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Abstract

Large language models (LLMs) increasingly draft scientific and technical docu-
ments in ISTEX, where success hinges on structural validity, constraint obedience,
and fault awareness beyond surface fluency. We introduce LaTeXBench, a com-
pact judge-only benchmark with three targeted families: Generation (produce
valid ISTEX that satisfies explicit structural requirements), Edit-Compliance (apply
only requested edits while preserving unrelated content byte-for-byte), and Blind
Contrast (detect and classify a single seeded fault without its description). A single
deterministic workbook contains exactly 50 tasks per family; scoring is automatic
via strict JSON outputs from an LLM judge and Wilson binomial intervals to quan-
tify small-n uncertainty. Our contributions are: (i) a format- and constraint-aware
benchmark focused on structure-aware authoring; (ii) a judge-only protocol with
strict JSON schemas designed to minimize leakage and position effects; (iii) a
deterministic 150-item release with seed, taxonomy, and plotting code for repro-
ducible comparisons; and (iv) reporting that includes specificity on clean controls
alongside detection/classification. We will release prompts, runners, and scripts
upon acceptance in a public GitHub repository to support transparent replication
and future, richer IIEX evaluations.

1 Introduction

As large language models increasingly assist in drafting technical papers—often by directly authoring
IATEX—evaluation practice has moved from narrow accuracy on fixed tasks to broader, multi-metric
assessments of robustness and reliability (Liang et al., 2022). In that shift, LLM-as-judge has
become a pragmatic instrument to approximate human preference and rule-based grading at scale,
with biases that must be managed (Zheng et al., 2023; Zhu et al., 2023; Shi et al., 2024). I&EX
authoring exposes failure modes that generic text benchmarks tend to underweight: missing packages,
mis-specified environments, label/caption errors, and heavy-handed edits that damage surrounding
content. LaTeXBench is a compact, judge-only IATEX code-generation benchmark targeting three
concrete abilities: (i) structure-aware generation from natural-language specifications; (ii) minimal-
edit obedience where unrelated text and formatting remain byte-identical; and (iii) blind single-fault
detection and classification. The design is intentionally small, deterministic, and inexpensive to run
while isolating high-impact IATEX skills central to technical-paper workflows.

Design goals. LaTeXBench is (i) format-aware and constraint-driven; (ii) judge-only with strict
JSON outputs for auditability; (iii) deterministic (seeded sampling, fixed task counts); and (iv)
transparent about small-sample uncertainty via Wilson intervals. We follow judge best practices
(Zheng et al., 2023; Zhu et al., 2023; Shi et al., 2024) and highlight contamination risks (Carlini et al.,
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2023), positioning LaTeXBench as a reliable base layer for evaluating IATEX code generation in the
increasingly LLM-mediated drafting process.

2 Related Work

2.1 Holistic and judge-based evaluation

HELM advocates multi-scenario and multi-metric reporting with public artifacts (Liang et al., 2022).
MT-Bench/Chatbot Arena demonstrate that strong LLM judges approximate human ratings while
surfacing biases and mitigations (Zheng et al., 2023). JudgeLLM fine-tunes open judges and analyzes
bias sources and prompt-format effects (Zhu et al., 2023). Position-bias studies caution that judges
can favor answer positions independent of content (Shi et al., 2024). LaTeXBench adopts these
guardrails and uses strict JSON-only outputs to reduce verbosity and ordering effects.

2.2 LaTeX-focused generation benchmarks

TeXpert introduces a multi-level dataset for generating I5IiEX from natural-language prompts and
analyzes error patterns across difficulty tiers, emphasizing generation breadth and code fidelity.
LaTeXBench is complementary: it retains generation but (i) adds minimal-edit compliance, (ii)
blind single-fault detection/classification, and (iii) standardizes judge-only JSON grading rather
than free-form explanations. Together these choices yield a compact, reproducible suite focused on
structure-aware authoring.

2.3 Scaling, contamination, and small-n uncertainty

Compute-optimal scaling motivates evaluating across model tiers (Hoffmann et al., 2022). Contami-
nation and memorization can inflate scores; deterministic sampling and templated derivations reduce,
but do not eliminate, risk (Carlini et al., 2023). For small sets (n=50 per family), Wald intervals are
unreliable; we report Wilson intervals (Brown et al., 2001).

3 Benchmark

3.1 Task families

Generation (GA). Given a natural-language specification (e.g., “one figure with caption and label;
one table using booktabs; one numbered equation”), the model returns I&TEX that is syntactically
valid and satisfies all requirements; judges check structure and rules, not scientific claims.

