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Abstract

Independently reasoning large language model (LLM) agents have immense po-
tential for knowledge discovery in materials science. However, it is challenging to
discern latent knowledge and summarized knowledge picked up during training
from newly discovered knowledge. To work around this issue, we repurpose Lang-
Graph’s tool functionality to supply agents with a black box function to interrogate
without any other objective than correctly describing the system. We provide proof
of concept for this approach through a children’s parlor game. We then apply the
same strategy to show that LLM agents can explore, discover, and exploit diverse
chemical interactions in an advanced Atomic Layer Processing reactor simulation
using intentionally limited probe capabilities without explicit instructions. For both
examples, we discuss path-dependence of results, the importance of persistence
and extra context on discovering rare effects.

1 Introduction

Large Language Models (LLMs) and agentic systems have shown great potential for disruption in
many professional fields. In materials science, LLM or agent use focuses either on synthesizing,
integrating, and validating domain knowledge [1–4], or leverages them as components in self-driving
labs for materials design, synthesis, or characterization (either computational or real). [5–8]. In
most cases, such agents leverage knowledge absorbed during the training phase, are given access
to tools and databases, and generally are part of complex, multi-agent workflows designed to reach
well-defined objectives (e.g., property optimization). This makes it challenging to separate their
ability for knowledge synthesis, discover of latent knowledge, and discovery of completely new
knowledge [9].

In this work, our goal is to probe the capabilities of LLM agents to interrogate a system and discover
completely new knowledge[10]. Leveraging tool capabilities, we give the LLM agent a specific
system to work with and ask it to provide statements about the rules governing this system without
defining any other objective. Since the rules are created specifically for this work, minimal background
knowledge is required. This system confines the problem in a different way than a question does:
we provide confined input and output spaces, leaving room for the agent to experiment in order to
discover the rules.

We demonstrate this through two examples. First, we play a parlor game with the agent: it needs to
describe the rules of an alien market through trial and error (the aliens do not sell anything with the
letters p or m in the word). Secondly, we study a materials science problem with real-world relevance:
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the semiconductor industry requires chemical processes able to precisely deposit and/or remove
of material, often through surface-mediated chemical reactions (see appendix A for background).
Discovering and characterizing novel reactions is a time-consuming task. We give the agent access to
a complex, simulated chemical reactor with custom hypothetical precursors and reactions, with the
task to describe this system. Dedicated in situ pressure and mass change sensors provide the agent
with limited, but sufficient probes into the system state, much like a human scientist would not have
access to all reactor variables.

Figure 1: Discovering rules mapping the input space to the output space (orange) is different from
asking an agent to answer specific questions (blue).

2 Methods

Specific details about agent implementation, prompts and simulation framework can be found in
Appendix B and C. The reactor simulation package will be made publicly available at https:
//github.com/awwerbro/ALDReactor.

3 Results

3.1 Alien market

We conducted two different experiments with the agent on the Alien market (Figure B1a). We
compare flagship models from openAI (gpt-5) and Google (gemini-2.5-pro) with medium-sized
models (gpt-5-mini and gemini-2.5-flash) and one older medium-sized model (gemini-2.0-flash). In
the first experiment (orange squares in Figure 2), we provide the agent with the background story
and instruct it to find the rules of the alien market (Scoring is explained in Appendix B, Prompt in
Appendix C).

Upon examination of the results, gpt-5 clearly outperforms the other models. However, it does so
by conducting significantly more experiments. Other models make some observations, then provide

Figure 2: Initially, most models except for gpt-5 perform poorly at discovering the rules of the Alien
market (orange squares). The performance markedly improves upon requesting the agent to perform
a defined number of experiments (dark markers).
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rules that match these observations. This is not indicative of the reasoning capabilities of gpt-5; the
other models simply stopped their investigation too soon. In the second set of experiments (Figure 2,
dark dots) we explicitly asked the agent to do n experiments, which significantly improved results.
We note that pushing models to extend their investigation is a viable strategy to achieve meaningful
and generalizable results.

3.2 ALP reactions

In this second, more relevant section, we provide the LLM with another system to control and
characterize: an advanced ALP reactor simulation. The simulation allows to specify different,
fictitious reactions between chemicals beforehand. After specifying the available chemistries, we let
the agent control the system, analyze outputs and try to condense the rules of the chemistry using a
requested amount of time.

In the first example, we want the agent to explore what is possible with two fictitious chemicals A
and B. Both chemicals react in a self-limiting way, leading to deposition.

sA + B → sB + S + E (1)
sB + A → sA + E (2)

with S a solid, deposited layer, and E a gaseous reaction product. We explore this set of reactions in
two experimental configurations (I and II).

