: Input: Victim models \mathcal{M} = \{\mathcal{M}_1, \dots, \overline{\mathcal{M}_N}\}; clean set
                                                                    \mathcal{D}_c; switching strategy T.
                                                                   wag \leftarrow WAG(\mathcal{M})
                                                                                                             \triangleright weight averaging over \mathcal{M}
                                                                3: models \leftarrow \mathcal{M} \cup \{wag\}
                                                                4: score \leftarrow ZEROVECTOR(num\_classes)
                                                                5: for m \in models do
                                                                        for c \in \text{candidate classes do}
                                                               6:
                                                               7:
                                                                            x_{\text{dummv}} \leftarrow \text{OPTIMIZEINPUT}(m, x_{\text{random}}, c)
                                                               8:
                                                                            z_{\text{dummy}} \leftarrow \text{FORWARD}(m, x_{\text{dummy}})
                                                               9:
                                                                            z_{\text{clean}} \leftarrow \text{FORWARD}(m, \mathcal{D}_c, \text{non-}c)
                                                                            score[c] += MEANCOSINEDIST(z_{dummy}, z_{clean})
                                                              10:
                                                                            DUMMYFEATURE[m][c] \leftarrow z_{\text{dummy}}
                                                              11:
                                                                        end for
                                                              12:
                                                              13: end for
                                                              14: c^* \leftarrow \arg\max_{c} score[c]
                                                                                                                        15: z^* \leftarrow \text{DUMMYFEATURE}[wag][c^*]
                                                              16: candidates \leftarrow ModuleSwitch(T, \mathcal{M})
                                                              17: for m \in candidates do
                                                              18:
                                                                        z \leftarrow \text{FORWARD}(m, \mathcal{D}_c, \text{non-}c^*)
                                                                        m.dist \leftarrow MEANCOSINEDIST(z, z^*)
                                                              19:
                                                              20: end for
                                                             21: Output: arg max_m m.dist
accumulated across models: S(c) = \sum_m \text{avg} \big[ 1 - \cos(z_{m,c}^{\text{dum}}, z_{m,\neg c}^{\text{clean}}) \big]. The class with the highest score, c^* = \arg\max_c S(c), is deemed suspicious, and the corresponding WAG dummy feature z^* = z_{\text{WAG},c^*}^{\text{dum}} is used as a fixed reference.
```

Candidate Selection. Applying T to \mathcal{M} gives candidates $m \in \mathcal{C}(T,\mathcal{M})$ (e.g., $\mathcal{M}^{ij},\mathcal{M}^{ji}$). Each m is scored by $d(m) = \text{avg} \big[1 - \cos(z^*, f_m(\boldsymbol{x})) \big]$, the mean cosine distance between its [CLS] features on a few clean, non- c^* samples \boldsymbol{x} and the WAG dummy z^* . The winner $m^* = \arg\max_{m \in \mathcal{C}(T,\mathcal{M})} d(m)$ is the one least aligned with backdoor features and, by Proposition 1, has better defense than WAG.

The complete pipeline, detailed in Algorithm 2, avoids exhaustive trojan detection process [31, 44,

49, 50, 52], yet reliably selects robust module-switching candidates.

246 5 Experiments

245

247 5.1 Experimental Setup

Datasets. We evaluate our method on three NLP datasets—SST-2 [24, 43], MNLI [54], and AG News [66]—as well as vision datasets, CIFAR-10 [21, 46] and TinyImageNet [23], covering both binary and multi-class classification. Dataset statistics are in Table 6 (Appendix G.1). For NLP, following WAG [2], we use 20% poison in training (also testing 10% and 1%). For vision tasks, we apply a 5% poison rate. Poisoned test sets are created by attacking non-target validation samples; only the clean test set is available to the defender, while poisoned test data is used solely for evaluation.

Backdoor Attacks. We generate poisoned data by modifying clean samples and relabelling them to a target class, using four representative attacks in both text and vision tasks, to evaluate our defense.

For the text domain, we consider (1) **BadNet** [22], (2) **InsertSent** [7], (3) Learnable Word Substitution (**LWS**) [40], and (4) Hidden-Killer (**Hidden**) [38]. **BadNet** and **InsertSent** are token and sentence insertion attacks, and we set the triggers as rare words { "cf", "mn", "bb", "tq", "mb"} and phrases { "I watched this movie", "no cross, no crown"}. **LWS** and **Hidden** apply stealthier strategies such as synonym substitution and syntactic paraphrasing.

For the vision domain, we examine (1) **BadNet** [14], (2) **WaNet** [36], (3) **BATT** [58], and (4) **PhysicalBA** [27]. BadNet and BATT inject digital patterns such as fixed pixel triggers and subtle visual changes, while PhysicalBA and WaNet are stealthier and use physical objects and warping effects. We utilize the BackdoorBox [28] toolkit to generate poisoned datasets and train the models.

Defense Baselines. We compare against seven defense methods across text and vision: three model-merging approaches applicable to both domains—TIES [59], DARE [63], and WAG [2]—and two domain—specific data purification methods per modality. Z-Def. [17] and ONION [37] are outlier detection methods in text domain. In vision, CutMix [64] disrupts triggers via patch mixing, and ShrinkPad [27] reduces vulnerability by shrinking and padding inputs. All baselines use open-source implementations with default settings. See Appendix G.3 for more details.

Evaluation Metrics. We assess the model's utility and defense performance using Clean Accuracy (CACC) and Attack Success Rate (ASR) [2, 17, 37, 40]. CACC measures the prediction accuracy on clean samples, with a higher CACC indicating better model utility. ASR computes the attack accuracy on a poisoned test set, where all test samples are attacked and their labels are modified to the target class. A higher ASR reflects that the model is more vulnerable to the attack.

Implementation Details. We use RoBERTa-large [32], BERT-large [8], and DeBERTa-large [16] 276 for text experiments, and Visual transformers (ViT) [55] for vision tasks. NLP models are fine-tuned 277 on poisoned data for 3 epochs using Adam [20] with a learning rate of 2×10^{-5} ; ViT models for 10 278 epochs using SGD [3] at 1×10^{-2} . We focus on two-model merging in both domains and include three-model merging for text. All experiments are run with three random seeds on a single Nvidia A100 GPU, reporting average results. The evolutionary search runs for 2 million generations on a single CPU (6 hours for the setup with 24 layers times 6 modules per layer). As the strategy is structure-driven and task-agnostic, it only requires single searched per architecture. For model 283 selection discussed in Section 4.4, we use 50 samples per class as the evaluation set for selecting 284 candidate models, and we further ablate the quantity to 20 samples per class in Section 5.3. 285

5.2 Main Results

287

Mitigation of Textual Backdoor Attacks. We evaluate our defense method using *RoBERTa-large* on three datasets: **SST-2**, **MNLI**, and **AG News**. Partial results for SST-2 are shown in Table 1, with full results in Appendix H.1. We consider two types of two-model combinations: (1) six

Table 1: Performance comparison across backdoor attacks on **SST-2** using *RoBERTa-large*. Best results are in **blue**. * indicates results averaged over four variants; same for subsequent tables.

Defense	CACC	At	tack Suc	ccess Ra	te (ASR)	<u> </u>	Defense	CACC	Attack Success Rate (ASR) ↓				
		BadNet	Insert	LWS	Hidden	AVG.			BadNet	Insert	LWS	Hidden	AVG.
Benign	95.9	4.1	2.2	12.8	16.5	8.9	Z-Def	95.6*	4.6	1.8	97.3	35.7	34.9
Victim	95.9*	100.0	100.0	98.0	96.5	98.6	ONION	92.8*	56.8	99.9	85.7	92.9	83.8
	Con	nbined: Bo	ıdNet + I	InsertSei	ıt		[Com	bined: Baa	Net + H	iddenKii	ler	
WAG	96.3	56.3	7.4	-	-	31.9	WAG	96.1	63.9	-	-	29.0	46.4
TIES	95.9	88.7	17.0	-	-	52.9	TIES	96.0	90.4	-	-	36.9	63.6
DARE	96.5	57.8	36.3	-	-	47.1	DARE	96.7	36.5	-	-	47.6	41.9
Ours	96.2	36.9	7.1	-	-	22.0	Ours	96.1	40.5	-	-	27.7	34.1
	(Combined:	BadNet	+ LWS				C	ombined: I	Benign +	BadNet		
WAG	96.2	74.0	-	50.3	-	62.2	WAG	96.1	39.3	-	-	-	39.3
TIES	95.9	88.1	-	66.1	-	77.1	TIES	95.7	69.2	-	-	-	69.2
DARE	96.2	60.4	-	62.5	-	61.4	DARE	96.4	43.2	-	-	-	43.2
Ours	96.0	41.7	-	39.0	-	40.4	Ours	96.1	12.2	-	-	-	12.2

Table 2: Performance comparison across backdoor attacks on the CIFAR-10 dataset using ViT.

Defense	CACC	BadNet	WaNet	BATT	PBA	AVG.	Defense	CACC	BadNet	WaNet	BATT	PBA	AVG.
Benign Victim	98.8 98.5*	10.1 96.3	10.2 84.7	7.7 99.9	10.1 89.4	9.5 92.6	CutMix ShrinkPad	97.7* 97.3*	87.1 14.4	70.6 51.3	99.9 99.9	64.9 88.3	80.6 63.5
		ombined: I			0,	72.0			mbined: B			00.5	00.0
WAG	98.7	13.7	10.6	-	- 1	12.2	WAG	98.9	10.1	-	42.9	-	26.5
TIES	98.6	11.9	10.7	-	-	11.3	TIES	98.9	10.1	-	47.9	-	29.0
DARE	98.8	83.3	10.2	-	-	46.7	DARE	99.0	69.2	-	26.8	-	48.0
Ours	98.7	12.3	10.5	-	-	11.4	Ours	98.7	10.2	-	32.6	-	21.4
	Com	bined: Bad	dNet + Ph	ysicalBA				Coml	bined: Ben	ign + Phy	sicalBA		
WAG	99.0	39.6	-	-	39.5	39.6	WAG	99.0	-	-	-	10.1	10.1
TIES	99.0	38.9	-	-	38.9	38.9	TIES	98.8	-	-	-	10.2	10.2
DARE	99.0	72.2	-	-	72.2	72.2	DARE	99.9	-	-	-	10.1	10.1
Ours	98.7	18.5	-	-	18.4	18.5	Ours	98.9	-	-	-	10.1	10.1

pairwise merges of four backdoored models, and (2) four cases where a benign model is combined with backdoored ones to evaluate unintended vulnerability exposure. We employ a unified strategy obtained via our evolutionary algorithm (see Figure 6) and apply it consistently across all settings.

