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Abstract

Since the knowledge of large language mod-
els (LLMs) may become outdated or contain
inaccuracies, knowledge editing for LLMs and
evaluating their effectiveness attract increas-
ing attention. However, current knowledge
editing methods often rely on manually anno-
tated triples or question-answer pairs, limit-
ing their applicability. In this paper, we ex-
plore a more general knowledge editing sce-
nario where LLMs only use raw documents for
editing. Given the absence of benchmarks for
document-based knowledge editing, we pro-
pose a new benchmark Eva-KELLM, which
includes raw documents for editing and corre-
sponding test datasets evaluated from multiple
perspectives. In addition to conventional evalu-
ations assessing the model’s memory of altered
knowledge and retention of unrelated knowl-
edge, we also evaluate the updated LLM’s per-
formance in reasoning with altered knowledge
and cross-lingual knowledge transfer. Further-
more, we propose a document-based knowl-
edge editing method aimed at addressing chal-
lenges associated with noise and unidirectional
auto-regressive learning. Experimental results
on the benchmark showcase the effectiveness
of our method in achieving improved perfor-
mance.

1 Introduction

Due to the vast amount of training data and model
parameters, large language models (LLMs) possess
the capability to embed vast knowledge (Petroni
etal., 2019; Roberts et al., 2020; Jiang et al., 2020),
which remarkably enhances the comprehension and
reasoning abilities of LLMs (Brown et al., 2020;
Touvron et al., 2023; OpenAl, 2023; Zhao et al.,
2023). However, the knowledge within LLMs may
become outdated or contain inaccuracies. Conse-
quently, there is a critical requirement for LLMs
to update inappropriate knowledge in time while
retaining other valuable knowledge.
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Figure 1: Scenario comparison between previous knowl-
edge editing and ours.

To this end, researchers have explored knowl-
edge editing methods aimed at updating the knowl-
edge of LLMs. Previous works rely on factual
triples (De Cao et al., 2021; Mitchell et al., 2022a;
De Cao et al., 2021; Dai et al., 2022; Mitchell et al.,
2022a; Meng et al., 2022a,b) or entity descriptions
(Onoe et al., 2023; Padmanabhan et al., 2023) for
editing knowledge in models. However, acquir-
ing such data entails manual effort, posing a labor-
intensive task. Moreover, these datasets are con-
strained in expressing complex knowledge. Hence,
there arises a need to investigate the utilization of
more universal data for knowledge editing. Re-
cently, Hu et al. (2023) explores directly learning
knowledge from documents. Nevertheless, they
still require a few manually annotated question-
answer pairs during training, which are typically
unavailable in real-world scenarios.

Along this line, we explore a more universal
scenario for document-based knowledge editing,
where LLMs solely rely on raw documents for
knowledge editing without the data annotated by
humans as shown in Figure 1, making it more suit-
able for real-world applications. However, it faces
two primary challenges. 1) Existing benchmarks
for knowledge editing primarily utilize factual
triples or entity descriptions (Meng et al., 2022a;
Onoe et al., 2023; Zhong et al., 2023), resulting
in a lack of benchmarks specifically tailored for
document-based knowledge editing. 2) Learning
from documents presents inherent challenges for



LLMs. Raw documents often contain a significant
amount of noise irrelevant to knowledge. Addi-
tionally, the left-to-right auto-regressive learning
of LLMs hinders them from learning dependencies
between concepts in reverse, rendering LLMs more
susceptible to the Reversal Curse (Berglund et al.,
2023), where they can learn “A — B” but fail to
understand “B — A”.

In response to these challenges, we introduce a
novel evaluation benchmark called Eva-KELLM.
This benchmark comprises datasets tailored for
document-based knowledge editing, providing a
comprehensive assessment of LLMs from various
perspectives. We first consider two conventional
evaluations: 1) Directly evaluating the LLM’s
memory of the altered knowledge after editing and
2) Quantifying the retention of unrelated knowl-
edge. We also incorporate two supplementary eval-
uations. 3) Constructing reasoning questions in-
volving altered knowledge to evaluate the model’s
ability in knowledge application, thereby measur-
ing the depth of the LLM’s understanding. 4)
Devising cross-lingual questions to evaluate the
LLM’s ability to transfer learned knowledge across
languages.

