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Abstract

The exponential increase in Deep Neural Networks (DNNs) parameters has signifi-1

cantly raised the cost of independent training, particularly for resource-constrained2

entities, leading to a growing reliance on open-source models. However, the opacity3

of these training processes exacerbates security risks, making these models more4

susceptible to malicious threats, such as backdoor attacks, while also complicating5

defense strategies. Merging homogeneous models has emerged as a cost-effective6

post-training defense. Current approaches, such as weight averaging, only partially7

mitigate the impact of poisoned parameters and are largely ineffective in disrupting8

the pervasive spurious correlations embedded across model parameters. To address9

this, we propose a novel module-switching strategy and validate its effectiveness10

both theoretically and empirically on two-layer networks, showing its remarkable11

ability to break spurious correlations and achieve higher backdoor divergence than12

weight averaging. For deep learning models, we further design and develop evolu-13

tionary algorithms to optimize fusion strategies, along with selective mechanisms14

to identify the most effective combination. Experimental results demonstrate that15

our defense exhibits strong resilience against backdoor attacks in both text and16

vision tasks, even when merging only a couple of compromised models.17

1 Introduction18

Deep neural networks (DNNs) draw much of their ability to learn from heterogeneous, real-world data.19

Although this diversity contributes to their remarkable performance across various tasks [4, 8, 48], it20

also leaves adversaries opportunities to implant carefully crafted patterns into training data, enabling21

malicious attacks. In particular, backdoor attacks poison a (small) portion of training samples with22

deceptive but stealthy triggers [6, 14]. As a result, the trained model behaves normally on ‘clean’23

inputs but produces attacker-specified predictions when triggers appear at test time. The stealthiness24

of backdoor attacks raises serious security concerns and motivates effective defense research.25

Recent advances in backdoor defense span both training-phase and test-phase approaches. However,26

many existing methods face significant practical constraints: (1) growing reliance on unverified27

models from open platforms (e.g., HuggingFace) makes the training process and assets opaque;28

(2) increasingly stealthy backdoor triggers (e.g., invisible syntactic patterns [39]) hinder effective29

data filtering and trigger inversion; (3) auxiliary datasets required for purification are not always30

available [68]; and (4) re-tuning incurs additional computational overhead [67].31

Model combination techniques, such as model merging [19, 33], originally proposed for knowledge32

aggregation, have emerged as cost-effective defenses against backdoor attacks. For example, merging33

multiple compromised models can suppress textual backdoors [2]. However, naive weight averaging34

can still retain malicious behavior: merging a benign model with a compromised one may transfer35

the backdoor, while merging two poisoned models may preserve both backdoors [60]. An alternative36
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strategy seeks to combine models selectively, guided by trusted criteria, curated datasets, or reliable37

proxy models. For instance, Yang et al. [60] utilize perturbation methods associated with backdoor38

behaviors to iteratively mask related parameters, while Chen et al. [5] use auxiliary reference models39

to resolve information conflicts. Unfortunately, such trusted resources are not always available, and40

the reliability of newly identified resources is also questionable. Recent work [29, 45] shows that41

even compromised models can be leveraged to directly mitigate target backdoors, although there42

remain risks that the auxiliary model could introduce additional backdoor threats.43
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Figure 1: An illustration of Module-Switching De-
fense (MSD). By switching weight modules between
compromised models (left), the spurious correlations
(shortcuts) learned from backdoored tasks are effec-
tively disrupted in the combined model (right).

We propose Module Switching, a defense44

framework that selectively exchanges network45

modules among models trained on related do-46

mains. The intuition rests on the observation47

that backdoor attacks introduce “shortcuts”48

within DNNs, exploiting spurious correlations49

to trigger malicious behavior [13, 17, 61]. Be-50

cause different attacks create distinct short-51

cuts, disrupting these pathways by swapping52

modules may effectively mitigate the corre-53

sponding vulnerabilities, as shown in Figure 1.54

Identifying every shortcut is computationally55

challenging due to numerous parameter inter-56

actions and the requirement of extra data. We57

therefore reformulate shortcut disruption as58

an optimization problem, searching for an ef-59

fective module-switching strategy that breaks60

shortcut connections within a given model ar-61

chitecture. By combining heuristic scoring and an evolutionary algorithm, we obtain an index table62

that specifies which source model should fill each module slot. Since this module-switching scheme63

relies solely on architectural information, it generalizes across tasks and is transferable to any models64

sharing the same structure (e.g., one strategy applicable to both RoBERTa [32] and DeBERTa [16]).65

Our Module-Switching Defense (MSD) applies the strategy by assigning each module across the66

network a source-model index and recombining the selected modules to construct candidate models.67

Then, we identify the most robust candidate by comparing their representations on a small clean68

validation set (requiring only as few as 20–50 samples per class and no poisoned data). Because MSD69

is structure-driven, it is task-agnostic, counters a wide spectrum of backdoor threats, and preserves70

utility for downstream tasks. Our key contributions are as follows.71

• We conduct an interpretable study on shallow networks, showing that module switching72

manages to effectively mitigate backdoor patterns while preserving semantics (Section 3).73

• We propose and develop an MSD pipeline, which (1) establishes heuristic rules (Section 4.2)74

to guide an evolutionary algorithm search strategies that disrupt backdoor-related spurious75

correlations (Section 4.3), and (2) defines a feature-distance criterion to select the best model76

combination candidate (Section 4.4).77

• We validate our method on DNNs in text and vision domains, showing it effectively mitigates78

various backdoor attacks, even when combining only compromised models (Section 5).79

2 Related Work80

Backdoor Attacks. Backdoor attacks implant hidden vulnerabilities in DNNs, activating only when81

specific triggers appear in the input while maintaining normal behavior on benign data. They can82

be broadly categorized into two types in accordance with implanting methods: (1) Data-poisoning83

attacks inject trigger patterns into a small portion of the datasets with manipulated labels to train84

compromised models. Since being first discovered by Gu et al. [14], these attacks have evolved with85

diverse trigger designs in both vision [27, 36, 58] and text domains [7, 22, 39, 40]. In contrast, (2)86

Weight-poisoning attacks directly modify model weights to embed backdoors [10, 22]. The backdoor87

attacks can be considered correlating trigger patterns with predefined predictions in machine learning88

models, activated in inference [13, 17]. Our work focuses on defending against data-poisoning89

attacks in both text and vision domains, given their widespread adoption and potential risks.90
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Backdoor Defense. Backdoor defenses are typically classified by their deployment stage into (1)91

training-phase and (2) test-phase methods. Training-phase defenses treat poisoned data as outliers,92

aiming at detecting and removing them based on distinctive activation or learning patterns [17, 18,93

25]. Test-phase defenses operate on inputs or model itself: data-level approaches reverse-engineer94

triggers [49] or filter anomalies [37], while model-level strategies detect trojaned models [31, 44, 50,95

52] or purify models through pruning [30, 57, 67, 68] or unlearning [26, 56, 65]. While traditional96

model purification demands proxy data and additional retraining, recent research has focused on model97

combination strategies that require fewer assumptions and lower computational costs [2, 5, 29, 45, 60].98

Building on this line of research, we propose a model confusion approach that reduces dependency on99

trusted resources while mitigating threats by disrupting spurious correlations in constituent models.100

3 Module Switching in Two-layer Neural Networks101

We theoretically and empirically examine whether module switching in two-layer networks can102

disrupt backdoor patterns introduced during fine-tuning, while preserving pretrained semantics. We103

find that swapping layer weights leads to greater deviation from backdoor patterns than weight104

averaging (WAG) [2, 51], yielding improved robustness against backdoored inputs.105

Setup and Notation. We consider two-layer networks defined as f(x; θ) = W2 σ(W1x), with106

input x ∈ RN and parameters θ := {W1,W2}, and activation function σ(·) (linear or non-linear).107

Training progresses in two stages: a pretraining stage, where shared weights W1 ∈ RK×N and108

W2 ∈ RN×K learn general semantics, followed by a fine-tuning stage that introduces updates (∆W ∗
1109

and ∆W ∗
2 ) to encode backdoor behavior in individual modelsM∗.110

In a linear network with identical activation, the fine-tuned model isM(x) = (W2 +∆W ∗
2 )(W1 +111

∆W ∗
1 )x, which expands to a semantic term S = W2W1 and a backdoor component112

B∗ = W2∆W ∗
1 +∆W ∗

2 W1 + ϵ∗, (1)

such thatM∗(x) = (S +B∗)x, where the ϵ-term ϵ∗ = ∆W ∗
2 ∆W ∗

1 is a second-order interaction.113

It is typically much smaller in magnitude than first-order terms (i.e., W2∆W ∗
1 +∆W ∗

2 W1). We114

empirically verify this in Appendix C, and accordingly omit the ϵ-term in subsequent analysis.115

Definition 1 (Weight-Averaged Model). Let i and j index two fine-tuned backdoor models. Averaging116

the weights ofMi andMj defines the Weight-Averaged (WAG) model [2], with parameters:117

θwag :=

{
1

2

(
W1 +∆W i

1

)
+

1

2

(
W1 +∆W j

1

)
,
1

2

(
W2 +∆W i

2

)
+

1

2

(
W2 +∆W j

2

)}
.

Assuming a linear network as above, we decompose the model asMwag(x) = (S +Bwag)x, where118

S denotes the shared pretrained semantic component, and the backdoor component is equivalent to119

Bwag =
1

2
W2

(
∆W i

1 +∆W j
1

)
+

1

2

(
∆W i

2 +∆W j
2

)
W1.