In the first experimental configuration (I), transport and reaction kinetics of reaction 1 and 2 were
chosen to be very favorable, with 0.5s of exposure to be sufficient to saturate the surface at the starting
temperature. An example can be seen in Figure B2. The input space is rather small in this case (only
2 chemicals). As such, in each of 3 iterations, the agent discovered the self-limiting nature of the
surface reactions, and exploited these reactions to perform ALD-like depositions. The allocated time
of 3600s of experimental time was ample to discover this effect, so with the remainder of their time
the agents further explored the space: pulse times and reactor temperature were varied, discovering
kinetic limits at low temperature and growth through decomposition.

In the second experimental configuration (II), reaction 2 was made less accessible: reaction kinetics
were slower (the prefactor of the Arrhenius equation was 4 times smaller), and the vapor pressure of
chemical B was lowered (the B parameter in the Antoine equation was halved). An expert description
of the path to fully explore what is possible with the system as a) increasing the temperature of
precursor B from 300 K to 550 K, and b) pulsing precursor B for at least 40s. This is an experimentally
realistic scenario.

Three different system prompts were tested with configuration II. The first prompt (IIa) was identical
to the prompt used in configuration I, and the agent had as well 3600 s to characterize the system. In
every iteration, the agent fully characterized in a low-exposure behavior, characterizing a ’CVD-like’
process with very low growth. In the second prompt (IIb) we increased the time available to the agent
to 7200s, yet all agents remained stuck in the same local minimum. In the final prompt, we provided
a reference value for the QCM measurements ("As a rule of thumb, depending on stoichiometry,
a monolayer of material weighs between 10 and 50 ng/cm2""), again with 7200s of experimental
time. This time, results were more varied. The first iteration the agent stayed in the low-growth,
CVD-like local minimum. The second iteration, it discovered an "ALD-like growth" when the reactor
temperature was raised above the decomposition temperature of chemical B. While experimentally
correct, it is factually wrong to label this growth mode as ALD. Finally, in the third iteration the
agent discovered the ‘exceptionally slow surface reaction kinetics’ (sic) and achieved full saturation
(completion) of the reactions resulting in higher, controlled growth.

Having investigated the a configuration with 2 precursors, we expanded the input space with 2 more
chemicals (configuration III). These are summarized in Table B2), departing from reactions 1-2.
With these chemicals, more combinations are possible: self-limited deposition (ALD, combining
chemical B and C, much like configuration I), self-limited etching (ALE, combining chemical A and
C), and passivation through chemical D (ALE, reaction B-C does no longer work, with a pulse of
A or an annealing step able to remove the passivating layer). In addition, continuous growth can
be achieved by exposing the surface to precursor B and C at the same time (CVD co-dose), and
by exploiting the decomposition of precursor C (CVD decomposition, continuous exposure with
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Figure 3: Visualization of the experimental space visited by the agent in experimental configuration
III, as compared to manually labeled experiments conducted by a human with knowledge of the
configuration (UMAP projection of the full reactor state in the course of the experiments). In different
iterations, different parts of the space are visited.

the reactor temperature above the decomposition temperature of precursor C). Due to the larger
experimental space, the kinetics were chosen to be easily discovered.

We allowed 7200s of experimental time and employ nudging strategies (see Appendix B) to prevent
the agent from giving up too soon. In figure 3, we visualize the trajectory of the agent in experimental
space. During the simulation, the full reactor state yields a 560-dimensional vector for every
timestamp. After subsampling with respect to time to ensure sufficient variation, these vectors are
projected into two dimensions using Uniform Manifold approximation and projection (UMAP), which
was trained on a labeled reference experimental run, conducted by an expert. If the experimental
trajectory covers the entire space indicated by a color, it has brought the reactor in a similar state
compared to that of the expert label. The following paragraphs are based on manual investigation of
agent statements, the visualization in Figure 3 and manual inspection of the QCM/pressure traces.

In the first iteration the agent discovered ALD with precursors B and C, passivation against B-C with
chemical D, and also a CVD process at high temperature. However, it did not recognize/describe ALE,
but instead used chemical A as a ‘cleaning agent’ to obtain reproducible results. The temperature
stability of the deposited film was also tested. The second iteration discovered ALD, ALE, and used
D to passivate the surface against single pulses of B and C, but not exploring passivation against the
full B-C cycle. The agent also removed D by annealing the surface (as opposed to pulsing A). Some
time was spent pursuing an A-C-B-C cycle, which yields no growth. Co-dosing was not explored.
The third iteration focused on etching with A and C. It pursued several dead ends: complex A-C-D
cycles with little growth, and the onset of C decomposition in combination with etching through A. It
did not describe cyclic reactions of B with C.

