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Abstract
Compositional generalization, representing the001
model’s ability to generate text with new at-002
tribute combinations obtained by recombining003
single attributes from the training data, is a004
crucial property for multi-aspect controllable005
text generation (MCTG) methods. Nonetheless,006
a comprehensive compositional generalization007
evaluation benchmark of MCTG is still lacking.008
We propose CompMCTG, a benchmark encom-009
passing diverse multi-aspect labeled datasets010
and a crafted three-dimensional evaluation pro-011
tocol, to holistically evaluate the compositional012
generalization of MCTG approaches. We ob-013
serve that existing MCTG works generally con-014
front a noticeable performance drop in com-015
positional testing. To mitigate this issue, we016
introduce Meta-MCTG, a training framework017
incorporating meta-learning, where we enable018
models to learn how to generalize by simulat-019
ing compositional generalization scenarios in020
the training phase. We demonstrate the effec-021
tiveness of Meta-MCTG through achieving ob-022
vious improvement (by at most 3.64%) for com-023
positional testing performance in 94.4% cases.024

1 Introduction025

Multi-aspect Controllable Text Generation026

(MCTG) aims to generate fluent text with a027

combination of attributes from diverse aspects028

(e.g. sentiment, topic, tense, person, and stuff). In029

comparison with single-aspect controllable text030

generation (Zhang and Song, 2022), it is more031

challenging and calls for increasing attention in032

recent years (Gu et al., 2022; Yang et al., 2023).033

Current MCTG methods involve Decoding-time-034

based (Dathathri et al., 2019; Yang and Klein,035

2021) that modulate output distribution by a well-036

trained classifier, Separate-training-based (Gu et al.,037

2022; Huang et al., 2023; Gu et al., 2023; Yang038

et al., 2023) that train multiple single-aspect mod-039

ules in turn with single-aspect data and generating040

multi-aspect text by fusing them, and Joint-training-041

based (Keskar et al., 2019; Qian et al., 2022a; Zeng042

Hold-Out ACD Few-Shot
I.D. Comp.

easy hardest

hard

dataset with all attribute combinations

positive
negative
plural
singular
present
past

I.D. Comp. I.D. Comp.

Figure 1: Three evaluation protocols in CompMCTG
benchmark, where represents texts with these
three attribute labels (e.g., positive, plural, and present).
“I.D.” denotes the In-Distribution set and “Comp.” de-
notes the Compositional set.

et al., 2023), which train multiple single-aspect 043

modules simultaneously or multi-aspect modules 044

with multi-aspect data. These methods based on 045

pre-trained language models (Radford et al., 2019) 046

have achieved promising results on this task. 047

However, seldom works focus on the investi- 048

gation of compositional generalization, a crucial 049

property of MCTG approaches, which refers to the 050

model’s ability to generate text with new attribute 051

combinations obtained by recombining single at- 052

tributes from the training data. For example, We 053

aim for the model to generate text with the attribute 054

combination (negative, male) after training on data 055

with (positive, male) and (negative, female). Due 056

to the difficulties in collecting data with all possible 057

attribute combinations in most real-world scenar- 058

ios, the capability for compositional generalization 059

is paramount. 060

To this end, We propose CompMCTG, a compre- 061

hensive benchmark to evaluate the compositional 062

generalization of MCTG approaches (Section 3.1). 063

We first collect four popular datasets (from a mini- 064

mum of two-aspect, eight attribute combinations to 065

a maximum of four-aspect, forty attribute combi- 066
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nations) in the MCTG field to comprise CompM-067

CTG. The next crucial issue is how to split the068

dataset to better unveil the compositional gener-069

alization risk of MCTG methods. Generally, we070

split the whole dataset C into two disjoints sets: in-071

distribution set Ci.d. and compositional set Ccomp,072

where the MCTG model is trained on Ci.d. and073

tested on both Ci.d. (in-distribution testing) and074

Ccomp (compositional testing). For an all-sided075

evaluation, we propose a three-dimensional eval-076

uation protocol containing Hold-Out, ACD, and077

Few-Shot, which is depicted in Figure 1. Among078

them, Hold-Out is an easy protocol, which holds a079

few attribute combinations out from C as Ccomp and080

uses the remaining combinations as Ci.d.. Few-Shot081

is the hardest protocol, in which we guarantee every082

single attribute appears in the Ci.d. while minimiz-083

ing |Ci.d.|1. To better reflect the capacity of models084

in cases that |Ccomp| is comparable to |Ci.d.|, which085

are closer to real-world scenarios, we design ACD,086

where we make |Ci.d.| = |Ccomp|. The core idea of087

ACD is to maximize the distributional divergence088

between Ci.d. and Ccomp. Compared with random089

sampling that contributes to similar distributions090

between Ci.d. and Ccomp easily (Zeng et al., 2023),091

ACD can better amplify the compositional general-092

ization risk while random-based splits often lead to093

gross under-estimation (Section 3.4).094

Through the results on CompMCTG (Section095

3.3), we observe that all of the evaluated MCTG096

baseline approaches are faced with a noticeable097

performance drop between in-distribution and com-098

positional testing. To further enhance the composi-099

tional generalization performance of joint-training-100

based methods which generally perform the best101

among all baselines, we propose Meta-MCTG (Sec-102

tion 4), a training framework incorporating meta-103

learning (Finn et al., 2017), in which we enable104

models to learn how to generalize by simulating105

compositional generalization scenarios in the train-106

ing phase. Firstly, we train the original model107

on a training batch Btrain, perform one step of108

gradient descent, and save the updated parame-109

ters to a backup model without updating the orig-110

inal model’s parameters. Secondly, we sample111

a “pseudo compositional” batch Bpcomp from the112

training set where the attribute combinations are113

the re-combination of those in Btrain and train the114

backup model on Bpcomp. Finally, we combine115

1We define |C| as the number of attribute combinations in
C

the losses from both steps and perform one step of 116

gradient descent to update the original model’s pa- 117

rameters. Compared with solely training the model 118

on Btrain, introducing Bpcomp enables the model’s 119

parameters to update in a direction that not only fo- 120

cuses on fitting the training data but also takes out- 121

of-distribution data into account, which helps to 122

elevate model’s capability of compositional gener- 123

alization. We implement Meta-MCTG on three top- 124

performing joint-training-based MCTG baselines 125

and conduct extensive experiments on CompM- 126

CTG, demonstrating the effectiveness of Meta- 127

MCTG through achieving obvious improvement 128

(by at most 3.64%) for compositional testing in 129

94.4% cases. 130

Our main contributions are three-fold: (1) We 131

propose CompMCTG, the first holistic benchmark 132

targeting compositional generalization for MCTG, 133

incorporating four popular datasets and a crafted 134

three-dimensional evaluation protocol. (2) We con- 135

duct extensive experiments on CompMCTG with 136

eight representative MCTG baselines and two ad- 137

ditional LLMs, unveiling noticeable compositional 138

generalization risk in them and demonstrating the 139

necessity of designs in CompMCTG. (3) We pro- 140

pose Meta-MCTG, incorporating meta-learning 141

into the MCTG training process, to mitigate MCTG 142

models’ over-fitting to attribute combinations seen 143

in the training phase and improve their capacity 144

for compositional generalization. To the best of 145

our knowledge, we are the first to comprehensively 146

evaluate MCTG on compositional generalization 147

and introduce meta-learning into MCTG to im- 148

prove composition generalization. 149

2 Related Work 150

Multi-aspect Controllable Text Generation Ex- 151

isting works on MCTG primarily fall into the fol- 152

lowing three categories: The first is decoding-time- 153

based (Dathathri et al., 2019; Yang and Klein, 154

2021; Krause et al., 2021), which uses a well- 155

trained classifier or conditional language model to 156

adjust the output probability distribution of a frozen 157

causal language model. The second is separate- 158

training-based, which trains single-attribute mod- 159

ules (Yang et al., 2023; Huang et al., 2023), Energy- 160

based Models (Mireshghallah et al., 2022; Qin 161

et al., 2022) or latent space representations (Gu 162

et al., 2022, 2023) using single-attribute label data, 163

and controls the generation by concatenating in- 164

dividual modules, Energy-based Models or seek- 165
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ing the intersection of different attribute represen-166

tations in the latent space. The third is joint-167

training-based, which trains multi-attribute mod-168

ules (Keskar et al., 2019; Zeng et al., 2023; Qian169

et al., 2022b) simultaneously using multi-attribute170

label data. Qian et al. (2022b) add a prefix (Li and171

Liang, 2021) for each attribute and train these pre-172

fixes using a contrastive loss. Zeng et al. (2023)173

encode different control codes (word embedding of174

attribute tokens) into prompts (Lester et al., 2021)175

using a fully connected layer and train this layer us-176

ing a contrastive loss similar to Qian et al. (2022b).177

Compositional Generalization Existing works178

on compositional generalization involve various179

NLP topics: Semantic Parsing (Herzig and Berant,180

2021; Ontanon et al., 2022; Drozdov et al., 2023;181

Li et al., 2023), Machine Translation (Li et al.,182

2021; Zheng and Lapata, 2022; Lin et al., 2023),183

Text Classification (Kim et al., 2021; Chai et al.,184

2023), Complex Reasoning (Zhou et al., 2023a;185

Press et al., 2023) and stuff. Nonetheless, in the186

field of open-domain controllable text generation,187

compositional generalization, which we target and188

reveal as the necessity for the robustness of neural189

language generators in this paper, remains under-190

explored. (Zeng et al., 2023) investigates compo-191

sitional generalization focusing on a neighboring192

topic, controllable dialogue generation. We regard193

their work as a starting point of our research and194

further depict the deficiency of its naive evaluation195

protocol, for the underestimation of the composi-196

tionality gap in more realistic scenarios (Keysers197

et al., 2020).198

3 Benchmark: CompMCTG199

We propose CompMCTG, a novel benchmark to200

comprehensively evaluate the compositional gen-201

eralization capacity of MCTG approaches. The202

superiority and novelty of CompMCTG are out203

of its scale of dataset and its three-dimensional204

evaluation protocol (Section 3.1). We select eight205

representative baseline approaches (Section 3.2),206

evaluate their performance on our CompMCTG207

benchmark, and unveil their struggling on compo-208

sitional testing (Section 3.3). Moreover, system-209

atic analysis towards exploring the behaviors of210

baseline approaches under different evaluation pro-211

tocols of CompMCTG is provided in Section 3.4,212

which highlights: 1) its capacity to dig out the po-213

tential generalization risk of evaluated approaches214

and 2) the undervalued compositionality gap in the215

previous work (Zeng et al., 2023) as well. 216

3.1 On the Construction of CompMCTG 217

Data Source We collect commonly used and 218

open-sourced datasets for our usage. Consequently, 219

we select a shopping review dataset: Amazon 220

Review (He and McAuley, 2016), a mixture of 221

movie(IMDB (Maas et al., 2011)), tablet, auto- 222

mobile(Sentube (Uryupina et al., 2014)) and ho- 223

tel(OpenNER (Agerri et al., 2013)) review dataset: 224

Mixture (Liu et al., 2022), and two restaurant re- 225

view datasets: YELP (Shen et al., 2017; YELP, 226

2014) and Fyelp (Lample et al., 2019). Details of 227

these datasets are concluded in Appendix A. 228

Three-Dimensional evaluation Protocol We de- 229

sign a three-dimensional(Hold-Out, ACD and Few- 230

Shot) evaluation protocol, aiming to sufficiently 231

explore the compositional generalization capacity 232

of existing approaches. Supposing that dataset D2 233

contains m distinct aspect sets: A1, A2, ..., Am 234

and a specific aspect Ai (1 ≤ i ≤ m) has ai 235

kinds of different attribute values in its set: Ai = 236

{A1
i , A

2
i , ..., A

ai
i }, we denote the whole attribute 237

combination set as the continued Cartesian product 238

C = A1 × A2 × ... × Am = {(Ati
i )1≤i≤m|1 ≤ 239

ti ≤ ai}. The core of constructing CompM- 240

CTG is to split the attribute combination set C 241

into in-distribution set Ci.d. and compositional set 242

Ccomp. Basically, Ccomp has no intersection with 243

Ci.d. and any attribute combination in Ccomp can be 244

derived through recombining single attributes in 245

Ci.d.. Hence we have the formal definition of an 246

eligible split s(C) = Ci.d., Ccomp as following: 247

C = Ci.d. ∪ Ccomp, Ci.d. ∩ Ccomp = ∅ 248

{attribute|∃c ∈ Ccomp, attribute ∈ c} ⊆ 249

{attribute|∃c ∈ Ci.d., attribute ∈ c} 250

Hold-Out is an easy evaluation protocol, which 251

holds a few attribute combinations out from C as 252

Ccomp and uses the remaining attribute combina- 253

tions as Ci.d.. Supposing |Ccomp| equals to k (k is 254

relatively small so that the split is eligible), there 255

are
(|C|
k

)
different kinds of splits. In our benchmark, 256

we set k = 1, and the final result is the average 257

across
(|C|
k

)
scenarios to eliminate bias. 258

2Each datum in D consists of two components: con-
dition part, a combination of several attributes of differ-
ent aspects (e.g., sentiment:“positive”, tense:“past”, and
topic:“basketball”) and text part, a span of text corresponding
to these conditions. For brevity, we omit the text part and use
the condition part to represent the data in this section.
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Method Original Hold-Out ACD Average
Ai.d.(↑) Pi.d. (↓) Ai.d. (↑) Pi.d.(↓) Acomp(↑) Pcomp(↓) Ai.d. (↑) Pi.d. (↓) Acomp (↑) Pcomp(↓) Aavg (↑) Pavg (↓) Gavg (↓)