Definition 2 (Distance between Outputs from WAG and Constituent Models). Under identity activa-120

tion, ℓ2 distances between the WAG model and the two constituent modelsMi andMj are:121

∥Dwag,i∥ = ∥Mwag(x)−Mi(x)∥ = 1

2
∥
(
W2(∆W j

1 −∆W i
1) + (∆W j

2 −∆W i
2)W1

)
x∥,

∥Dwag,j∥ = ∥Mwag(x)−Mj(x)∥ = 1

2
∥
(
W2(∆W i

1 −∆W j
1 ) + (∆W i

2 −∆W j
2 )W1

)
x∥.

Definition 3 (Module-Switched Models). Swapping one layer between Mi and Mj yields two122

possible switched models, each with its own parameters, semantic-backdoor decomposition:123

θij := {W1 +∆W i
1 , W2 +∆W j

2 }, Mij(x) = (S +Bij)x, Bij = W2∆W i
1 +∆W j

2W1,

θji := {W1 +∆W j
1 , W2 +∆W i

2}, Mji(x) = (S +Bji)x, Bji = W2∆W j
1 +∆W i

2W1.

Definition 4 (Distance between Outputs from Switched and Constituent Models). Under identity124

activation, ℓ2 distances between the switched modelMij and the two constituent models are:125

∥Dij,i∥ = ∥Mij(x)−Mi(x)∥ = ∥(∆W j
2 −∆W i

2)W1x∥,
∥Dij,j∥ = ∥Mij(x)−Mj(x)∥ = ∥W2(∆W i

1 −∆W j
1 )x∥.

The analogous results of ∥Dji,i∥ and ∥Dji,j∥ hold with swapped indices (see Equation (5)).126
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Theorem 1 (Module Switching Exceeds WAG in Backdoor Divergence). Under identity activation,127

the total backdoor divergence of the Weight-Averaged (WAG) model is upper bounded by the average128

divergence of the switched models:129

∥Dwag,i∥+ ∥Dwag,j∥ ≤ 1

2

(
∥Dij,i∥+ ∥Dij,j∥+ ∥Dji,i∥+ ∥Dji,j∥

)
. (2)

This theorem confirms the rationale that module switching on average yields stronger suppression of130

backdoor-specific patterns than weight averaging.131

Proposition 1 (The Existence of a More Divergent Switched Model). Given Theorem 1, there is at132

least one switched model with greater backdoor divergence than Weight-Averaged (WAG) model:133

∥Dwag,i∥+ ∥Dwag,j∥ ≤ max
{
∥Dij,i∥+ ∥Dij,j∥, ∥Dji,i∥+ ∥Dji,j∥

}
. (3)

This proposition shows that the least backdoor-aligned switched model exceeds the WAG model in134

backdoor divergence, underscoring the importance of selecting the least aligned candidate and moti-135

vating the selection step in Section 4.4. Appendix D details proofs of Theorem 1 and Proposition 1.136

Empirical Study. We simulate 1000 two-layer networks (with both linear and non-linear activa-137

tions), each pretrained on a shared semantic component S ∼ N (0, 1) and fine-tuned with a backdoor138

component B∗ ∼ N (0, 0.12). For each fine-tuned pairMi andMj , we construct the corresponding139

WAG modelMwag and switched modelsMij andMji. We evaluate output alignment with (1) the140

semantic direction Sx, measured by dS = ∥norm(f(x; θ)) − norm(Sx)∥; and (2) the backdoor141

direction B∗x, measured by dB = ∥norm(f(x; θ)−Sx)−norm(B∗x)∥, where norm(v) = v/∥v∥.142
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Figure 2: Euclidean distances between normalized output vectors of pretrained, fine-tuned, WAG,
and switched two-layer networks, relative to the semantic direction Sx and the backdoor directions
B∗x, under linear (left) and ReLU (right) activations.

Figure 2 presents 2D scatter plots comparing output distances across all model types under both linear143

and ReLU [1, 35] activations. More results with various activations are provided in Appendix E. We144

observe that while fine-tuned models stay close to their respective backdoor patterns B∗, the WAG145

model shifts farther away, and the switched models diverge even more, indicating stronger backdoor146

suppression. All models remain near the semantic term S, confirming preserved functionality.147

4 Module Switching Defense148

In this section, we extend the findings on module switching to more complicated deep neural149

networks and develop a comprehensive defense pipeline. We begin by introducing the problem150

setting in Section 4.1, followed by establishing a set of heuristic rules to guide the search for effective151

module switching strategies in Section 4.2. Next, we adapt an evolutionary algorithm for searching152

the optimal strategy in Section 4.3, guiding switched models construction and selection in Section 4.4.153

4.1 Preliminaries154

Threat Model. We study data poisoning attacks where an attacker modifies a subset of a clean155

dataset Dc = {(xc, yc)} into poisoned samples Dp = {(xp = gt(xc), yp)} using a trigger function156

gt and target label yp. The poisoned data is used to train a backdoored model or shared with others157

for training, resulting in trojaned models being widely available via model-sharing platforms.158
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Defender Capability. The defender downloads potentially compromised models and aims to purify159

them before deployment. They have white-box access and a small clean validation set (20–50 samples160

per class), but no knowledge of the trigger or poisoned data. They can access multiple (as few as two)161

domain-relevant models of uncertain integrity and may combine them using the validation set.162

Neural Network Architecture. We adopt Transformer models [48] as the testbed in both text and163

vision domains, given their strong performance and prevalence on model-sharing platforms. A typical164

Transformer has L layers, each with a self-attention block and a feed-forward network (FFN). The165

attention block includes {Wq,Wk,Wv,Wo} and the FFN includes {Wi,Wp}; we refer to these six166

modules as {Q,K, V,O, I, P}. Residual connections [15] follow both blocks and link to later layers.167

4.2 Scoring Rules for Module Switching168

In Section 3, we studied weight switching in two-layer networks, where replacing weights disrupts169

spurious correlations, eliminating undesired patterns while preserving semantic alignment. Extending170

to DNNs, we hypothesize that breaking backdoor propagation paths can similarly deactivate them.171

Given the structural complexity of deep networks, we define heuristic rules to guide the search for172

module combinations that disrupt backdoor paths in both feedforward and residual streams [11]. We173

identify three types of adjacency that may support poison transmission (illustrated in Figure 3): (1)174

intra-layer (within the same layer), (2) consecutive-layer (adjacent layers), and (3) residual (via skip175

connections). Additionally, we introduce a (4) balance penalty to avoid overusing any single model176

and a (5) diversity reward to encourage varied combinations across layers.177
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… …
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𝑄

𝐾
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TYPE 2 Consecutive-layer adjacencies:
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Self-Attention FFN Self-Attention FFN

Figure 3: The confused model combines modules from different models, where red and blue nodes
indicate components from different models by considering three types of module adjacency in
Transformers, as shown in the upper part of the figure.

We adopt these heuristic rules as evaluation criteria to compute the overall score of a given module-178

switching strategy, evaluating how well it adheres to the proposed principles. A summary of the rules179

is presented in the box below (and more details are provided in Appendix F).180

Heuristic-based Search Rules

1. Intra-layer adjacency penalty: Penalize if two adjacent modules within the same layer
(e.g., Q and K) are from the same source model.

2. Consecutive-layer adjacency penalty: Penalize if adjacent modules across consecutive
layers (e.g., P in layer i and Q′ or K ′ in layer i+1) are from the same source model.

3. Residual-path adjacency penalty: Penalize if residually connected modules (e.g., Oi →
Q′, Q′′) come from the same model, with reduced weight for longer-range links.

4. Balance penalty: Penalize if the selected modules are skewed toward a single model.
5. Diversity reward: Promote layer-wise diversity, aiming at using different source model

combinations across the network.
181

4.3 Evolutionary Module Switching Search182

We frame the search for effective module-switching strategies as a discrete Neural Architecture183

Search (NAS) problem [53]. Let S denote the space of switching strategies, where each s ∈ S assigns184

a source model index to each module: s : {1, . . . , L}×M → {1, . . . , N},M = {Q,K, V,O, I, P},185

where L is the number of layers and N the number of source models.186
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Fitness Evaluation. Each strategy s is scored by:187

F (s) = −λ1Aintra(s)− λ2Acons(s)− λ3Ares(s)− λ4Bbal(s) + λ5Rdiv(s), (4)

where Aintra, Acons, and Ares penalize adjacency violations (Section 4.2), Bbal penalizes module188

imbalance, and Rdiv rewards diversity. By default, we set all λk to 1.0. Higher F (s) indicates stronger189

disruption of potential backdoor paths. The formulations of all terms are provided in Appendix F.2.190

Algorithm 1 Evolutionary Module-Switching Search
1: Input: population P , generations G, children per gener-

ation C, number of models N , layers L, module set M .
2: population← ∅
3: gen_count← 0
4: while |population| < P do
5: indiv.strategy ← RANDOMSTRATEGY(N,L,M )
6: indiv.fitness← CALCSCORE(indiv.strategy)
7: population.append(indiv)
8: end while
9: while gen_count < G do

10: for i← 1 to C do
11: parent← TOURNAMENTSELECT(population)
12: child.strategy ← MUTATION(parent)
13: child.fitness← CALCSCORE(child.strategy)
14: population.append(child)
15: end for
16: sort(population) ▷ by descending fitness score
17: population← population[0 : P ]
18: gen_count← gen_count+ 1
19: end while
20: Output: BESTSTRATEGY ← population[0].strategy

Search Algorithm. As the scores191

by F (s) is non-differentiable over a192

large discrete space, we adopt evolu-193

tionary search [34], well suited to op-194

timizing implicit objectives [69]. We195

adopt the aging regularized evolution196

algorithm [41], modifying it in two197

key ways: (1) fitness is computed di-198

rectly using the heuristic scoring func-199

tion F , without model training or val-200

idation; and (2) low-scoring strategies201

are discarded, replacing aging regu-202

larization [42]. As outlined in Al-203

gorithm 1, it evolves a population204

through tournament selection (line205

11), mutation (line 12), and fitness-206

based dropping (line 13). A hyper-207

parameter C controls the number of208

children per generation. Appendix I209

presents example searched strategies.210

4.4 Switched Models211

Construction and Selection212

Algorithm 2 Switched Model Selection
1: Input: Victim modelsM = {M1, . . . ,MN}; clean set
Dc; switching strategy T .