4 Discussion

In this section we discuss several common aspects with respect to knowledge discovery between
the alien market and the reactor simulation. These apply to agent-based discovery, but are easily
generalized to human discovery. We address whether the performed experiments can be described
as ‘knowledge discovery’, and conclude with a brief discussion about implications of this work for
real-world systems.

First of all, we find that some ‘rules’ or effects are intrinsically harder to find than others, and require
a certain amount of (imposed) persistence. Furthermore, some signal has to be detected by the agent
to spark ‘curiosity’ and further inquiry. In the absence of signal, two strategies can work: first, one
can provide more time/experimental resources to the agent in order to increase the probability of
detecting some signal (and nudge the agent to use these resources if necessary). A second strategy
can be providing more context in the prompt - which we deliberately limited in our experiments.
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Specifically, for the alien market: based on a list of 10,000 English words [11], the probability that
an item will be rejected by the market (word contains m or p) is 0.3248. On the other hand, if the
rejection rule had been based only on the occurrence of ’z’, the probability of a ’False’ answer would
be only 0.0129, leading to longer times before discovery. Finally, imagine the case where the rule
is that the aliens only sell objects containing a letter ç. An agent would have a hard time finding
this rule, except if the information that the aliens prefer to communicate in French was available
from the beginning. For the chemical reactions, ALP configurations I and II illustrate the effect
of the availability of context, combined with more experimental time to get out of local minima:
identification of a self-limiting ALD reaction only happened after providing the agent with reasonable
QCM ranges in configuration IIc.

Another general observation is that discovery of the rules is highly path-dependent. In the alien
market, it was extremely common for any agent to start with "apple". In some cases, this led to
construction and validation of the rule that "any word with double p is rejected". Increasing model
temperature could lead to more diversity in the generation of starting points and subsequent paths.
For the ALP reactor, configuration III also exhibits path-dependence. In the 3 iterations, the agents
explored different parts of the system. This can inspire swarm-like strategies, in which a supervising
agent summarizes results from different sub-agents exploring a similar system. We intentionally
randomized the order of the chemicals to avoid path-dependent bias. Tweaking model temperature
could also be a strategy to increas path-induced outcome variety.

Since both the Alien market rules and the chemical reactions to be discovered were hypothetical and
conjured up by us, we consider this a proper example of knowledge discovery: the agent had no prior
knowledge about the used chemicals to rely on, except what we provided. More discussion on the
alien market experiment can be found in Appendix D. More discussion on avoiding priming the agent
through the prompts can be found in Appendix E.

In these two examples we provided the LLM with specific effects to discover. However, in reality,
the number and complexity of input-output combinations (and hence, the opportunities for failure
and success) are seemingly endless. As such, we want to stress that success is defined by the way
the results are interpreted. Without prior knowledge, it is hard or even impossible to optimize an
experimental trajectory (the reference recepe in Table B3 could be considered optimized). However,
even an inefficient path can yield results that turn out to be interesting in a different context. The
ability to conduct experiments without predefined objective, besides exploring a system, could enable
construction of comprehensive scientific databases without the bias toward success present in the
scientific literature.

This leads to an interesting tradeoff: in an experimental system with real, well-described chemicals,
agents could (but not necessarily should) be augmented with more knowledge, strategies and/or tools.
However, not knowing something, and ignoring or critical examination of prior knowledge could
lead to more novel paths. A similar tradeoff exists with respect to experimental constraints: these
should be in place for safe use of equipment, yet sufficiently broad and flexible to allow the agent to
explore beyond well-trodden paths.

Finally, we note that related work has been carried out by Duan et al.. In that work, LLM’s were
allowed to perturb simulated biological systems and tasked with modelling the reactions in python
[12].

5 Conclusions

In this work, we use two simulated experimental systems, of which one has high relevance for the
field of materials science, to show that LLM agents can a) interrogate unknown systems and reason
moderately well on the outcomes, when prompted to use sufficient experimental resources b) pursue
complex and interesting ideas as a result of initial observations c) summarize their findings as general
statements about the system under study, even without other specific objectives.

As a materials science community, we need to broaden the scope of our efforts with respect to
using AI for our research. Tremendous progress has been made to ensure factual and correct LLM
responses, to discover latent knowledge in literature, and to optimize for specific objectives. However,
independent discovery in data-poor conditions for yet-to-be-discovered effects is an exciting area
where AI/ML can also be of use.
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Figure B1: a) graph for the first example (Alien market) b) graph for the second example (ALP
reactor) LLM-based components are shown in blue, while deterministic components are grey. c)
schematic reactor layout.