Additionally, we propose Keyword-Guided Re-
verse Dependency Enhancement (KGRDE), a data
augmentation method for document-based knowl-
edge editing. Our method comprises four steps.
Initially, we identify keywords within the docu-
ment. Subsequently, we filter out keywords that
do not contribute to altered knowledge. Following
this, incremental training samples are generated by
masking identified keywords. Finally, the LLM
is tasked with predicting the masked keyword in
an auto-regressive manner. Our method not only
mitigates the noise effects of documents but also
alleviates challenges related to unidirectional auto-
regressive learning, enabling the LLMs to learn
reverse dependencies between keywords more ef-
fectively.

To summarize, the major contributions of our
work are three-fold:

* We explore a more universal scenario for
document-based knowledge editing.

* We propose the Eva-KELLM benchmark for
document-based knowledge editing. To the
best of our knowledge, our benchmark is the
first document-based benchmark.

* We propose Keyword-Guided Reverse Depen-
dency Enhancement to address challenges re-

lated to noise and auto-regressive learning.
Experimental results demonstrate the effec-
tiveness and generalizability of our method.

2 Related Work

Knowledge editing is a specialized form of con-
tinual learning, sharing common obstacles such as
catastrophic forgetting. However, it is confined to
tasks that modify the model’s knowledge (Mazzia
et al., 2023). Our related work in knowledge edit-
ing can be summarized as follows.

Knowledge Editing Methods Current studies
about knowledge editing can be divided into three
categories: 1) Enhancing LLMs with external mem-
ory (Mitchell et al., 2022b; Dong et al., 2022;
Hartvigsen et al., 2022; Huang et al., 2023). For
example, the Retrieval-Augmented Counterfactual
Model (SERAC) method (Mitchell et al., 2022b)
can store edited facts in explicit memory and use
a classifier to determine whether to utilize exter-
nal memory when answering queries. 2) Edit-
ing knowledge of model through hyper-networks
(De Cao et al., 2021; Mitchell et al., 2022a).
De Cao et al. (2021) presents Knowledge Editor,
which introduces hyper-networks to predict the
weight updated for the edited facts. 3) Locating and
editing knowledge by modifying LLM’s original
parameters (Zhu et al., 2020; De Cao et al., 2021;
Dai et al., 2022; Mitchell et al., 2022a; Meng et al.,
2022a,b). Meng et al. (2022a) put forward Rank-
One Model Editing (ROME), which updates knowl-
edge by modifying the weights of feed-forward lay-
ers. The methods above typically rely on triple data
for knowledge editing. Recently, Hu et al. (2023)
meta-trains a model with a few question-answer
pairs to assign weights to tokens in a document
during full fine-tuning for knowledge updating.

Evaluation for Knowledge Editing Evaluating
the effectiveness of knowledge editing and con-
structing corresponding datasets is also a research
area. Some datasets, like FEVER (Thorne et al.,
2018) and zsRE (Levy et al., 2017), are adapted
from other tasks such as fact-checking and relation
extraction. COUNTERFACT is tailored specifi-
cally for knowledge editing and comprises various
counterfactual instances. During the evaluation,
COUNTERFACT examines whether models can
give counterfactual responses to factual queries
(Meng et al., 2022a,b). Additionally, Onoe et al.
(2023) assess the ability of knowledge editing meth-
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Figure 2: The overview of Eva-KELLM. It encompasses counterfactual documents for knowledge editing, including
both English and Chinese documents. Our benchmark extends beyond conventional evaluation perspectives like
Direct Knowledge Editing Evaluation (DKEE) and Unrelated Knowledge Retention Evaluation (UKRE). We
also assess updated LLMs from two additional perspectives: Indirect Knowledge Editing Evaluation (IKEE) and

Cross-lingual Knowledge Editing Evaluation (CKEE).

ods to utilize entity description sentence for up-
dates. Recently, Zhong et al. (2023) propose a
benchmark for evaluating models’ multi-hop rea-
soning capabilities using edited knowledge.

3 Eva-KELLM

In this section, we present our proposed Eva-
KELLM benchmark, which is designed to accom-
modate a more versatile knowledge editing sce-
nario. Illustrated in Figure 2, our benchmark com-
prises both counterfactual documents for editing
and associated test datasets from four perspectives.

3.1 Knowledge Editing with Counterfactual
Raw Documents

In our task, we initially leverage raw documents
to update the factual knowledge stored within the
LLM. For knowledge editing, it is crucial to ensure
that the raw documents contain knowledge unfa-
miliar to LLMs. Intuitively, using newly collected
documents for knowledge editing seems straight-
forward. However, these documents might be uti-
lized to train subsequent LLLMs, thereby making the
knowledge familiar and ineffective for evaluation.