LLM+In-context Learning
LLaMA-2 (Touvron et al., 2023) 61.53% 27.30 62.61% 25.55 40.82 % 23.80 62.98% 28.31 42.11% 24.63 54.01% 25.92 33.97%
ChatGPT (OpenAI, 2023) 57.51% 18.03 56.62% 18.29 49.21 % 18.49 57.13% 18.27 49.75% 18.22 54.04% 18.26 13.00%
Decoding-Time based
PPLM (Dathathri et al., 2019) 40.91% 322.59 41.05% 325.09 40.62 % 340.76 42.25% 328.07 39.60% 325.74 40.89% 328.45 3.66%
Fudge (Yang and Klein, 2021) 60.12% 178.51 59.35% 179.47 42.10 % 252.08 57.17% 175.66 41.49 % 223.08 52.05% 201.76 28.25%
Separate-Training based
Dis-Lens (Gu et al., 2022) 85.46% 123.72 84.84% 95.84 55.58 % 104.89 85.54% 90.87 49.52 % 112.60 72.19% 105.58 22.30%
Prior (Gu et al., 2023) 73.85% 119.91 73.64% 108.58 49.93 % 97.64 78.24% 113.73 50.05 % 97.63 65.14% 107.50 34.11%
Joint-Training based
CTRL (Keskar et al., 2019) 79.10% 54.17 78.89% 51.20 75.09 % 51.22 77.83% 51.71 69.96 % 51.28 76.17% 51.92 7.46%
CatPrompt (Yang et al., 2023) 63.91% 74.53 63.95% 73.24 60.32 % 69.13 60.53% 98.08 48.25 % 68.45 59.39% 76.69 12.98%
Con.Prefix (Qian et al., 2022a) 83.99% 79.29 83.75% 80.49 80.36 % 87.19 81.15% 80.71 69.84% 83.90 79.82% 82.32 8.99%
DCG (Zeng et al., 2023) 79.93% 56.37 79.72% 62.05 76.66 % 64.40 78.43% 57.97 67.7 % 61.11 76.49% 60.38 8.76%

Table 1: Averaged overall evaluation results for state-of-the-art baseline approaches on our CompMCTG benchmark
(Hold-Out testing and ACD testing). A, P and G are the abbreviations of accuracy, perplexity, and gap (we explain
the meaning of “gap” in Section 3.3.) respectively. Subscript i.d. and comp refer to in-distribution and compositional
generalization performance. Each value in this table is the average (Please find the detailed results for each dataset
in Appendix H.5) of testing performances on four component datasets of CompMCTG: Amazon Review (He and
McAuley, 2016), Fyelp (Lample et al., 2019), YELP (Shen et al., 2017; YELP, 2014) and Mixture (Liu et al., 2022).

Few-Shot is the hardest evaluation protocol, in259

which we guarantee every single attribute appears260

in the Ci.d. while minimizing |Ci.d.|, which simulate261

the scenarios of the low-data regime.262

While in most real-world scenarios, |Ccomp| is263

comparable to |Ci.d.|. A crucial issue to this sit-264

uation is how we divide C into Ci.d. and Ccomp265

as the exponential complexity of sweeping over266

all of the eligible possibilities (We discuss this267

point in Appendix B). Thus focusing on a repre-268

sentative subset of them is a feasible solution. In-269

spired by (Keysers et al., 2020), we propose ACD,270

where we keep |Ci.d.| = |Ccomp| and construct271

representative splits by maximizing the Attribute272

Compound Divergence between Ci.d. and Ccomp.273

The term attribute compound refers to a specific274

tuple of two attributes: (Ati
i , A

tj
j ), i ≤ j, 1 ≤275

ti ≤ ai, 1 ≤ tj ≤ aj , which characterizes the co-276

occurrence of two attributes in one attribute com-277

bination c ∈ C. Firstly, we calculate the frequency278

density of the attribute compound (Ati
i , A

tj
j ) in the279

combination sets C ∈ {Ci.d., Ccomp} and obtain two280

frequency distributions (fCi.d.((A
ti
i , A

tj
j )))i,j,ti,tj281

and (fCcomp((A
ti
i , A

tj
j )))i,j,ti,tj :282

fC((A
ti
i , A

tj
j )) =

∑
c∈C I(Ati

i ∈ c ∧A
tj
j ∈ c)∑

c∈C
∑

x∈c,y∈c,x ̸=y 1
283

=
2
∑

c∈C I(Ati
i ∈ c ∧A

tj
j ∈ c)

m(m− 1)|C|284

Then we introduce the Chernoff Coefficient285

S(P,Q) (Chung et al., 1989) to measure the scale286

of similarity between two probability distribu-287

tions P and Q (i.e., P = (p1, p2, ..., pn) and288

Q = (q1, q2, ..., qn), S(P,Q) =
∑n

i=1 p
α
i q

1−α
i ∈ 289

[0, 1])3. Finally, we define the Attribute Com- 290

pound Divergence as D(Pi.d., Pcomp) = 1 − 291

S(Pi.d., Pcomp) ∈ [0, 1] to measure the divergence 292

between Ci.d. and Ccomp, where distribution Pi.d. 293

and Pcomp represent (fCi.d.((A
ti
i , A

tj
j )))i,j,ti,tj and 294

(fCcomp((A
ti
i , A

tj
j )))i,j,ti,tj , respectively. In the real 295

construction of ACD splits, we adopt a greedy- 296

based hill climbing algorithm (Russell and Norvig, 297

2010)4 to sample satisfactory splits which maxi- 298

mize D(Pi.d., Pcomp). 299

Note that for Amazon Review and Mixture 300

datasets, ACD protocol degenerates to Few-Shot 301

protocol as these datasets only contain two aspects 302

and we can not optimize the attribute compound 303

divergence in that situation. 304

3.2 Baseline and Evaluation Metric 305

We select eight representative baseline methods 306

to study: 1) for Joint-Training based meth- 307

ods, we choose CTRL (Keskar et al., 2019), a 308

classic and powerful baseline, Contrastive Prefix 309

(Con.Prefix) (Qian et al., 2022a), CatPrompt (Yang 310

et al., 2023), and DCG (Zeng et al., 2023), a related 311

work targeting on reducing the compositionality 312

gap, as our baseline methods, 2) for Seperate- 313

Training based, we select two state-of-the-art 314

baselines: Distribution-Lens (Gu et al., 2022) and 315

Prior (Gu et al., 2023), 3) for Decoding-Time 316

based methods, we choose PPLM (Dathathri et al., 317

2019) and Fudge (Yang and Klein, 2021). In ad- 318

3α ∈ [0, 1] is a hyperparameter to control our tolerance on
the difference between P and Q:

4The algorithm pseudo-code is available in Appendix G.
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dition, we adopt LLaMA-2 (Touvron et al., 2023)319

and ChatGPT (OpenAI, 2023) to study the com-320

positional generalization of large language models321

(LLMs) with In-context Learning paradigm (Brown322

et al., 2020). Following (Sun et al., 2023), we at-323

tach five demonstrations in the input prompt for324

LLMs to follow. One can find more details about325

our implementations in Appendix C.326

Grounded on the MCTG task, we adopt the327

evaluation metrics (note that the subfixes “i.d."328

and “comp" refer to the in-distribution and com-329

positional testing respectively.) of 1) ACCi.d. and330

ACCcomp: the averaged prediction accuracies5 for331

all of the control aspects to measure the control-332

lability of generated text, 2) PPLi.d. and PPLcomp:333

perplexity calculated by GPT-2 Large to measure334

the fluency of generated text in all of our experi-335

ments, and 3) Dist-3: 3-gram distinctness to eval-336

uate the diversity of the text generated by ap-337

proaches mentioned above. We also adopt Human-338

evaluation to measure the relevance and fluency of339

the generated text for each approach6.340

3.3 Evaluation Result341

The main evaluation results on CompMCTG bench-342

mark are shown in Table 1, where values in “Orig-343

inal” column refer the performance where text344

data of all attribute combinations are available in345

the training set and hence there is no composi-346

tional testing; values in “Hold-Out” and “ACD”347

columns refer to in-distribution and compositional348

testing performance through the evaluation proto-349

cols of “Hold-Out” and “ACD” mentioned in Sec-350

tion 3.1 respectively; values in “Average” column351

refer to overall performance which is the arithmetic352

mean of results under different evaluation protocols353

mentioned here (Originali.d., Hold-Outi.d., Hold-354

Outcomp, ACDi.d. and ACDcomp). The “gap” (Gavg)355

is used to assess the average compositional gen-356

eralization risk and a lower Gavg indicates better357

robustness under compositional testing, which is358

formulated as:359

Gavg =
1

2
(Gholdout +Gacd)360

=
1

2
(
Aholdout

i.d. −Aholdout
comp

Aholdout
i.d.

+
Aacd

i.d. −Aacd
comp

Aacd
i.d.

)361

5For each aspect in each dataset, we train a Roberta clas-
sifier (Liu et al., 2019) to evaluate its accuracy (details in
Appendix C.3).

6Due to the page limit, please find the result of Dist-3 and
Human-evaluation in Appendix D and E.

Among all the evaluated baselines, joint-training- 362

based approaches generally exhibit higher at- 363

tribute accuracy, better fluency (lower perplexity, 364

only inferior to LLM+ICL), and better robustness 365

to compositional testing (lower Gavg). Though 366

seperate-training-based methods perform accept- 367

ably in in-distribution testing, their performance 368

drops drastically in compositional testing and we 369

discuss the inherent reason for their failures in Ap- 370

pendix H.1. Decoding-time-based methods per- 371

form poorly overall, despite PPLM owning the 372

lowest Gavg, both its average accuracy and perplex- 373

ity are unusable. LLMs can generate more fluent 374

text while the controllability of the generated text 375

(54.04%) falls behind joint-training-based methods 376

(79.82%). At the same time, LLMs (+ICL) also suf- 377

fer from a large performance drop in compositional 378

testing (Gavg is 23.5% for LLaMA and ChatGPT). 379

Additionally, We evaluate all of the baseline ap- 380

proaches with Few-Shot evaluation protocol in Ap- 381

pendix H.2, to reflect their performance when only 382

limited attribute combinations are available. Again, 383

joint-training-based approaches hold the best av- 384

erage performance and compositional generaliza- 385

tion capacity among them. 386

3.4 Insight 387

In this section, we conduct analysis experiments 388

to show the effect of our key designs in CompM- 389

CTG: 1) the three-dimensional evaluation protocol 390

(Hold-Out, ACD and Few-Shot) and 2) the effec- 391

tiveness of ACD in amplifying the compositional 392

generalization gap. 393

Figure 2: Compositional generalization gap with differ-
ent evaluation protocols.

Compositional gaps with different evaluation 394

protocols. In Figure 2, we show compositional 395

gaps (G =
Ai.d.−Acomp

Ai.d.
) for approaches: CTRL, 396
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CatPrompt and DCG, with three evaluation pro-397

tocols on YELP and Fyelp datasets. We observe398

that the compositional gaps on the same approach399

and dataset vary a lot with different evaluation pro-400

tocols: Gholdout < Gacd < Gfewshot generally401

holds. Notably, Hold-Out can not properly unveil402

the compositional generalization gap for a specific403

approach. For instance: On Fyelp dataset, Cat-404

Prompt has the compositional gap of 0.91% on405

Hold-Out protocol, while it drastically increases406

to 10.96% on ACD protocol. Moreover, different407

approaches have different preferences for these pro-408

tocols. By way of example, The compositional gap409

(e.g., on Fyelp) of DCG with ACD (1.97%) is lower410

than CTRL (5.95%) while its gap with Few-Shot411

(25.91%) is much higher than CTRL (13.95%),412

demonstrating that the deficiency of DCG in low-413

data regime. Hence jointly leveraging these three414

evaluation protocols evaluates MCTG approaches415

more comprehensively.416

Figure 3: Comparison of compositional gaps between
ACD (green bars) and two other splitting methods: Ran-
dom Sampling (red bars) and minimizing the divergence
(blue bars) on five baselines.

Does the ACD better unveil the compositional417

generalization risk in comparison with Ran-418

dom Sampling? To demonstrate the effective-419

ness of ACD, where we maximize the divergence420

of attribute compound distributions between in-421

distribution and compositional sets, we design two422

other protocols in which we still keep |Ci.d.| =423

|Ccomp|: Random Sampling (random divergence)424

and minimizing the divergence (minimum diver-425

gence). We compare the compositional gaps among426

the three protocols (on Fyelp dataset) in Figure 3.427

We observe that gaps of ACD are consistently428

higher than two comparison protocols by large429

margins. Notably, using baseline approaches of430

CTRL and DCG, compositional gaps with Random 431

Sampling are near zero while they are 5.65% and 432

1.97% with ACD. Hence we conclude that ACD 433

generally better unveils the compositional general- 434

ization risk while Random Sampling often causes 435

gross under-estimation of such risk. 436

4 Methodlogy: Meta-MCTG 437

In Section 3.4, we observe that joint-training-based 438

(both parameter-efficient fine-tuning based and all- 439

parameter fine-tuning based) baselines generally 440

achieve better overall performance. Nonetheless, 441

there still exist non-negligible compositional gener- 442

alization gaps for all these baselines, which highly 443

calls for our attention. To this end, we propose 444

Meta-MCTG, a novel Meta-learning (Finn et al., 445

2017) based MCTG training framework, to further 446

improve compositional generalization capabilities 447

of existing joint-training baselines. The framework 448

is easy to implement and can be directly combined 449

with any joint-training-based methods. We dis- 450

cuss the design of Meta-MCTG in Section 4.1 and 451

demonstrate its effectiveness through experiment 452

results for Meta-MCTG in combination with three 453

competitive joint-training baselines (CTRL (Keskar 454

et al., 2019), ContrastivePrefix (Qian et al., 2022a) 455

and DCG (Zeng et al., 2023)) in Section 4.2. 456

4.1 Design 457

Overall Motivation The overall framework of 458

Meta-MCTG is depicted in Figure 4. We analyze 459

that the failure of generating text satisfying con- 460

trol conditions in compositional testing can be at- 461

tributed to the over-fitting of language models to 462

local optima of control conditions in the training 463

set. Thus when trained language models are fed 464

with recomposed attribute combinations as the con- 465

trol conditions in the compositional testing (e.g., 466

In Figure 4, “positive-sport-present”), it will po- 467

tentially encode and distribute those new attribute 468

combinations in the neighbor area of similar ones 469

(e.g., “positive-sport-past”) that they have seen in 470

the training phase. In this way, previous MCTG ap- 471

proaches fail to generate text that perfectly meets 472

the requirements of all given conditions. As de- 473

picted in Figure 4, when given the recomposed 474

attribute combination of “positive-sport-present”, 475

models may generate text like “The book sparked 476

my love for sports.”, neglecting the “present” con- 477

dition (As models only sees “positive-sport-past” 478

attribute combination in the training phase). 479
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Figure 4: Meta-MCTG: θ refers to the learnable parameters for encoding control conditions, which could be inner
(CTRL) or added (DCG and ContraPrefix). ϕ, the parameters of LMs, are usually frozen during training (PEFT).