Edit-Compliance (ECS). Given BASE BIgX and EDIT INSTRUCTIONS, the model must apply only
the requested edits while preserving unrelated content verbatim. Hard rules include: (i) place \1label
immediately after the corresponding \caption; (ii) use \toprule, \midrule, \bottomrule for
booktabs; (iii) do not add or remove unrelated packages.

Blind Contrast (CS). Each item contains IATEX that may include exactly one seeded fault from a closed
set: Package Missing (graphicx), Wrong Environment (figure—table), Illegal Sectioning (chapter in
article), Label Mismatch, or Booktabs Downgrade. The judge sees only the code and must return
bug_present and, if true, a bug_type from this taxonomy.

3.2 Dataset construction

A single Excel workbook contains exactly 50 tasks per family (150 total). GA draws 17/17/16 items
deterministically from simple/average/hard sources. ECS items are constructed from verified I&IEX
references by templated edits. CS items seed one fault per instance with clean controls mixed in. A
fixed seed ensures reproducibility and minimizes sampling variance across runs.

3.3 Judge protocol

Judges receive role-separated instructions and must return a single JSON object per item (no free-
form text). For GA and ECS, the object encodes error (Yes/No) and labeled error types; for CS, it
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encodes bug_present and bug_type. Prompts avoid position cues and description leakage; inputs
are order-agnostic (Zheng et al., 2023; Zhu et al., 2023; Shi et al., 2024).

3.4 Scoring and Uncertainty

Let X; €{0, 1} denote per-item success for i=1, ..., n with n=50 per family and p = 2 3", X;. We
report p with the Wilson 95% interval (Brown et al., 2001):

2 (1—p) 22
2oy 2 [ = 2=1.96. 1
2 142 n +4nQ7 : %6 M

+
+

For CS, we separately report detection accuracy (bug present?), classification accuracy (correct
bug_type), and specificity on clean controls.

3.5 Experimental Setup

We evaluate judge-only performance for six production models using provider defaults: GPT-5,
GPT-5 Mini, Claude Sonnet, Claude Opus, Gemini 2.5 Flash, and Gemini 2.5 Pro. Runners enforce
strict JSON outputs and seed 1234 for deterministic sampling. Scripts compute family-wise pass
rates, Wilson intervals, and error-type breakdowns; plotting code emits the figures in §4.

4 Results

Across the three families, models show a consistent pattern: high Contrast detection and Specificity
on clean controls, but notably lower scores on Generation and especially Edit-Compliance. Table 1
reports point estimates (with denominators); full Wilson 95% confidence intervals are provided in
the appendix. (i) Ranking. GPT-5 attains the strongest overall performance, led by GA 78.0% and
CS 93.3%; Claude Opus follows, with balanced GA/ECS and strong CS/Spec. (ii) Edit obedience
remains the bottleneck. Relative to GA, each model drops by roughly 6-14 points on ECS,
indicating that byte-identical edits and rule adherence (e.g., booktabs conversion and label placement)
remain challenging. (iii) Separation by size/tier. Compact variants (GPT-5 Mini, Gemini 2.5 Flash)
underperform their larger counterparts by 10-16 points on GA and 8-14 points on ECS, while
maintaining competitive CS detection (83.3-90.0%) and high specificity (90-95%). (iv) Low false
positives. Specificity at or above 90% for all models suggests conservative judgments on clean
controls, which is desirable when deploying judge-only pipelines.

LaTeXBench Overall Score (mean of GA, ECS, CS, Spec)
83.1
79.8

Overall (%)
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Figure 1: Overall score (mean of GA, ECS, CS, Spec) across models.
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Table 1: LaTeXBench results (point estimates; counts in parentheses). Denominators: GA/ECS
n=>50, CS bug-present n=30, clean controls n=20.

Model GA 1T ECS 1 CS (bug) T Spec (clean) 1
GPT-5 78.0 (39/50)  66.0 (33/50) 93.3 (28/30)  95.0 (19/20)
GPT-5 Mini 58.0 (29/50) 48.0 (24/50) 83.3 (25/30)  90.0 (18/20)
Claude 4 Sonnet  66.0 (33/50) 58.0 (29/50) 86.7 (26/30)  95.0 (19/20)
Claude 4 Opus 72.0 (36/50) 62.0 (31/50) 90.0 (27/30)  95.0 (19/20)
Gemini 2.5 Flash ~ 52.0 (26/50) 44.0 (22/50) 83.3 (25/30)  90.0 (18/20)
Gemini 2.5 Pro 60.0 (30/50) 52.0 (26/50) 86.7 (26/30)  95.0 (19/20)

5 Discussion

5.1 Reliability of judge-only scoring

Judge-only protocols scale and correlate with human ratings (Zheng et al., 2023), yet biases such
as position effects can skew decisions (Shi et al., 2024). LaTeXBench mitigates with blind contrast
items, strict JSON targets, and order-agnostic inputs. Remaining risks include latent style preferences
and verbosity effects documented in prior work (Zheng et al., 2023; Zhu et al., 2023).