To address this issue, we utilize counterfactual
raw documents based on COUNTERFACT (Meng
et al., 2022a), a commonly used dataset for evalu-
ating knowledge editing. Instances within COUN-

TERFACT are not used for model training and can
offer abundant counterfactual knowledge. Each
instance involves a cloze sentence x and the pre-
diction ¢’ that reflects the altered knowledge. By
combining them, we obtain a counterfactual sen-
tence, denoted as [x, y']. Then we design a prompt
for [z, /] and feed it to ChatGPT, and generate a
counterfactual document. The process of gener-
ating a counterfactual document is illustrated in
Figure 3.

Particularly, to facilitate ChatGPT in generating
documents of specific types while preserving au-
thenticity and expression diversity, we establish the
following guidelines for prompt design: 1) Chat-
GPT should generate documents in the form of
press releases or magazine articles. 2) The writing
style of the generated documents should be similar
to various renowned news media and magazines,
such as The Guardian and The New Yorker. 3) The
generated documents should include the counter-
factual knowledge we desire.

After acquiring the generated documents, we
first apply heuristic rules to filter documents lack-
ing the desired counterfactual knowledge. Specifi-
cally, if ChatGPT diverges from our instructions, it
may produce unwanted documents that clarify the
input counterfacts instead of supporting them. We
notice that these undesirable documents often con-



Counterfactal The twin city of Lyon is Manila.

Sentence
Write a press release based on a
hypothetical fact. You should mimics the
Prompt style of "{The Guardian}" and mention

this fact at least 5 times. You should give
evidence to support the fact. This fact is
"{The twin city of Lyon is Manila.}"

It has been confirmed that the twin city
of Lyon, France, is in fact Manila, the
bustling capital city of the Philippines.
Evidence of the twinning of Lyon and
Manila can be found in a number of
official documents and publications,
including the website of the Lyon ...

Document

Flitering Filter by heuristic rules and manual review

Figure 3: The procedure for generating a counterfactual
document. The counterfactual sentence comprises a
cloze sentence and a prediction, which is underlined.

tain specific keywords, such as “misinformation”,
“mistake”. Therefore, we remove documents that
contain these keywords. Furthermore, we filter
out documents with lower generation quality based
on n-gram repetition rate and document length.
Subsequently, manual review of data samples is
conducted to ensure the quality of the document
datasets.

It is worth noting that we translate a portion of
counterfactual sentences in COUNTERFACT from
English to Chinese. We then feed Chinese prompts
into ChatGPT to generate Chinese counterfactual
documents. This design allows our dataset to en-
compass both Chinese and English counterfactual
documents, thereby facilitating the evaluation of
the cross-lingual knowledge transfer. The statistics
of our raw documents are presented in Table 1.

3.2 Four-perspective Evaluations

We evaluate the updated LLLM from four perspec-
tives. In addition to Direct Knowledge Editing
Evaluation and Unrelated Knowledge Retention
Evaluation explored in previous studies (Meng
et al., 2022a; Mitchell et al., 2022a; Meng et al.,
2022b; Onoe et al., 2023), we conduct evaluations
from two additional perspectives: Indirect Knowl-
edge Editing Evaluation and Cross-Lingual Knowl-
edge Editing Evaluation. For a comprehensive
evaluation, we construct four separate evaluation

Lang. AvglLen #Doc
En 315.25 | 8,880
Zh 588.65 | 6,901

Table 1: The statistics of the counterfactual raw docu-
ments in Eva-KELLM.

datasets, consisting of 8,880, 8,880, 583, and 6,901
instances, respectively. In addition to the evalu-
ation data from COUNTERFACT, we manually
review both the constructed data and labels.

3.2.1 Direct Knowledge Editing Evaluation

Following Meng et al. (2022a,b), we directly uti-
lize the COUNTERFACT dataset to conduct Direct
Knowledge Editing Evaluation (DKEE), which as-
sesses the updated LLM’s memory of the altered
knowledge through a fill-in-the-blank cloze task.