Meta-MCTG training procedure Inspired by480

previous meta-learning works targeting generaliza-481

tion (Li et al., 2018; Wang et al., 2021; Conklin482

et al., 2021), we aim to leverage Model-Agnostic483

Meta Learning (MAML) (Finn et al., 2017) to miti-484

gate the overfitting problem.485

First of all, given a specific joint-training-based486

approach M, we denote its training objective as487

LMtrain(θ;ϕ;B) where θ represents the learnable488

parameters of encoding control conditions, ϕ rep-489

resents the parameters of the language model (e.g.,490

GPT-2), which are frozen during training (Note that491

in CTRL, ϕ is also updated while it still suits for492

the Meta-MCTG.), and B denotes a batch of data.493

In general, the training objective can be derived as:494

min
θ

LM
train(θ;ϕ;B) =

min
θ

∑
(ci,xi)∈B

[− log p(xi|ci; θ;ϕ)] + LM(θ;ϕ;B) (1)495

The first term refers to the basic LM loss (Radford496

and Narasimhan, 2018) which maximizes the like-497

lihood of generating target text xi and the second498

term refers to the auxiliary loss added by baseline499

M (e.g., contrastive loss (Qian et al., 2022a)).500

In the Meta-MCTG framework, we first501

sample a batch of training data Btrain =502

(ctraini , xtraini )mi=1 and a batch of pseudo-comp503

data Bpcomp = (cpcomp
i , xpcomp

i )mi=1 where504

{ctraini }mi=1 ∩ {c
pcomp
i }mi=1 = ∅ and each at-505

tribute combination of {cpcomp
i }mi=1 must be the506

recombination of single attributes appearing in the507

{ctraini }mi=1. For instance, in Figure 4 the pseudo-508

comp conditions “positive-movie-past” and “nega- 509

tive-sport-present” are the recombinations of con- 510

ditions “positive-sport-past” and “negative-movie- 511

present” in the training batch. 512

We train model on Btrain and perform one step 513

of gradient descent to update θ with Objective 1 (α 514

is the learning-rate): 515

θ1 = θ − α∇θLM
train(θ;ϕ;Btrain) (2) 516

Then we maintain θ unchanged in the original 517

model, temporarily store θ1 to a backup model, 518

and feed Bpcomp to the backup model to obtain the 519

loss on pseudo-comp data: 520

LM
pseudo−comp(θ;ϕ;Bpcomp) = LM

train(θ1;ϕ;Bpcomp)

= LM
train(θ − α∇θLM

train(θ;ϕ;Btrain);ϕ;Bpcomp)
(3)

521

According to the construction of Bpcomp, we use 522

LMpseudo−comp(θ;ϕ;Bpcomp) to simulate the com- 523

positional generalization scenario, evaluating the 524

compositional generalization capacity of model up- 525

dated by Eq 2. We hope the updated model (with 526

θ1) performs as well as possible on these pseudo- 527

comp data rather than merely overfitting Btrain. 528

Taking both the original training Objective 1 and 529

the compositional generalization Objective 3 into 530

consideration, Meta-MCTG is to minimize the fol- 531

lowing objective: 532

LM
total(θ;ϕ;Btrain;Bpcomp) =

LM
train(θ;ϕ;Btrain) + λLM

pseudo−comp(θ;ϕ;Bpcomp)
(4) 533
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Method
Fyelp Amazon YELP Mixture

Hold-Out ACD Hold-Out Hold-Out ACD Hold-Out
Acomp(↑) Pcomp(↓) Acomp (↑) Pcomp(↓) Acomp (↑) Pcomp(↓) Acomp(↑) Pcomp(↓) Acomp (↑) Pcomp(↓) Acomp (↑) Pcomp(↓)

CTRL (Keskar et al., 2019) 68.29% 45.61 65.31% 45.86 77.89% 37.02 82.02% 73.74 74.63% 75.46 71.82% 47.46
Meta-CTRL (Ours) 68.69% 46.42 65.77% 46.01 78.78% 37.30 83.85% 68.94 78.27% 78.11 72.83% 46.20

Con.Prefix (Qian et al., 2022a) 67.50% 52.32 63.93% 49.78 87.58% 44.36 92.79% 132.21 88.84% 128.87 71.91% 138.93
Meta-Con.Prefix (Ours) 67.75% 52.62 64.06% 49.12 87.69% 43.89 94.06% 130.66 90.40% 132.19 73.11% 140.53

DCG (Zeng et al., 2023) 66.39% 53.52 64.71% 53.67 84.51% 47.09 80.61% 69.87 75.72% 82.08 76.32% 71.20
Meta-DCG (Ours) 66.36% 53.04 64.84% 53.58 85.11% 47.77 81.15% 72.32 75.88% 84.58 79.15% 65.68

Table 2: Experiment results of CTRL, ContraPrefix, and DCG with Meta-MCTG training in compositional testing.

Where λ is a hyper-parameter to make a trade-off534

between the above two terms. Finally, we perform535

one step of gradient descent to update θ in the536

original model with Objective 4:537

θ′ = θ − β∇θLM
total(θ;ϕ;Btrain;Bpcomp) (5)538

Where β is the learning rate. We summarize the539

pseudo-code of the Meta-MCTG training proce-540

dure in Algorithm 2 in Appendix G.541

4.2 Experiment Results and Analysis542

Experiment Results of Meta-MCTG We train543

CTRL, ContrastivePrefix and DCG with the Meta-544

MCTG algorithm and aim to demonstrate that545

Meta-MCTG can generally improve their composi-546

tional generalization capacity. The compositional547

testing results for all four datasets are shown in Ta-548

ble 27. For most cases (94.4% of the total), we can549

observe that baseline approaches trained with Meta-550

MCTG have an obvious improvement in composi-551

tional testing performance on controllability of gen-552

erated text (i.e., attribute accuracy) over the original553

versions (by at most 3.64%). Besides, the introduc-554

tion of the Meta-MCTG framework has almost no555

impact on text fluency (i.e., perplexity). We ad-556

ditionally show the in-distribution testing results557

in Appendix H.3, demonstrating that Meta-MCTG558

nearly has no negative effect on in-distribution test-559

ing. Instead, it improves the in-distribution testing560

over the original baselines on 72.2% cases.561

Visualization and Case Study Previously we562

hypothesize that Meta-MCTG mitigates the prob-563

lem that overfitted baseline approaches distribute564

recomposed novel attribute combinations in the565

neighbor of in-distribution ones in the representa-566

tion space. We now calculate the difference in the567

distance of any two attribute combinations of the568

original version of baselines and baselines trained569

with Meta-MCTG. An example result for CTRL570

7We do not apply Meta-MCTG to Few-Shot settings, for
we can not construct Bpseudo−comp when each attribute only
appears once in Ci.d..

is shown in Figure 5. We observe that nearly all

Figure 5: Difference of the distances (d = 1 − cos <
h1, h2 >) between attribute combinations in the repre-
sentation space (h1, h2) with Meta-CTRL and the origin
version of CTRL.

571
of the distances between Ci.d. and Ccomp increase 572

with Meta-MCTG and are notably larger than the 573

distances within Ci.d.. The results demonstrate that 574

Meta-MCTG can distribute the hidden representa- 575

tions of attribute combinations more sparsely and 576

thus possibly make them more distinguishable. Cal- 577

culation details and more relevant results are avail- 578

able in Appendix H.4. Besides, we also present 579

case study to compare the generation results of the 580

original version of baselines and baselines trained 581

with Meta-MCTG in Appendix F, highlighting the 582

better controllability of the latter ones. 583

5 Conclusion 584

We propose CompMCTG, the first holistic 585

benchmark targeting compositional generalization 586

for Multi-Aspect Controllable Text Generation 587

(MCTG), and conduct extensive experiments on 588

CompMCTG with eight representative MCTG 589

baselines and two LLM baselines, unveiling notice- 590

able compositional generalization risk in them and 591

demonstrating the effectiveness of CompMCTG. 592

In addition, we propose Meta-MCTG, a framework 593

incorporating meta-learning into the MCTG train- 594

ing process to improve its compositional general- 595

ization ability, which can be combined with any 596

joint-training-based MCTG methods. 597
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Limitations598

Our proposed Meta-MCTG framework improves599

the compositional generalization performance of600

MCTG methods in most scenarios. However, when601

attribute combinations of data in the training set are602

extremely scarce (e.g., the Few-Shot protocol in603

CompMCTG), we cannot build the pseudo-comp604

batch to utilize the Meta-MCTG framework. Be-605

sides, though Meta-MCTG is generally effective,606

current MCTG methods still have considerable607

room for improvement in compositional general-608

ization. Both of these limitations will be areas for609

our future research.610

Ethics Statement611

Multi-aspect controllable text generation is widely612

used in social media. However, improper use can613

cause serious negative effects, such as using this614

technology to spread inappropriate remarks (po-615

litical attributes) or create rumors. Therefore this616

kind of technology should be subject to certain617

regulations.618
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A Datasets 990

We select a shopping review dataset: Amazon 991

Review (He and McAuley, 2016), a mixture of 992

movie(IMDB (Maas et al., 2011)), tablet, auto- 993

mobile(Sentube (Uryupina et al., 2014)) and ho- 994

tel(OpenNER (Agerri et al., 2013)) review dataset: 995

Mixture (Liu et al., 2022), and two restaurant review 996

datasets: YELP (Shen et al., 2017; YELP, 2014) 997

and FYelp (Lample et al., 2019). In this section, we 998

mainly introduce the four datasets that make up our 999

benchmark as mentioned above. 1000

Fyelp Following previous work (Yang et al., 1001

2023; Huang et al., 2023; Lample et al., 2019), 1002

we adopt the widely used Fyelp dataset, which con- 1003

tains restaurant reviews with the sentiment (posi- 1004

tive and negative), the cuisine (American, Mexican, 1005

Asian, Bar, and dessert), and the gender (Male and 1006

Female). To evaluate the extensibility of meth- 1007

ods, we add one additional aspect of constraints: 1008

the tense (Past and Present) (Ficler and Goldberg, 1009

2017), where its label is automatically extracted 1010

from the reviews. Thus far, the Fyelp dataset is 1011

the one with the largest scale of attribute com- 1012

binations in our benchmark. In total, there are 1013

2×2×5×2 = 40 possible attribute combinations. 1014

Amazon Review Amazon Review (He and 1015

McAuley, 2016) is a dataset containing reviews for 1016

Amazon products, which is widely used in previous 1017

academic works around text rewriting, controllable 1018

text generation, and stuff (Li and Tuzhilin, 2019; 1019

Lample et al., 2019; Zhou et al., 2023b). Following 1020

(Lample et al., 2019), we process the dataset and 1021

label the data with two aspects: the sentiment (pos- 1022

itive and negative) and the topic (Books, Clothing, 1023

Music, Electronics, Movies and Sports) with the 1024

meta-data in the original Amazon Review8 dataset. 1025

Hence there are 2× 6 = 12 different attribute com- 1026

binations. 1027

YELP YELP business reviews dataset (YELP, 1028

2014) contains the three aspects of attributes: the 1029

tense (Past and Present), the sentiment (positive 1030

and negative), and the person (singular and plural). 1031

We process the dataset in alignment with (John 1032

et al., 2019) and (Russo et al., 2020) and randomly 1033

re-split the whole dataset for our usage. There are 1034

2× 2× 2 = 8 different attribute combinations in 1035

this dataset. 1036

8https://jmcauley.ucsd.edu/data/
amazon/
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Dataset m |C| Classifier Generator
Train Development Train

Fyelp 4 40 34000 6000 70000
Amazon 2 12 153000 27000 120000
Yelp 3 8 20400 3600 24000
Mixture 2 8 3624 640 4800

Table 3: Information of the datasets in our CompMCTG Benchmark. m is the number of aspects (e.g., sentiment,
topic, tense, and stuff); |C| is the number of attribute combinations. "Classifier" refers to the size of the data
used for training the classifier. We split the data into training and development sets at a ratio of 8.5:1.5 based on
this. "Generator" refers to the size of the data used for training the generative model. The data for each attribute
combination is uniformly distributed across all sub-datasets (i.e., Train and Development of "Classifier" and Train
of "Generator").