Across all three datasets and different model pairs, our method consistently achieves strong defense performance compared to baselines while maintaining high clean accuracy scores. For example, when combining models with two insertion-based attacks BadNet and InsertSent, our method reduces the average ASR to 22.0%, compared to 31.9% for the best baseline WAG. When combining BadNet with LWS (a more stealthy attack), our method achieves an ASR of 40.4%, providing at least a 21.0% absolute improvement over baselines (typically above 60%). This shows that even when merging compromised models, our method effectively disrupts spurious correlations and defends against backdoor attacks.

When merging a benign model with compromised ones, our method achieves a low ASR across four combinations, with the BadNet-controlled group achieving 12.2%, which is 27.1% better than the best baseline WAG. This suggests that our method effectively prevents unintended backdoor effects, unlike other approaches that prioritize downstream utility but inadvertently introduce such vulnerabilities. Additionally, while the baseline Z-Def demonstrates strong effectiveness against the insertion-based attacks BadNet and InsertSent (with access to training data), it is less effective at defending against the LWS and HiddenKiller attacks due to their subtle trigger pattern design.

Mitigation of Vision Backdoor Attacks. We assess our method on the **CIFAR-10** and **TinyImageNet** datasets using a 12-layer *ViT* [55] model. Partial results for CIFAR-10 are shown in Table 2, with full results presented in Appendix H.2. The evolutionary search yields the module-switching strategy in Figure 12, applied across all vision experiments.

Our method consistently defends against all attack combinations while preserving utility. For example, in the BadNet + PhysicalBA case, it lowers ASR to 18.5%, outperforming all baselines by at least 20.4%. These results demonstrate the robustness of our strategy in disrupting spurious correlations and its effectiveness across domains with different input characteristics.

Three-Model Fusion Defense. We further evaluate our method fusing three models tested in the text domain, applying the strategy shown in Figure 11. The results are presented in Table 3.

Table 3: Results of combining three backdoored models on SST-2. Best results are highlighted.

Defense	CACC	BadNet	Insert	LWS	Hidden	AVG.	Defense	CACC	BadNet	Insert	LWS	Hidden	AVG.
	B	adNet + In	isertSent	+ LWS				BadNe	et + Insert	Sent + H	iddenKi	ller	
WAG Ours	96.3 96.0	9.5 9.2	3.4 3.8	21.6 25.9	-	11.5 13.0	WAG Ours	96.7 96.2	5.9 5.9	2.7 1.6	-	19.1 18.7	9.2 8.7
	Вас	dNet + LW	S + Hida	lenKiller	-			Inser	tSent + L	WS + Hid	ldenKill	er	
WAG Ours	96.0 96.2	10.8 7.9	-	30.9 25.7	20.3 20.7	20.7 18.1	WAG Ours	96.0 96.2	- -	2.7 2.1	25.5 24.1	19.6 19.4	15.9 15.2

Among the four possible combinations from our victim model pool, our method identified the optimal configuration in three cases. Even in the remaining case (BadNet, InsertSent, and LWS), the defense remained strong, achieving a low average ASR of 13.0%. For the optimal combinations, our method consistently outperformed a strong baseline with ASRs already below 20%, demonstrating improved defense effectiveness. These results highlight our approach's ability to disrupt multiple spurious correlations and maintain robustness in multi-model fusion.

Comparison of Different Strategies. We compare two evolutionary search strategies—with and without early stopping—shown in Figures 6 and 7, and report their fitness scores in Table 12 of Appendix H.3. The early stopping terminates the search when no improvement in fitness score is observed over 100,000 iterations. We observe a positive correlation between the fitness score and defense performance: the adopted strategy without early stopping achieves a higher score and reduces the ASR by 27.2%. Based on score breakdowns and visualizations, we attribute the improvement to fewer residual rule violations, which more effectively disrupt subtle spurious correlations.

Candidate Selection Results. Our method generates multiple asymmetric module allocation candidates, with selection guided by the process in Section 4.4. While the selected candidate consistently performs well, we also analyze the unselected ones (see Table 13 in Appendix H.4). In most cases, our method correctly identifies the top-performing candidate, outperforming other options by a significant margin. Even when an unselected candidate achieves a lower ASR in specific cases, our chosen candidate remains competitive with both the best alternative and the WAG baseline.

5.3 Ablation Studies

Importance of Heuristic Rules. We ablate each of the first three rules from Section 4.2 to evaluate their individual contributions. As shown in Table 14 (Appendix H.5), removing any rule typically degrades performance, highlighting the complementary effect of the full rule set. Visualizations in Figures 8 to 10 show that each ablation yields distinct strategy patterns.

Generalization across Architectures. We apply our method to *RoBERTa-large*, *BERT-large*, and *DeBERTa-v3-large* under three settings. As shown in Table 15 (Appendix H.6), our approach consistently outperforms WAG across all tests. Importantly, we reuse the same searched strategy from Figure 6, demonstrating strong cross-model generalization and supporting practical scalability.

Minimum Clean Data Requirement. We examine the impact of reducing clean supervision from 50 to 20 samples per class on SST-2 across three architectures. Results in Table 15 (Appendix H.7) show our method still selects low-ASR candidates, suggesting effectiveness with limited clean data.

Performance under Varying Poisoning Rates. We test robustness under 20%, 10%, and 1% poisoning rates on SST-2 using *RoBERTa-large*. As shown in Table 16 (Appendix H.8), our method consistently achieves lower ASR than WAG across different attacks and poisoning levels.

6 Conclusion

In this paper, we propose Module-Switching Defense (MSD), a post-training backdoor defense that disrupts shortcuts of spurious correlations by strategically switching weight modules between (compromised) models. MSD does not rely on trusted reference models or training data and remains effective with a couple of models. Using heuristic rules and evolutionary search, we establish a transferable module confusion strategy that mitigates various backdoor attacks while preserving their task utility. Empirical results on text and vision tasks confirm its outstanding defense performance, and strong generalization capability, highlighting its practicality in real-world applications.

References

361

- Il Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375, 2018.
- Ansh Arora, Xuanli He, Maximilian Mozes, Srinibas Swain, Mark Dras, and Qiongkai Xu. Here's a
 free lunch: Sanitizing backdoored models with model merge. In Lun-Wei Ku, Andre Martins, and Vivek
 Srikumar, editors, Findings of the Association for Computational Linguistics: ACL 2024, pages 15059–
 15075, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
 2024.findings-acl.894. URL https://aclanthology.org/2024.findings-acl.894.
- [3] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In *Proceedings of COMP-STAT'2010: 19th International Conference on Computational StatisticsParis France, August 22-27, 2010 Keynote, Invited and Contributed Papers*, pages 177–186. Springer, 2010.
- [4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 372 Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, 373 Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens 374 Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, 375 Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language 376 models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, 377 editors, Advances in Neural Information Processing Systems, volume 33, pages 1877–1901. Curran As-378 sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/ 379 1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf. 380
- [5] Chen Chen, Yuchen Sun, Xueluan Gong, Jiaxin Gao, and Kwok-Yan Lam. Neutralizing backdoors through
 information conflicts for large language models. arXiv preprint arXiv:2411.18280, 2024.
- Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep learning systems using data poisoning. *CoRR*, abs/1712.05526, 2017. URL http://arxiv.org/abs/ 1712.05526.
- Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. A backdoor attack against lstm-based text classification systems. *IEEE Access*, 7:138872–138878, 2019. URL https://api.semanticscholar.org/CorpusID: 168170110.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.
- Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. Activation functions in deep learning:
 A comprehensive survey and benchmark. Neurocomputing, 503:92–108, 2022. ISSN 0925-2312. doi:
 https://doi.org/10.1016/j.neucom.2022.06.111. URL https://www.sciencedirect.com/science/article/pii/S0925231222008426.
- Jacob Dumford and Walter Scheirer. Backdooring convolutional neural networks via targeted weight
 perturbations. In 2020 IEEE International Joint Conference on Biometrics (IJCB), pages 1–9, 2020. doi:
 10.1109/IJCB48548.2020.9304875.
- Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
 Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac Hatfield Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei,
 Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A mathematical framework
 for transformer circuits. Transformer Circuits Thread, 2021. URL https://transformer-circuits.
 pub/2021/framework/index.html.
- Chong Fu, Xuhong Zhang, Shouling Ji, Ting Wang, Peng Lin, Yanghe Feng, and Jianwei Yin. FreeEagle:
 Detecting complex neural trojans in Data-Free cases. In 32nd USENIX Security Symposium (USENIX Security 23), pages 6399–6416, Anaheim, CA, August 2023. USENIX Association. ISBN 978-1-939133-37-3.
 URL https://www.usenix.org/conference/usenixsecurity23/presentation/fu-chong.
- [13] Matt Gardner, William Merrill, Jesse Dodge, Matthew Peters, Alexis Ross, Sameer Singh, and Noah A.
 Smith. Competency problems: On finding and removing artifacts in language data. In Marie-Francine
 Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors, *Proceedings of the 2021 Conference* on Empirical Methods in Natural Language Processing, pages 1801–1813, Online and Punta Cana,

- Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021. emnlp-main.135. URL https://aclanthology.org/2021.emnlp-main.135/.
- Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the machine learning model supply chain. *CoRR*, abs/1708.06733, 2017. URL http://arxiv.org/abs/1708.420
 6733.
- 421 [15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
 422 In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
 423 2016. URL https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_
 424 Learning_CVPR_2016_paper.html.
- 425 [16] Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style pre-training with gradient-disentangled embedding sharing. *arXiv* preprint arXiv:2111.09543, 2021.
- 427 [17] Xuanli He, Qiongkai Xu, Jun Wang, Benjamin Rubinstein, and Trevor Cohn. Mitigating backdoor poisoning attacks through the lens of spurious correlation. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 953–967, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.60. URL https://aclanthology.org/2023.emnlp-main.60/.
- [18] Xuanli He, Qiongkai Xu, Jun Wang, Benjamin I. P. Rubinstein, and Trevor Cohn. SEEP: Training dynamics grounds latent representation search for mitigating backdoor poisoning attacks. *Transactions of the Association for Computational Linguistics*, 12:996–1010, 2024. doi: 10.1162/tacl_a_00684. URL https://aclanthology.org/2024.tacl-1.55/.
- 436 [19] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Averaging weights leads to wider optima and better generalization. *arXiv preprint arXiv:1803.05407*, 2018.
- 438 [20] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and
 439 Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
 440 CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.
 441 6980.
- 442 [21] Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.
- Keita Kurita, Paul Michel, and Graham Neubig. Weight poisoning attacks on pretrained models. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault, editors, *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 2793–2806, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.249. URL https://aclanthology.org/2020.acl-main.249.
- 448 [23] Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.