A Atomic Layer Processing

Atomic Layer Processing (ALP[13]) encompasses several techniques at the forefront of the semicon-
ductor industry including atomic layer deposition (ALD) [14], atomic layer etching (ALE)[15], and
area selective deposition (ASD)[16]. These techniques harness self-limiting gas-surface chemistries
to enable atomic-scale control over thin-film stacks. In ALD, surfaces in the reactor are exposed
to multiple cycles of sequential pulses and purges of two chemicals (e.g., trimethylaluminum and
water). Due to the self-limiting nature of the interactions, complex, three-dimensional substrates
can be coated in a conformal and uniform way [17]. This ability has been a key component of the
semiconductor manufacturing toolkit for decades, and also finds application in other industries. ALE
behaves practically the same, with the only difference that the material is removed in a self-limiting
way instead of deposited. ASD, finally, employs the chemical passivation of certain surfaces to selec-
tively control chemical access (e.g., of ALD) on specific surfaces, while protecting others. However,
discovering, characterizing, and verifying novel chemistries and precursor-surface interactions is a
time-consuming and expensive effort. Therefore, it is an excellent testbed for ML/AI approaches
to speed up discovery. Earlier work has focused on (among others) predicting [18] and optimizing
saturation times (see [19] and references therein).

B Extended Methods

B.1 Alien market: LangChain implementation

A LangChain ReACT agent [20] was used in the first example (Alien market) with different models
as indicated. The system prompt was identical for all models and can be found in Appendix C. The
agent is given only one tool: the function to interrogate (Figure B1a).

B.2 Alien market: experimental conditions

In the first set of experiments (Figure 2, orange dots), every agent was tested five times to figure out
the rules without specifying anything with regards to the number of experiments. In the second set of
experiments (Figure 2, dark dots) we explicitly asked the agent to do n experiments (n = 5, 8, 10,
12, 15, 18, 20, 30, 40, 50, 60, 70, 80, 90 experiments, with three iterations per condition). The total
number of experiments was returned with each result.

B.3 Alien market: evaluation

The solutions were evaluated through another LLM, but after some unreliable scores we graded the
conclusions by hand. The ground truth rules are that if the string contains m or p (case insensitive), it
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is impossible to buy it on the market. If the LLM gave a completely wrong answer, no points were
awarded. One point was awarded for correct identification of a letter. Another point was awarded for
the correct identification of the other letter. In some cases the LLM added a third rule about another
letter being disallowed. For these unnecessary extra rules we subtracted 0.5 points. This led to 1.5
points for a statement like "words containing the letters p, m or l are disallowed" and a score of 0.5
for a statement like "words containing the letters p/P or l/L are disallowed".

B.4 ALP reactor: LangChain implementation

In the second example (Atomic Layer Processing), a similar ReAct Agent was used (model: gemini
2.5 pro). We considered more complex multi-agent architecture but decided against it since the
objective of this study is probing the discovery capabilities of existing LLMs, not to innovate
networks of LLMs to improve this function. However, we did make some decisions to filter the
information reaching the Agent (Figure B1b). More specifically, the agent has two tools now. The
perform_experiment tool accepts a recipe string (a tab-based table, see Appendix C and B.5)
which is passed on to an API on top of the reactor simulation. The string format is checked and the
simulation is carried out. The reason for this format is that the physical reactors in our lab also accept
this format, so it would be trivial to add an API layer onto the physical reactor control and swap the
endpoints to conduct physical experiments controlled by an LLM. Once the experiment finished, the
sensor (pressure and mass at specific locations), valve and temperature data is returned with 0.1s
resolution. A deterministic narrative (string) is constructed from this data, which is then summarized
by a second LLM (gemini 2.5 flash) into a short, high-level description of what happened in the reactor
during the process. The entire experiment (id, sensor data, narrative, summary) is stored for later
use, but is not dumped on the agent. However, if desired, the second tool, retrieve_experiment
passes the complete information to the main Agent. The complete experiment, including discretized
pressure and coverage profiles across the reactor, is saved for reference but is not made available to
the agent.

In the system prompt (Appendix C) a configuration-dependent description of the reactor and available
chemicals is provided, with instructions on how to provide strings to control this system (see Appendix
B.5 and C). Here, we exploit the capability of LLMs for single-shot learning with respect to tool use
[21]. Gas flow rate, temperatures and valves can be changed independently. The output presented to
the agent consists of a pressure signal and a Quartz Crystal Microbalance (QCM) signal versus time
during the experiment, similar to what a human experimenter would see. By design, neither of the
output signals allows the agent to unambiguously distinguish between the chemicals.

We also provide the agent with a defined amount of reactor time to use, to ensure continued experi-
mentation, much like the Alien Market example. Initial experiments indicated that agents consistently
used significantly less than the allocated/requested experimental time in all cases. Different prompting
strategies were tested, but in contrast to the earlier example, we could not force the agent to use all its
time. Eventually, a simple system kept the agent in the loop, prompting it to continue research until
90% of the available time was used.