Mixture Mixture is the combination of three in-1037

dividual datasets: IMDb (Maas et al., 2011) (movie1038

reviews) OpenNER (Agerri et al., 2013) (hotel re-1039

views) and SenTube (Uryupina et al., 2014) (tablet1040

and automobile reviews), constructed by (Liu et al.,1041

2022). Hence each datum in Mixture has two as-1042

pects of attributes: sentiment (positive and nega-1043

tive) and topic (movie, hotel, tablet, and automo-1044

bile) and there are in total 2 × 4 = 8 possible1045

attribute combinations.1046

We summarize all details and statistics of these1047

datasets in Table 3.1048

B Complexity discussion1049

In this section, we discuss the complexity of sweep-1050

ing over all possibilities for “Half&Half” splitting1051

in Section 3.1. Following the denotations in Sec-1052

tion 3.1: m refers to the number of different as-1053

pects;Ai, (1 ≤ i ≤ m) is the set of attribute values1054

for the i-th aspect; min1≤i≤m |Ai| = a; the total1055

number of attribute combinations is O(am).1056

Sweeping over all possible “Half&Half” split-1057

ting methods requires O(
(

am

am/2

)
) kinds of situa-1058

tions, which can be derived as follows (using Stir-1059

ling’s formula (Robbins, 1955)):1060

(
am

am/2

)
=

(am)!

(a
m

2 )! · (am2 )!
≈
√
2πam · (ame )a

m

πam · (am2e )a
m

=

√
2πam · 2am

πam

1061

Hence O(
(

am

am/2

)
) ≈ O(

√
2πam·2am
πam ) = O((2 −1062

η)a
m
) where η → 0. This complexity is expo-1063

nential to am and thus unacceptable, which highly1064

calls for an effective sampling strategy (i.e., ACD1065

in Section 3.1).1066

C Implementation Details 1067

Our implementation is based on Hugging Face 1068

Transformer models9 and we use GPT-2 Medium 1069

as our backbone for all baselines (except two LLM 1070

baselines). In this section, we provide all the hyper- 1071

parameters for the baselines and our Meta-MCTG 1072

method, as well as the training hyperparameters for 1073

the classifiers used for evaluation. 1074

First of all, we unify the settings for all exper- 1075

iments during the generation phase. Following 1076

previous work (Gu et al., 2022, 2023), we use the 1077

35 prompts from PPLM (Dathathri et al., 2019) 1078

for testing. For all MCTG baselines, we generate 1079

10 texts for each prompt and each attribute com- 1080

bination, each text with a length of 50, and we 1081

adopt topk=200, topp=1.0, and temperature=1.0. 1082

For two LLM baselines, due to time and financial 1083

costs, we generate only one text for each prompt 1084

and each attribute combination. All experiments 1085

are completed on an NVIDIA A100 (80G) GPU. 1086

C.1 MCTG Baselines 1087

Fudge Fudge (Yang and Klein, 2021) uses a fu- 1088

ture discriminator to guide the GPT-2 for the gener- 1089

ation. Following previous work (Zeng et al., 2023), 1090

for each dataset, we train a Multilayer Perceptron 1091

(MLP) of dimension dembd ×m as the future dis- 1092

criminator, where dembd is the embedding dimen- 1093

sion of GPT-2 Medium, and m is the number of all 1094

attribute combinations in the dataset. We set batch 1095

size to 8, epoch to 5, and learning rate to 3e-5 in 1096

the training phase for all datasets and all protocols. 1097

As for the generation, we set control strength α to 1098

20 for all datasets and all settings. 1099

9https://github.com/huggingface/
transformers
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Dataset Original Hold-Out ACD Few-Shot
Fyelp 8000 8000 4000 4000
Amazon 6000 6000 − 4000
YELP 4000 4000 6000 8000
Mixture 10000 10000 − 10000

Table 4: Training steps of different datasets and different
protocols in Distributional Lens (Gu et al., 2022).

PPLM PPLM (Dathathri et al., 2019) uses a dis-1100

criminator to calculate gradient to update the states1101

of a language model and guide the model to gener-1102

ate texts with a certain attribute. We train a Mul-1103

tilayer Perceptron of dimension dembd ×m as the1104

discriminator-like fudge to guide the model. For1105

each dataset and each protocol, we set the batch1106

size to 8, epoch to 5, and learning rate to 3e-5 in the1107

training phase. As for the generation, we followed1108

the hyperparameters in Dathathri et al. (2019). We1109

set γ to 1.5, num-iterations to 3, num-samples to1110

10, stepsize to 0.03, window-length to 5, fusion-kl-1111

scale to 0.01, and fusion-gm-scale to 0.99.1112

Distributional Lens During the training phase,1113

we follow all the hyperparameters of the original1114

work (Gu et al., 2022), with the only change made1115

to the number of training steps. We sweep across1116

training steps from {2000,4000,6000, ...,30000}1117

and select the minimum number of steps for con-1118

vergence as our experimental setup. We summarize1119

it in the Table 4. In the generation phase, for sim-1120

plicity and fairness, we set all aspect weights to 1,1121

and all other settings are consistent with the origi-1122

nal paper.1123

Prior Proposed by (Gu et al., 2023), this method1124

is based on the model trained in Gu et al. (2022),1125

with the training loss of the Normalizing Flows1126

added for further training. Therefore, during the1127

training phase, we further train based on all models1128

trained by method Gu et al. (2022), with the hyper-1129

parameters consistent with the original work and1130

only a change made to the number of training steps.1131

Like experiments in Gu et al. (2022), we sweep1132

across training steps from {5000, 10000, ..., 50000}1133

and select the minimum number of steps for conver-1134

gence as our experimental setup. We summarize it1135

in the Table 5. In the generation phase, we find that1136

aspect weights setting to 1 for the Fyelp dataset do1137

not yield satisfactory results. Therefore, we attempt1138

to adjust the aspect weights on this dataset and fi-1139

nally set weights to [12,4,24,12] corresponding to1140

aspect ["sentiment", "gender", "cuisine", "tense"]1141

Dataset Original Hold-Out ACD Few-Shot
Fyelp 30000 30000 30000 30000
Amazon 30000 30000 − 30000
YELP 5000 5000 5000 5000
Mixture 30000 30000 − 30000

Table 5: Training steps of different datasets and different
protocols in Prior Control (Gu et al., 2023).

and std to 0.1. For the other three datasets, we set 1142

weight to 1 for all aspects and set std to 1. 1143

Catprompt As this is a naive method derived 1144

from Yang et al. (2023), there is no clear experi- 1145

ment setup for reference. We sweep across prompt 1146

length from {10,20,40,60,80,100,120}, selecting 1147

the length with the best test results for each attribute 1148

as our experimental hyperparameters. The specific 1149

results are as follows. For the Fyelp dataset, in 1150

the non-FewShot protocols, we set prompt length 1151

to 120, batch size to 16, epochs to 20, and learn- 1152

ing rate to 5e-5, and in the FewShot protocol, we 1153

set prompt length to 100, batch size to 16, epochs 1154

to 40, and learning rate to 5e-5. For the Amazon 1155

dataset, we set prompt length to 10, batch size to 1156

16, epochs to 5, and learning rate to 5e-5 for all 1157

settings. For the YELP dataset, in the non-FewShot 1158

protocols, we set prompt length to 20, batch size to 1159

16, epochs to 20, and learning rate to 5e-5, and in 1160

the FewShot protocol, we set prompt length to 20, 1161

batch size to 16, epochs to 40, and learning rate to 1162

5e-5. For the Mixture dataset, we set prompt length 1163

to 10, batch size to 16, epochs to 50, and learning 1164

rate to 5e-5 for all settings. 1165

DCG Following previous work (Zeng et al., 1166

2023), for all settings across all datasets, prompt 1167

length is set to 50 (where attribute prompt length 1168

is set to 6 and task prompt length is set to 44), the 1169

disentanglement loss weight is set to 0.1, the batch 1170

size is set to 8, and the number of Pseudo Combi- 1171

nations is set to 7. For the setting of epochs, we set 1172

epochs to 3 for dataset Fyelp and Amazon, epochs 1173

to 8 for dataset YELP, and epochs to 7 for dataset 1174

Mixture. And for all datasets and protocols, we set 1175

the learning rate to 7.5e-5. 1176

CTRL Following previous work (Zeng et al., 1177

2023), we concatenate multi-attribute control codes 1178

with training datasets to fine-tune the GPT-2. Since 1179

we find that CTRL is not sensitive to hyperparam- 1180

eters, we set the batch size to 8, epochs to 5, and 1181

learning rate to 3e-5, which converges well for all 1182
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datasets and protocols.1183

Contrastive Prefix-Tuning Following previous1184

work (Qian et al., 2022a), we set each attribute’s1185

prefix length to 10. For the dataset Fyelp and Ama-1186

zon, we set the batch size to 8 and epochs to 21187

for all protocols. For the dataset YELP, we set the1188

batch size to 8 and epochs to 5 for all protocols.1189

For the dataset Mixture, we set the batch size to 81190

and epochs to 5 for non-FewShot protocols. For1191

the FewShot protocol of the dataset Mixture, we set1192

the batch size to 8 and the epoch to 10. And for all1193

datasets and protocols, we set the learning rate to1194

3e-5.1195

C.2 LLM Baselines and Prompts1196

In this section, we introduce the LLMs we use in1197

Section 3.3 and the prompt template we used for1198

In-Context Learning.1199

Prompt Following (Sun et al., 2023), we use1200

5-shot in context learning prompt template to1201

evaluate the compositional generalization capac-1202

ity of LLMs regarding ICL. Namely, we insert five1203

demonstrations (Input, Output) for each time of1204

controllable generation. Here is our prompt tem-1205

plate:1206

1207
\\5-shot in-context-learning1208
\\prompt template1209
"Task: write a sentence that meets the1210

requirement of input control1211
conditions.1212

Below are some examples (Input, Output)1213
for the task:1214

Input: <attribute combination 1>.1215
Output: <text 1> # demonstration_11216
Input: <attribute combination 2>.1217
Output: <text 2> # demonstration_21218
Input: <attribute combination 3>.1219
Output: <text 3> # demonstration_31220
Input: <attribute combination 4>.1221
Output: <text 4> # demonstration_41222
Input: <attribute combination 5>.1223
Output: <text 5> # demonstration_51224
Input: <testing attribute combination>.1225
Output: <a head of text>" \\ generation12261227

For in-distribution testing, we insert five demon-1228

strations that share the control conditions (attribute1229

combination) with the testing one. For composi-1230

tional testing, we uniformly sample five demonstra-1231

tions (of different attribute combinations) from the1232

whole training set.1233

LLM For LLaMA-2 (Touvron et al., 2023), we 1234

adopt the version of “LLaMA-2-7B-hf”10. Our 1235

generation configuration is following the default 1236

configuration provided by Meta: 1237

1238
\\LLaMA-2-7B generation configuration 1239
GEN_CONFIGS["llama2-7b"]={ 1240
"bos_token_id": 1, 1241
"do_sample": True, 1242
"eos_token_id": 2, 1243
"pad_token_id": 0, 1244
"temperature": 0.6, 1245
"max_length": 50, 1246
"top_p": 0.9, 1247
"transformers_version": "4.31.0.dev0" 1248

} 12491250

For ChatGPT (OpenAI, 2023), we use the OpenAI- 1251

api11 and adpot the version of “gpt-3.5-turbo- 1252

0613”. The generation configuration is as follows: 1253

1254
\\gpt-3.5 generation configuration 1255
GEN_CONFIGS["gpt-3.5-turbo-0613"]={ 1256
"temperature": 1.0, 1257
"max_length": 50, 1258
"top_p": 0.9, 1259
"openai_version": "0.28.0" 1260

} 12611262

Cost For the evaluation of LLaMA-2-7B, we do 1263

experiments on a NVIDIA A100 GPU for around 1264

60 hours. For the evaluation of ChatGPT, we spend 1265

around 3.5e7 tokens in total, costing 70 dollars. 1266

C.3 Classifiers 1267

To avoid the impact of domain differences 1268

among different datasets on the accuracy of the 1269

classifier, we train a classifier using Roberta- 1270

Large (Liu et al., 2019) for each aspect of 1271

each dataset. We sweep over batch sizes from 1272

{4,8,16,32,64,128,256,512,1024} and epochs from 1273

{1,2,3,4,5,6,7,8,9,10}, choosing the settings that 1274

yield the highest accuracy on the test set as our 1275

experimental configuration. The specific configura- 1276

tion results and the performance of the classifiers 1277

on the test set for all datasets and all attribute as- 1278

pects are shown in Table 6. 1279

C.4 Meta-MCTG 1280

In the experiments of Meta-MCTG, we select the 1281

three best-performing joint-training-based methods 1282

from the baselines, namely CTRL (Keskar et al., 1283

2019) , DCG (Zeng et al., 2023), and Contrastive 1284

Prefix (Qian et al., 2022b). For different datasets 1285

10https://huggingface.co/meta-llama/
Llama-2-7b-hf

11https://openai.com/blog/openai-api
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Dataset Aspect Batch Epochs Accuracy

Fyelp

Sentiment 512 5 98.68%
Gender 512 3 70.68%
Cuisine 64 4 77.97%
Tense 32 4 88.57%

Amazon
Sentiment 128 5 98.41%

Topic 64 5 92.84%

YELP
Sentiment 1024 5 97.11%

Person 32 8 99.42%
Tense 256 3 99.78%

Mixture
Sentiment 128 4 84.37%

Topic 512 8 98.59%

Table 6: The specific configuration and the performance
of the classifiers used in our benchmark.