- [24] Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen, Suraj 449 Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario Šaško, Gunjan 450 Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas Patry, 451 Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue, Théo Matussière, Lysan-452 dre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer, Victor Mustar, François Lagunas, Alexander 453 Rush, and Thomas Wolf. Datasets: A community library for natural language processing. In Proceedings 454 455 of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 175-184, Online and Punta Cana, Dominican Republic, November 2021. Association for 456 Computational Linguistics. URL https://aclanthology.org/2021.emnlp-demo.21. 457
- 458 [25] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor learning:
 459 Training clean models on poisoned data. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
 460 and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,
 461 pages 14900–14912. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_
 462 files/paper/2021/file/7d38b1e9bd793d3f45e0e212a729a93c-Paper.pdf.
- Yige Li, Xixiang Lyu, Xingjun Ma, Nodens Koren, Lingjuan Lyu, Bo Li, and Yu-Gang Jiang. Reconstructive neuron pruning for backdoor defense. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pages 19837–19854.
 PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/li23v.html.
- 468 [27] Yiming Li, Tongqing Zhai, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor attack in the physical world. *arXiv preprint arXiv:2104.02361*, 2021.

- 470 [28] Yiming Li, Mengxi Ya, Yang Bai, Yong Jiang, and Shu-Tao Xia. Backdoorbox: A python toolbox for backdoor learning. In *ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning*, 2023. 472 URL https://openreview.net/forum?id=B_WOnQXJd5.
- 473 [29] Yuetai Li, Zhangchen Xu, Fengqing Jiang, Luyao Niu, Dinuka Sahabandu, Bhaskar Ramasubramanian, and Radha Poovendran. Cleangen: Mitigating backdoor attacks for generation tasks in large language models. arXiv preprint arXiv:2406.12257, 2024.
- 476 [30] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against backdooring attacks on deep neural networks. *CoRR*, abs/1805.12185, 2018. URL http://arxiv.org/abs/1805.478 12185.
- Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and Xiangyu Zhang. Abs:
 Scanning neural networks for back-doors by artificial brain stimulation. In *Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security*, pages 1265–1282, 2019.
- Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
 Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining approach.
 CoRR, abs/1907.11692, 2019. URL http://arxiv.org/abs/1907.11692.
- 485 [33] Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging.
 486 In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Ad487 vances in Neural Information Processing Systems, volume 35, pages 17703–17716. Curran Asso488 ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
 489 70c26937fbf3d4600b69a129031b66ec-Paper-Conference.pdf.
- 490 [34] Geoffrey F Miller, Peter M Todd, and Shailesh U Hegde. Designing neural networks using genetic algorithms. In *ICGA*, volume 89, pages 379–384, 1989.
- 492 [35] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
 493 Proceedings of the 27th international conference on machine learning (ICML-10), pages 807–814, 2010.
- 494 [36] Anh Nguyen and Anh Tran. Wanet–imperceptible warping-based backdoor attack. *arXiv preprint* 495 *arXiv:2102.10369*, 2021.
- 496 [37] Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao, Zhiyuan Liu, and Maosong Sun. ONION: A simple and
 497 effective defense against textual backdoor attacks. In Marie-Francine Moens, Xuanjing Huang, Lucia
 498 Specia, and Scott Wen-tau Yih, editors, *Proceedings of the 2021 Conference on Empirical Methods in*499 Natural Language Processing, pages 9558–9566, Online and Punta Cana, Dominican Republic, November
 500 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.752. URL https:
 501 //aclanthology.org/2021.emnlp-main.752.
- [38] Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang, Zhiyuan Liu, Yasheng Wang, and Maosong
 Sun. Hidden killer: Invisible textual backdoor attacks with syntactic trigger. In *Annual Meeting of the Association for Computational Linguistics*, 2021. URL https://api.semanticscholar.org/
 CorpusID:235196099.
- [39] Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang, Zhiyuan Liu, Yasheng Wang, and Maosong Sun.
 Hidden killer: Invisible textual backdoor attacks with syntactic trigger. In Chengqing Zong, Fei Xia,
 Wenjie Li, and Roberto Navigli, editors, Proceedings of the 59th Annual Meeting of the Association for
 Computational Linguistics and the 11th International Joint Conference on Natural Language Processing
 (Volume 1: Long Papers), pages 443–453, Online, August 2021. Association for Computational Linguistics.
 doi: 10.18653/v1/2021.acl-long.37. URL https://aclanthology.org/2021.acl-long.37/.
- [40] Fanchao Qi, Yuan Yao, Sophia Xu, Zhiyuan Liu, and Maosong Sun. Turn the combination lock: Learnable textual backdoor attacks via word substitution. In *Annual Meeting of the Association for Computational Linguistics*, 2021. URL https://api.semanticscholar.org/CorpusID:235417102.
- Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image classifier architecture search. *Proceedings of the AAAI Conference on Artificial Intelligence*, 33(01):4780–4789,
 Jul. 2019. doi: 10.1609/aaai.v33i01.33014780. URL https://ojs.aaai.org/index.php/AAAI/article/view/4405.
- 519 [42] David So, Quoc Le, and Chen Liang. The evolved transformer. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pages 5877–5886. PMLR, 09–15 Jun 2019. URL https: //proceedings.mlr.press/v97/so19a.html.

- [43] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
 Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
 In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and Steven Bethard, editors,
 Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages
 1631–1642, Seattle, Washington, USA, October 2013. Association for Computational Linguistics. URL
 https://aclanthology.org/D13-1170.
- Yanghao Su, Jie Zhang, Ting Xu, Tianwei Zhang, Weiming Zhang, and Nenghai Yu. Model x-ray:
 Detecting backdoored models via decision boundary. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pages 10296–10305, 2024.
- Yao Tong, Weijun Li, Xuanli He, Haolan Zhan, and Qiongkai Xu. Cut the deadwood out: Post-training model purification with selective module substitution. *arXiv* preprint arXiv:2412.20476, 2024.
- 534 [46] TorchVision maintainers and contributors. Torchvision: Pytorch's computer vision library. https://github.com/pytorch/vision, 2016. GitHub repository.
- 536 [47] Amos Tversky and Itamar Gati. Similarity, separability, and the triangle inequality. *Psychological review*, 89(2):123, 1982.
- [48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
 Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
 R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
 volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/
 paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.
- [49] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y. Zhao.
 Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In 2019 IEEE Symposium on Security and Privacy (SP), pages 707–723, 2019. doi: 10.1109/SP.2019.00031.
- [50] Hang Wang, Zhen Xiang, David J Miller, and George Kesidis. Mm-bd: Post-training detection of backdoor
 attacks with arbitrary backdoor pattern types using a maximum margin statistic. In 2024 IEEE Symposium
 on Security and Privacy (SP), pages 1994–2012. IEEE, 2024.
- 549 [51] Hu Wang, Congbo Ma, Ibrahim Almakky, Ian Reid, Gustavo Carneiro, and Mohammad Yaqub. Rethinking weight-averaged model-merging. *arXiv preprint arXiv:2411.09263*, 2024.
- [52] Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong, and Meng Wang. Practical detection of trojan neural networks: Data-limited and data-free cases. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIII 16, pages 222–238. Springer, 2020.
- [53] Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela, Debadeepta Dey,
 and Frank Hutter. Neural architecture search: Insights from 1000 papers. arXiv preprint arXiv:2301.08727,
 2023.
- Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sentence understanding through inference. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, pages 1112–1122. Association for Computational Linguistics, 2018. URL http://aclweb.org/anthology/N18–1101.
- [55] Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi Tomizuka,
 Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based image representation
 and processing for computer vision, 2020.
- 566 [56] Dongxian Wu and Yisen Wang. Adversarial neuron pruning purifies backdoored deep models.
 567 In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages 16913–16925. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
 570 8cbe9ce23f42628c98f80fa0fac8b19a-Paper.pdf.
- 571 [57] Dongxian Wu and Yisen Wang. Adversarial neuron pruning purifies backdoored deep models.
 572 In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages 16913–16925. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
 575 8cbe9ce23f42628c98f80fa0fac8b19a-Paper.pdf.

- [58] Tong Xu, Yiming Li, Yong Jiang, and Shu-Tao Xia. Batt: Backdoor attack with transformation-based triggers. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 1–5. IEEE, 2023.
- 579 [59] Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Resolving
 580 interference when merging models. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
 581 S. Levine, editors, Advances in Neural Information Processing Systems, volume 36, pages 7093–7115. Cur582 ran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
 583 file/1644c9af28ab7916874f6fd6228a9bcf-Paper-Conference.pdf.
- [60] Jinluan Yang, Anke Tang, Didi Zhu, Zhengyu Chen, Li Shen, and Fei Wu. Mitigating the backdoor effect
 for multi-task model merging via safety-aware subspace. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=dqMqAaw7Sq.
- 587 [61] Wenqian Ye, Guangtao Zheng, Xu Cao, Yunsheng Ma, and Aidong Zhang. Spurious correlations in machine learning: A survey. *arXiv preprint arXiv:2402.12715*, 2024.
- Biao Yi, Sishuo Chen, Yiming Li, Tong Li, Baolei Zhang, and Zheli Liu. BadActs: A universal backdoor defense in the activation space. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Findings of the Association for Computational Linguistics: ACL 2024, pages 5339–5352, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.317. URL https://aclanthology.org/2024.findings-acl.317/.
- [63] Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Absorbing
 abilities from homologous models as a free lunch. In Forty-first International Conference on Machine
 Learning, 2024. URL https://openreview.net/forum?id=fq0NaiU8Ex.
- 597 [64] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
 598 Cutmix: Regularization strategy to train strong classifiers with localizable features. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 6023–6032, 2019.
- 600 [65] Yi Zeng, Si Chen, Won Park, Zhuoqing Mao, Ming Jin, and Ruoxi Jia. Adversarial unlearning of 601 backdoors via implicit hypergradient. In *International Conference on Learning Representations*, 2022. 602 URL https://openreview.net/forum?id=MeeQkFYVbzW.
- 603 [66] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification.
 604 In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, *Advances in Neural Information*605 *Processing Systems*, volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.
 606 cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf.
- [67] Zhiyuan Zhang, Lingjuan Lyu, Xingjun Ma, Chenguang Wang, and Xu Sun. Fine-mixing: Mitigating backdoors in fine-tuned language models. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors,
 Findings of the Association for Computational Linguistics: EMNLP 2022, pages 355–372, Abu Dhabi,
 United Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/
 2022.findings-emnlp.26. URL https://aclanthology.org/2022.findings-emnlp.26.
- 612 [68] Xingyi Zhao, Depeng Xu, and Shuhan Yuan. Defense against backdoor attack on pre-trained language
 613 models via head pruning and attention normalization. In Ruslan Salakhutdinov, Zico Kolter, Katherine
 614 Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, *Proceedings of the*615 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
 616 Research, pages 61108–61120. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/
 617 v235/zhao24r.html.
- 618 [69] Xun Zhou, A. K. Qin, Maoguo Gong, and Kay Chen Tan. A survey on evolutionary construction of 619 deep neural networks. *IEEE Transactions on Evolutionary Computation*, 25(5):894–912, 2021. doi: 620 10.1109/TEVC.2021.3079985.