2: wag ← WAG(M) ▷ weight averaging overM
3: models←M∪ {wag}
4: score← ZEROVECTOR(num_classes)
5: for m ∈ models do
6: for c ∈ candidate classes do
7: xdummy ← OPTIMIZEINPUT(m,xrandom, c)
8: zdummy ← FORWARD(m,xdummy)
9: zclean ← FORWARD(m,Dc, non-c)

10: score[c] += MEANCOSINEDIST(zdummy, zclean)
11: DUMMYFEATURE[m][c]← zdummy
12: end for
13: end for
14: c∗ ← argmaxc score[c] ▷ suspect target class
15: z∗ ← DUMMYFEATURE[wag][c∗]
16: candidates← MODULESWITCH(T,M)
17: for m ∈ candidates do
18: z ← FORWARD(m,Dc, non-c∗)
19: m.dist← MEANCOSINEDIST(z, z∗)
20: end for
21: Output: argmaxm m.dist

The searched strategy T can be213

used to switch modules among a214

group of victim models M =215

{M1, . . . ,MN} to fuse a candidate216

pool, which on average exceeds the217

WAG model in backdoor divergence218

(as Theorem 1) and guarantees the ex-219

istence of at least one candidate with220

higher divergence (as Proposition 1).221

This motivates us to develop a feature-222

distance-based method to identify and223

select the least-backdoor-aligned can-224

didate from the pool.225

Suspect-class Detection. We first use226

the final-layer embedding of [CLS] to-227

ken to detect the suspect class, based228

on the insight that trojaned models pri-229

oritize trigger features [12, 62]. For230

each m ∈ M ∪ {WAG(M)} and231

class c, we optimize a random input232

to induce prediction of c, yielding a233

dummy final-layer [CLS] feature zdum
m,c.234

Its average cosine distance to clean235

features over a few non-c samples is236

accumulated across models: S(c) =
∑

m avg
[
1 − cos(zdum

m,c, z
clean
m,¬c)

]
. The class with the highest237

score, c∗ = argmaxc S(c), is deemed suspicious, and the corresponding WAG dummy feature238

z∗ = zdum
WAG,c∗ is used as a fixed reference.239
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Candidate Selection. Applying T toM gives candidates m ∈ C(T,M) (e.g.,Mij ,Mji). Each m is240

scored by d(m) = avg
[
1− cos(z∗, fm(x))

]
, the mean cosine distance between its [CLS] features on241

a few clean, non-c∗ samples x and the WAG dummy z∗. The winner m∗ = argmaxm∈C(T,M) d(m)242

is the one least aligned with backdoor features and, by Proposition 1, has better defense than WAG.243

The complete pipeline, detailed in Algorithm 2, avoids exhaustive trojan detection process [31, 44,244

49, 50, 52], yet reliably selects robust module-switching candidates.245

5 Experiments246

5.1 Experimental Setup247

Datasets. We evaluate our method on three NLP datasets–SST-2 [24, 43], MNLI [54], and AG248

News [66]–as well as vision datasets, CIFAR-10 [21, 46] and TinyImageNet [23], covering both249

binary and multi-class classification. Dataset statistics are in Table 6 (Appendix G.1). For NLP,250

following WAG [2], we use 20% poison in training (also testing 10% and 1%). For vision tasks, we251

apply a 5% poison rate. Poisoned test sets are created by attacking non-target validation samples; only252

the clean test set is available to the defender, while poisoned test data is used solely for evaluation.253

Backdoor Attacks. We generate poisoned data by modifying clean samples and relabelling them to254

a target class, using four representative attacks in both text and vision tasks, to evaluate our defense.255

For the text domain, we consider (1) BadNet [22], (2) InsertSent [7], (3) Learnable Word Substitution256

(LWS) [40], and (4) Hidden-Killer (Hidden) [38]. BadNet and InsertSent are token and sentence257

insertion attacks, and we set the triggers as rare words {“cf”,“mn”,“bb”,“tq”,“mb”} and phrases258

{“I watched this movie”, “no cross, no crown”}. LWS and Hidden apply stealthier strategies such as259

synonym substitution and syntactic paraphrasing.260

For the vision domain, we examine (1) BadNet [14], (2) WaNet [36], (3) BATT [58], and (4)261

PhysicalBA [27]. BadNet and BATT inject digital patterns such as fixed pixel triggers and subtle262

visual changes, while PhysicalBA and WaNet are stealthier and use physical objects and warping263

effects. We utilize the BackdoorBox [28] toolkit to generate poisoned datasets and train the models.264

Defense Baselines. We compare against seven defense methods across text and vision: three265

model-merging approaches applicable to both domains–TIES [59], DARE [63], and WAG [2]–and266

two domain–specific data purification methods per modality. Z-Def. [17] and ONION [37] are outlier267

detection methods in text domain. In vision, CutMix [64] disrupts triggers via patch mixing, and268

ShrinkPad [27] reduces vulnerability by shrinking and padding inputs. All baselines use open-source269

implementations with default settings. See Appendix G.3 for more details.270

Evaluation Metrics. We assess the model’s utility and defense performance using Clean Accuracy271

(CACC) and Attack Success Rate (ASR) [2, 17, 37, 40]. CACC measures the prediction accuracy272

on clean samples, with a higher CACC indicating better model utility. ASR computes the attack273

accuracy on a poisoned test set, where all test samples are attacked and their labels are modified to274

the target class. A higher ASR reflects that the model is more vulnerable to the attack.275

Implementation Details. We use RoBERTa-large [32], BERT-large [8], and DeBERTa-large [16]276

for text experiments, and Visual transformers (ViT) [55] for vision tasks. NLP models are fine-tuned277

on poisoned data for 3 epochs using Adam [20] with a learning rate of 2× 10−5; ViT models for 10278

epochs using SGD [3] at 1× 10−2. We focus on two-model merging in both domains and include279

three-model merging for text. All experiments are run with three random seeds on a single Nvidia280

A100 GPU, reporting average results. The evolutionary search runs for 2 million generations on281

a single CPU (6 hours for the setup with 24 layers times 6 modules per layer). As the strategy282

is structure-driven and task-agnostic, it only requires single searched per architecture. For model283

selection discussed in Section 4.4, we use 50 samples per class as the evaluation set for selecting284

candidate models, and we further ablate the quantity to 20 samples per class in Section 5.3.285

5.2 Main Results286

Mitigation of Textual Backdoor Attacks. We evaluate our defense method using RoBERTa-large287

on three datasets: SST-2, MNLI, and AG News. Partial results for SST-2 are shown in Table 1,288

with full results in Appendix H.1. We consider two types of two-model combinations: (1) six289
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Table 1: Performance comparison across backdoor attacks on SST-2 using RoBERTa-large. Best
results are in blue . ∗ indicates results averaged over four variants; same for subsequent tables.

Defense CACC Attack Success Rate (ASR) ↓ Defense CACC Attack Success Rate (ASR) ↓
BadNet Insert LWS Hidden AVG. BadNet Insert LWS Hidden AVG.

Benign 95.9 4.1 2.2 12.8 16.5 8.9 Z-Def 95.6∗ 4.6 1.8 97.3 35.7 34.9
Victim 95.9∗ 100.0 100.0 98.0 96.5 98.6 ONION 92.8∗ 56.8 99.9 85.7 92.9 83.8

Combined: BadNet + InsertSent Combined: BadNet + HiddenKiller

WAG 96.3 56.3 7.4 - - 31.9 WAG 96.1 63.9 - - 29.0 46.4
TIES 95.9 88.7 17.0 - - 52.9 TIES 96.0 90.4 - - 36.9 63.6

DARE 96.5 57.8 36.3 - - 47.1 DARE 96.7 36.5 - - 47.6 41.9
Ours 96.2 36.9 7.1 - - 22.0 Ours 96.1 40.5 - - 27.7 34.1

Combined: BadNet + LWS Combined: Benign + BadNet

WAG 96.2 74.0 - 50.3 - 62.2 WAG 96.1 39.3 - - - 39.3
TIES 95.9 88.1 - 66.1 - 77.1 TIES 95.7 69.2 - - - 69.2

DARE 96.2 60.4 - 62.5 - 61.4 DARE 96.4 43.2 - - - 43.2
Ours 96.0 41.7 - 39.0 - 40.4 Ours 96.1 12.2 - - - 12.2

Table 2: Performance comparison across backdoor attacks on the CIFAR-10 dataset using ViT.

Defense CACC BadNet WaNet BATT PBA AVG. Defense CACC BadNet WaNet BATT PBA AVG.