and protocols in our benchmark, we search λ from1286

{0.01,0.05,0.1,0.2} based on the original exper-1287

imental hyperparameters, and further refine the1288

value of λ based on the results. For the majority1289

of cases, we opt for λ to be 0.01. For the learning1290

rate β in all MCTG experiments, we set β to be the1291

same as the learning rate α of each baseline.1292

D Evaluation on diversity1293

Following previous work (Li et al., 2016), we use1294

distinctness to measure the generated text’s diver-1295

sity. For each text, we calculate 3-grams named1296

Dist-3 to evaluate distinctness. We choose to con-1297

duct diversity evaluation on the data under the three1298

protocols of Original, Hold-Out, and ACD. The1299

whole results are shown in Table 7.1300

E Human Evaluation1301

Following previous work (Zhang and Song, 2022;1302

Zhong et al., 2023), we evaluate generated texts1303

from two aspects: Relevance (R) which reflects1304

the degree of achievement for the desired control1305

attribute combination and Fluency (F) which eval-1306

uates the text’s fluency. Unlike automated evalua-1307

tion, where the accuracy of individual attributes is1308

measured and averaged, human evaluation directly1309

scores the satisfaction of the given control condi-1310

tion (attribute combination). For each dataset and1311

baseline in each protocol (Original, HoldOut, and1312

ACD), we randomly sample 10 texts (for HoldOut1313

and ACD, we sample 10 texts from in-distribution1314

result and 10 texts from compositional result) and1315

employ three annotators to score them on the two1316

metrics on a scale from 1 (very bad) to 5 (very1317

good). Finally, we calculate the average of these1318

scores and get the final result shown in Table 9. We1319

can find that the results of human evaluation are 1320

consistent with the results of automated evaluation. 1321

E.1 Specific Scoring Guidelines 1322

In this subsection, we provide specific scoring 1323

guidelines for each human evaluation metric. 1324

Relevance 1325

• 5: The generated texts are perfectly aligned with 1326

the desired attribute combination. 1327

• 4: The generated texts are very related to the 1328

desired attribute combination. 1329

• 3: The generated texts are related to the desired 1330

attribute combination. At most one attribute does 1331

not match. 1332

• 2: The generated texts are less related to the 1333

desired attribute combination. At most two at- 1334

tributes do not match. 1335

• 1: The generated texts are not aligned with the 1336

desired attribute combination. None of the at- 1337

tributes meet the requirements. 1338

Fluency 1339

• 5: The generated texts are grammatically correct, 1340

fluent, and easy to understand. 1341

• 4: The generated texts are grammatically correct, 1342

but slightly less smooth, yet still easily under- 1343

standable. 1344

• 3: The generated texts have a few grammar errors, 1345

but do not hinder understanding. 1346

• 2: The generated texts have a few grammar errors 1347

and are not very easy to understand. 1348

• 1: The generated texts have many grammar er- 1349

rors, lack coherence, and are difficult to under- 1350

stand. 1351

E.2 Inter-Annotator Agreement Score 1352

We also use Fleiss’Kappa coefficient (Fleiss, 1353

1971) to measure the inter-annotator agreement 1354

score for each human evaluation metric. The result 1355

is shown in Table 10. 1356
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Method Original Hold-Out ACD Average
Dist-3i.d.(↑) Dist-3i.d. Dist-3comp Dist-3i.d. Dist-3comp Dist-3avg

LLM+In-context Learning
LLaMA-2 (Touvron et al., 2023) 0.587 0.430 0.577 0.456 0.451 0.500
ChatGPT (OpenAI, 2023) 0.611 0.408 0.660 0.451 0.457 0.517
Decoding-Time based
Fudge (Yang and Klein, 2021) 0.656 0.652 0.621 0.625 0.587 0.628
PPLM (Dathathri et al., 2019) 0.697 0.622 0.694 0.621 0.617 0.650
Separate-Training based
Dis-Lens (Gu et al., 2022) 0.473 0.466 0.462 0.454 0.427 0.456
Prior (Gu et al., 2023) 0.573 0.547 0.548 0.539 0.540 0.549
Joint-Training based
CTRL (Keskar et al., 2019) 0.625 0.623 0.634 0.616 0.622 0.624
CatPrompt (Yang et al., 2023) 0.642 0.636 0.656 0.677 0.688 0.660
Con.Prefix (Qian et al., 2022b) 0.701 0.696 0.727 0.682 0.717 0.705
DCG (Zeng et al., 2023) 0.677 0.694 0.716 0.675 0.695 0.691

Table 7: Averaged overall evaluation results of diversity for state-of-the-art baseline approaches on our CompMCTG
benchmark (Hold-Out testing and ACD testing). Subscript i.d. and comp refer to in-distribution and compositional
generalization performance.

Method
Fyelp Amazon YELP Mixture

Hold-Out ACD Hold-Out Hold-Out ACD Hold-Out
Ai.d.(↑) Pi.d.(↓) Acomp (↑) Pi.d.(↓) Ai.d. (↑) Pi.d.(↓) Ai.d.(↑) Pi.d.(↓) Ai.d. (↑) Pi.d.(↓) Ai.d. (↑) Pi.d.(↓)

CTRL (Keskar et al., 2019) 69.43% 45.95 69.22% 45.60 80.52% 37.43 85.16% 72.20 85.52% 76.06 80.56% 48.82
Meta-CTRL (Ours) 69.51% 46.16 69.45% 45.50 80.26% 37.31 85.76% 69.05 86.11% 70.95 80.08% 46.42

Con.Prefix (Qian et al., 2022a) 67.84% 52.48 63.40% 53.11 87.56% 43.97 94.40% 136.04 91.82% 141.15 83.88% 96.46
Meta-Con.Prefix (Ours) 67.90% 52.40 64.19% 52.84 87.43% 43.93 94.42% 136.42 91.86% 136.39 84.24% 97.66

DCG (Zeng et al., 2023) 66.49% 53.50 66.01% 53.29 84.71% 47.20 82.43% 70.28 80.12% 82.96 83.69% 91.80
Meta-DCG (Ours) 66.50% 53.16 66.23% 52.92 84.78% 47.55 82.07% 70.01 80.57% 82.04 83.50% 83.39

Table 8: Experiment results of CTRL, ContraPrefix and DCG with Meta-MCTG training in in-distribution testing.

F Case Study1357

In this section, we show some specific generation1358

examples, primarily to compare the difference in1359

generation results before and after using the Meta-1360

MCTG framework. Cases in this section are from1361

the compositional result of ACD protocol of dataset1362

Fyelp. The specific results are shown in Table 11.1363

G Algorithm Pseudo-Code1364

We conclude the pseudo-code of constructing ACD1365

splits in Algorithm 1 and the pseudo-code of Meta-1366

MCTG training in Algorithm 2.1367

Following the denotations in Section 3.1: m1368

refers to the number of different aspects; Ai, (1 ≤1369

i ≤ m) is the set of attribute values for the i-1370

th aspect; min1≤i≤m |Ai| = a; the total num-1371

ber of attribute combinations is O(am). The1372

time complexity of Algorithm 1 (Greedily con-1373

structing ACD splits) is O(T1 · T2 · am) (linearly1374

increasing with am) which is much better than1375

O((2 − ϵ)a
m
), (ϵ ← 0) (exponentially increasing1376

with am) in Appendix B. 1377

H Additional Results 1378

H.1 Why do Separate-Training-based 1379

methods perform badly in compositional 1380

testing? 1381

In this section, we briefly discuss the reasons why 1382

the seperate-training-based MCTG methods fail 1383

in compositional testing. We take Dis-Lens (Gu 1384

et al., 2022) as an example to illustrate. This type 1385

of method encodes each single attribute data into 1386

a latent vector space, and then constructs the in- 1387

tersection of different attribute latent vector areas 1388

through loss function constraints, and finally guides 1389

GPT-2 to generate multi-aspect text by searching 1390

for the intersection of different attribute spaces. 1391

The essential reason why this method can work 1392

is that the training dataset itself has multiple at- 1393

tributes. For example, the data corresponding to 1394

the latent space intersection constructed with pos- 1395

itive emotion data and sports theme data actually 1396

has these two attributes. Therefore, when using 1397
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Method Original Hold-Out ACD Average
Ri.d.(↑) Fi.d. (↑) Ri.d. (↑) Fi.d.(↑) Rcomp(↑) Fcomp(↑) Ri.d. (↑) Fi.d. (↑) Rcomp (↑) Fcomp(↑) Ravg (↑) Favg (↑)

LLM+In-Context Learning
LLaMA-2 (Touvron et al., 2023) 3.12 4.56 3.23 4.48 2.37 4.43 3.31 4.60 2.22 4.59 2.85 4.53
ChatGPT (OpenAI, 2023) 2.89 4.78 2.86 4.75 2.47 4.81 2.75 4.88 2.57 4.74 2.71 4.79
Decoding-Time based
PPLM (Dathathri et al., 2019) 2.07 1.12 2.22 1.07 2.01 1.09 2.16 1.14 1.82 1.03 2.06 1.09
Fudge (Yang and Klein, 2021) 2.88 2.35 2.68 2.13 2.07 1.87 2.59 1.90 1.97 2.24 2.44 2.10
Separate-Training based
Dis-Lens (Gu et al., 2022) 4.24 2.86 4.10 3.12 2.55 3.01 4.44 3.21 2.42 2.91 3.55 3.02
Prior (Gu et al., 2023) 3.67 2.96 3.53 3.04 2.42 3.20 3.78 3.03 2.39 3.24 3.16 3.09
Joint-Training based
CTRL (Keskar et al., 2019) 3.98 3.87 3.78 3.92 3.75 3.94 3.80 3.81 3.55 3.84 3.77 3.88
CatPrompt (Yang et al., 2023) 3.23 3.52 3.27 3.49 3.04 3.58 3.01 3.07 2.45 3.61 3.00 3.45
Con.Prefix (Qian et al., 2022a) 4.22 3.44 4.19 3.40 4.01 3.13 4.15 3.23 3.52 3.12 4.02 3.26
DCG (Zeng et al., 2023) 3.92 3.80 3.90 3.68 3.84 3.64 3.88 3.83 3.39 3.73 3.79 3.74

Table 9: Averaged overall human evaluation results for state-of-the-art baseline approaches on our CompMCTG
benchmark (Hold-Out testing and ACD testing). "R" refers to metric "Relevance" and "F" refers to metric "Fluency".
Subscript i.d. and comp refer to in-distribution and compositional generalization performance.

Method Original Hold-Out ACD
Ri.d.(↑) Fi.d. (↑) Ri.d. (↑) Fi.d.(↑) Rcomp(↑) Fcomp(↑) Ri.d. (↑) Fi.d. (↑) Rcomp (↑) Fcomp(↑)

LLM+In-context Learning
LLaMA-2 (Touvron et al., 2023) 0.823 0.805 0.834 0.816 0.840 0.809 0.825 0.833 0.836 0.824
ChatGPT (OpenAI, 2023) 0.811 0.814 0.805 0.843 0.827 0.840 0.829 0.860 0.851 0.837
Decoding-Time based
PPLM (Dathathri et al., 2019) 0.910 0.908 0.887 0.893 0.828 0.839 0.834 0.890 0.887 0.836
Fudge (Yang and Klein, 2021) 0.845 0.814 0.838 0.829 0.845 0.789 0.830 0.892 0.846 0.837
Separate-Training based
Dis-Lens (Gu et al., 2022) 0.923 0.898 0.914 0.887 0.791 0.867 0.910 0.879 0.801 0.882
Prior (Gu et al., 2023) 0.858 0.838 0.835 0.846 0.837 0.821 0.845 0.883 0.826 0.818
Joint-Training based
CTRL (Keskar et al., 2019) 0.830 0.808 0.845 0.794 0.815 0.829 0.810 0.822 0.816 0.815
CatPrompt (Yang et al., 2023) 0.782 0.804 0.793 0.811 0.824 0.815 0.806 0.785 0.823 0.836
Con.Prefix (Qian et al., 2022a) 0.898 0.843 0.904 0.826 0.876 0.837 0.879 0.841 0.844 0.820
DCG (Zeng et al., 2023) 0.857 0.886 0.854 0.874 0.818 0.825 0.857 0.867 0.834 0.826

Table 10: Averaged overall Fleiss’Kappa coefficient of human evaluation results for state-of-the-art baseline
approaches on our CompMCTG benchmark (Hold-Out testing and ACD testing). "R" refers to the Kappa coefficient
of metric "Relevance" and "F" refers to the Kappa coefficient of metric "Fluency". Subscript i.d. and comp refer to
in-distribution and compositional generalization performance.

a multi-attribute dataset to train the latent vector1398

space, the attribute combinations corresponding to1399

the constrained intersection space are the attribute1400

combinations contained in the training set, and will1401

not produce attribute combinations that do not exist1402

in the training set.1403

Specifically, we use a Few-Shot split of the1404

dataset Mixture to conduct experiments, reduc-1405

ing the dimensionality of hidden vectors to a1406

two-dimensional plane through PCA and perform-1407

ing visualization processing. There are four at-1408

tribute combinations in the training set which are1409

"Negative-movies", "Negative-opener", "Negative-1410

tablets", and "Positive-auto". The visualization1411

results before training are shown in Figure 6 and1412

Figure 7. Figure 6 is marked with multi-aspect1413

labels, and Figure 7 is marked with single-aspect1414

labels. The visualization results after training are1415

shown in Figure 8 and Figure 9. From these four1416

figures, we can find that after training, the hidden 1417

vector spaces corresponding to different single at- 1418

tributes have converged, and the intersection of 1419

four multi-attribute latent vector spaces has been 1420

formed. However, through Figure 8, it can be 1421

found that these four intersections exactly corre- 1422

spond to the four attribute combinations contained 1423

in the training set, and the intersection of the latent 1424

vector spaces of the four compositional attribute 1425

combinations ("Negative-auto", "Positive-movies", 1426

"Positive-opener", and "Positive-tablets") in Figure 1427

9 basically does not exist. This explains why such 1428

methods fail in compositional testing. 1429

H.2 Evaluation Results with Few-Shot 1430

protocol on CompMCTG 1431

The Few-Shot testing results on CompMCTG are 1432

presented in Table 12. 1433
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Algorithm 1 Constructing ACD splits