621 A Limitations

While our study demonstrates the effectiveness of Module-Switching Defense (MSD) across a range of classification tasks in NLP and CV, we identify two main limitations. First, our focus is restricted to classification-based settings. Backdoor attacks in generative models operate through notably different mechanisms, and extending MSD to such scenarios remains an important direction for future research. Second, our method is designed and evaluated primarily within Transformer-based architectures, which dominate current text and vision benchmarks. The applicability of MSD to other model families, such as convolutional neural networks (CNNs) or emerging architectures, is left for future exploration.

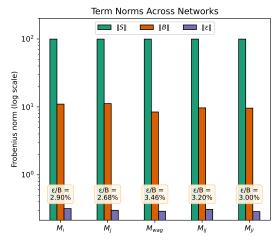
B Broader Impacts

This paper presents an efficient post-training defense against backdoor attacks on deep neural networks. By strategically combining model weight modules from either clean or compromised models, our approach disrupts backdoor propagation while preserving model utility. We demonstrated the usage of MSD to strengthen the security of machine learning models in both natural language processing and computer vision. All models and datasets used in this study are sourced from established open-source platforms. The discovered MSD templates will be released to facilitate further research on defense study. While we do not anticipate any direct negative societal consequences, we hope this work encourages further research into more robust defense mechanisms.

C Empirical validation of the second-order interaction magnitude

We empirically validate the condition adopted in Section 3, where the second-order interaction term $\epsilon = \Delta W_2 \Delta W_1$ is omitted due to its negligible magnitude relative to the first-order terms. This validation proceeds from three perspectives.

First, Figure 4 compares the Frobenius norms of the semantic term $S = W_2W_1$, the first-order adaptation term $B = W_2\Delta W_1 + \Delta W_2W_1$, and the second-order residual $\epsilon = \Delta W_2\Delta W_1$ across five derived networks. The left subfigure confirms that $\|\epsilon\|$ is consistently two orders of magnitude smaller than $\|S\|$ and well below 4% of $\|B\|$. The right subfigure further reveals that the element-wise values of ϵ concentrate tightly around zero, contrasting with the heavier tails of B and S.



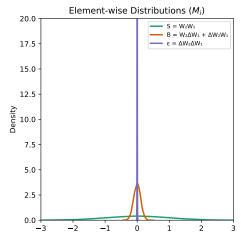


Figure 4: Frobenius norm and element-wise distribution of the semantic, first-order, and second-order terms across five network configurations. While the first-order term dominates the residual behavior, the second-order interaction $\epsilon = \Delta W_2 \Delta W_1$ remains negligible in both scale and distribution.

Second, Table 4 reports $\|\epsilon\|/\|B\|$ ratios across five network variants under varying backdoor strengths, where perturbations are sampled from zero-mean Gaussian noise with increasing variance. The inclusion of error bars (mean \pm standard deviation) reflects variation across multiple runs. In typical scenarios where the backdoor signal is weak or comparable to the main semantic component,

the second-order interaction consistently remains below 4% of the first-order term. Even under 652 exaggerated settings where the backdoor signal is scaled to $1.5\times$ or $2\times$ the semantic strength, $\|\epsilon\|/\|B\|$ remains within a stable range of 5\%-7\%, reaffirming the negligible and bounded nature of second-order interactions across regimes.

653

654

655

656

657

658

660

661

662

663

664

665

666

Table 4: Relative magnitude of second-order interactions, reported as $\|\varepsilon\|/\|B\|$, across networks and backdoor strengths. All models are evaluated with $S \sim \mathcal{N}(\mathbf{0}, 1)$ and perturbations $B \sim \mathcal{N}(\mathbf{0}, \sigma^2)$.

Semantic Dist	Backdoor Dist		$\ \varepsilon\ /\ oldsymbol{B}\ $ fo	r Different Sha	llow Models	
		\mathcal{M}^i	\mathcal{M}^j	\mathcal{M}^{wag}	\mathcal{M}^{ij}	\mathcal{M}^{ji}
	$\boldsymbol{B} \sim \mathcal{N}(\boldsymbol{0}, 0.1^2)$	2.82±0.19%	$2.70 \pm 0.20\%$	3.42±0.23%	$2.95{\pm}0.15\%$	3.14±0.21%
	$\boldsymbol{B} \sim \mathcal{N}(\boldsymbol{0}, 0.5^2)$	$1.98 \pm 0.21\%$	$1.90 \pm 0.28\%$	$1.78\pm0.18\%$	$1.75\pm0.12\%$	$1.76 \pm 0.18\%$
$S \sim \mathcal{N}(0, 1.0^2)$	$\boldsymbol{B} \sim \mathcal{N}(\boldsymbol{0}, 1.0^2)$	$3.24 \pm 0.22\%$	$3.10 \pm 0.32\%$	$2.33 \pm 0.17\%$	$2.33 \pm 0.12\%$	$2.30 \pm 0.17\%$
	$B \sim \mathcal{N}(0, 1.5^2)$	$4.77\pm0.25\%$	$4.48 \pm 0.33\%$	$3.18\pm0.14\%$	$3.09\pm0.15\%$	$2.97 \pm 0.12\%$
	$m{B} \sim \mathcal{N}(0, 2.0^2)$	$6.31 {\pm} 0.27\%$	$6.28{\pm}0.35\%$	$4.14{\pm}0.29\%$	$4.06{\pm}0.14\%$	$3.92{\pm}0.18\%$

Additionally, we extend this analysis to deep transformer-based [48] models by computing $\|\epsilon\|/\|B\|$ for the attention weight product, where W_1 and W_2 denote the key (K) and query (Q) projection matrices, respectively, and $QK^{\top} := W_2W_1$. The weight changes ΔW_1 , ΔW_2 are computed relative to the original pretrained RoBERTa-large [32] weights. All models are trained on SST-2 [43], including both benign and backdoored variants such as BadNet [22], InsertSent [7], learnable word substitution (LWS) [40], and Hidden-Killer (Hidden) [38].

As shown in Table 5, across all pairwise combinations of these models, the relative magnitude of second-order interactions consistently remains below 4%. Each reported value reflects the mean and standard deviation computed across all 24 layers of RoBERTa-large. This pattern holds across both original and recombined variants ($\mathcal{M}^{\text{wag}}, \mathcal{M}^{ij}, \mathcal{M}^{ji}$), confirming the stability of second-order contributions in practical transformer settings.

Table 5: Relative magnitude of second-order interactions, reported as $\|\varepsilon\|/\|B\|$, computed from the key (K) and query (Q) projection matrices in RoBERTa-large models trained on SST-2.

Combination	$\ arepsilon\ /\ oldsymbol{B}\ $ for	Attention Weig	ght Product (Q	K^T) in <i>RoBER</i>	Ta-large Models
$(\mathcal{M}^i + \mathcal{M}^j)$	$\overline{\mathcal{M}^i}$	\mathcal{M}^j	\mathcal{M}^{wag}	\mathcal{M}^{ij}	\mathcal{M}^{ji}
BadNet + InsertSent	3.53±0.77%	3.24±0.61%	2.43±0.39%	2.68±0.51%	$2.61{\pm}0.50\%$
BadNet + LWS	$3.53\pm0.77\%$	$3.30 \pm 0.65\%$	$2.46 \pm 0.4\%$	$2.71\pm0.46\%$	$2.68 \pm 0.49\%$
BadNet + Hidden	$3.53\pm0.77\%$	$3.30 \pm 0.61\%$	$2.49 \pm 0.43\%$	$2.77 \pm 0.45\%$	$2.72 \pm 0.45\%$
BadNet + Benign	$3.53{\pm}0.77\%$	$3.27{\pm}0.58\%$	$2.52{\pm}0.42\%$	$2.78 \pm 0.47\%$	$2.73 \pm 0.48\%$

Accordingly, we omit the second-order term ϵ in our definitions and proofs throughout the paper without loss of generality.