Benign 98.8 10.1 10.2 7.7 10.1 9.5 CutMix 97.7∗ 87.1 70.6 99.9 64.9 80.6
Victim 98.5∗ 96.3 84.7 99.9 89.4 92.6 ShrinkPad 97.3∗ 14.4 51.3 99.9 88.3 63.5

Combined: BadNet + WaNet Combined: BadNet + BATT

WAG 98.7 13.7 10.6 - - 12.2 WAG 98.9 10.1 - 42.9 - 26.5
TIES 98.6 11.9 10.7 - - 11.3 TIES 98.9 10.1 - 47.9 - 29.0

DARE 98.8 83.3 10.2 - - 46.7 DARE 99.0 69.2 - 26.8 - 48.0
Ours 98.7 12.3 10.5 - - 11.4 Ours 98.7 10.2 - 32.6 - 21.4

Combined: BadNet + PhysicalBA Combined: Benign + PhysicalBA

WAG 99.0 39.6 - - 39.5 39.6 WAG 99.0 - - - 10.1 10.1
TIES 99.0 38.9 - - 38.9 38.9 TIES 98.8 - - - 10.2 10.2

DARE 99.0 72.2 - - 72.2 72.2 DARE 99.9 - - - 10.1 10.1
Ours 98.7 18.5 - - 18.4 18.5 Ours 98.9 - - - 10.1 10.1

pairwise merges of four backdoored models, and (2) four cases where a benign model is combined290

with backdoored ones to evaluate unintended vulnerability exposure. We employ a unified strategy291

obtained via our evolutionary algorithm (see Figure 6) and apply it consistently across all settings.292

Across all three datasets and different model pairs, our method consistently achieves strong defense293

performance compared to baselines while maintaining high clean accuracy scores. For example,294

when combining models with two insertion-based attacks BadNet and InsertSent, our method reduces295

the average ASR to 22.0%, compared to 31.9% for the best baseline WAG. When combining BadNet296

with LWS (a more stealthy attack), our method achieves an ASR of 40.4%, providing at least a 21.0%297

absolute improvement over baselines (typically above 60%). This shows that even when merging298

compromised models, our method effectively disrupts spurious correlations and defends against299

backdoor attacks.300

When merging a benign model with compromised ones, our method achieves a low ASR across301

four combinations, with the BadNet-controlled group achieving 12.2%, which is 27.1% better than302

the best baseline WAG. This suggests that our method effectively prevents unintended backdoor303

effects, unlike other approaches that prioritize downstream utility but inadvertently introduce such304

vulnerabilities. Additionally, while the baseline Z-Def demonstrates strong effectiveness against the305

insertion-based attacks BadNet and InsertSent (with access to training data), it is less effective at306

defending against the LWS and HiddenKiller attacks due to their subtle trigger pattern design.307

Mitigation of Vision Backdoor Attacks. We assess our method on the CIFAR-10 and TinyIma-308

geNet datasets using a 12-layer ViT [55] model. Partial results for CIFAR-10 are shown in Table 2,309

with full results presented in Appendix H.2. The evolutionary search yields the module-switching310

strategy in Figure 12, applied across all vision experiments.311

Our method consistently defends against all attack combinations while preserving utility. For example,312

in the BadNet + PhysicalBA case, it lowers ASR to 18.5%, outperforming all baselines by at least313

20.4%. These results demonstrate the robustness of our strategy in disrupting spurious correlations314

and its effectiveness across domains with different input characteristics.315

Three-Model Fusion Defense. We further evaluate our method fusing three models tested in the316

text domain, applying the strategy shown in Figure 11. The results are presented in Table 3.317
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Table 3: Results of combining three backdoored models on SST-2. Best results are highlighted.

Defense CACC BadNet Insert LWS Hidden AVG. Defense CACC BadNet Insert LWS Hidden AVG.

BadNet + InsertSent + LWS BadNet + InsertSent + HiddenKiller

WAG 96.3 9.5 3.4 21.6 - 11.5 WAG 96.7 5.9 2.7 - 19.1 9.2
Ours 96.0 9.2 3.8 25.9 - 13.0 Ours 96.2 5.9 1.6 - 18.7 8.7

BadNet + LWS + HiddenKiller InsertSent + LWS + HiddenKiller

WAG 96.0 10.8 - 30.9 20.3 20.7 WAG 96.0 - 2.7 25.5 19.6 15.9
Ours 96.2 7.9 - 25.7 20.7 18.1 Ours 96.2 - 2.1 24.1 19.4 15.2

Among the four possible combinations from our victim model pool, our method identified the optimal318

configuration in three cases. Even in the remaining case (BadNet, InsertSent, and LWS), the defense319

remained strong, achieving a low average ASR of 13.0%. For the optimal combinations, our method320

consistently outperformed a strong baseline with ASRs already below 20%, demonstrating improved321

defense effectiveness. These results highlight our approach’s ability to disrupt multiple spurious322

correlations and maintain robustness in multi-model fusion.323

Comparison of Different Strategies. We compare two evolutionary search strategies–with and324

without early stopping–shown in Figures 6 and 7, and report their fitness scores in Table 12 of Ap-325

pendix H.3. The early stopping terminates the search when no improvement in fitness score is326

observed over 100,000 iterations. We observe a positive correlation between the fitness score and327

defense performance: the adopted strategy without early stopping achieves a higher score and reduces328

the ASR by 27.2%. Based on score breakdowns and visualizations, we attribute the improvement to329

fewer residual rule violations, which more effectively disrupt subtle spurious correlations.330

Candidate Selection Results. Our method generates multiple asymmetric module allocation331

candidates, with selection guided by the process in Section 4.4. While the selected candidate332

consistently performs well, we also analyze the unselected ones (see Table 13 in Appendix H.4).333

In most cases, our method correctly identifies the top-performing candidate, outperforming other334

options by a significant margin. Even when an unselected candidate achieves a lower ASR in specific335

cases, our chosen candidate remains competitive with both the best alternative and the WAG baseline.336

337

5.3 Ablation Studies338

Importance of Heuristic Rules. We ablate each of the first three rules from Section 4.2 to evaluate339

their individual contributions. As shown in Table 14 (Appendix H.5), removing any rule typically340

degrades performance, highlighting the complementary effect of the full rule set. Visualizations341

in Figures 8 to 10 show that each ablation yields distinct strategy patterns.342

Generalization across Architectures. We apply our method to RoBERTa-large, BERT-large,343

and DeBERTa-v3-large under three settings. As shown in Table 15 (Appendix H.6), our approach344

consistently outperforms WAG across all tests. Importantly, we reuse the same searched strategy345

from Figure 6, demonstrating strong cross-model generalization and supporting practical scalability.346

Minimum Clean Data Requirement. We examine the impact of reducing clean supervision from347

50 to 20 samples per class on SST-2 across three architectures. Results in Table 15 (Appendix H.7)348

show our method still selects low-ASR candidates, suggesting effectiveness with limited clean data.349

Performance under Varying Poisoning Rates. We test robustness under 20%, 10%, and 1%350

poisoning rates on SST-2 using RoBERTa-large. As shown in Table 16 (Appendix H.8), our method351

consistently achieves lower ASR than WAG across different attacks and poisoning levels.352

6 Conclusion353

In this paper, we propose Module-Switching Defense (MSD), a post-training backdoor defense354

that disrupts shortcuts of spurious correlations by strategically switching weight modules between355

(compromised) models. MSD does not rely on trusted reference models or training data and remains356

effective with a couple of models. Using heuristic rules and evolutionary search, we establish a357

transferable module confusion strategy that mitigates various backdoor attacks while preserving their358

task utility. Empirical results on text and vision tasks confirm its outstanding defense performance,359

and strong generalization capability, highlighting its practicality in real-world applications.360
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A Limitations621

While our study demonstrates the effectiveness of Module-Switching Defense (MSD) across a range622

of classification tasks in NLP and CV, we identify two main limitations. First, our focus is restricted623

to classification-based settings. Backdoor attacks in generative models operate through notably624

different mechanisms, and extending MSD to such scenarios remains an important direction for625

future research. Second, our method is designed and evaluated primarily within Transformer-based626

architectures, which dominate current text and vision benchmarks. The applicability of MSD to other627

model families, such as convolutional neural networks (CNNs) or emerging architectures, is left for628

future exploration.629

B Broader Impacts630

This paper presents an efficient post-training defense against backdoor attacks on deep neural631

networks. By strategically combining model weight modules from either clean or compromised632

models, our approach disrupts backdoor propagation while preserving model utility. We demonstrated633

the usage of MSD to strengthen the security of machine learning models in both natural language634

processing and computer vision. All models and datasets used in this study are sourced from635

established open-source platforms. The discovered MSD templates will be released to facilitate further636

research on defense study. While we do not anticipate any direct negative societal consequences, we637

hope this work encourages further research into more robust defense mechanisms.638

C Empirical validation of the second-order interaction magnitude639

We empirically validate the condition adopted in Section 3, where the second-order interaction term640

ϵ = ∆W2∆W1 is omitted due to its negligible magnitude relative to the first-order terms. This641

validation proceeds from three perspectives.642

First, Figure 4 compares the Frobenius norms of the semantic term S = W2W1, the first-order643

adaptation term B = W2∆W1 +∆W2W1, and the second-order residual ϵ = ∆W2∆W1 across644

five derived networks. The left subfigure confirms that ∥ϵ∥ is consistently two orders of magnitude645

smaller than ∥S∥ and well below 4% of ∥B∥. The right subfigure further reveals that the element-wise646

values of ϵ concentrate tightly around zero, contrasting with the heavier tails of B and S.647
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Figure 4: Frobenius norm and element-wise distribution of the semantic, first-order, and second-order
terms across five network configurations. While the first-order term dominates the residual behavior,
the second-order interaction ϵ = ∆W2∆W1 remains negligible in both scale and distribution.

Second, Table 4 reports ∥ϵ∥/∥B∥ ratios across five network variants under varying backdoor strengths,648

where perturbations are sampled from zero-mean Gaussian noise with increasing variance. The649

inclusion of error bars (mean ± standard deviation) reflects variation across multiple runs. In650

typical scenarios where the backdoor signal is weak or comparable to the main semantic component,651
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the second-order interaction consistently remains below 4% of the first-order term. Even under652

exaggerated settings where the backdoor signal is scaled to 1.5× or 2× the semantic strength,653

∥ϵ∥/∥B∥ remains within a stable range of 5%–7%, reaffirming the negligible and bounded nature of654

second-order interactions across regimes.655

Table 4: Relative magnitude of second-order interactions, reported as ∥ε∥/∥B∥, across networks and
backdoor strengths. All models are evaluated with S ∼ N (0, 1) and perturbations B ∼ N (0, σ2).