Require: Attribute combination set C.
Require: Divergence function D(·, ·).
Require: Maximum step T1, T2, maximum diver-

gence threshold η ∈ (0, 1).
1: Initialization: current step t1 = 0; maximum

divergence dm = 0.
2: A set of ACD splits result = ∅.
3: while t1 < T1 do
4: t1 = t1 + 1
5: Randomly split C into Ci.d. and Ccomp where

|Ci.d.| = |Ccomp|.
6: t2 = 0
7: Compute current divergence d:

d = D(Ci.d., Ccomp).
8: Update maximum divergence: dm = d.
9: while t2 < T2 do

10: t2 = t2 + 1
11: c1 = None.
12: for c ∈ Ci.d. do
13: if dm < D(Ci.d. − {c}, Ccomp + {c})

then
14: c1 = c.
15: dm = D(Ci.d.−{c}, Ccomp+ {c}).
16: break
17: end if
18: end for
19: if c1 == None then
20: continue
21: end if
22: Ci.d. = Ci.d. − {c1}.
23: Ccomp = Ccomp + {c1}.
24: for c ∈ Ccomp do
25: if dm < D(Ci.d. + {c}, Ccomp − {c})

then
26: dm = D(Ci.d.+ {c}, Ccomp−{c}).
27: Ci.d. = Ci.d. + {c1}.
28: Ccomp = Ccomp − {c1}.
29: break
30: end if
31: end for
32: end while
33: for dm ≥ η do
34: Add (Ci.d.,Ccomp) into result.
35: end for
36: end while
37: return result

Algorithm 2 Meta-MCTG
Require: Training set Dtrain

Require: Base MethodM
Require: Learning rate α, β, batch size m

1: while not done do
2: Sample m data as the training batch

Btrain = (ctraini , xtraini )mi=1 from Dtrain.
3: Construct pseudo-compositional batch

Bpcomp = (cpcomp
i , xcomp

i )mi=1 by sam-
pling another m data from Dtrain, where
{ctraini }mi=1 ∩ {c

pcomp
i }mi=1 = ∅ while each

single attribute condition in Bpseudo−comp

must appear in the Btrain.
4: Compute training loss LMtrain through Ob-

jective 1.
5: Compute θ1 through Equation 2. (while not

really update θ to θ1)
6: Temporarily use θ1 in the language model.
7: Compute pseduo compositional generaliza-

tion loss LMp−comp through Objective 3.
8: Compute total loss LMtotal through Objec-

tive 4.
9: Update θ to θ′ through Equation 5

10: end while

H.3 In-Distribution Generalization Results of 1434

Meta-MCTG 1435

The results of the in-distribution generalization of 1436

Meta-MCTG are shown in Table 8 1437

H.4 Analysis Experiments 1438

In this section, we conduct visualization experi- 1439

ments on the Meta-MCTG framework we proposed, 1440

indirectly verifying its effectiveness. Consider- 1441

ing that the joint-training-based MCTG methods 1442

tend to overfit the control parameters to the in- 1443

distribution (I.D.) attribute combinations, this im- 1444

plies that for compositional (Comp.) attribute com- 1445

binations, their control parameters are relatively 1446

close to those of in-distribution. Therefore, we ap- 1447

proach this from the perspective of control param- 1448

eters, calculating the L1 distance L1base, L1meta 1449

and cosine similarity Cosbase, Cosmeta between 1450

the control parameters before and after the intro- 1451

duction of the Meta-MCTG framework, and use 1452

the difference diffL1 = L1meta−L1base
L1meta

× 100, 1453

diffCos = −Cosmeta−Cosbase
Cosmeta

× 100 between the 1454

two as the data for visualization. 1455

We select CTRL (Keskar et al., 2019) , 1456

DCG (Zeng et al., 2023), and Contrastive Pre- 1457
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Figure 6: Visualization of Dis-lens in Mixture dataset
before training with multi-aspect label.
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Figure 7: Visualization of Dis-lens in Mixture dataset
before training with single-aspect label.

fix (Qian et al., 2022b) and conduct our visualiza-1458

tion experiments on ACD protocol of YELP (YELP,1459

2014) and Fyelp (Lample et al., 2019) datasets. For1460

CTRL, we use the mean embeddings of its attribute1461

tokens (i.e., control codes) as the control parame-1462

ters. For DCG, we use the mean embedding ob-1463

tained by encoding the attribute tokens through a1464

fully connected layer as the control parameters. For1465

Contrastive Prefix, we use the mean embedding of1466

the prefix keys and prefix values of the correspond-1467

ing attributes in the last layer of the GPT-2 as the1468

control parameters. On the YELP dataset, there1469

are a total of 8 attribute combinations, including 41470

in-distribution and 4 compositional. For the control1471

parameters under 8 control conditions, we compute1472

the difference diffL1 and diffCos between each1473

pair and obtain two 4× 8 heatmaps for each base-1474

line. Similarly, for the Fyelp dataset, we can get1475

two 20 × 40 heatmaps for each baseline. The re-1476

sults are shown in Figure 10 and Figure 11. The1477

visual results show that the control parameters af-1478

ter the Meta-MCTG training framework can better1479

distinguish between the in-distribution and compo-1480
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Figure 8: Visualization of Dis-lens in Mixture dataset
after training with multi-aspect label.
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Figure 9: Visualization of Dis-lens in Mixture dataset
after training with single-aspect label.

sitional parts, thus confirming the effectiveness of 1481

the Meta-MCTG framework. 1482

H.5 Detailed Results on the Single Dataset 1483

In this section, we provide detailed experimen- 1484

tal results of all baselines (eight MCTG baselines 1485

and two LLMs, note that “Lens” represents “Dis- 1486

Lens” (Gu et al., 2022)) in CompMCTG Bench- 1487

mark in 4 datasets. In these tables, the first col- 1488

umn contains the protocol, including Original, 1489

HoldOut, ACD, and FewShot (Amazon and Mix- 1490

ture datasets do not have ACD protocol). Hold- 1491

out, ACD, and FewShot respectively divide the 1492

in-distribution (I.D.) results and compositional 1493

(Comp.) results. The second column is the method 1494

name and the next two to four columns are the ac- 1495

curacy of the corresponding attributes. Specifically, 1496

Accs, Accg, Accc, Acct in Fyelp are the accuracy 1497

of sentiment, gender, cuisine, and tense respec- 1498

tively. Accs, Acct in Amazon are the accuracy of 1499

sentiment and topic respectively. Accs, Accp, Acct 1500

in YELP are the accuracy of sentiment, person, and 1501

tense respectively. Accs, Acct in Mixture are the ac- 1502
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Figure 10: Heatmap result of CTRL, Contrastive Prefix, and DCG in dataset YELP.

Figure 11: Heatmap result of Contrastive Prefix and DCG in dataset Fyelp.

curacy of sentiment and topic respectively. Accavg1503

is the average of accuracy in previous columns.1504

Accgap is calculated from the I.D. and Comp. of1505

the corresponding protocol. The specific formula is1506

Accgap =
AccI.D.−AccComp.

AccI.D.
× 100%. PPL repre-1507

sents perplexity and Dist3 is the value of 3-ngrams.1508

All the detailed experimental results can be found1509

in Table 13 to Table 52.1510
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Method Comb. Generated Texts

CTRL

Negative
Female
Bar
Past

Furthermore, where’s the shrimp? there are currently seven shrimp
clusters. thank god there are still two clusters and that’s where we
ordered our food... at this location. despite this, we waited over 45
minutes. the server put me on

CTRL+Meta

Negative
Female
Bar
Past

Furthermore, this tiny place fell short of its potential. The food was
enormous but not up to par. I ordered an oyster benedict which was
disappointing, and the wine was subpar. I still find myself having
nightmares about that dessert, which was made with stale

CTRL

Positive
Female
Asian
Past

The movie i saw called d̈ark star änd it really impressed me. the chef
in the movie is so nice and did his chef impression. this restaurant was
amazing to watch. we had the eggplant korma and beef teriyaki.

CTRL+Meta

Positive
Female
Asian
Past

The movie started and we were getting ready for bed but the korean
guys got us a lot of food. my husband and i both got the delicious beef
kimchi rice dish and both really liked it and were very happy with it.
we ended

DCG

Positive
Female
dessert
Past

In brief, we are so glad we went here. it’s always as cold as winter to
get the fruit or veg for me ( some frozen squash, maybe a banana, too ).
They have everything we go for here, and they

DCG+Meta

Positive
Female
dessert
Past

In brief, this was an awesome place. Forget the size of it, which i
really found to be little too large, this was SO GOOD. We stopped in for
breakfast and decided to try the sweet omelet pancakes. My husband
and

DCG

Negative
Male
Mexican
Present

More importantly, they have no toilet paper. would NEVER EVER
order coffee or soda here.! they also give you a coupon for soup to go.
not the best. everyone is rude. it is a crowded place. what gives there
drive is that

DCG+Meta

Negative
Male
Mexican
Present

More importantly, the food isn ’t good enough for me. my girlfriend’s
favorite taco out of the bunch, Taco Linguini, is supposed to be good
but she never saw it ; dang there you guys. my salsa is really a letdown.
It’s too bland and lacks the right kick

Con.P.

Negative
Female
Asian
Past

The last time I went to a restaurant in town for sushi I was happy with
the time but was disappointed the broth was chalky with soy sauce
and rice. The temperature was extreme and the restaurant had no food
prepared that looked appealing even when I

Con.P.+Meta

Negative
Female
Asian
Past

The last time I was to see the sushi place here I felt poor. My boyfriend
and I felt uneasy entering our table, so we were at all to begin with and
he waited outside to eat lunch all the way until we were seated. The
food was bad

Con.P.

Positive
Male
American
Past

The book is well written and well planned with lots of really delicious-
to-and-simple recipes and an in depth look at the last few years in the
region with some wonderful photos and interesting twists on local food.
Many thanks to my husband for

Con.P.+Meta

Positive
Male
American
Past

The book commenced with the account of a baseball-loving American
daycare worker in a center for immigrant families on Thanksgiving.
"Every day, this gentle man, with his warm smile, taught the children
that their most vital abilities resided within them

Table 11: A case study of the state-of-the-art baselines before and after incorporating the Meta-MCTG training
framework. Different attribute words are marked with their corresponding colors. The text in bold represents the
prompt. “Comb.” means attribute combination and “Con.P.” represents the baseline ContrastivePrefix.
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Method Few-Shot
Ai.d.(↑) Pi.d. (↓) Acomp (↑) Pcomp(↓)

LLM+In-context Learning
LLaMA-2 (Touvron et al., 2023) 62.78% 26.08 42.99% 23.90
ChatGPT (OpenAI, 2023) 56.64% 18.62 49.50% 17.71

Decoding-Time based
PPLM (Dathathri et al., 2019) 43.07% 361.60 40.21% 330.94
Fudge (Yang and Klein, 2021) 58.00% 167.31 40.90% 224.91

Separate-Training based
Dis-Lens (Gu et al., 2022) 87.81% 95.05 51.47% 116.68
Prior (Gu et al., 2023) 85.19% 118.97 51.71% 104.16

Joint-Training based
CTRL (Keskar et al., 2019) 77.87% 48.48 65.94% 48.28
CatPrompt (Yang et al., 2023) 62.47% 163.66 46.23% 130.50
Con.Prefix (Qian et al., 2022a) 79.89% 88.34 57.56% 93.31
DCG (Zeng et al., 2023) 78.89% 63.22 59.27% 68.14

Table 12: Averaged overall evaluation results for state-
of-the-art baseline approaches on our CompMCTG
benchmark (Few-Shot testing). Each value in this table
is the average of testing performances on four compo-
nent datasets of CompMCTG: Amazon Review (He
and McAuley, 2016), Fyelp (Lample et al., 2019),
YELP (Shen et al., 2017; YELP, 2014) and Mixture (Liu
et al., 2022).
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Protocol Method Accs Accg Accc Acct Accavg Accgap PPL ↓ Dist3

Original CTRL 88.28 60.13 60.38 67.29 69.02 - 45.69 0.675
HoldOut-I.D. CTRL 88.42 60.88 60.53 67.89 69.43

1.64
45.95 0.675

HoldOut-Comp. CTRL 87.88 59.65 59.02 66.61 68.29 45.61 0.676
ACD-I.D. CTRL 87.83 60.25 59.45 69.35 69.22

5.65
45.60 0.684

ACD-Comp. CTRL 87.00 55.35 58.93 59.95 65.31 45.86 0.678
FewShot-I.D. CTRL 84.06 70.03 54.71 69.11 69.48

13.95
45.01 0.683

FewShot-Comp. CTRL 82.37 48.35 55.75 52.70 59.79 44.33 0.684

Table 13: The result of baseline CTRL in dataset Fyelp.

Protocol Method Accs Acct Accavg Accgap PPL ↓ Dist3

Original CTRL 88.43 71.76 80.10 - 37.97 0.731
HoldOut-I.D. CTRL 88.77 72.00 80.39

2.67
37.87 0.734

HoldOut-Comp. CTRL 86.55 69.93 78.24 38.10 0.736
FewShot-I.D. CTRL 88.60 70.29 79.45

9.13
37.40 0.734

FewShot-Comp. CTRL 76.53 67.87 72.20 37.50 0.740

Table 14: The result of baseline CTRL in dataset Amazon.