D **Proofs of Theorem 1 and Proposition 1** 669

- **Theorem 1** (Module Switching Exceeds WAG in Backdoor Divergence). *Under identity activation*, 670
- the total backdoor divergence of the Weight-Averaged (WAG) model is upper bounded by the average 671
- divergence of the switched models: 672

$$\|\mathcal{D}^{\text{wag},i}\| + \|\mathcal{D}^{\text{wag},j}\| \le \frac{1}{2} \left(\|\mathcal{D}^{ij,i}\| + \|\mathcal{D}^{ij,j}\| + \|\mathcal{D}^{ji,i}\| + \|\mathcal{D}^{ji,j}\| \right). \tag{2}$$

Proposition 1 (The Existence of a More Divergent Switched Model). Given Theorem 1, there is at least one switched model with greater backdoor divergence than Weight-Averaged (WAG) model: 674

$$\|\mathcal{D}^{\text{wag},i}\| + \|\mathcal{D}^{\text{wag},j}\| \le \max \Big\{ \|\mathcal{D}^{ij,i}\| + \|\mathcal{D}^{ij,j}\|, \ \|\mathcal{D}^{ji,i}\| + \|\mathcal{D}^{ji,j}\| \Big\}.$$
(3)

Proof. From Definition 2 and 4, we have the following expressions for the backdoor divergences:

$$\|\mathcal{D}^{\text{wag},i}\| = \frac{1}{2} \left\| \left(\mathbf{W}_{2} (\Delta \mathbf{W}_{1}^{j} - \Delta \mathbf{W}_{1}^{i}) + (\Delta \mathbf{W}_{2}^{j} - \Delta \mathbf{W}_{2}^{i}) \mathbf{W}_{1} \right) \mathbf{x} \right\|,$$

$$\|\mathcal{D}^{\text{wag},j}\| = \frac{1}{2} \left\| \left(\mathbf{W}_{2} (\Delta \mathbf{W}_{1}^{i} - \Delta \mathbf{W}_{1}^{j}) + (\Delta \mathbf{W}_{2}^{i} - \Delta \mathbf{W}_{2}^{j}) \mathbf{W}_{1} \right) \mathbf{x} \right\|,$$

$$\|\mathcal{D}^{ij,i}\| = \left\| (\Delta \mathbf{W}_{2}^{j} - \Delta \mathbf{W}_{2}^{i}) \mathbf{W}_{1} \mathbf{x} \right\|, \quad \|\mathcal{D}^{ij,j}\| = \left\| \mathbf{W}_{2} (\Delta \mathbf{W}_{1}^{i} - \Delta \mathbf{W}_{1}^{j}) \mathbf{x} \right\|,$$

$$\|\mathcal{D}^{ji,i}\| = \left\| \mathbf{W}_{2} (\Delta \mathbf{W}_{1}^{j} - \Delta \mathbf{W}_{1}^{i}) \mathbf{x} \right\|, \quad \|\mathcal{D}^{ji,j}\| = \left\| (\Delta \mathbf{W}_{2}^{i} - \Delta \mathbf{W}_{2}^{j}) \mathbf{W}_{1} \mathbf{x} \right\|.$$

$$(5)$$

Linear relationships. By regrouping terms in the above definitions, we obtain the following vector 676 identities: 677

$$\mathcal{D}^{\text{wag},i} = \frac{1}{2} (\mathcal{D}^{ij,i} + \mathcal{D}^{ji,i}), \qquad \mathcal{D}^{\text{wag},j} = \frac{1}{2} (\mathcal{D}^{ij,j} + \mathcal{D}^{ji,j}). \tag{6}$$

Bounding the average switched model backdoor divergence. Substituting equation 6 into the norms and applying the triangle inequality [47], we have:

$$\|\mathcal{D}^{\text{wag},i}\| = \|\frac{1}{2}(\mathcal{D}^{ij,i} + \mathcal{D}^{ji,i})\| \le \frac{1}{2}(\|\mathcal{D}^{ij,i}\| + \|\mathcal{D}^{ji,i}\|),$$
 (7)

$$\|\mathcal{D}^{\text{wag},j}\| = \|\frac{1}{2}(\mathcal{D}^{ij,j} + \mathcal{D}^{ji,j})\| \le \frac{1}{2}(\|\mathcal{D}^{ij,j}\| + \|\mathcal{D}^{ji,j}\|).$$
 (8)

Summing both inequalities gives: 681

$$\|\mathcal{D}^{\text{wag},i}\| + \|\mathcal{D}^{\text{wag},j}\| \le \frac{1}{2} \left(\|\mathcal{D}^{ij,i}\| + \|\mathcal{D}^{ji,i}\| + \|\mathcal{D}^{ij,j}\| + \|\mathcal{D}^{ji,j}\| \right), \tag{9}$$

which proves Theorem 1. 682

680

Bounding the maximum switched model backdoor divergence. Let: 683

$$C_1 := \|\mathcal{D}^{ij,i}\| + \|\mathcal{D}^{ij,j}\|, \qquad C_2 := \|\mathcal{D}^{ji,i}\| + \|\mathcal{D}^{ji,j}\|, \qquad G := \max\{C_1, C_2\}.$$
 (10)

Since $C_1 + C_2 \le 2G$, it follows that: 684

$$\|\mathcal{D}^{\text{wag},i}\| + \|\mathcal{D}^{\text{wag},j}\| \le \frac{1}{2}(C_1 + C_2) \le \max\{C_1, C_2\},$$
 (11)

which proves Proposition 1. 685

Module Switching with Additional Activation Functions

- We extend the experiments from Section 3 to two additional activation functions: tanh and sigmoid [9], 687
- in addition to the *linear* and *ReLU* results discussed in the main text. For each activation, we 688
- simulate 1000 pairs of *fine-tuned* models \mathcal{M}^i and \mathcal{M}^j with a shared pretrained semantic component 689
- $S \sim \mathcal{N}(\mathbf{0}, 1^2)$ and individual backdoor shifts $B^* \sim \mathcal{N}(\mathbf{0}, 0.1^2)$. We then construct the weight-averaged model \mathcal{M}^{wag} and the module-switched models \mathcal{M}^{ij} and \mathcal{M}^{ji} , as defined in Definitions 1 690
- 691
- 692

686

- Figure 5 visualizes the semantic and backdoor alignment of each model type across the four activation 693
- functions. Consistently across activations, we observe that:

- Fine-tuned models remain closely aligned with their respective backdoor direction B^*x ;
- WAG models deviate more from the backdoor pattern;

695

696

697

698

699

700

701

702

703

- Switched models exhibit the larger distance to backdoor patterns, indicating stronger mitigation;
- All model types maintain proximity to the semantic output Sx, confirming that semantic information is preserved.

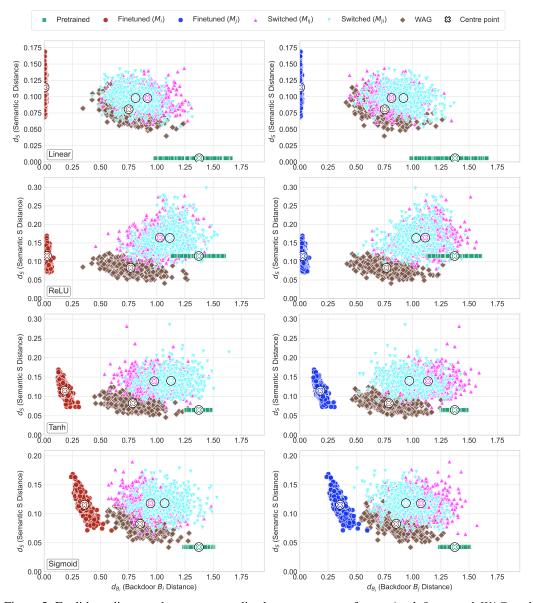


Figure 5: Euclidean distances between normalized output vectors of *pretrained*, *fine-tuned*, *WAG*, and *switched* networks, relative to semantic output Sx and backdoor output B^*x , under *linear*, *ReLU*, *tanh*, and *sigmoid* activations.

These results generalize the findings in Figure 2 to a broader range of nonlinear activations, reinforcing the conclusion that module switching more effectively disrupts backdoor behavior while retaining semantic utility.

04 F Fitness Score Calculation for Evolutionary Search

Building upon the heuristic rules established in Section 4.2 for disrupting backdoor connections in compromised models, we develop a comprehensive fitness function. This function incorporates five key components that collectively evaluate the quality of a module composition strategy.

708 F.1 Heuristic Rules

710

711

712

713

714

715

716

717

718

719

720

709 Our fitness function implements the following rules through penalties and rewards:

- Intra-layer adjacency penalty: Penalizes adjacent modules from the same source model within a specific layer i (e.g., Q_i and K_i).
- Consecutive-layer adjacency penalty: Discourages direct connections between modules from the same source model across consecutive layers i and i + 1 (e.g., P_i to Q_{i+1}).
- **Residual-path adjacency penalty**: Applies a distance-weighted penalty to modules from the same source model connected via residual connections between layers i and j (e.g., O_i to Q_j , where j > i), with diminishing impact as j i increases.
- Balance penalty: Promotes uniform distribution of modules $\{Q, K, V, O, I, P\}$ across source models to prevent any single model from dominating the architecture.
- Diversity reward: Encourages varied module combinations across layers to enhance architectural diversity.

721 F.2 Mathematical Formulation

As introduced in Section 4.3, the total fitness score for a given module composition strategy s is:

$$F(s) = -\lambda_1 A_{\text{intra}}(s) - \lambda_2 A_{\text{cons}}(s) - \lambda_3 A_{\text{res}}(s) - \lambda_4 B_{\text{bal}}(s) + \lambda_5 R_{\text{div}}(s), \tag{12}$$

- where all λ_k are weight factors (default to 1.0) that control the relative importance of each component in the overall fitness score.
- Each component is calculated as follows:

1. Intra-layer Adjacency $(A_{intra}(s))$

$$A_{\text{intra}}(s) = -\sum_{l=1}^{|s|} \text{INTRAVIOLATION}(s[l])$$
 (13)

Here, INTRAVIOLATION quantifies the number of adjacent module pairs from the same source model within layer s[l].

2. Consecutive-layer Adjacency $(A_{cons}(s))$

$$A_{\text{cons}}(s) = -\sum_{l=1}^{|s|-1} \text{ConsecViolation}(s[l], s[l+1])$$
(14)

The function CONSECVIOLATION counts module pairs from the same source model that are directly connected between consecutive layers.

3. Residual Connections $(A_{res}(s))$

$$A_{\text{res}}(s) = -\sum_{l=1}^{|s|} \sum_{k=l+1}^{|s|} \text{RESIDUALVIOLATION}(s[l], s[k]) \times (0.5)^{k-l}$$

$$\tag{15}$$

This term evaluates residual connections between layers s[l] and s[k], with RESIDUALVIOLATION weighted by $(0.5)^{k-l}$ to reduce the impact of long-range connections.

4. Module Balance $(B_{bal}(s))$

$$B_{\text{bal}}(s) = -\sum_{i=1}^{n_{\text{models}}} \sum_{m \in \mathcal{M}} |\text{count}_{i,m} - \text{count}_{\text{ideal}}|$$
 (16)

where $\operatorname{count}_{i,m}$ is the count of module type m from model $i, M = \{Q, K, V, O, I, P\}$ is the set of module types, and $\operatorname{count}_{\operatorname{ideal}} = |s|/n_{\operatorname{models}}$ represents the ideal count per module type per model.

5. Layer Diversity $(R_{\rm div}(s))$

$$R_{\text{div}}(s) = |\text{unique}(s)| \tag{17}$$

where unique(s) is the set of unique layer compositions in strategy s.

735 G Additional Experiment Setup

736 G.1 Dataset Statistics

We evaluate our method on four text and two vision datasets. The statistics of each dataset and the settings of backdoor target class are shown in Table 6.

Table 6: The statistics of the evaluated text and vision datasets.

Domain	Dataset	Classes	Train	To	est	Target Class
Domain	Butuset	Classes	114111	Clean	Poison	inigot class
	SST-2	2	67,349	872	444	Negative (0)
Text	MNLI	3	100,000	400	285	Neutral (1)
	AGNews	4	120,000	7,600	5,700	Sports (1)
Vision	CIFAR-10	10	50,000	10,000	9,000	Automobile (1)
	TinyImageNet	200	100,000	10,000	9,950	European Fire Salamander (1)

G.2 Dataset Licenses

We evaluate our method on the following datasets: **SST-2** [43], **MNLI** [54], **AG News** [66], **CIFAR-10** [21], and **TinyImageNet** [23].

The **MNLI** dataset is released under the Open American National Corpus (OANC) license, which permits free use, as stated in the original paper [54]. The **AG News** dataset is distributed with a disclaimer stating it is provided "as is" without warranties and does not impose explicit restrictions on academic use. No public licensing information was found for **SST-2**, **CIFAR-10**, or **TinyImageNet**. We use all datasets solely for academic, non-commercial research purposes, in accordance with standard practice in the machine learning community.

748 G.3 Defense Baselines

752

753

754

755

756

757

758 759

760

761

762

763

764

765

We evaluate seven defensive approaches across text and vision domains: three model-merging techniques common to both domains, plus two domain-specific data purification methods for each—one applied during training and another during inference.