Semantic Dist Backdoor Dist ∥ε∥/∥B∥ for Different Shallow Models

Mi Mj Mwag Mij Mji

S ∼ N (0, 1.02)

B ∼ N (0, 0.12) 2.82±0.19% 2.70±0.20% 3.42±0.23% 2.95±0.15% 3.14±0.21%
B ∼ N (0, 0.52) 1.98±0.21% 1.90±0.28% 1.78±0.18% 1.75±0.12% 1.76±0.18%
B ∼ N (0, 1.02) 3.24±0.22% 3.10±0.32% 2.33±0.17% 2.33±0.12% 2.30±0.17%
B ∼ N (0, 1.52) 4.77±0.25% 4.48±0.33% 3.18±0.14% 3.09±0.15% 2.97±0.12%
B ∼ N (0, 2.02) 6.31±0.27% 6.28±0.35% 4.14±0.29% 4.06±0.14% 3.92±0.18%

Additionally, we extend this analysis to deep transformer-based [48] models by computing ∥ϵ∥/∥B∥656

for the attention weight product, where W1 and W2 denote the key (K) and query (Q) projection657

matrices, respectively, and QK⊤ := W2W1. The weight changes ∆W1, ∆W2 are computed658

relative to the original pretrained RoBERTa-large [32] weights. All models are trained on SST-2 [43],659

including both benign and backdoored variants such as BadNet [22], InsertSent [7], learnable word660

substitution (LWS) [40], and Hidden-Killer (Hidden) [38].661

As shown in Table 5, across all pairwise combinations of these models, the relative magnitude of662

second-order interactions consistently remains below 4%. Each reported value reflects the mean663

and standard deviation computed across all 24 layers of RoBERTa-large. This pattern holds across664

both original and recombined variants (Mwag,Mij ,Mji), confirming the stability of second-order665

contributions in practical transformer settings.666

Table 5: Relative magnitude of second-order interactions, reported as ∥ε∥/∥B∥, computed from the
key (K) and query (Q) projection matrices in RoBERTa-large models trained on SST-2.

Combination ∥ε∥/∥B∥ for Attention Weight Product (QKT ) in RoBERTa-large Models

(Mi +Mj) Mi Mj Mwag Mij Mji

BadNet + InsertSent 3.53±0.77% 3.24±0.61% 2.43±0.39% 2.68±0.51% 2.61±0.50%
BadNet + LWS 3.53±0.77% 3.30±0.65% 2.46±0.4% 2.71±0.46% 2.68±0.49%

BadNet + Hidden 3.53±0.77% 3.30±0.61% 2.49±0.43% 2.77±0.45% 2.72±0.45%
BadNet + Benign 3.53±0.77% 3.27±0.58% 2.52±0.42% 2.78±0.47% 2.73±0.48%

Accordingly, we omit the second-order term ϵ in our definitions and proofs throughout the paper667

without loss of generality.668

16



D Proofs of Theorem 1 and Proposition 1669

Theorem 1 (Module Switching Exceeds WAG in Backdoor Divergence). Under identity activation,670

the total backdoor divergence of the Weight-Averaged (WAG) model is upper bounded by the average671

divergence of the switched models:672

∥Dwag,i∥+ ∥Dwag,j∥ ≤ 1

2

(
∥Dij,i∥+ ∥Dij,j∥+ ∥Dji,i∥+ ∥Dji,j∥

)
. (2)

Proposition 1 (The Existence of a More Divergent Switched Model). Given Theorem 1, there is at673

least one switched model with greater backdoor divergence than Weight-Averaged (WAG) model:674

∥Dwag,i∥+ ∥Dwag,j∥ ≤ max
{
∥Dij,i∥+ ∥Dij,j∥, ∥Dji,i∥+ ∥Dji,j∥

}
. (3)

Proof. From Definition 2 and 4, we have the following expressions for the backdoor divergences:675

∥Dwag,i∥ = 1

2

∥∥∥(W2(∆W j
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1) + (∆W j
2 −∆W i

2)W1

)
x
∥∥∥ ,
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2 −∆W j
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)
x
∥∥∥ ,
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(5)

Linear relationships. By regrouping terms in the above definitions, we obtain the following vector676

identities:677

Dwag,i =
1

2
(Dij,i +Dji,i), Dwag,j =

1

2
(Dij,j +Dji,j). (6)

Bounding the average switched model backdoor divergence. Substituting equation 6 into the678

norms and applying the triangle inequality [47], we have:679

∥Dwag,i∥ = ∥1
2
(Dij,i +Dji,i)∥ ≤ 1

2

(
∥Dij,i∥+ ∥Dji,i∥

)
, (7)

680

∥Dwag,j∥ = ∥1
2
(Dij,j +Dji,j)∥ ≤ 1

2

(
∥Dij,j∥+ ∥Dji,j∥

)
. (8)

Summing both inequalities gives:681

∥Dwag,i∥+ ∥Dwag,j∥ ≤ 1

2

(
∥Dij,i∥+ ∥Dji,i∥+ ∥Dij,j∥+ ∥Dji,j∥

)
, (9)

which proves Theorem 1.682

Bounding the maximum switched model backdoor divergence. Let:683

C1 := ∥Dij,i∥+ ∥Dij,j∥, C2 := ∥Dji,i∥+ ∥Dji,j∥, G := max{C1, C2}. (10)

Since C1 + C2 ≤ 2G, it follows that:684

∥Dwag,i∥+ ∥Dwag,j∥ ≤ 1

2
(C1 + C2) ≤ max{C1, C2}, (11)

which proves Proposition 1.685

E Module Switching with Additional Activation Functions686

We extend the experiments from Section 3 to two additional activation functions: tanh and sigmoid [9],687

in addition to the linear and ReLU results discussed in the main text. For each activation, we688

simulate 1000 pairs of fine-tuned modelsMi andMj with a shared pretrained semantic component689

S ∼ N (0, 12) and individual backdoor shifts B∗ ∼ N (0, 0.12). We then construct the weight-690

averaged modelMwag and the module-switched modelsMij andMji, as defined in Definitions 1691

and 3.692

Figure 5 visualizes the semantic and backdoor alignment of each model type across the four activation693

functions. Consistently across activations, we observe that:694
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• Fine-tuned models remain closely aligned with their respective backdoor direction B∗x;695

• WAG models deviate more from the backdoor pattern;696

• Switched models exhibit the larger distance to backdoor patterns, indicating stronger mitiga-697

tion;698

• All model types maintain proximity to the semantic output Sx, confirming that semantic699

information is preserved.700
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Figure 5: Euclidean distances between normalized output vectors of pretrained, fine-tuned, WAG, and
switched networks, relative to semantic output Sx and backdoor output B∗x, under linear, ReLU,
tanh, and sigmoid activations.

These results generalize the findings in Figure 2 to a broader range of nonlinear activations, reinforcing701

the conclusion that module switching more effectively disrupts backdoor behavior while retaining702

semantic utility.703
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F Fitness Score Calculation for Evolutionary Search704

Building upon the heuristic rules established in Section 4.2 for disrupting backdoor connections in705

compromised models, we develop a comprehensive fitness function. This function incorporates five706

key components that collectively evaluate the quality of a module composition strategy.707

F.1 Heuristic Rules708

Our fitness function implements the following rules through penalties and rewards:709

• Intra-layer adjacency penalty: Penalizes adjacent modules from the same source model710

within a specific layer i (e.g., Qi and Ki).711

• Consecutive-layer adjacency penalty: Discourages direct connections between modules712

from the same source model across consecutive layers i and i+ 1 (e.g., Pi to Qi+1).713

• Residual-path adjacency penalty: Applies a distance-weighted penalty to modules from714

the same source model connected via residual connections between layers i and j (e.g., Oi715

to Qj , where j > i), with diminishing impact as j − i increases.716

• Balance penalty: Promotes uniform distribution of modules {Q,K, V,O, I, P} across717

source models to prevent any single model from dominating the architecture.718

• Diversity reward: Encourages varied module combinations across layers to enhance719

architectural diversity.720

F.2 Mathematical Formulation721

As introduced in Section 4.3, the total fitness score for a given module composition strategy s is:722

F (s) = −λ1Aintra(s)− λ2Acons(s)− λ3Ares(s)− λ4Bbal(s) + λ5Rdiv(s), (12)

where all λk are weight factors (default to 1.0) that control the relative importance of each component723

in the overall fitness score.724

Each component is calculated as follows:725

1. Intra-layer Adjacency (Aintra(s))

Aintra(s) = −
|s|∑
l=1

INTRAVIOLATION(s[l]) (13)

Here, INTRAVIOLATION quantifies the number of adjacent module pairs from the same source model726

within layer s[l].727

2. Consecutive-layer Adjacency (Acons(s))

Acons(s) = −
|s|−1∑
l=1

CONSECVIOLATION(s[l], s[l + 1]) (14)

The function CONSECVIOLATION counts module pairs from the same source model that are directly728

connected between consecutive layers.729

3. Residual Connections (Ares(s))

Ares(s) = −
|s|∑
l=1

|s|∑
k=l+1

RESIDUALVIOLATION(s[l], s[k])× (0.5)k−l (15)

This term evaluates residual connections between layers s[l] and s[k], with RESIDUALVIOLATION730

weighted by (0.5)k−l to reduce the impact of long-range connections.731
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4. Module Balance (Bbal(s))

Bbal(s) = −
nmodels∑
i=1

∑
m∈M

|counti,m − countideal| (16)

where counti,m is the count of module type m from model i, M = {Q,K, V,O, I, P} is the set of732

module types, and countideal = |s|/nmodels represents the ideal count per module type per model.733

5. Layer Diversity (Rdiv(s))
Rdiv(s) = |unique(s)| (17)

where unique(s) is the set of unique layer compositions in strategy s.734
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G Additional Experiment Setup735

G.1 Dataset Statistics736

We evaluate our method on four text and two vision datasets. The statistics of each dataset and the737

settings of backdoor target class are shown in Table 6.738

Table 6: The statistics of the evaluated text and vision datasets.