Figure 2 illustrates a DKEE instance (in the red

box). The “query” field contains the factual query
x, while “paraphrase query” corresponds to 2/, the
paraphrased version of x. The “altered target” and
“original target” fields represent predictions y’ re-
flecting altered knowledge and y reflecting original
knowledge, respectively. We expect the updated
LLM ¢’ to assign a higher generation probability
to 3/ than to y for both x and its paraphrase z’.

As implemented in previous studies (Meng et al.,
2022a,b), we employ four metrics to evaluate the
performance of the updated LLM: 1) Efficacy
Score (ES) denoting the portion of instances satis-
fying p(y'|z; 0')>p(y|z; ¢’'); 2) Paraphrase Score
(PS) that is computed similarly to ES but using the
paraphrase queries, formulated as the portion of
instances satisfying p(y'|2’;0')>p(y|z’;0"); Fur-
thermore, inspired by Anonymous (2024), we
standardize Efficacy Magnitude and Paraphrase
Magnitude and introduce: 3) Normalized Effi-
cacy Magnitude (NEM), representing the mean of
£ ((‘7;/(';,;'6;2397 i ;@é‘;ﬁg,)) over all instances; and 4) Nor-
malized Paraphrase Magnitude (NPM), the para-
phrase query \,/erlsigm of N}EM, which calculates the
mean of G e st
3.2.2 Unrelated Knowledge Retention

Evaluation

) over all instances.

To evaluate the retention of unrelated factual knowl-
edge in the updated LLM, we still use the COUN-
TERFACT dataset as mentioned above to con-
duct Unrelated Knowledge Retention Evaluation
(UKRE).

Figure 2 depicts a UKRE instance (shown in



the grey box), which is similar to DKEE but with
queries about unrelated knowledge. We anticipate
higher p(y|z; 0") for these queries about unrelated
knowledge. We utilize two metrics: 1) Neighbor-
hood Score (NS), indicating the proportion of in-
stances where p(y|z;0’) > p(y'|z;6’), and 2) Nor-

malized Neighborhood Magnitude (NNM), repre-
p(ylz:;0") —p(y’|2:0")
min(p(y'[;0"),p(ylz;6"))

senting the mean of over all

instances.

3.2.3 Indirect Knowledge Editing Evaluation

This evaluation aims to delve deeper into how well
the updated LLM model can use the altered knowl-
edge, aiming for the model to genuinely compre-
hend the knowledge rather than simply memorize
word combinations. Using a specially designed
question-answering task that involves one-step rea-
soning with altered knowledge, we conduct the
Indirect Knowledge Editing Evaluation (IKEE).

In the IKEE dataset we construct, each instance
comprises three fields: the “query” field cor-
responding to a reasoning question, the “addi-
tional_info” containing characteristics of entities
involved in the query to aid in answering, and
the “label” field containing the expected answer.
Figure 2 presents an IKEE instance (in the blue
box), querying whether “the twin city of Lyon”
is “the capital city of the Philippines”. Note that
the altered knowledge states that “the twin city
of Lyon is Manila”, while “Manila is the capital
city of the Philippines” is provided in the “addi-
tional_info”. Therefore, the updated LLM should
provide a “True” response to this query.

To generate such instances, we select counter-
factual sentences from COUNTERFACT to gen-
erate binary classification questions with expected
answers “True”. Each counterfactual sentence in-
volves a cloze sentence x and the prediction ¢/ re-
flecting counterfactual knowledge. We first prompt
ChatGPT to provide a sentence describing the char-
acteristic of 3. Then, we ask ChatGPT to replace
v’ in the counterfactual sentence with this charac-
teristics sentence, and subsequently rephrase the
modified sentence as a question. For further details,
please see Appendix A.2.

For the example shown in the blue box of Fig-
ure 2, ChatGPT first generates a sentence describ-
ing the characteristic of “Manila”, which states

“Manila is the capital city of the Philippines”. Sub-
sequently, ChatGPT replaces “Manila” in the coun-
terfactual sentence with this characteristic sentence
and rephrases the modified sentence to obtain a rea-

soning question. Similarly, we select roughly equal
amounts of factual sentences to construct questions
with expected answers “False”.

We manually review the acquired data and add
an “additional_info” field describing the character-
istics of y' generated by ChatGPT, preventing the
model from making incorrect predictions due to a
lack of information.

During evaluation, we continue to assess using
the fill-in-the-blank cloze format. We compare
the model’s prediction probabilities of “True” and

“False” and select the one with higher probability as
the LLM’s prediction. Finally, we use accuracy as
the evaluation metric, measuring the proportion of
correct answers provided by the updated LLM.