The three model-merging methods are: (1) **TIES** [59], (2) **DARE** [63], and (3) **WAG** [2]. These methods are chosen because they are applicable to both text and vision domains, do not rely on assumptions about backdoor priors, and eliminate the need for large-scale proxy clean or compromised data used for model purification or retraining. Their alignment with our setting makes them suitable for comparison. For conventional baselines, we use **Z-Def.** [17] and **ONION** [37] in the text domain, which detect outlier trigger words during training and testing, respectively. For the vision domain, we select **CutMix** [64] and **ShrinkPad** [27]. CutMix mitigates backdoor attacks by mixing image patches, disrupting the spatial integrity of triggers. ShrinkPad defends by shrinking the image and padding it, altering trigger placement, and reducing its effectiveness. For the vision domain, we use the BackdoorBox toolkit [28] to apply these defenses. Specifically, for CutMix, we use 30 epochs to repair the model. While these well-established methods are representative in terms of usage and performance, their dependence on data access may limit practicality in some scenarios. All baseline methods use their open-source codebases with default hyperparameters.

G.4 Experiment Resources

We conduct the model training and module switching experiments using three seeds on a single Nvidia A100 GPU, reporting the average performance. We run the evolutionary search for 2,000,000 generations on a CPU, which takes six hours for a given merging configuration (*e.g.*, two models with 24 layers and six modules per layer). This search only needs to be performed once, as the discovered strategy can serve as an artifact that applies to all future combinations of the same architecture.

¹http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

H Additional results

H.1 Overall Defense Performance for Textual Backdoor Attacks

Due to space constraints, we present comprehensive experimental results for three datasets (**SST-2**, **MNLI**, and **AG News**) in Table 7, Table 8, and Table 9. All experiments follow the controlled settings described in Section 5.1, utilizing *RoBERTa-large* as the victim model, with results averaged across three random seeds.

We observe that our method yields decent performance on the SST-2 dataset: it achieves top performance in 8 out of 10 attack combinations, with the remaining 2 combinations ranking second best. In cases where our method ranks first, it significantly outperforms baseline approaches. For instance, when combining BadNet with LWS attacks, our method achieves an average ASR score 21% lower than the second-best defense method. Moreover, our method consistently achieves the lowest individual ASR scores across both attacks in most combinations, highlighting its effectiveness in simultaneously mitigating multiple threats when merging compromised models.

Even in scenarios where our method ranks second, it maintains comparable defense performance to the top-performing approach. Furthermore, when combining clean models with compromised ones, our method demonstrates strong resistance against malicious attack injection, as evidenced by the lowest ASR scores. Notably, our method maintains good utility preservation across all combinations, showing minimal impact to the model performance.

Table 7: Performance comparison on the **SST-2** dataset using the *RoBERTa-large* model.

Defense	CACC	BadNet	Insert	LWS	Hidden	AVG.	Defense	CACC	BadNet	Insert	LWS	Hidden	AVG.
Benign	95.9	4.1	2.2	12.8	16.5	8.9	Z-Def	95.6*	4.6	1.8	97.3	35.7	34.9
Victim	95.9*	100.0	100.0	98.0	96.5	98.6	ONION	92.8*	56.8	99.9	85.7	92.9	83.8
	Con	nbined: Bo	ıdNet + I	InsertSei	ıt			Co	ombined: I	nsertSen	t + LWS		
WAG	96.3	56.3	7.4	-	-	31.9	WAG	96.1	_	15.1	43.3	-	29.2
TIES	95.9	88.7	17.0	-	-	52.9	TIES	96.1	-	35.8	64.9	-	50.3
DARE	96.5	57.8	36.3	-	-	47.1	DARE	96.4	-	44.4	31.5	-	37.9
Ours	96.2	36.9	7.1	-	-	22.0	Ours	96.0	-	11.9	39.7	-	25.8
	(Combined:	BadNet	+ LWS				Combi	ined: Inser	tSent + I	IiddenK	iller	
WAG	96.2	74.0	-	50.3	-	62.2	WAG	96.3	-	12.5	-	28.5	20.5
TIES	95.9	88.1	-	66.1	-	77.1	TIES	95.9	-	37.5	-	39.0	38.3
DARE	96.2	60.4	-	62.5	-	61.4	DARE	96.6	-	38.7	-	29.1	33.9
Ours	96.0	41.7	-	39.0	-	40.4	Ours	95.8	-	10.1	-	28.7	19.4
	Comi	bined: Baa	Net + H	iddenKil	ler -			Con	nbined: LV	VS + Hid	denKille	er .	
WAG	96.1	63.9	-	-	29.0	46.4	WAG	96.4	-	-	60.5	41.7	51.1
TIES	96.0	90.4	-	-	36.9	63.6	TIES	96.0	-	-	77.8	55.8	66.8
DARE	96.7	36.3	-	-	47.6	41.9	DARE	96.7	-	-	67.7	43.3	55.5
Ours	96.1	40.5	-	-	27.7	34.1	Ours	96.0	-	-	58.6	47.2	52.9
	Co	ombined: I	Benign +	BadNet				(Combined:	Benign	+ LWS		
WAG	96.1	39.3	-	-	-	39.3	WAG	96.1	-	_	43.3	-	43.3
TIES	95.7	69.2	-	-	-	69.2	TIES	95.8	-	-	60.7	-	60.7
DARE	96.4	43.2	-	-	-	43.2	DARE	96.6	-	-	72.3	-	72.3
Ours	96.1	12.2	-	-	-	12.2	Ours	95.9	-	-	39.0	-	39.0
	Cor	mbined: Be	enign + I	nsertSer	ıt			Com	bined: Ben	ign + Hi	ddenKil	ler	
WAG	96.1	-	5.5	-	-	5.5	WAG	96.0	-	-	-	24.9	24.9
TIES	96.1	-	9.0	-	-	9.0	TIES	96.1	-	-	-	30.0	30.0
DARE	96.6	-	4.7	-	-	4.7	DARE	96.7	-	-	-	38.2	38.2
Ours	96.1	-	4.1	-	-	4.1	Ours	96.0	-	-	-	25.5	25.5

For the results of **MNLI** dataset Table 8, our method demonstrates more balanced and robust defense performance across different attack combinations. While DARE occasionally achieves lower ASR on individual attacks (*e.g.*, 11.6% ASR for BadNet in BadNet+InsertSent combination), it shows significant vulnerability to the other attack type (90.6% ASR for InsertSent), indicating potential risks when merging with new models. In contrast, our method maintains consistently lower average ASRs across various combinations (*e.g.*, 23.7% for BadNet+InsertSent, 43.7% for InsertSent+LWS, and 40.2% for InsertSent+Hidden), demonstrating its effectiveness in simultaneously defending against multiple attack types.

For the results of **AG NEWS** dataset Table 9, we observe a similar pattern, where our method provides more balanced defense capabilities. Notably, for the InsertSent+LWS combination, while DARE

achieves a low ASR of 1.2% on LWS, it remains highly vulnerable to InsertSent attacks (99.6% ASR). In contrast, our method maintains consistently lower ASRs for both attacks (9.5% and 16.7%), resulting in a better average performance of 13.1%.

Table 8: Performance comparison on the MNLI dataset using the RoBERTa-large model.

Defense	CACC	BadNet	Insert	LWS	Hidden	AVG.	Defense	CACC	BadNet	Insert	LWS	Hidden	AVG.	
Benign	87.6	12.3	12.6	26.4	36.9	22.1	Z-Def	89.2*	11.1	11.6	92.2	50.6	41.4	
Victim	89.5*	100.0	100.0	96.0	99.9	99.0	ONION	86.3*	64.3	98.6	89.0	98.8	87.7	
	Con	nbined: Ba	ıdNet + I	nsertSer	ıt		Combined: InsertSent + LWS							
WAG	90.3	39.8	27.6	-	-	33.7	WAG	90.6	-	36.1	62.6	-	49.4	
TIES	90.3	73.6	56.1	-	-	64.9	TIES	90.3	-	60.0	65.3	-	62.7	
DARE	91.3	11.6	90.6	-	-	51.1	DARE	91.4	-	88.8	40.2	-	64.5	
Ours	90.5	24.8	22.5	-	-	23.7	Ours	91.0	-	24.8	62.5	-	43.7	
	(Combined:	BadNet	+ LWS				Cor	nbined: In	sertSent	+ Hidde	n		
WAG	89.8	59.3	-	69.3	-	64.3	WAG	91.5	-	36.6	-	46.9	41.8	
TIES	90.0	87.3	-	73.1	-	80.2	TIES	90.9	-	65.1	-	55.2	60.2	
DARE	90.5	71.7	-	56.4	-	64.1	DARE	91.8	-	90.8	-	40.2	65.5	
Ours	90.1	45.1	-	68.9	-	57.0	Ours	91.1	-	24.3	-	56.1	40.2	
	Co	ombined: E	BadNet +	Hidden			Combined: LWS + Hidden							
WAG	89.9	61.6	-	-	51.7	56.7	WAG	89.8	-	-	70.2	55.1	62.7	
TIES	90.0	89.4	-	-	64.0	76.7	TIES	90.1	-	-	73.8	59.1	66.5	
DARE	90.9	33.4	-	-	81.8	57.6	DARE	91.0	-	-	41.5	88.7	65.1	
Ours	90.2	32.5	-	-	59.3	45.9	Ours	89.9	-	-	70.3	57.3	63.8	
	Ce	ombined: I	Benign +	BadNet				(Combined:	LWS + I	Benign			
WAG	90.2	47.8	-	-	-	47.8	WAG	89.0	-	-	65.6	-	65.6	
TIES	89.8	64.9	-	-	-	64.9	TIES	89.8	-	-	69.3	-	69.3	
DARE	91.0	41.8	-	-	-	41.8	DARE	90.1	-	-	48.9	-	48.9	
Ours	90.1	43.3	-	-	-	43.3	Ours	89.3	-	-	64.1	-	64.1	
	Cor	nbined: In	sertSent	+ Benig	n			C	ombined: I	Hidden +	Benign			
WAG	90.4	-	23.2	-	-	23.2	WAG	90.3	-	-	-	47.0	47.0	
TIES	90.4	-	40.6	-	-	40.6	TIES	89.8	-	-	-	54.3	54.3	
DARE	91.3	-	42.3	-	-	42.3	DARE	90.9	-	-	-	63.3	63.3	
Ours	90.5		18.3	-	-	18.3	Ours	89.4		-		47.9	47.9	

H.2 Overall Defense Performance for Vision Backdoor Attacks

We present the full results for the **CIFAR-10** and **TinyImageNet** datasets with the ViT model in Table 10 and Table 11, respectively.

While most methods achieve relatively low ASRs for many attack types, our approach is particularly effective against stealthier attacks like PhysicalBA. This is most evident in the BadNet+PhysicalBA combination, where our method reduces the ASR to 18.5% for both attacks while maintaining a high clean accuracy of 98.7% in CIFAR-10 dataset. These results highlight our method's strength in defending against more sophisticated visual backdoor attacks.