B.5 ALP reactor: simulation and system of equations

B.5.1 Reactor, precursors and sensors

The reactor is modeled as a tube with diameter d and length L, discretized into N sections kept
at temperature T . The reactor is considered to be heated uniformly, so this temperature is used to
evaluate all equations. Temperature changes happen immediately.

A mass flow controller (MFC) at the inlet defines carrier gas flow f (volume per unit time) entering
the reactor. At the outlet, a pump is defined having a nominal pumping speed S (m3/s), and base
pressure (Pa) the pump can attain without load. However, at base pressure, the pump displacement
will be much lower than the nominal speed and net to zero: indeed, the nominal pumping speed
depends on the pump type, pump health, and pressure. We approximate the pump speed as a linear
function of pressure below a threshold value pthresh (which is pump-dependent) such that

Spump(p) =

{
Snom if p > pthresh

Snom · p−pmin
pthresh−pmin

if pmin ≤ p ≤ pthresh
(3)
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For the MFC the displaced volume per second also depends on the pressure, through

SMFC(p) = fm3/s
Treactor · 101325 Pa

p · 273.15 K
(4)

In equilibrium, by definition, we have Spump(p) = SMFC(p), such that in the transition region the
pressure at the pump inlet pinlet as a result of a specific flow is given by finding the root of a
second-order polynomial.

Additionally, for a gas with dynamic viscosity µ the pressure drop can be calculated through the
Hagen-Poiseuille equation

dp

dx
= −8πµf

A2
(5)

However, this pressure drop is minimal under operating conditions. The local (carrier) gas velocity
can then be calculated from the local displaced volume per time unit (at reactor conditions) through
dividing by the reactor cross-sectional area. The velocity and pressure drop are interdependent, but for
all practical purposes they will be considered constant over the length of the reactor. We approximate
that the gas velocity is only influenced by the inert gas flow, and not by any other chemicals.

Gas-phase molecules are defined through their total molar mass mi, and a diffusion coefficient D.
Diffusion of precursors in laminar flow (low vacuum and/or macroscopic features) can be calculated
through Chapman-Enskog theory [22], while in the molecular flow (high vacuum and/or microscopic
features) Knudsen theory can be used [23]. In the transient region between laminar and molecular
flow, the effective diffusion coefficient Di (m2/s) for each precursor can be calculated through the
Bosanquet relation [24, 25]. Here, we are firmly in the laminar flow regime (1 Torr, macroscopic
reactor). Additionally, Precursors have a decomposition temperature and parameters for the Antoine
equation to determine their vapor pressure when in the bubbler. Each precursor is contained in a
bubbler to separate extrinsic, environment-dependent properties (e.g., vapor pressure, temperature)
from intrinsic properties (e.g., Antoine coefficients). For every precursor, a discretized pressure
profile is defined across the reactor. Solving this pressure profile is one of the major tasks of the
simulation.

Surfaces are also defined in a discretized, dimensionless way across the reactor (surface coverage
0 < θ < 1). They have a molecular weight and a surface density of sites, defined as σ (mol/m2).

A reaction is then defined between precursors and surfaces with reaction rate ki, such that:

ri = kiciθiσ (6)

Once ri is known, the participating species can be updated. For example the reaction between
molecule C (e.g., trimethylaluminum) and surface sB (OH) will have a specific reaction rate for
every position in the reactor. This reaction results in the solid S being created with rate r. It is also
possible to define stoichiometries with a reaction. The reaction rate ki can be modeled as an arbitrary,
temperature-dependent equation. In this case first-order Arrhenius kinetics were used.A

Once the set of reactions has been modeled, the reactive transport of gaseous species i (precursors
and reaction products) can then be modeled with

∂ci(x, t)

∂t
= Di

∂2ci
∂x2

− v
∂ci
∂x

− 4

d

∑
j

rij (7)

and the change in coverage is
∂θi
∂t

=
1

σi

∑
j

rij (8)

where rij indexes over all j reactions involving species i and the sign of each r indicates consumption
or creation.
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This flexible system allows for arbitrary functional forms of k (e.g., k(T ) = AeE/kBT , or

k(T ) =

{
0 T < 500K

100T T ≥ 500K
(9)

This includes irreversible processes and reversible physisorption processes. Since the latter cause
significant overhead, they were not included in the simulations. For easy setup, a reactor description
including reactor dimensions, bubblers, precursors, reaction products, surfaces, solids and sensors
can be specified as a .json file and loaded.