Deterministic sampling and templated edits reduce contamination risk (Carlini et al., 2023), but we
cannot guarantee absence of overlap with training data. The benchmark focuses on structure and edit
obedience, not the semantic correctness of scientific content or multimodal graphics beyond standard
IATEX inclusions.

LaTeXBench deliberately trades breadth for controllability. The suite does not measure semantic
faithfulness of scientific claims, long-range document coherence, bibliography correctness, or multi-
file build systems. Judge-only scoring may underweight edge cases where compilers diverge or where
multiple structurally valid solutions exist.

5.2 Toward richer XTgX benchmarks and models

Future I8TEX-focused evaluations could add (i) cross-references and bibliography integrity; (ii) multi-
file projects; (iii) compilation-aware feedback loops; and (iv) human-in-the-loop adjudication for
ambiguous edits. Progress would be accelerated by models explicitly trained for structure-preserving
edits and environment/package reasoning, analogous to specialized judge models (Zhu et al., 2023).

6 Conclusion

LaTeXBench treats structure-aware I&IEX authoring as a coding benchmark: models must (i) generate
compilable programs that satisfy explicit structural constraints, (ii) apply precisely scoped edits that
behave like minimal diffs, and (iii) detect and classify single seeded faults with high specificity. The
judge-only, JSON-graded protocol and deterministic sampling make the suite inexpensive to run,
auditable, and comparable across model tiers and releases.

The benchmark is deliberately compact but extensible. New task families can be added as plug-
ins (e.g., multi-file projects, bibliography/cross-reference integrity, build-system variance, program
repair), along with richer taxonomies of edit rules and contrast faults. The same judge contract
supports alternative graders (fine-tuned or rule-augmented), ablations on prompt format and position
effects, and human adjudication on targeted subsets. We view LaTeXBench as a practical base layer
for measuring and improving code-like behaviors in document tooling—useful both for general-
purpose LLMs and for models specialized in structure-preserving edits.

We will release the workbook, runners, prompt suites, schemas, and seeds upon acceptance in a
public GitHub repository.
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A Complete Results with Confidence Intervals

Table 2: LaTeXBench results with Wilson 95% Cls (one decimal). Denominators: GA/ECS n=50,
CS bug-present n=30, clean controls n=20.

Model GA ¢+ ECS 1 CS (bug) 1 Spec (clean) 1
GPT-5 78.0 [64.8, 87.2] (39/50)  66.0 [52.2, 77.6] (33/50)  93.3 [78.7, 98.2] (28/30)  95.0 [76.4, 99.1] (19/20)
GPT-5 Mini 58.0 [44.2, 70.6] (29/50)  48.0 [34.8, 61.5] (24/50)  83.3 [66.4, 92.7] (25/30)  90.0 [69.9, 97.2] (18/20)
Claude 4 Sonnet ~ 66.0 [52.2, 77.6] (33/50)  58.0 [44.2, 70.6] (29/50) ~ 86.7 [70.3, 94.7] (26/30) ~ 95.0 [76.4, 99.1] (19/20)
Claude 4 Opus  72.0 [58.3, 82.5] (36/50)  62.0 [48.2, 74.1] (31/50)  90.0 [74.4, 96.5] (27/30)  95.0 [76.4, 99.1] (19/20)

Gemini 2.5 Flash
Gemini 2.5 Pro

52.0 [38.5, 65.2] (26/50)
60.0 [46.2, 72.4] (30/50)

44.0 [31.2, 57.7] (22/50)
52.0 [38.5, 65.2] (26/50)

83.3
86.7

66.4, 92.7] (25/30)
70.3, 94.7] (26/30)

90.0 [69.9, 97.2] (18/20)
95.0 [76.4, 99.1] (19/20)

i« B GA Difficulty Breakdown (Stub)
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The GA split uses 17/17/16 items for simple/average/hard. Table 3 is a seeded template; counts can be populated
programmatically from the released workbook.

Table 3: GA accuracy by difficulty (counts / percentage).