Protocol Method Accs Accp Acct Accavg Accgap PPL ↓ Dist3

Original CTRL 90.07 75.71 89.82 85.20 - 84.94 0.356
HoldOut-I.D. CTRL 91.47 74.28 89.72 85.16

3.69
72.20 0.360

HoldOut-Comp. CTRL 89.89 69.00 87.18 82.02 73.74 0.368
ACD-I.D. CTRL 91.76 74.35 90.46 85.52

12.73
76.06 0.348

ACD-Comp. CTRL 88.06 55.81 80.03 74.63 75.46 0.359
FewShot-I.D. CTRL 90.05 76.55 89.73 85.44

25.02
63.72 0.269

FewShot-Comp. CTRL 81.90 47.54 62.73 64.06 64.74 0.338

Table 15: The result of baseline CTRL in dataset YELP.

Protocol Method Accs Acctc Accavg Accgap PPL ↓ Dist3

Original CTRL 76.14 88.04 82.09 - 48.11 0.736
HoldOut-I.D. CTRL 72.45 88.66 80.56

10.85
48.82 0.723

HoldOut-Comp. CTRL 66.46 77.18 71.82 47.46 0.755
FewShot-I.D. CTRL 68.71 85.51 77.11

12.19
47.79 0.699

FewShot-Comp. CTRL 61.21 74.20 67.71 46.31 0.709

Table 16: The result of baseline CTRL in dataset Mixture.

Protocol Method Accs Accg Accc Acct Accavg Accgap PPL ↓ Dist3

Original CatPrompt 84.65 54.43 53.72 63.91 64.18 - 70.58 0.726
HoldOut-I.D. CatPrompt 84.45 54.76 56.80 64.64 65.16

0.91
69.71 0.726

HoldOut-Comp. CatPrompt 83.82 54.07 56.04 64.36 64.57 69.48 0.725
ACD-I.D. CatPrompt 83.45 54.04 47.33 61.21 61.51

10.96
69.30 0.735

ACD-Comp. CatPrompt 71.26 50.11 35.36 62.35 54.77 63.83 0.750
FewShot-I.D. CatPrompt 79.31 66.71 37.54 63.00 61.64

26.10
70.94 0.741

FewShot-Comp. CatPrompt 46.04 48.28 24.11 63.75 45.55 68.16 0.740

Table 17: The result of baseline CatPrompt in dataset Fyelp.

24



Protocol Method Accs Acct Accavg Accgap PPL ↓ Dist3

Original CatPrompt 82.31 60.88 71.60 - 55.08 0.734
HoldOut-I.D. CatPrompt 83.00 56.99 70.00

9.89
57.50 0.701

HoldOut-Comp. CatPrompt 72.86 53.29 63.08 50.39 0.727
FewShot-I.D. CatPrompt 77.95 44.64 61.30

35.42
55.63 0.658

FewShot-Comp. CatPrompt 48.22 30.96 39.59 41.59 0.717

Table 18: The result of baseline CatPrompt in dataset Amazon.

Protocol Method Accs Accp Acct Accavg Accgap PPL ↓ Dist3

Original CatPrompt 78.93 51.43 75.43 68.60 - 83.96 0.467
HoldOut-I.D. CatPrompt 76.04 51.67 74.86 67.52

4.83
86.92 0.462

HoldOut-Comp. CatPrompt 70.68 50.18 71.93 64.26 86.79 0.467
ACD-I.D. CatPrompt 72.24 52.88 73.23 66.12

14.10
118.02 0.634

ACD-Comp. CatPrompt 47.54 49.75 73.12 56.80 105.37 0.657
FewShot-I.D. CatPrompt 79.86 57.07 84.21 73.71

21.39
378.69 0.448

FewShot-Comp. CatPrompt 45.43 49.73 78.65 57.94 349.24 0.585

Table 19: The result of baseline CatPrompt in dataset YELP.

Protocol Method Accs Acctc Accavg Accgap PPL ↓ Dist3

Original CatPrompt 51.61 50.86 51.24 - 88.51 0.641
HoldOut-I.D. CatPrompt 51.53 54.67 53.10

7.01
79.25 0.654

HoldOut-Comp. CatPrompt 50.36 48.39 49.38 69.87 0.705
FewShot-I.D. CatPrompt 54.52 51.91 53.22

21.42
149.37 0.679

FewShot-Comp. CatPrompt 53.11 30.52 41.82 63.00 0.629

Table 20: The result of baseline CatPrompt in dataset Mixture.

Protocol Method Accs Accg Accc Acct Accavg Accgap PPL ↓ Dist3

Original DCG 90.18 56.68 56.50 62.34 66.43 - 53.31 0.688
HoldOut-I.D. DCG 90.09 56.33 57.21 62.33 66.49

0.15
53.50 0.702

HoldOut-Comp. DCG 90.29 56.39 57.00 61.88 66.39 53.52 0.704
ACD-I.D. DCG 90.07 55.55 56.44 61.96 66.01

1.97
53.29 0.702

ACD-Comp. DCG 89.73 55.04 54.99 59.07 64.71 53.67 0.704
FewShot-I.D. DCG 89.00 68.26 50.37 65.63 68.32

25.91
53.30 0.704

FewShot-Comp. DCG 57.34 49.02 41.68 54.42 50.62 52.82 0.695

Table 21: The result of baseline DCG in dataset Fyelp.

Protocol Method Accs Acct Accavg Accgap PPL ↓ Dist3

Original DCG 91.00 77.95 84.48 - 46.66 0.723
HoldOut-I.D. DCG 91.13 78.29 84.71

0.24
47.20 0.727

HoldOut-Comp. DCG 91.50 77.52 84.51 47.09 0.723
FewShot-I.D. DCG 91.66 76.63 84.15

18.86
48.05 0.727

FewShot-Comp. DCG 69.86 66.70 68.28 48.36 0.720

Table 22: The result of baseline DCG in dataset Amazon.
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Protocol Method Accs Accp Acct Accavg Accgap PPL ↓ Dist3

Original DCG 95.75 66.57 91.07 84.46 - 57.08 0.706
HoldOut-I.D. DCG 94.49 64.33 90.38 83.07

3.35
79.05 0.703

HoldOut-Comp. DCG 94.50 58.75 87.61 80.29 80.58 0.721
ACD-I.D. DCG 92.64 61.59 88.79 81.01

6.09
79.86 0.668

ACD-Comp. DCG 88.06 57.90 82.28 76.08 84.30 0.686
FewShot-I.D. DCG 90.82 62.21 85.93 79.65

29.57
93.66 0.510

FewShot-Comp. DCG 55.15 52.51 60.63 56.10 111.03 0.653

Table 23: The result of baseline DCG in dataset YELP.

Protocol Method Accs Acctc Accavg Accgap PPL ↓ Dist3

Original DCG 72.07 96.61 84.34 - 68.44 0.592
HoldOut-I.D. DCG 73.86 95.35 84.61

10.83
68.45 0.645

HoldOut-Comp. DCG 56.64 94.25 75.45 76.41 0.715
FewShot-I.D. DCG 71.64 95.21 83.43

25.58
57.87 0.603

FewShot-Comp. DCG 40.34 83.83 62.09 60.33 0.670

Table 24: The result of baseline DCG in dataset Mixture.

Protocol Method Accs Accg Accc Acct Accavg Accgap PPL ↓ Dist3

Original Fudge 67.49 51.45 37.07 59.73 53.94 - 223.31 0.732
HoldOut-I.D. Fudge 67.09 51.45 37.15 59.71 53.85

22.54
221.77 0.726

HoldOut-Comp. Fudge 49.61 48.80 20.91 47.50 41.71 269.55 0.728
ACD-I.D. Fudge 67.44 48.58 36.64 60.15 53.20

24.02
213.12 0.705

ACD-Comp. Fudge 51.01 50.34 19.17 41.17 40.42 239.45 0.718
FewShot-I.D. Fudge 70.83 79.46 25.80 45.54 55.41

26.06
208.09 0.666

FewShot-Comp. Fudge 47.87 45.30 20.27 50.44 40.97 282.25 0.490

Table 25: The result of baseline Fudge in dataset Fyelp.

Protocol Method Accs Acct Accavg Accgap PPL ↓ Dist3

Original Fudge 65.40 47.64 56.52 - 185.96 0.743
HoldOut-I.D. Fudge 64.71 47.49 56.10

38.89
192.16 0.738

HoldOut-Comp. Fudge 51.81 16.74 34.28 188.13 0.786
FewShot-I.D. Fudge 64.16 54.30 59.23

41.53
206.58 0.722

FewShot-Comp. Fudge 52.05 17.21 34.63 175.48 0.772

Table 26: The result of baseline Fudge in dataset Amazon.

Protocol Method Accs Accp Acct Accavg Accgap PPL ↓ Dist3

Original Fudge 63.68 93.79 84.57 80.68 - 104.33 0.667
HoldOut-I.D. Fudge 63.09 93.59 83.55 80.08

34.12
99.90 0.656

HoldOut-Comp. Fudge 50.39 55.25 52.64 52.76 355.48 0.717
ACD-I.D. Fudge 53.24 86.00 74.31 71.18

24.23
86.50 0.609

ACD-Comp. Fudge 55.39 54.55 51.86 53.93 297.18 0.636
FewShot-I.D. Fudge 58.32 87.32 71.32 72.32

29.29
58.13 0.481

FewShot-Comp. Fudge 50.24 51.70 51.48 51.14 261.71 0.578

Table 27: The result of baseline Fudge in dataset YELP.
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Protocol Method Accs Acctc Accavg Accgap PPL ↓ Dist3

Original Fudge 56.00 42.64 49.32 - 200.42 0.483
HoldOut-I.D. Fudge 54.22 40.51 47.37

16.34
204.05 0.487

HoldOut-Comp. Fudge 51.96 27.29 39.63 195.15 0.254
FewShot-I.D. Fudge 51.89 38.15 45.02

18.15
196.42 0.465

FewShot-Comp. Fudge 48.65 25.05 36.85 180.19 0.221

Table 28: The result of baseline Fudge in dataset Mixture.

Protocol Method Accs Accg Accc Acct Accavg Accgap PPL ↓ Dist3

Original Lens 96.89 59.31 77.23 70.77 76.05 - 51.09 0.555
HoldOut-I.D. Lens 94.53 60.30 78.33 71.19 76.09

11.87
52.63 0.562

HoldOut-Comp. Lens 77.03 56.05 78.23 56.93 67.06 52.59 0.556
ACD-I.D. Lens 94.15 62.34 76.83 76.22 77.39

25.95
54.63 0.526

ACD-Comp. Lens 60.80 57.27 51.68 59.49 57.31 54.15 0.469
FewShot-I.D. Lens 97.00 70.00 74.29 84.80 81.52

36.73
50.69 0.539

FewShot-Comp. Lens 63.60 50.63 34.18 57.92 51.58 50.25 0.501

Table 29: The result of baseline Lens in dataset Fyelp.

Protocol Method Accs Acct Accavg Accgap PPL ↓ Dist3

Original Lens 91.67 81.52 86.60 - 68.33 0.666
HoldOut-I.D. Lens 91.68 83.31 87.50

47.78
69.95 0.660

HoldOut-Comp. Lens 48.26 43.12 45.69 130.07 0.663
FewShot-I.D. Lens 90.86 81.40 86.13

49.92
71.27 0.650

FewShot-Comp. Lens 48.85 37.40 43.13 198.37 0.587

Table 30: The result of baseline Lens in dataset Amazon.

Protocol Method Accs Accp Acct Accavg Accgap PPL ↓ Dist3

Original Lens 79.54 96.75 93.36 89.88 - 265.42 0.284
HoldOut-I.D. Lens 71.74 96.77 95.47 87.99

36.73
121.94 0.232

HoldOut-Comp. Lens 51.54 64.75 50.71 55.67 122.77 0.231
ACD-I.D. Lens 83.83 90.26 96.14 90.08

47.59
121.54 0.228

ACD-Comp. Lens 48.78 52.94 39.92 47.21 121.13 0.233
FewShot-I.D. Lens 98.54 89.25 97.25 95.01

36.07
142.18 0.212

FewShot-Comp. Lens 62.87 58.14 61.20 60.74 141.35 0.271

Table 31: The result of baseline Lens in dataset YELP.

Protocol Method Accs Acctc Accavg Accgap PPL ↓ Dist3

Original Lens 83.11 95.46 89.29 - 110.04 0.387
HoldOut-I.D. Lens 82.14 93.37 87.76

38.58
138.82 0.410

HoldOut-Comp. Lens 52.00 55.79 53.90 114.13 0.397
FewShot-I.D. Lens 81.41 95.72 88.57

43.05
116.04 0.410

FewShot-Comp. Lens 49.36 51.52 50.44 76.73 0.418

Table 32: The result of baseline Lens in dataset Mixture.
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Protocol Method Accs Accg Accc Acct Accavg Accgap PPL ↓ Dist3

Original Prior 72.43 52.02 48.39 63.58 59.11 - 72.14 0.602
HoldOut-I.D. Prior 70.82 51.96 46.51 64.13 58.36

6.37
73.95 0.607

HoldOut-Comp. Prior 63.56 50.79 43.58 60.62 54.64 73.91 0.609
ACD-I.D. Prior 72.96 54.53 47.62 71.36 61.62

15.14
79.37 0.624

ACD.Comp. Prior 68.42 48.29 48.26 44.20 52.29 79.10 0.627
FewShot-I.D. Prior 98.11 73.89 55.83 86.86 78.67

32.54
84.29 0.643

FewShot-Comp. Prior 59.07 47.37 48.67 57.18 53.07 83.13 0.576

Table 33: The result of baseline Prior in dataset Fyelp.

Protocol Method Accs Acct Accavg Accgap PPL ↓ Dist3

Original Prior 82.02 82.90 82.46 - 86.79 0.647
HoldOut-I.D. Prior 83.78 79.46 81.62

40.74
86.93 0.644

HoldOut-Comp. Prior 25.76 70.98 48.37 84.02 0.650
FewShot-I.D. Prior 96.91 78.99 87.95

40.11
93.00 0.643

FewShot-Comp. Prior 54.43 50.90 52.67 93.80 0.648

Table 34: The result of baseline Prior in dataset Amazon.