During a simulation, the coupled system of differential equations 8 and 7 is solved together with
other relevant parameters (precursor consumption in the bubbler, etc.). Equations 8 and 7 are similar
to those reported in earlier work simulating reaction-diffusion into high aspect ratio features in the
context of conformality research [26, 25, 17, 27]. Key differences between the reaction-diffusion
system considered in conformality research is the addition of the advection term (the effect of inert
carrier gas velocity) and a change in outlet boundary conditions because of the pump. In our simplified
view, stoichiometry and chemical specifics of the reaction are not taken into account.

While the system of equations describes reactive transport, the boundary conditions determine how
the actual system evolves. At the inlet, we assume ci(0) = 0 or pi

RT depending on opening or closing
of the valves, and calculate the first and second order gradients based on those values (Dirichlet
boundary condition). At the end of the reactor, we assume all gas is pumped, such that there is no
accumulation of precursor, leading to a natural boundary condition from the equations.

The reactor configuration allows for placement of one or more pressure sensors across the length of
the reactor. The total pressure recorded by these sensors is then passed on to the agent.

QCM calculations We have direct access to the deposited mass per surface area in our calculations.
As such, it is convenient to define one or more quartz crystal microbalance (QCM) sensors across the
reactor. Before passing the data to the agent, units are converted from g/m2 to ng/cm2.

B.5.2 Recipe

Cycles Type # Action Wait (s)
1 M 1 50 0 # MFC 1 @50 SCCM

V 2 0 0 # close valve 2
V 3 0 10 # close valve 3

5 V 2 1 1 # open valve 2, wait 1s
V 2 0 10 # close valve 2, wait 10s
V 3 1 1 # open valve 3, wait 1s
V 3 0 10 #close valve 3, wait 10s

Table B1: Contents of a typical recipe file pulsing precursor B and C. The first three lines ensure
that the reactor is in a suitable state: the Ar flow is switched to the desired setting (line 1), valve 2 is
closed and valve 3 is closed. After the third line, a 10s wait time is enacted. Then five cycles of the
following sequence are delivered: (pulse 1) Valve 2 is opened, 1s wait, (purge 1) valve 2 is closed,
10s wait (pulse 2) valve 3 is opened, 1s wait (purge 2) valve 3 is closed, 10s wait. These last four
lines are repeated five times. Multiple cycle conditions can be scheduled after each other in this way.
The output of this recipe (with reactor configuration III) is shown in Figure B2

The home-built reactors in our group are controlled through LabVIEW. They can be operated in
various ways: manually; by defining typical ALD sequences (AB, mAnB or mABnCD); or through
submitting a tab-separated .txt file containing a table with process steps (an example is given in Table
B1). This way of passing process steps to the reactor offers great flexibility and interoperability, as
reactor control actions can be scheduled arbitrarily (safety checks are built in). To allow for accurate
comparison, we decided to control the simulation through files following the same convention. This
way, the simulation becomes an effective practice playground for agents. If confidence in the agents
grows, switching from simulation to control of physical reactors will be smooth.
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Figure B2: Full concentration profiles (a, b, c), surface coverage profiles (e, f), mass deposition
profiles (g) generated during an experiment pulsing A and B (B and C in the full ALP example),
generating gaseous reaction product E and solid S. The dotted line in g) shows the position of the
QCM sensor. Sensor data available to the agent is displayed in d) and h).

sA (AlF3) sB (-OH) sC (-CH3) sD (-CH2CH3)
A (HF) – sA+B (−S) sA+ E (−S) sA+ E (−S)

B (H2O) – – sB + E –
C (TMA) sC + F sC + E + S – –
D (EtOH) – sD +B sD + E –

Table B2: Self-limiting reactions available to the system. The rows represent the gas-phase chemicals
participating in reactions with the surfaces represented in the columns (prefix s). E and F are gas-
phase reaction products, and S is the solid material deposited. The actual chemicals (HF, H2O) etc.
and surface groups (-OH, -CH3) serve as references to existing processes for the familiar reader, but
these are not mentioned to the agent and merely serve as inspiration. Decomposition reactions for C
+ sX → sC + S (linear with T above 600K) and D + sX → sB + E (linear with T above 500K) are
also implemented but not shown in the table.

B.5.3 Simulations

Once a reactor object with precursors and sensors is initialized, a recipe can be simulated on this
object. The recipe allows for natural segmentation of the simulation: each process line is executed as
a sub-simulation, starting from the end state of the previous sub-simulation (concentrations, θ, M).
This way, it is ensured that all steps are processed correctly and numerical instabilities as boundary
conditions change sharply at the reactor inlet are avoided. At the end, the segments are concatenated.

On a larger scale, the reactor object retains the state of θ, M and QCM signal between recipe runs -
reaction product concentrations are not retained as the reactor would naturally equilibrate between
processes.