Domain Dataset Classes Train Test Target Class
Clean Poison

Text
SST-2 2 67,349 872 444 Negative (0)
MNLI 3 100,000 400 285 Neutral (1)

AGNews 4 120,000 7,600 5,700 Sports (1)

Vision CIFAR-10 10 50,000 10,000 9,000 Automobile (1)
TinyImageNet 200 100,000 10,000 9,950 European Fire Salamander (1)

G.2 Dataset Licenses739

We evaluate our method on the following datasets: SST-2 [43], MNLI [54], AG News [66], CIFAR-740

10 [21], and TinyImageNet [23].741

The MNLI dataset is released under the Open American National Corpus (OANC) license, which742

permits free use, as stated in the original paper [54]. The AG News dataset is distributed with a743

disclaimer stating it is provided "as is" without warranties and does not impose explicit restrictions on744

academic use.1 No public licensing information was found for SST-2, CIFAR-10, or TinyImageNet.745

We use all datasets solely for academic, non-commercial research purposes, in accordance with746

standard practice in the machine learning community.747

G.3 Defense Baselines748

We evaluate seven defensive approaches across text and vision domains: three model-merging749

techniques common to both domains, plus two domain-specific data purification methods for each–750

one applied during training and another during inference.751

The three model-merging methods are: (1) TIES [59], (2) DARE [63], and (3) WAG [2]. These752

methods are chosen because they are applicable to both text and vision domains, do not rely on753

assumptions about backdoor priors, and eliminate the need for large-scale proxy clean or compromised754

data used for model purification or retraining. Their alignment with our setting makes them suitable755

for comparison. For conventional baselines, we use Z-Def. [17] and ONION [37] in the text domain,756

which detect outlier trigger words during training and testing, respectively. For the vision domain,757

we select CutMix [64] and ShrinkPad [27]. CutMix mitigates backdoor attacks by mixing image758

patches, disrupting the spatial integrity of triggers. ShrinkPad defends by shrinking the image and759

padding it, altering trigger placement, and reducing its effectiveness. For the vision domain, we use760

the BackdoorBox toolkit [28] to apply these defenses. Specifically, for CutMix, we use 30 epochs761

to repair the model. While these well-established methods are representative in terms of usage and762

performance, their dependence on data access may limit practicality in some scenarios. All baseline763

methods use their open-source codebases with default hyperparameters.764

G.4 Experiment Resources765

We conduct the model training and module switching experiments using three seeds on a single766

Nvidia A100 GPU , reporting the average performance. We run the evolutionary search for 2,000,000767

generations on a CPU, which takes six hours for a given merging configuration (e.g., two models with768

24 layers and six modules per layer). This search only needs to be performed once, as the discovered769

strategy can serve as an artifact that applies to all future combinations of the same architecture.770

1http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
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H Additional results771

H.1 Overall Defense Performance for Textual Backdoor Attacks772

Due to space constraints, we present comprehensive experimental results for three datasets (SST-2,773

MNLI, and AG News) in Table 7, Table 8, and Table 9. All experiments follow the controlled settings774

described in Section 5.1, utilizing RoBERTa-large as the victim model, with results averaged across775

three random seeds.776

We observe that our method yields decent performance on the SST-2 dataset: it achieves top777

performance in 8 out of 10 attack combinations, with the remaining 2 combinations ranking second778

best. In cases where our method ranks first, it significantly outperforms baseline approaches. For779

instance, when combining BadNet with LWS attacks, our method achieves an average ASR score780

21% lower than the second-best defense method. Moreover, our method consistently achieves the781

lowest individual ASR scores across both attacks in most combinations, highlighting its effectiveness782

in simultaneously mitigating multiple threats when merging compromised models.783

Even in scenarios where our method ranks second, it maintains comparable defense performance to784

the top-performing approach. Furthermore, when combining clean models with compromised ones,785

our method demonstrates strong resistance against malicious attack injection, as evidenced by the786

lowest ASR scores. Notably, our method maintains good utility preservation across all combinations,787

showing minimal impact to the model performance.788

Table 7: Performance comparison on the SST-2 dataset using the RoBERTa-large model.

Defense CACC BadNet Insert LWS Hidden AVG. Defense CACC BadNet Insert LWS Hidden AVG.

Benign 95.9 4.1 2.2 12.8 16.5 8.9 Z-Def 95.6∗ 4.6 1.8 97.3 35.7 34.9
Victim 95.9∗ 100.0 100.0 98.0 96.5 98.6 ONION 92.8∗ 56.8 99.9 85.7 92.9 83.8

Combined: BadNet + InsertSent Combined: InsertSent + LWS

WAG 96.3 56.3 7.4 - - 31.9 WAG 96.1 - 15.1 43.3 - 29.2
TIES 95.9 88.7 17.0 - - 52.9 TIES 96.1 - 35.8 64.9 - 50.3

DARE 96.5 57.8 36.3 - - 47.1 DARE 96.4 - 44.4 31.5 - 37.9
Ours 96.2 36.9 7.1 - - 22.0 Ours 96.0 - 11.9 39.7 - 25.8

Combined: BadNet + LWS Combined: InsertSent + HiddenKiller

WAG 96.2 74.0 - 50.3 - 62.2 WAG 96.3 - 12.5 - 28.5 20.5
TIES 95.9 88.1 - 66.1 - 77.1 TIES 95.9 - 37.5 - 39.0 38.3

DARE 96.2 60.4 - 62.5 - 61.4 DARE 96.6 - 38.7 - 29.1 33.9
Ours 96.0 41.7 - 39.0 - 40.4 Ours 95.8 - 10.1 - 28.7 19.4

Combined: BadNet + HiddenKiller Combined: LWS + HiddenKiller

WAG 96.1 63.9 - - 29.0 46.4 WAG 96.4 - - 60.5 41.7 51.1
TIES 96.0 90.4 - - 36.9 63.6 TIES 96.0 - - 77.8 55.8 66.8

DARE 96.7 36.3 - - 47.6 41.9 DARE 96.7 - - 67.7 43.3 55.5
Ours 96.1 40.5 - - 27.7 34.1 Ours 96.0 - - 58.6 47.2 52.9

Combined: Benign + BadNet Combined: Benign + LWS

WAG 96.1 39.3 - - - 39.3 WAG 96.1 - - 43.3 - 43.3
TIES 95.7 69.2 - - - 69.2 TIES 95.8 - - 60.7 - 60.7

DARE 96.4 43.2 - - - 43.2 DARE 96.6 - - 72.3 - 72.3
Ours 96.1 12.2 - - - 12.2 Ours 95.9 - - 39.0 - 39.0

Combined: Benign + InsertSent Combined: Benign + HiddenKiller

WAG 96.1 - 5.5 - - 5.5 WAG 96.0 - - - 24.9 24.9
TIES 96.1 - 9.0 - - 9.0 TIES 96.1 - - - 30.0 30.0

DARE 96.6 - 4.7 - - 4.7 DARE 96.7 - - - 38.2 38.2
Ours 96.1 - 4.1 - - 4.1 Ours 96.0 - - - 25.5 25.5

For the results of MNLI dataset Table 8, our method demonstrates more balanced and robust defense789

performance across different attack combinations. While DARE occasionally achieves lower ASR790

on individual attacks (e.g., 11.6% ASR for BadNet in BadNet+InsertSent combination), it shows791

significant vulnerability to the other attack type (90.6% ASR for InsertSent), indicating potential risks792

when merging with new models. In contrast, our method maintains consistently lower average ASRs793

across various combinations (e.g., 23.7% for BadNet+InsertSent, 43.7% for InsertSent+LWS, and794

40.2% for InsertSent+Hidden), demonstrating its effectiveness in simultaneously defending against795

multiple attack types.796

For the results of AG NEWS dataset Table 9, we observe a similar pattern, where our method provides797

more balanced defense capabilities. Notably, for the InsertSent+LWS combination, while DARE798
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achieves a low ASR of 1.2% on LWS, it remains highly vulnerable to InsertSent attacks (99.6%799

ASR). In contrast, our method maintains consistently lower ASRs for both attacks (9.5% and 16.7%),800

resulting in a better average performance of 13.1%.801

Table 8: Performance comparison on the MNLI dataset using the RoBERTa-large model.

Defense CACC BadNet Insert LWS Hidden AVG. Defense CACC BadNet Insert LWS Hidden AVG.