H.3 Fitness Score Comparison of Different Strategy

We investigate the defense performance using two different evolutionary search strategies, with and without early stopping, as illustrated in Figure 7 and 6, and present their fitness score breakdown in Table 12. The early stopping criterion terminates the search when no improvement in fitness score is observed over 100,000 iterations. We observe a positive correlation between the fitness score and defense performance: the adopted strategy without early stopping achieves a lower fitness score and reduces the ASR by 27.2%. By examining the score breakdowns and the visualized combinations, we attribute this improvement to fewer violations of residual connection rules in the adopted strategy, which helps disrupt subtle spurious correlations more effectively.

H.4 Results of Candidate Selection

As our method asymmetrically allocates modules to models, a set of candidates is generated, for which we design a selection method illustrated in Section 4.4. While the chosen candidate consistently performs well, we analyze unselected candidates' performance, as shown in Table 13. Our selection method correctly identifies the best candidates in most cases, outperforming alternatives by

Table 9: Performance comparison on the AG NEWS dataset using the RoBERTa-large model.

Defense	CACC	BadNet	Insert	LWS	Hidden	AVG.	Defense	CACC	BadNet	Insert	LWS	Hidden	AVG.	
Benign	95.4	1.9	0.5	0.5	1.1	1.0	Z-Def	95.4*	1.6	0.4	97.9	100.0	50.0	
Victim	95.0*	99.9	99.6	99.6	100.0	99.8	ONION	92.3*	59.4	97.8	84.8	99.6	85.4	
	Con	nbined: Bo	adNet + I	InsertSer	ıt		Combined: InsertSent + LWS							
WAG	95.4	75.2	60.2	-	-	67.7	WAG	95.2	-	39.5	17.8	-	28.7	
TIES	95.3	92.4	95.6	-	-	94.0	TIES	95.1	-	90.5	55.7	-	73.1	
DARE	95.6	33.7	66.6	-	-	50.1	DARE	95.4	-	99.6	1.2	-	50.4	
Ours	95.3	72.3	42.5	-	-	57.4	Ours	95.1	-	9.5	16.7	-	13.1	
	(Combined:	BadNet	+ LWS				Cor	nbined: In	sertSent	+ Hidde	rn		
WAG	95.2	76.1	-	28.1	-	52.1	WAG	95.4	-	61.4	-	43.6	52.5	
TIES	95.1	95.6	-	64.4	-	80.0	TIES	95.3	-	93.4	-	75.3	84.4	
DARE	95.4	99.3	-	3.5	-	51.4	DARE	95.5	-	84.0	-	15.8	49.9	
Ours	95.2	75.8	-	26.0	-	50.9	Ours	95.3	-	41.7	-	47.5	44.6	
	Co	mbined: I	BadNet +	Hidden			Combined: LWS + Hidden							
WAG	95.2	73.2	-	-	37.2	55.2	WAG	95.1	-	_	31.7	62.6	47.2	
TIES	95.3	91.9	-	-	71.9	81.9	TIES	95.1	-	-	67.5	92.2	79.9	
DARE	95.4	66.7	-	-	40.4	53.6	DARE	95.3	-	-	2.5	99.9	51.2	
Ours	95.2	56.5	-	-	38.1	47.3	Ours	95.2	-	-	33.5	60.5	47.0	
	Co	ombined: I	Benign +	BadNet				(Combined:	Benign	+ LWS			
WAG	95.4	65.4	-	-	-	65.4	WAG	95.2	-	-	14.0	-	14.0	
TIES	95.4	87.4	-	-	-	87.4	TIES	95.2	-	-	47.1	-	47.1	
DARE	95.6	33.6	-	-	-	33.6	DARE	95.6	-	-	2.6	-	2.6	
Ours	95.4	46.4	-	-	-	46.4	Ours	95.2	-	-	15.7	-	15.7	
	Combined: Benign + InsertSent							C	ombined: I	Benign +	Hidden			
WAG	95.4	-	56.6	-	-	56.6	WAG	95.3	-	-	-	36.4	36.4	
TIES	95.3	-	93.2	-	-	93.2	TIES	95.3	-	-	-	68.8	68.8	
DARE	95.6	-	3.1	-	-	3.1	DARE	95.5	-	-	-	7.4	7.4	
Ours	95.3	-	16.6	-	-	16.6	Ours	95.3	-	-	-	48.0	48.0	

a significant margin. Although some unselected candidates achieve a lower ASR in certain cases, our selected candidate maintains comparable performance.

H.5 Importance of Heuristic Rules

We introduce five heuristic rules in Section 4.2 to guide the evolutionary search for module switching strategies. To assess the contribution of each rule, we perform ablation experiments by individually removing the first three rules, which aim to disconnect adjacent modules at different structural levels, and measure the resulting defense performance under three settings. As shown in Table 14, removing any of these rules generally leads to performance degradation, supporting the complementary nature of the full rule set. We further visualize the searched strategies resulting from each ablation in Figures 8 to 10.

834 H.6 Generalization across Model Architectures

We evaluate our method across three model architectures—RoBERTa-large, BERT-large, and DeBERTa-v3-large—under three backdoor settings. As shown in Table 15, our defense consistently achieves lower ASR compared to the baseline WAG across all models. Notably, we apply the same unified searched strategy (presented in Figure 6) to all architectures, demonstrating the strong generalization and transferability of our method. This supports its scalability and practicality in real-world applications.

H.7 Minimum Clean Data Requirement

By default, we use 50 clean data points per class to guide the candidate selection process (as described in Section 4.4). To further investigate the minimum clean data required for effective defense, we reduce this to 20 samples per class across all three model architectures on SST-2. As shown in Table 15, our approach continues to select candidates with low ASR even under this constrained setting. These results indicate that the method remains effective in low-resource scenarios with limited clean supervision.

Table 10: Performance comparison on the CIFAR-10 dataset using the ViT model.

Defense	CACC	BadNet	WaNet	BATT	PBA	AVG.	Defense	CACC	BadNet	WaNet	BATT	PBA	AVG.	
Benign	98.8	10.1	10.2	7.7	10.1	9.5	CutMix	97.7*	87.1	70.6	99.9	64.9	80.6	
Victim	98.5*	96.3	84.7	99.9	89.4	92.6	ShrinkPad	97.3*	14.4	51.3	99.9	88.3	63.5	
	Co	ombined: I	BadNet +	WaNet			Combined: WaNet + BATT							
WAG	98.7	13.8	10.6	-	-	12.2	WAG	98.7	-	10.2	22.3	-	16.3	
TIES	98.6	11.9	10.6	-	-	11.3	TIES	98.9	-	10.2	23.9	-	17.0	
DARE	98.8	83.3	10.2	-	-	46.7	DARE	98.9	-	10.2	45.8	-	28.0	
Ours	98.7	12.3	10.5	-	-	11.4	Ours	98.7	-	10.3	19.1	-	14.7	
	C	ombined:	BadNet +	BATT				Comi	bined: Wal	Vet + Phys	sicalBA			
WAG	98.9	10.1	-	42.7	-	26.4	WAG	98.8	-	10.2	-	10.2	10.2	
TIES	98.9	10.1	-	55.8	-	33.0	TIES	98.9	-	10.1	-	10.3	10.2	
DARE	99.0	69.2	-	26.8	-	48.0	DARE	98.9	-	10.1	-	21.0	15.6	
Ours	98.7	10.2	-	32.6	-	21.4	Ours	98.7	-	10.3	-	10.2	10.2	
	Com	bined: Bad	dNet + Ph	ysicalBA			Combined: BATT + PhysicalBA							
WAG	99.0	39.5	-	-	39.5	39.5	WAG	98.9	-	-	26.8	10.0	18.4	
TIES	98.9	43.1	-	-	43.1	43.1	TIES	98.7	-	-	23.4	10.0	16.7	
DARE	99.0	72.2	-	-	72.2	72.2	DARE	98.9	-	-	23.0	10.1	16.5	
Ours	98.7	18.5	-	-	18.4	18.5	Ours	98.8	-	-	9.8	10.0	9.9	
	Ca	mbined: E	Benign + E	BadNet				Со	mbined: B	enign + W	/aNet			
WAG	98.8	19.4	-	-	-	19.4	WAG	98.9	-	10.2	-	-	10.2	
TIES	98.8	10.2	-	-	-	10.2	TIES	98.6	-	10.3	-	-	10.3	
DARE	98.8	10.3	-	-	-	10.3	DARE	98.8	-	10.2	-	-	10.2	
Ours	98.7	10.3	-	-	-	10.3	Ours	98.7	-	10.3	-	-	10.3	
	Combined: Benign + BATT							Coml	oined: Ben	ign + Phy	sicalBA			
WAG	98.8	-	-	19.4	-	19.4	WAG	99.0	-	-	-	10.1	10.1	
TIES	98.8	-	-	23.4	-	23.4	TIES	98.8	-	-	-	10.2	10.2	
DARE	99.0	-	-	28.2	-	28.2	DARE	99.9	-	-	-	10.1	10.1	
Ours	98.8	-	-	15.8	-	15.8	Ours	98.9	-	-	-	10.1	10.1	

Table 11: Performance comparison on the **TinyImageNet** dataset using the *ViT* model.

Defense	CACC	BadNet	WaNet	BATT	PBA	AVG.
Benign	89.1	0.51	0.01	0.04	0.03	0.15
Victim	85.8*	97.8	98.9	100.0	90.0	96.6
	Co	ombined: I	BadNet +	WaNet		
WAG	88.2	11.7	5.5	-	-	8.6
Ours	84.2	0.6	0.2	-	-	0.4
	C	ombined: I	BadNet +	BATT		
WAG	87.3	0.11	-	0.15	-	0.13
Ours	86.8	0.03	-	0.07	-	0.05
	Com	bined: Bad	dNet + Ph	ysicalBA		
WAG	88.5	58.5	-	-	35.9	47.2
Ours	84.8	48.2	-	-	29.1	38.7

847 H.8 Performance under Varying Poisoning Rates

We further evaluate the robustness of our method under varying poisoning rates (20%, 10%, and 1%)

on SST-2 dataset using the *RoBERTa-large* model. As shown in Table 16, our method consistently

achieves lower ASR than WAG across settings that combine models poisoned with different attack

methods and poisoning ratios.

Table 12: Comparison of strategy fitness scores and performance in combining *Benign* with *BadNet* model.