Protocol Method Accs Accp Acct Accavg Accgap PPL ↓ Dist3

Original Prior 70.96 65.11 82.93 73.00 - 124.68 0.477
HoldOut-I.D. Prior 73.48 63.91 80.62 72.67

24.99
68.44 0.379

HoldOut-Comp. Prior 55.89 51.18 56.46 54.51 65.61 0.398
ACD-I.D. Prior 79.93 68.35 82.45 76.91

39.11
82.68 0.347

ACD-Comp. Prior 48.45 51.56 40.48 46.83 72.61 0.344
FewShot-I.D. Prior 89.68 77.07 96.21 87.65

39.92
98.73 0.287

FewShot-Comp. Prior 53.36 51.62 53.00 52.66 94.69 0.345

Table 35: The result of baseline Prior in dataset YELP.

Protocol Method Accs Acctc Accavg Accgap PPL ↓ Dist3

Original Prior 77.79 83.89 80.84 - 196.01 0.565
HoldOut-I.D. Prior 81.69 82.08 81.89

48.49
205.01 0.558

HoldOut-Comp. Prior 41.07 43.29 42.18 167.01 0.535
FewShot-I.D. Prior 85.56 87.42 86.49

44.02
199.85 0.541

FewShot-Comp. Prior 49.40 47.43 48.42 145.01 0.540

Table 36: The result of baseline Prior in dataset Mixture.

Protocol Method Accs Accg Accc Acct Accavg Accgap PPL ↓ Dist3

Original Con.Prefix 93.47 59.39 50.41 69.11 68.10 - 51.76 0.704
HoldOut-I.D. Con.Prefix 93.67 59.25 49.64 68.79 67.84

0.50
52.48 0.701

HoldOut-Comp. Con.Prefix 93.66 59.24 48.30 68.78 67.50 52.32 0.705
ACD-I.D. Con.Prefix 92.50 57.39 39.04 64.68 63.40

-0.84
53.11 0.704

ACD-Comp. Con.Prefix 93.85 58.24 40.18 63.44 63.93 49.78 0.745
FewShot-I.D. Con.Prefix 81.69 72.09 24.49 60.40 59.67

24.03
76.80 0.744

FewShot-Comp. Con.Prefix 58.89 47.51 22.39 52.51 45.33 86.49 0.745

Table 37: The result of baseline Contrastive Prefix in dataset Fyelp.
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Protocol Method Accs Acct Accavg Accgap PPL ↓ Dist3

Original Con.Prefix 93.76 81.31 87.54 - 43.55 0.716
HoldOut-I.D. Con.Prefix 94.26 81.27 87.77

-0.50
43.84 0.713

HoldOut-Comp. Con.Prefix 94.67 81.74 88.21 44.49 0.716
FewShot-I.D. Con.Prefix 92.93 77.13 85.03

19.45
43.92 0.713

FewShot-Comp. Con.Prefix 82.72 54.26 68.49 43.28 0.727

Table 38: The result of baseline Contrastive Prefix in dataset Amazon.

Protocol Method Accs Accp Acct Accavg Accgap PPL ↓ Dist3

Original Con.Prefix 98.21 87.11 99.21 94.84 - 139.13 0.709
HoldOut-I.D. Con.Prefix 98.03 85.91 99.26 94.40

1.71
136.04 0.687

HoldOut-Comp. Con.Prefix 97.36 82.11 98.89 92.79 132.21 0.707
ACD-I.D. Con.Prefix 96.52 80.96 98.66 92.05

3.34
139.71 0.669

ACD-Comp. Con.Prefix 96.27 72.73 97.93 88.98 131.12 0.674
FewShot-I.D. Con.Prefix 96.09 78.25 97.82 90.72

35.53
136.95 0.527

FewShot-Comp. Con.Prefix 60.87 52.94 61.65 58.49 132.02 0.624

Table 39: The result of baseline Contrastive Prefix in dataset YELP.

Protocol Method Accs Acctc Accavg Accgap PPL ↓ Dist3

Original Con.Prefix 75.68 95.25 85.47 - 82.73 0.676
HoldOut-I.D. Con.Prefix 75.87 94.08 84.98

14.16
89.59 0.681

HoldOut-Comp. Con.Prefix 66.82 79.07 72.95 119.74 0.778
FewShot-I.D. Con.Prefix 74.12 94.11 84.12

31.12
86.10 0.642

FewShot-Comp. Con.Prefix 52.47 63.40 57.94 111.43 0.723

Table 40: The result of baseline Contrastive Prefix in dataset Mixture.

Protocol Method Accs Accg Accc Acct Accavg Accgap PPL ↓ Dist3

Original PPLM 49.86 50.00 19.91 49.91 42.42 - 355.27 0.691
HoldOut-I.D. PPLM 50.43 50.03 20.34 50.31 42.78

0.68
351.74 0.687

HoldOut-Comp. PPLM 49.96 50.02 19.93 50.06 42.49 365.57 0.688
ACD-I.D. PPLM 49.30 52.75 20.62 54.55 44.31

8.31
348.59 0.688

ACD-Comp. PPLM 50.57 47.25 19.42 45.27 40.63 329.13 0.688
FewShot-I.D. PPLM 55.11 79.57 19.06 42.14 48.97

15.15
470.44 0.692

FewShot-Comp. PPLM 49.42 45.79 20.09 50.90 41.55 332.87 0.686

Table 41: The result of baseline PPLM in dataset Fyelp.

Protocol Method Accs Acct Accavg Accgap PPL ↓ Dist3

Original PPLM 49.60 16.62 33.11 - 340.99 0.689
HoldOut-I.D. PPLM 50.31 17.24 33.78

1.51
379.86 0.689

HoldOut-Comp. PPLM 49.64 16.89 33.27 346.97 0.691
FewShot-I.D. PPLM 53.04 16.75 34.90

8.51
343.87 0.690

FewShot-Comp. PPLM 47.01 16.85 31.93 355.93 0.686

Table 42: The result of baseline PPLM in dataset Amazon.
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Protocol Method Accs Accp Acct Accavg Accgap PPL ↓ Dist3

Original PPLM 50.43 49.86 49.75 50.01 - 297.53 0.704
HoldOut-I.D. PPLM 50.46 49.43 48.79 49.56

0.93
294.58 0.422

HoldOut-Comp. PPLM 50.32 48.28 48.70 49.10 294.58 0.695
ACD-I.D. PPLM 54.46 50.04 50.42 51.64

5.58
289.95 0.439

ACD-Comp. PPLM 45.54 50.10 50.65 48.76 285.21 0.434
FewShot-I.D. PPLM 49.86 49.71 51.25 50.27

0
302.25 0.492

FewShot-Comp. PPLM 49.86 49.71 51.25 50.27 302.26 0.438

Table 43: The result of baseline PPLM in dataset YELP.

Protocol Method Accs Acctc Accavg Accgap PPL ↓ Dist3

Original PPLM 51.71 24.50 38.11 - 296.57 0.704
HoldOut-I.D. PPLM 51.18 24.93 38.06

1.21
274.16 0.690

HoldOut-Comp. PPLM 50.14 25.05 37.60 355.92 0.702
FewShot-I.D. PPLM 50.94 25.35 38.15

2.80
329.85 0.665

FewShot-Comp. PPLM 48.93 25.22 37.08 332.68 0.660

Table 44: The result of baseline PPLM in dataset Mixture.

Protocol Method Accs Accg Accc Acct Accavg Accgap PPL ↓ Dist3

Original LLaMA-2 66.57 52.00 32.50 56.07 51.78 - 17.64 0.473
HoldOut-I.D. LLaMA-2 66.94 52.72 30.81 55.99 51.61

15.09
17.08 0.387

HoldOut-Comp. LLaMA-2 56.43 49.79 20.36 48.71 43.82 16.56 0.449
ACD-I.D. LLaMA-2 68.36 51.51 29.50 56.94 51.58

15.99
16.72 0.379

ACD-Comp. LLaMA-2 55.31 49.37 20.67 47.96 43.33 17.34 0.371
FewShot-I.D. LLaMA-2 65.37 52.17 29.77 56.11 50.86

12.09
17.21 0.444

FewShot-Comp. LLaMA-2 57.59 49.17 21.07 50.99 44.71 17.46 0.374

Table 45: The result of baseline LLaMA-2 in dataset Fyelp.

Protocol Method Accs Acct Accavg Accgap PPL ↓ Dist3

Original LLaMA-2 68.10 53.10 60.60 - 15.25 0.633
HoldOut-I.D. LLaMA-2 72.03 51.13 61.58

47.22
15.16 0.442

HoldOut-Comp. LLaMA-2 47.86 17.14 32.50 15.50 0.622
FewShot-I.D. LLaMA-2 75.81 51.10 63.45

49.24
15.14 0.474

FewShot-Comp. LLaMA-2 47.86 16.57 32.21 15.23 0.474

Table 46: The result of baseline LLaMA-2 in dataset Amazon.

Protocol Method Accs Accp Acct Accavg Accgap PPL ↓ Dist3

Original LLaMA-2 74.29 51.43 70.36 65.36 - 48.79 0.575
HoldOut-I.D. LLaMA-2 70.92 53.06 72.81 65.60

27.59
46.45 0.391

HoldOut-Comp. LLaMA-2 49.64 50.00 42.86 47.50 47.49 0.551
ACD-I.D. LLaMA-2 68.93 54.64 72.29 65.29

22.81
54.56 0.410

ACD-Comp. LLaMA-2 50.86 49.71 50.64 50.40 49.36 0.399
FewShot-I.D. LLaMA-2 72.68 52.50 70.36 65.18

19.42
45.17 0.486

FewShot-Comp. LLaMA-2 56.61 50.06 50.89 52.52 46.32 0.384

Table 47: The result of baseline LLaMA-2 in dataset YELP.
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Protocol Method Accs Acctc Accavg Accgap PPL ↓ Dist3

Original LLaMA-2 52.14 84.64 68.39 - 27.53 0.667
HoldOut-I.D. LLaMA-2 58.78 84.54 71.66

44.92
23.49 0.500

HoldOut-Comp. LLaMA-2 51.07 27.86 39.47 15.65 0.686
FewShot-I.D. LLaMA-2 56.52 86.70 71.61

40.65
26.81 0.559

FewShot-Comp. LLaMA-2 56.79 28.21 42.50 16.57 0.558

Table 48: The result of baseline LLaMA-2 in dataset Mixture.

Protocol Method Accs Accg Accc Acct Accavg Accgap PPL ↓ Dist3

Original ChatGPT 66.29 52.29 28.14 57.00 50.93 - 13.41 0.454
HoldOut-I.D. ChatGPT 67.07 51.10 27.90 56.29 50.59

7.61
13.39 0.347

HoldOut-Comp. ChatGPT 59.05 52.06 31.11 44.76 46.74 12.50 0.652
ACD-I.D. ChatGPT 64.25 50.68 29.34 56.43 50.17

5.74
13.52 0.347

ACD-Comp. ChatGPT 60.12 49.45 27.77 51.80 47.29 13.29 0.369
FewShot-I.D. ChatGPT 49.14 58.00 26.00 62.29 48.86

2.89
13.06 0.627

FewShot-Comp. ChatGPT 68.65 48.08 25.35 47.71 47.45 13.07 0.401

Table 49: The result of baseline ChatGPT (gpt-3.5-turbo-0613) in dataset Fyelp.

Protocol Method Accs Acct Accavg Accgap PPL ↓ Dist3

Original ChatGPT 77.86 33.33 55.59 - 14.13 0.670
HoldOut-I.D. ChatGPT 74.72 36.54 55.63

15.69
14.50 0.417

HoldOut-Comp. ChatGPT 75.71 18.10 46.90 14.94 0.667
FewShot-I.D. ChatGPT 79.29 36.43 57.86

20.26
14.50 0.472

FewShot-Comp. ChatGPT 71.52 20.76 46.14 14.24 0.474

Table 50: The result of baseline ChatGPT (gpt-3.5-turbo-0613) in dataset Amazon.

Protocol Method Accs Accp Acct Accavg Accgap PPL ↓ Dist3

Original ChatGPT 53.57 51.43 66.79 57.26 - 25.58 0.596
HoldOut-I.D. ChatGPT 60.97 50.41 65.77 59.05

6.86
26.43 0.367

HoldOut-Comp. ChatGPT 67.14 50.36 47.50 55.00 26.41 0.614
ACD-I.D. ChatGPT 60.86 51.43 67.71 60.00

4.88
25.76 0.400

ACD-Comp. ChatGPT 71.07 50.71 49.43 57.07 28.81 0.421
FewShot-I.D. ChatGPT 58.75 51.07 68.21 59.34

5.73
27.61 0.498

FewShot-Comp. ChatGPT 65.42 50.54 51.85 55.94 26.98 0.384

Table 51: The result of baseline ChatGPT (gpt-3.5-turbo-0613) in dataset YELP.

Protocol Method Accs Acctc Accavg Accgap PPL ↓ Dist3

Original ChatGPT 69.64 62.86 66.25 - 19.00 0.722
HoldOut-I.D. ChatGPT 63.47 58.93 61.20

21.23
18.84 0.500

HoldOut-Comp. ChatGPT 66.43 30.00 48.21 20.10 0.707
FewShot-I.D. ChatGPT 60.09 60.89 60.49

19.85
19.31 0.583

FewShot-Comp. ChatGPT 67.41 29.55 48.48 16.54 0.562

Table 52: The result of baseline ChatGPT (gpt-3.5-turbo-0613) in dataset Mixture.
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