Benign 87.6 12.3 12.6 26.4 36.9 22.1 Z-Def 89.2∗ 11.1 11.6 92.2 50.6 41.4
Victim 89.5∗ 100.0 100.0 96.0 99.9 99.0 ONION 86.3∗ 64.3 98.6 89.0 98.8 87.7

Combined: BadNet + InsertSent Combined: InsertSent + LWS

WAG 90.3 39.8 27.6 - - 33.7 WAG 90.6 - 36.1 62.6 - 49.4
TIES 90.3 73.6 56.1 - - 64.9 TIES 90.3 - 60.0 65.3 - 62.7

DARE 91.3 11.6 90.6 - - 51.1 DARE 91.4 - 88.8 40.2 - 64.5
Ours 90.5 24.8 22.5 - - 23.7 Ours 91.0 - 24.8 62.5 - 43.7

Combined: BadNet + LWS Combined: InsertSent + Hidden

WAG 89.8 59.3 - 69.3 - 64.3 WAG 91.5 - 36.6 - 46.9 41.8
TIES 90.0 87.3 - 73.1 - 80.2 TIES 90.9 - 65.1 - 55.2 60.2

DARE 90.5 71.7 - 56.4 - 64.1 DARE 91.8 - 90.8 - 40.2 65.5
Ours 90.1 45.1 - 68.9 - 57.0 Ours 91.1 - 24.3 - 56.1 40.2

Combined: BadNet + Hidden Combined: LWS + Hidden

WAG 89.9 61.6 - - 51.7 56.7 WAG 89.8 - - 70.2 55.1 62.7
TIES 90.0 89.4 - - 64.0 76.7 TIES 90.1 - - 73.8 59.1 66.5

DARE 90.9 33.4 - - 81.8 57.6 DARE 91.0 - - 41.5 88.7 65.1
Ours 90.2 32.5 - - 59.3 45.9 Ours 89.9 - - 70.3 57.3 63.8

Combined: Benign + BadNet Combined: LWS + Benign

WAG 90.2 47.8 - - - 47.8 WAG 89.0 - - 65.6 - 65.6
TIES 89.8 64.9 - - - 64.9 TIES 89.8 - - 69.3 - 69.3

DARE 91.0 41.8 - - - 41.8 DARE 90.1 - - 48.9 - 48.9
Ours 90.1 43.3 - - - 43.3 Ours 89.3 - - 64.1 - 64.1

Combined: InsertSent + Benign Combined: Hidden + Benign

WAG 90.4 - 23.2 - - 23.2 WAG 90.3 - - - 47.0 47.0
TIES 90.4 - 40.6 - - 40.6 TIES 89.8 - - - 54.3 54.3

DARE 91.3 - 42.3 - - 42.3 DARE 90.9 - - - 63.3 63.3
Ours 90.5 - 18.3 - - 18.3 Ours 89.4 - - - 47.9 47.9

H.2 Overall Defense Performance for Vision Backdoor Attacks802

We present the full results for the CIFAR-10 and TinyImageNet datasets with the ViT model803

in Table 10 and Table 11, respectively.804

While most methods achieve relatively low ASRs for many attack types, our approach is particularly805

effective against stealthier attacks like PhysicalBA. This is most evident in the BadNet+PhysicalBA806

combination, where our method reduces the ASR to 18.5% for both attacks while maintaining a807

high clean accuracy of 98.7% in CIFAR-10 dataset. These results highlight our method’s strength in808

defending against more sophisticated visual backdoor attacks.809

H.3 Fitness Score Comparison of Different Strategy810

We investigate the defense performance using two different evolutionary search strategies, with and811

without early stopping, as illustrated in Figure 7 and 6, and present their fitness score breakdown812

in Table 12. The early stopping criterion terminates the search when no improvement in fitness score813

is observed over 100,000 iterations. We observe a positive correlation between the fitness score and814

defense performance: the adopted strategy without early stopping achieves a lower fitness score and815

reduces the ASR by 27.2%. By examining the score breakdowns and the visualized combinations,816

we attribute this improvement to fewer violations of residual connection rules in the adopted strategy,817

which helps disrupt subtle spurious correlations more effectively.818

H.4 Results of Candidate Selection819

As our method asymmetrically allocates modules to models, a set of candidates is generated, for820

which we design a selection method illustrated in Section 4.4. While the chosen candidate consis-821

tently performs well, we analyze unselected candidates’ performance, as shown in Table 13. Our822

selection method correctly identifies the best candidates in most cases, outperforming alternatives by823
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Table 9: Performance comparison on the AG NEWS dataset using the RoBERTa-large model.

Defense CACC BadNet Insert LWS Hidden AVG. Defense CACC BadNet Insert LWS Hidden AVG.

Benign 95.4 1.9 0.5 0.5 1.1 1.0 Z-Def 95.4∗ 1.6 0.4 97.9 100.0 50.0
Victim 95.0∗ 99.9 99.6 99.6 100.0 99.8 ONION 92.3∗ 59.4 97.8 84.8 99.6 85.4

Combined: BadNet + InsertSent Combined: InsertSent + LWS

WAG 95.4 75.2 60.2 - - 67.7 WAG 95.2 - 39.5 17.8 - 28.7
TIES 95.3 92.4 95.6 - - 94.0 TIES 95.1 - 90.5 55.7 - 73.1

DARE 95.6 33.7 66.6 - - 50.1 DARE 95.4 - 99.6 1.2 - 50.4
Ours 95.3 72.3 42.5 - - 57.4 Ours 95.1 - 9.5 16.7 - 13.1

Combined: BadNet + LWS Combined: InsertSent + Hidden

WAG 95.2 76.1 - 28.1 - 52.1 WAG 95.4 - 61.4 - 43.6 52.5
TIES 95.1 95.6 - 64.4 - 80.0 TIES 95.3 - 93.4 - 75.3 84.4

DARE 95.4 99.3 - 3.5 - 51.4 DARE 95.5 - 84.0 - 15.8 49.9
Ours 95.2 75.8 - 26.0 - 50.9 Ours 95.3 - 41.7 - 47.5 44.6

Combined: BadNet + Hidden Combined: LWS + Hidden

WAG 95.2 73.2 - - 37.2 55.2 WAG 95.1 - - 31.7 62.6 47.2
TIES 95.3 91.9 - - 71.9 81.9 TIES 95.1 - - 67.5 92.2 79.9

DARE 95.4 66.7 - - 40.4 53.6 DARE 95.3 - - 2.5 99.9 51.2
Ours 95.2 56.5 - - 38.1 47.3 Ours 95.2 - - 33.5 60.5 47.0

Combined: Benign + BadNet Combined: Benign + LWS

WAG 95.4 65.4 - - - 65.4 WAG 95.2 - - 14.0 - 14.0
TIES 95.4 87.4 - - - 87.4 TIES 95.2 - - 47.1 - 47.1

DARE 95.6 33.6 - - - 33.6 DARE 95.6 - - 2.6 - 2.6
Ours 95.4 46.4 - - - 46.4 Ours 95.2 - - 15.7 - 15.7

Combined: Benign + InsertSent Combined: Benign + Hidden

WAG 95.4 - 56.6 - - 56.6 WAG 95.3 - - - 36.4 36.4
TIES 95.3 - 93.2 - - 93.2 TIES 95.3 - - - 68.8 68.8

DARE 95.6 - 3.1 - - 3.1 DARE 95.5 - - - 7.4 7.4
Ours 95.3 - 16.6 - - 16.6 Ours 95.3 - - - 48.0 48.0

a significant margin. Although some unselected candidates achieve a lower ASR in certain cases, our824

selected candidate maintains comparable performance.825

H.5 Importance of Heuristic Rules826

We introduce five heuristic rules in Section 4.2 to guide the evolutionary search for module switching827

strategies. To assess the contribution of each rule, we perform ablation experiments by individually828

removing the first three rules, which aim to disconnect adjacent modules at different structural levels,829

and measure the resulting defense performance under three settings. As shown in Table 14, removing830

any of these rules generally leads to performance degradation, supporting the complementary nature of831

the full rule set. We further visualize the searched strategies resulting from each ablation in Figures 8832

to 10.833

H.6 Generalization across Model Architectures834

We evaluate our method across three model architectures–RoBERTa-large, BERT-large, and DeBERTa-835

v3-large–under three backdoor settings. As shown in Table 15, our defense consistently achieves lower836

ASR compared to the baseline WAG across all models. Notably, we apply the same unified searched837

strategy (presented in Figure 6) to all architectures, demonstrating the strong generalization and838

transferability of our method. This supports its scalability and practicality in real-world applications.839

H.7 Minimum Clean Data Requirement840

By default, we use 50 clean data points per class to guide the candidate selection process (as described841

in Section 4.4). To further investigate the minimum clean data required for effective defense,842

we reduce this to 20 samples per class across all three model architectures on SST-2. As shown843

in Table 15, our approach continues to select candidates with low ASR even under this constrained844

setting. These results indicate that the method remains effective in low-resource scenarios with845

limited clean supervision.846
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Table 10: Performance comparison on the CIFAR-10 dataset using the ViT model.

Defense CACC BadNet WaNet BATT PBA AVG. Defense CACC BadNet WaNet BATT PBA AVG.