Early Stopping Strate	gy	Adopted Strategy						
Fitt	ness Score	Components						
Intra Layer Score	-42.00	Intra Layer Score	-48.00					
Inter Layer Score	-21.00	Inter Layer Score	-15.00					
Residual Connection Score	-48.24	Residual Connection Score	-24.02					
Balance Score	0.00	Balance Score	0.00					
Diversity Score	17.00	Diversity Score	12.00					
Total Score	-94.24	Total Score	-75.01					
1	Performan	ce Metrics						
CACC (†) 96.70 CACC (†)								
ASR (↓)	39.40	ASR (↓)	12.20					

Table 13: Performance comparison of selected and unselected candidates on SST-2.

	Selectio	n candidate	Unselect	ed candidate	Overall	WAG	
Setting	CACC (†)	AVG. ASR	CACC (†)	AVG. ASR (↓)	Mean ASR (\(\psi\)	Mean ASR (\(\psi \)	
BadNet+InsertSent	96.2	22.0	96.5	31.2	26.6	31.9	
BadNet+LWS	96.0	40.4	95.9	72.4	56.4	62.2	
BadNet+Hidden	96.1	34.1	96.0	48.5	41.3	46.5	
InsertSent+LWS	96.0	25.8	96.0	30.3	28.1	29.2	
InsertSent+Hidden	95.8	19.4	96.1	19.2	19.3	20.5	
LWS+Hidden	96.0	52.9	96.2	49.6	51.3	51.1	
Average	96.0	32.4	96.1	41.9	37.2	40.2	

Table 14: Impact of heuristic rule ablations under different combinations of backdoor settings on **SST-2** using the *RoBERTa-large* model. Δ denotes the change in average ASR relative to the full rule set.

Setting	Ablation	CACC	ASR (↓)						
Setting	Ablation	(†)	Atk1	Atk2	AVG.	Δ			
	All rules (full)	96.2	36.9	7.1	22.0	_			
BadNet + InsertSent	w/o rule 1	96.0	33.2	18.7	25.9	+3.9			
Dadivet + IlisertSent	w/o rule 2	96.3	60.6	14.1	37.3	+15.3			
	w/o rule 3	96.3	43.1	6.2	24.6	+2.6			
	All rules (full)	96.0	41.7	39.0	40.4	_			
BadNet + LWS	w/o rule 1	95.9	46.2	51.2	48.7	+8.3			
Daunet + LWS	w/o rule 2	96.0	68.1	62.8	65.4	+25.0			
	w/o rule 3	96.0	69.1	46.3	57.7	+17.3			
	All rules (full)	96.1	40.5	27.7	34.1	_			
BadNet + Hidden	w/o rule 1	95.9	14.0	32.8	23.4	-10.7			
Dauriet + Middell	w/o rule 2	96.1	59.4	29.4	44.4	+10.3			
	w/o rule 3	96.0	56.6	29.1	42.9	+8.8			

Table 15: Cross-model evaluation under varying clean data budgets on SST-2. N=50 and N=20 indicate the number of clean samples per class used for validation.

		RoBERTa-large					BERT	-large		DeBERTa-v3-large			
Setting	Defense	CACC	ASR (↓)			CACC	ASR (↓)			CACC	ASR (↓)		
		(†)	Atk1	Atk2	AVG.	(†)	Atk1	Atk2	AVG.	(†)	Atk1	Atk2	AVG.
BadNet + InsertSent	WAG Ours $(N = 50)$	96.3 96.2	56.3 36.9	7.4 7.1	31.9 22.0	93.3 93.5	40.2 39.7	60.1 38.1	50.2 38.9	96.1 96.3	47.4 40.4	5.2 5.2	26.3 22.8
	Ours $(N=20)$	96.2	47.7	6.6	27.1	93.5	39.7	38.1	38.9	96.3	32.8	5.1	19.0
BadNet + LWS	$\begin{array}{ c c }\hline WAG\\ Ours~(N=50)\\ Ours~(N=20)\\ \end{array}$	96.2 96.0 96.0	74.0 41.7 41.7	50.3 39.0 39.0	62.2 40.4 40.4	93.1 93.0 93.0	76.9 73.9 76.5	63.0 61.3 63.6	69.9 67.6 70.0	96.2 96.0 96.0	63.4 48.7 48.7	79.5 73.0 73.0	71.5 60.8 60.8
BadNet + Hidden	$\begin{array}{c c} WAG \\ Ours \ (N=50) \\ Ours \ (N=20) \end{array}$	96.1 96.1 96.2	63.9 40.5 34.9	29.0 27.7 25.6	46.5 34.1 30.3	93.3 93.4 93.4	56.9 50.3 50.3	43.8 37.9 37.9	50.3 44.1 44.1	96.2 96.1 96.3	48.3 22.7 22.7	39.6 41.0 41.0	43.9 31.8 31.8

Table 16: Performance comparison under varying poison rates on **SST-2** using the *RoBERTa-large* model.

		Poison Rate: 20%				Pe	oison Ra	ate: 10%	ó	Poison Rate: 1%			
Setting	Defense	CACC		ASR (↓)		CACC	ASR (↓)			CACC		ASR (↓)	
		(†)	Atk1	Atk2	AVG.	(†)	Atk1	Atk2	AVG.	(†)	Atk1	Atk2	AVG.
BadNet + InsertSent	WAG Ours (MSD)	96.3 96.2	56.3 36.9	7.4 7.1	31.9 22.0	96.1 96.0	66.6 55.1	8.9 9.3	37.9 32.3	96.4 96.3	58.3 57.4	27.2 44.4	42.8 50.9
BadNet + LWS	WAG Ours (MSD)	96.2 96.0	74.0 41.7	50.3 39.0	62.2 40.4	95.1 94.9	83.7 70.6	46.3 40.1	65.0 55.3	96.3 96.4	62.7 59.9	28.9 27.6	45.8 43.7
BadNet + Hidden	WAG Ours (MSD)	96.1 96.1	63.9 40.5	29.0 27.7	46.5 34.1	95.9 95.5	67.9 51.9	26.9 25.8	47.4 38.9	96.1 96.1	64.9 59.2	30.5 30.0	47.7 44.6

I Examples of Searched Strategy

855

856

857

858

859

860

861

862

We present several examples of module switching strategies discovered by our evolutionary algorithm, 853 listed as follows: 854

- Our adopted merging strategy for two-model combinations using RoBERTa-large (24 layers), presented in Figure 6, achieves a fitness score of -75.0.
- An early-stage merging strategy for RoBERTa-large (24 layers), shown in Figure 7, yields a fitness score of -94.2.
- The adopted strategy for merging three RoBERTa-large models (24 layers), illustrated in Figure 11, obtains a fitness score of -26.2.
- An alternative merging strategy designed for ViT model (12 layers), depicted in Figure 12, achieves a fitness score of -39.5.

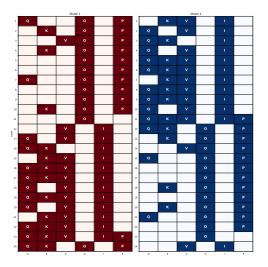


Figure 6: Adopted merging strategy (with a fitness score of -75.0).

Figure 7: Early stopping strategy (with a fitness score of -94.2).

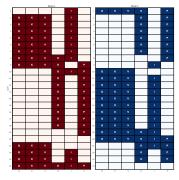
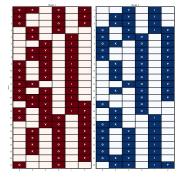


Figure 8: Strategy of ablating rule 1.



rule 2.

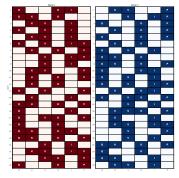


Figure 9: Strategy of ablating Figure 10: Strategy of ablating rule 3.

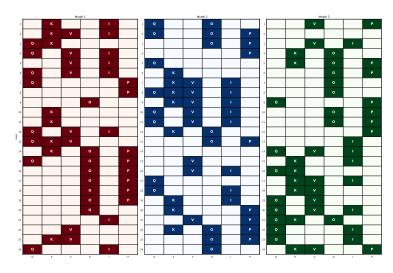


Figure 11: Adopted merging strategy (fitness score -26.2).

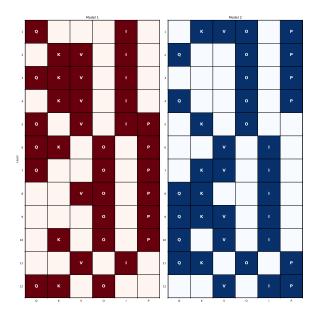


Figure 12: Adopted merging strategy (fitness score -39.5).

863 NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: We ensure that the main claims in the abstract and introduction accurately reflect the contributions and scope of the paper.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the main limitations of our work in a separate "Limitations" section in Appendix A.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was
 only tested on a few datasets or with a few runs. In general, empirical results often
 depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: We provide complete proofs for Theorem 1 and Proposition 1 in Appendix D, along with justification for the underlying conditions in Appendix C.

Guidelines

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if
 they appear in the supplemental material, the authors are encouraged to provide a short
 proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed descriptions of our method in Section 4, including two key algorithms in Algorithm 1 and Algorithm 2. Experimental settings are thoroughly described in Section 5.1, and the searched outputs for the algorithms are presented in Appendix I, allowing others to reproduce our main results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: The code and data are not released during the peer review phase to preserve anonymity. We will make them publicly available with detailed instructions upon acceptance.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
 possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
 including code, unless this is central to the contribution (e.g., for a new open-source
 benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new
 proposed method and baselines. If only a subset of experiments are reproducible, they
 should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide full details of our experimental setup, including datasets, models, baselines, implementation details, in Section 5.1.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report mean and standard deviation in Table 4 and Table 5 (Appendix C) to support our theoretical justification. For experiments in Section 5 and Appendix H, each test is run three times, but full error bars are not included due to computational constraints.

Guidelines

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We report the compute resources used in our experiments, including hardware type and runtime, in Section 5.1 and Appendix G.4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research adheres to the NeurIPS Code of Ethics. It does not involve human subjects, private data, or high-risk model releases. We have considered societal impact and licensing in accordance with the guidelines.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We provide a discussion of the broader impact in Appendix B, where we focus on defensive research and anticipate no negative impact.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal
 impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve releasing pretrained language models, image generators, or scraped datasets that pose a high risk of misuse. All models and datasets used are from established open-source sources. The code we plan to release is intended for defensive research and does not introduce foreseeable misuse risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We use only publicly available datasets, each properly cited in the paper. The known licensing terms are explicitly stated in Appendix G.2.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.

- The authors should state which version of the asset is used and, if possible, include a URL.
 - The name of the license (e.g., CC-BY 4.0) should be included for each asset.
 - For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
 - If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
 - For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
 - If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We do not introduce new datasets or models. While the code is not released at submission time, it will be made publicly available with accompanying documentation upon acceptance.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were only used for editing purposes (*e.g.*, grammar, spelling, and word choice) and for visualizing results in preparation for submission. They were not involved in the core methodology or scientific contributions of this work.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.