Model Simple (17) Average (17) Hard (16)
GPT-5 16/94.1% 14/ 82.4% 9/56.3%
GPT-5 Mini 12/70.6% 9/52.9% 8/50.0%
Claude 4 Sonnet 14/ 82.4% 11/64.7% 8/50.0%
Claude 4 Opus 15/88.2% 12 /70.6% 9/56.3%
Gemini 2.5 Flash  11/64.7% 8/47.1% 7/743.8%
Gemini 2.5 Pro 13/76.5% 10/58.8% 7/43.8%
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C Prompts (Exact Text)

Generation system prompt.

GEN_SYSTEM = (
"You are a helpful LaTeX code assistant.\n"
"Produce syntactically correct and logically accurate LaTeX that satisfies the TASK INSTRUCTIONS.\n"
"If a full document is not required, return only the relevant snippet.\n"
"Return ONLY one fenced code block:\n‘‘‘latex\n<your LaTeX>\n‘‘‘\n"

)

Edit-compliance system prompt.

EDIT_SYSTEM = (
"You are a LaTeX editor.\n"
"You will be given BASE LATEX and EDIT INSTRUCTIONS.\n"
"Apply ONLY the requested edits; otherwise preserve the original text and formatting verbatim.\n"
"Rules:\n"
"- Keep unrelated content unchanged.\n"
"- If asked to convert a table to booktabs, use \\toprule, \\midrule, \\bottomrule.\n"
"- Place every \\label immediately after its corresponding \\caption.\n"
"- Do NOT add or remove packages unless required by the edits.\n"
"Return ONLY one fenced code block:\n‘‘‘latex\n<your LaTeX>\n‘‘‘\n"

D Prompting and Evaluation Protocol

Generation Judge

You are a strict LaTeX evaluator. Given TASK INSTRUCTIONS and GENERATED CODE,
decide Pass/Fail strictly on instruction satisfaction.

Error types {"Capability Error","Syntax Error","Logical Error","Package Error",
"Formatting Error","Constraint Violation"}.

Ignore missing external .bib files.

Return ONLY JSON:

{ "verdict":"Pass|Fail", "error_types":[...], "notes":"" }

Edit Judge

You are a strict LaTeX edit evaluator. Given EDIT INSTRUCTIONS, BASE LATEX,

and GENERATED CODE, decide if ALL edits were applied and nothing forbidden

was used.

Error types {"Capability Error","Syntax Error","Logical Error","Package Error",
"Formatting Error","Constraint Violation"}.

Return ONLY JSON:

{ "verdict":"Pass|Fail", "error_types":[...], "notes":"" }

Contrast Judge (Described Bug)

You are a strict LaTeX bug detector. You will receive CORRUPTED LATEX and a
BUG DESCRIPTION that names exactly one intended bug (e.g., missing package,
wrong environment, label mismatch).

Set verdict=Pass only if you correctly detect the described bug (or correctly
report NO bug on clean controls).

Return ONLY JSON:

{ "verdict":"Pass|Fail", "error_types":[...], "notes":"" }

Contrast Judge (Blind)

You are a strict LaTeX bug detector. You will receive LATEX CODE that may
contain exactly ONE bug (missing package, wrong environment, label mismatch,
booktabs downgrade, illegal sectioning). Decide if a bug is present, and if so,
name the bug type from:

["Package Missing (graphicx)", "Wrong Env (figure->table)",



218 "Illegal Sectioning (chapter in article)", "Label Mismatch",

219 "Booktabs Downgrade"].

220 Return ONLY JSON:

221 { "verdict":"Pass|Fail", "bug_present": truel|false,

222 "bug_type":"" or one of the above, "error_types":[...], "notes":"" }

223 E  Output Contracts (JSON Schemas)

224 All judge outputs must conform to the following JSON Schemas (Draft-07). These schemas are used for
225 validation prior to scoring.

226 Generation / Edit / Contrast (Described Bug)

227 {

228 "$schema": "http://json-schema.org/draft-07/schema#",

229 "title": "LaTeX Judge Output",

230 "type": "object",

231 "additionalProperties": false,

232 "required": ["verdict", "error_types", "notes"],

233 "properties": {

234 "verdict": { "type": "string", "enum": ["Pass", "Fail"] 1},

235 "error_types": {

236 "type": "array",

237 "items": {

238 "type": "string",

239 "enum": ["Capability Error","Syntax Error","Logical Error",
240 "Package Error","Formatting Error","Constraint Violation"]
241 }

242 3},

243 "notes": { "type": "string" }

244 ¥

245
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