B.6 ALP reactor: experimental condititions

A schematic of the reactor is displayed in Figure B1c. More information and relevant equations for
the reactor simulation framework can be found in Appendix B.5. An example of a full process input
is given in Table B1, where the full output is shown in Figure B2.

The full set of reactions available to the model in the full ALP reaction is given in Table B2.

B.7 ALP reactor: UMAP projection and evaluation

To make the visualization in Figure 3, the simulation recipe in table B3 was carried out.

QCM output during this run is displayed in Figure B3 The full output of the reactor state during the
simulation was a 201371 × 560 array (not including time). This array was subsampled using k-means
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clustering with 100 centroids per labeled condition to ensure proper sampling of each condition.
These 560-dimensional centroids were then transformed to 2 dimensions using UMAP.

Cycles Type # Action Wait (s)
1 T 0 500 0 # setup (0 s)

T 1 300 0
T 2 300 0
M 1 50 0
V 1 0 0
V 2 0 0
V 3 0 0
V 4 0 0

5 V 2 1 1 # ALD (110 s)
V 2 0 10
V 3 1 1
V 3 0 10

1 V 1 0 50 # break (50 s)
5 V 1 1 1 # ALE (110 s)

V 1 0 10
V 3 1 1
V 3 0 10

1 V 1 0 50 # break (50 s)
1 T 0 400 10 # ASD passivation (100 s)

T 4 550 10
V 4 1 60
V 4 0 20

5 V 3 1 1 # ASD test (110 s)
V 3 0 10
V 2 1 1
V 2 0 10

1 T 0 700 0 # ASD clean (anneal) (20 s)
T 4 300 10
T 0 450 10

1 V 3 1 1 # CVD (co-dose) (52 s)
V 2 1 50
V 2 0 1
V 3 0 10 # break (10 s)

1 T 0 700 20 # break (20 s)
1 V 3 1 50 # CVD (decomposition) (51 s)

V 3 0 1
Table B3: Reference recipe used for UMAP projection and evaluation, demonstrating various ALP
processes including ALD, ALE, ASD passivation and cleaning, and CVD operations. Comments
indicate labels that were added afterwards. The ’break’ label was removed from the visualization.

C System prompts

C.1 Alien Market

prompt 1:

"""
You are on an extragalactical planet with a market where you can buy

virtually everything. Everything?
No - the aliens have particular rules about what they sell and what

they do not sell. Your goal is to figure out what their rules are.
Whenever you are calling the tool , explain why.
Make sure you verify your responses.
"""
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Figure B3: QCM signal and labels during the reference run.

prompt 2 (specify number of calls)

"""
You are on an extragalactical planet with a market where you can buy

virtually everything. Everything?
No - the aliens have particular rules about what they sell and what

they do not sell. Your goal is to figure out what their rules are
using the tool.

Whenever you are calling the tool , explain why.

Make exactly {n_calls} toolcalls before reporting your final answer.
If you don 't know , indicate that in the final answer.

As you are doing experiments , keep refining your hypothesis. Think
along the way.

"""

C.2 ALP discovery

summarize narrative agent (same in all cases)
"""
You will be given a description of what happens during the experiment.
Return a concise summary , highlighting repeating or unique behavior.
"""

The system prompt for the main agent in example 2 is constructed from reactor_prompt,
recipe_prompt and then a prompt that is slightly adapted for the specific run (1,2 or 3).

reactor_prompt
"""
REACTOR SETUP
The reactor is a tube of 1m long and 0.05m diameter with valves at one

end , and a pump at the other end.

- Valve 1: Connected to chemical A (decomposes above 600K)
- Valve 2: Connected to chemical B (decomposes above 600K)
- Valve 3: Connected to chemical C (decomposes above 600K)
- Valve 4: Connected to chemical D (decomposes above 500K)
- MFC 1: Controls Ar gas flow (0 -100 sccm)

You have access to a QCM (measuring in ng/cm^2) and a pressure gauge (
measuring in Pa) which are both located halfway this tube.

"""

recipe_prompt
"""
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No further information is available about these chemicals , but you can
assume their use is safe within the specified limits of the

reactor , although they may not behave as desired.
The safe operating pressure of the reactor is around 200 Pa. Try to

keep the pressure below 500 Pa.
The safe temperature for the reactor is about 700K. Stay below this

temperature.

To manipulate the reactor , use the following recipe format

RECIPE FORMAT
- Each line has five rows: [cycles] action component_id setting

wait_time
- cycles: optional number (if omitted , continues current cycle)
- action: 'M' for MFC , 'V' for valve , 'T' for temperature
- component_id: 1, 2, etc.
- setting: for valves 0/1 (close/open), for MFC 0-1000 (sccm)
- wait_time: seconds to wait

Example experiment string:
"
1 M 1 50 0. # Set purge gas to 50 sccm , wait 0s.