Benign 98.8 10.1 10.2 7.7 10.1 9.5 CutMix 97.7∗ 87.1 70.6 99.9 64.9 80.6
Victim 98.5∗ 96.3 84.7 99.9 89.4 92.6 ShrinkPad 97.3∗ 14.4 51.3 99.9 88.3 63.5

Combined: BadNet + WaNet Combined: WaNet + BATT

WAG 98.7 13.8 10.6 - - 12.2 WAG 98.7 - 10.2 22.3 - 16.3
TIES 98.6 11.9 10.6 - - 11.3 TIES 98.9 - 10.2 23.9 - 17.0

DARE 98.8 83.3 10.2 - - 46.7 DARE 98.9 - 10.2 45.8 - 28.0
Ours 98.7 12.3 10.5 - - 11.4 Ours 98.7 - 10.3 19.1 - 14.7

Combined: BadNet + BATT Combined: WaNet + PhysicalBA

WAG 98.9 10.1 - 42.7 - 26.4 WAG 98.8 - 10.2 - 10.2 10.2
TIES 98.9 10.1 - 55.8 - 33.0 TIES 98.9 - 10.1 - 10.3 10.2

DARE 99.0 69.2 - 26.8 - 48.0 DARE 98.9 - 10.1 - 21.0 15.6
Ours 98.7 10.2 - 32.6 - 21.4 Ours 98.7 - 10.3 - 10.2 10.2

Combined: BadNet + PhysicalBA Combined: BATT + PhysicalBA

WAG 99.0 39.5 - - 39.5 39.5 WAG 98.9 - - 26.8 10.0 18.4
TIES 98.9 43.1 - - 43.1 43.1 TIES 98.7 - - 23.4 10.0 16.7

DARE 99.0 72.2 - - 72.2 72.2 DARE 98.9 - - 23.0 10.1 16.5
Ours 98.7 18.5 - - 18.4 18.5 Ours 98.8 - - 9.8 10.0 9.9

Combined: Benign + BadNet Combined: Benign + WaNet

WAG 98.8 19.4 - - - 19.4 WAG 98.9 - 10.2 - - 10.2
TIES 98.8 10.2 - - - 10.2 TIES 98.6 - 10.3 - - 10.3

DARE 98.8 10.3 - - - 10.3 DARE 98.8 - 10.2 - - 10.2
Ours 98.7 10.3 - - - 10.3 Ours 98.7 - 10.3 - - 10.3

Combined: Benign + BATT Combined: Benign + PhysicalBA

WAG 98.8 - - 19.4 - 19.4 WAG 99.0 - - - 10.1 10.1
TIES 98.8 - - 23.4 - 23.4 TIES 98.8 - - - 10.2 10.2

DARE 99.0 - - 28.2 - 28.2 DARE 99.9 - - - 10.1 10.1
Ours 98.8 - - 15.8 - 15.8 Ours 98.9 - - - 10.1 10.1

Table 11: Performance comparison on the TinyImageNet dataset using the ViT model.

Defense CACC BadNet WaNet BATT PBA AVG.

Benign 89.1 0.51 0.01 0.04 0.03 0.15
Victim 85.8∗ 97.8 98.9 100.0 90.0 96.6

Combined: BadNet + WaNet

WAG 88.2 11.7 5.5 - - 8.6
Ours 84.2 0.6 0.2 - - 0.4

Combined: BadNet + BATT

WAG 87.3 0.11 - 0.15 - 0.13
Ours 86.8 0.03 - 0.07 - 0.05

Combined: BadNet + PhysicalBA

WAG 88.5 58.5 - - 35.9 47.2
Ours 84.8 48.2 - - 29.1 38.7

H.8 Performance under Varying Poisoning Rates847

We further evaluate the robustness of our method under varying poisoning rates (20%, 10%, and 1%)848

on SST-2 dataset using the RoBERTa-large model. As shown in Table 16, our method consistently849

achieves lower ASR than WAG across settings that combine models poisoned with different attack850

methods and poisoning ratios.851
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Table 12: Comparison of strategy fitness scores and performance in combining Benign with BadNet
model.

Early Stopping Strategy Adopted Strategy
Fitness Score Components

Intra Layer Score -42.00 Intra Layer Score -48.00
Inter Layer Score -21.00 Inter Layer Score -15.00
Residual Connection Score -48.24 Residual Connection Score -24.02
Balance Score 0.00 Balance Score 0.00
Diversity Score 17.00 Diversity Score 12.00

Total Score -94.24 Total Score -75.01
Performance Metrics

CACC (↑) 96.70 CACC (↑) 96.10
ASR (↓) 39.40 ASR (↓) 12.20

Table 13: Performance comparison of selected and unselected candidates on SST-2.

Setting
Selection candidate Unselected candidate Overall

Mean ASR
(↓)

WAG
Mean ASR

(↓)CACC
(↑)

AVG. ASR
(↓)

CACC
(↑)

AVG. ASR
(↓)

BadNet+InsertSent 96.2 22.0 96.5 31.2 26.6 31.9

BadNet+LWS 96.0 40.4 95.9 72.4 56.4 62.2

BadNet+Hidden 96.1 34.1 96.0 48.5 41.3 46.5

InsertSent+LWS 96.0 25.8 96.0 30.3 28.1 29.2

InsertSent+Hidden 95.8 19.4 96.1 19.2 19.3 20.5

LWS+Hidden 96.0 52.9 96.2 49.6 51.3 51.1

Average 96.0 32.4 96.1 41.9 37.2 40.2

Table 14: Impact of heuristic rule ablations under different combinations of backdoor settings on
SST-2 using the RoBERTa-large model. ∆ denotes the change in average ASR relative to the full
rule set.

Setting Ablation CACC
(↑)

ASR (↓)
Atk1 Atk2 AVG. ∆

BadNet + InsertSent

All rules (full) 96.2 36.9 7.1 22.0 –
w/o rule 1 96.0 33.2 18.7 25.9 +3.9
w/o rule 2 96.3 60.6 14.1 37.3 +15.3
w/o rule 3 96.3 43.1 6.2 24.6 +2.6

BadNet + LWS

All rules (full) 96.0 41.7 39.0 40.4 –
w/o rule 1 95.9 46.2 51.2 48.7 +8.3
w/o rule 2 96.0 68.1 62.8 65.4 +25.0
w/o rule 3 96.0 69.1 46.3 57.7 +17.3

BadNet + Hidden

All rules (full) 96.1 40.5 27.7 34.1 –
w/o rule 1 95.9 14.0 32.8 23.4 -10.7
w/o rule 2 96.1 59.4 29.4 44.4 +10.3
w/o rule 3 96.0 56.6 29.1 42.9 +8.8
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Table 15: Cross-model evaluation under varying clean data budgets on SST-2. N = 50 and N = 20
indicate the number of clean samples per class used for validation.

Setting Defense
RoBERTa-large BERT-large DeBERTa-v3-large

CACC
(↑)

ASR (↓) CACC
(↑)

ASR (↓) CACC
(↑)

ASR (↓)
Atk1 Atk2 AVG. Atk1 Atk2 AVG. Atk1 Atk2 AVG.

BadNet +
InsertSent

WAG 96.3 56.3 7.4 31.9 93.3 40.2 60.1 50.2 96.1 47.4 5.2 26.3
Ours (N = 50) 96.2 36.9 7.1 22.0 93.5 39.7 38.1 38.9 96.3 40.4 5.2 22.8
Ours (N = 20) 96.2 47.7 6.6 27.1 93.5 39.7 38.1 38.9 96.3 32.8 5.1 19.0

BadNet +
LWS

WAG 96.2 74.0 50.3 62.2 93.1 76.9 63.0 69.9 96.2 63.4 79.5 71.5
Ours (N = 50) 96.0 41.7 39.0 40.4 93.0 73.9 61.3 67.6 96.0 48.7 73.0 60.8
Ours (N = 20) 96.0 41.7 39.0 40.4 93.0 76.5 63.6 70.0 96.0 48.7 73.0 60.8

BadNet +
Hidden

WAG 96.1 63.9 29.0 46.5 93.3 56.9 43.8 50.3 96.2 48.3 39.6 43.9
Ours (N = 50) 96.1 40.5 27.7 34.1 93.4 50.3 37.9 44.1 96.1 22.7 41.0 31.8
Ours (N = 20) 96.2 34.9 25.6 30.3 93.4 50.3 37.9 44.1 96.3 22.7 41.0 31.8

Table 16: Performance comparison under varying poison rates on SST-2 using the RoBERTa-large
model.

Setting Defense
Poison Rate: 20% Poison Rate: 10% Poison Rate: 1%

CACC
(↑)

ASR (↓) CACC
(↑)

ASR (↓) CACC
(↑)

ASR (↓)
Atk1 Atk2 AVG. Atk1 Atk2 AVG. Atk1 Atk2 AVG.

BadNet
+ InsertSent

WAG 96.3 56.3 7.4 31.9 96.1 66.6 8.9 37.9 96.4 58.3 27.2 42.8
Ours (MSD) 96.2 36.9 7.1 22.0 96.0 55.1 9.3 32.3 96.3 57.4 44.4 50.9

BadNet
+ LWS

WAG 96.2 74.0 50.3 62.2 95.1 83.7 46.3 65.0 96.3 62.7 28.9 45.8
Ours (MSD) 96.0 41.7 39.0 40.4 94.9 70.6 40.1 55.3 96.4 59.9 27.6 43.7

BadNet
+ Hidden

WAG 96.1 63.9 29.0 46.5 95.9 67.9 26.9 47.4 96.1 64.9 30.5 47.7
Ours (MSD) 96.1 40.5 27.7 34.1 95.5 51.9 25.8 38.9 96.1 59.2 30.0 44.6
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I Examples of Searched Strategy852

We present several examples of module switching strategies discovered by our evolutionary algorithm,853

listed as follows:854

• Our adopted merging strategy for two-model combinations using RoBERTa-large (24 layers),855

presented in Figure 6, achieves a fitness score of -75.0.856

• An early-stage merging strategy for RoBERTa-large (24 layers), shown in Figure 7, yields a857

fitness score of -94.2.858

• The adopted strategy for merging three RoBERTa-large models (24 layers), illustrated in859

Figure 11, obtains a fitness score of -26.2.860

• An alternative merging strategy designed for ViT model (12 layers), depicted in Figure 12,861

achieves a fitness score of -39.5.862
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Figure 6: Adopted merging strategy (with a fitness
score of -75.0).
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Figure 7: Early stopping strategy (with a fitness
score of -94.2).
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Figure 8: Strategy of ablating
rule 1.
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Figure 9: Strategy of ablating
rule 2.
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Figure 10: Strategy of ablating
rule 3.
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Figure 11: Adopted merging strategy (fitness score -26.2).
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Figure 12: Adopted merging strategy (fitness score -39.5).
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