T 0 500 0. # set reactor temperature (number 0) to 500K
T 1 350 0. # set temperature of bubbler 1 (containing

chemical A) to 350 K
V 1 0 0. # make sure valve 1 (opening access to bubbler

1) is closed before you start the process , wait 0s.
V 2 0 0. # make sure valve 2 is closed before you start

the process , wait 0s.
V 3 0 0. # make sure valve 3 is closed before you start

the process , wait 0s.
V 4 0 10. # make sure valve 4 is closed before you start

the process , wait 10s.
5 V 1 1 1. # open valve 1, wait 1s

V 1 0 10. # close valve 1, wait 10s
3 V 2 1 2. # open valve 2, wait 1s

V 2 0 10. # close valve 2, wait 10s
"

The first 7 lines are executed only once (the first line has a 1).
They serve to make sure that the reactor is in the right
conditions). However , you do not need to do this every time.

After setting these values immediately after each other (wait time 0)
the reactor waits 10s (seventh line).

Then the process is ready to perform some pulses: the next two steps
open and close a valve (open , wait 1s as the gas flows in the
reactor , close , 10s purge). This is repeated five times.

Finally , the last two lines are repeated 3 times , this time with 2
seconds exposure and 10s wait for chemical B. The other chemicals
work in the same way.

Note that the Ar remains flowing at 50 sccm all the time.
You can make the recipe as long as you want.
"""

ALP example

You are research assistant with access to a reactor tool that can
investigate gas -surface reactions.
Your goal is to explore what is possible with this system.

OBJECTIVE
You have {time_available}s of reactor time to perform your

experiments.
Generate a list of statements about the system under study , based

on the experiments you did.
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Do not describe individual experiments , but identify general
patterns , as specific as possible (mention values where you
can).

You will be evaluated on the correctness , diversity and generality
of these statements , so explore the system thoroughly.

TOOLS
conduct_experiment: this allows you to perform experiments by

submitting a recipe. You will receive a summary of the
experiment.

retrieve_experiment: you can inspect raw data for an earlier
experiment by using this tool with the experiment id.

{reactor_prompt}
{recipe_prompt}

IMPORTANT NOTES
- it is advisable to close every valve after opening it - but if

you have good reasons to do so this is not strictly necessary.
- Do not use chemicals above their decomposition temperature

unless you have a good reason to do so.
- Surface changes can be persistent in between runs. One pulse a

couple experiments ago may still impact your current
experiments.

- Your QCM signal is sensitive enough to detect meaningful changes
in the surface.

- Your pressure sensor measures chemical A/B/C/D and gaseous
reaction products indiscriminately.

Explain your thinking along the way.

D More observations on the alien market

Other relevant notes on the alien market are: a) it is sufficiently small that the entire experimental
history easily fits in the context window, and b) tokenization may affect task performance: as LLMs
are trained on tokenized text, they typically have some trouble identifying whether a letter is part
of a word. For example, gpt-5-mini, after correctly identifying the rule about the letter p, remained
unaware of the rule regarding the letter ’m’, but remarked that there should be another rule, as "several
rejected words do not contain ’p’ (camera, tomato, cucumber, human, potato, pear, grape)" (sic).

E More discussion on the ALP example

Relevant notes on the ALP example are that the body of experimental data can easily be overwhelming,
therefore our choice to rely on deterministic data-to-text generation and LLM-powered narrative
generation, with the option for the agent to inspect the raw data (Figure B1b). However, with
the longer experiments (7200 seconds) several issues arose, likely because of the length of the
conversation. We included only experiments that were completed in this work.

Critical remarks for the ALP example include that even though LLM agents appear to use the right
terminology, the exact meaning may be wrong to an expert. Hence it is important to check the actual
experiments (specifically in experiment IIb). If available, the UMAP projection of the probed space
against expert experiments (configuration III) provides us with additional validation that the agent
did actually visit relevant parts of the experimental space. Furthermore, even though we made sure to
strip the prompts of specific ALP terminology, providing the agent with only a sliver of additional
information may (further) bias its results: we suspect that the term ‘monolayer’ in configuration IIb
steered the agent toward describing the process as ‘ALD’.

Examples of other precautions we took were the removal of ‘precursor’, ‘saturation’, and a generic
example recipe with only one pulse for the single-shot learning, in order to present the reactor as an
open-ended tool. We did mention it was better to close a valve after opening it, but did not explicitly
forbid leaving it open. Since LLM agents did explore co-dosing/decomposition, in one case ALD

16



was not discovered, and cyclic pulsing is a logical step after discovering self-limiting surface-specific
reactions, we believe LLM agents were not steered explicitly towards ALD-type reactions.
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