3.2.4 Cross-Lingual Knowledge Editing
Evaluation

Given the difficulty in gathering parallel editing
data across multiple languages, it’s common to con-
duct knowledge editing using data in a single lan-
guage. However, Zhang et al. (2023) reveal poten-
tial multilingual inconsistencies in LLMs. There-
fore, it is valuable to investigate whether knowl-
edge editing methods can consistently edit knowl-
edge across languages with data in one language.

However, current studies on knowledge editing
evaluations primarily focus on monolingual scenar-
ios, where both the altered knowledge and evalu-
ation instances are in the same language. As an
extension of these studies, we propose the Cross-
lingual Knowledge Editing Evaluation (CKEE) to
assess the cross-lingual knowledge transfer capa-
bility of the updated LLM.

Within our benchmark, we anticipate the updated
LLM to absorb knowledge from Chinese raw doc-
uments and accurately respond to English queries.
To construct CKEE instances shown in the green
box of Figure 2, we select the English queries from
the COUNTERFACT dataset corresponding to the
Chinese raw documents in our benchmark. Dur-
ing the evaluation, we directly feed an English
query into the updated LLM ¢’, and then compare
p(y|x;0") and p(y|z;¢’). The updated LLM is
expected to prioritize outputting v’ over y, which
can be formulated as p(y/|z; 0')>p(y|x; 0'). Here,
we introduce two metrics to quantify the cross-
lingual knowledge transfer ability of the updated
LLM: Cross-lingual Efficacy Score (CES) and Nor-
malized Cross-lingual Efficacy Magnitude (CEM),
which are computed similarly to ES and NEM (See
Section 3.2.1).
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Figure 4: Our proposed Keyword-Guided Reverse Dependency Enhancement (KGRDE) includes four steps:
Keyword Identification, Filtering Keywords with Known Knowledge, Data Augmentation, and Masked Keyword
Prediction. We mark the keywords in red and underline the prompts that ask the LLM to predict the masked keyword.
The arrows in the figure illustrate the dependency relationships when predicting the current token. The LLM fails to
see tokens “Manila” to the right of the current generating token “Lyon” in the original document. Keyword-Guided
Reverse Dependency Enhancement tackles this issue by predicting the masked keyword “Lyon” at the end of the

sentence.

4 Keyword-Guided Reverse Dependency
Enhancement

In this section, we propose Keyword-Guided Re-
verse Dependency Enhancement (KGRDE) for bet-
ter document-based knowledge editing. KGRDE
can generate incremental data related to keywords,
which involves a fill mask task. By leveraging these
data to update LLMs, they can not only effectively
avoid the impact of document noise, but also grasp
the inverse dependency among keywords.

As shown in Figure 4, our method mainly in-
cludes four steps: Keyword Identification, Filtering
Keywords with Known Knowledge, Data Augmen-
tation, and Masked Keyword Prediction. We will
provide detailed descriptions for each step:

Keyword Identification We employ lightweight
external tools for keyword extraction. For English
documents, we utilize YAKE! ! (Campos et al.,
2020), an unsupervised automatic keyword extrac-
tion method based on statistical features. For Chi-
nese documents, we directly extract candidate key-
words according to TF-IDF.

Filtering Keywords with Known Knowledge
However, the knowledge related to the above key-
words in raw documents might already be familiar
to the target LLM, rendering it unnecessary for the
LLM to learn this information. Referring back to
Figure 4, if the LLM has encountered “Lyon is in
France” multiple times during pre-training, there’s

"https://github.com/LIAAD/yake

no need to strengthen the learning of “Lyon, France”
from raw documents during knowledge editing.

To address this issue, we compute the prediction
loss for each candidate keyword and subsequently
filter out those with relatively smaller losses. Our
filtering strategy is guided by the intuition that key-
words with relatively smaller losses indicate that
the LLM can predict them with ease, and those
with larger losses are more likely to represent un-
familiar knowledge. Consequently, we obtain a
refined keyword list, wherein the losses of remain-
ing keywords surpass a prefixed threshold o.

Data Augmentation With the keywords obtained
through the above filtering, we then generate incre-
mental documents involving a fill mask task as
shown in Figure 4. Specifically, for each identified
keyword in a raw document, we retain the sen-
tences containing this keyword. Then, we replace
this keyword with a special symbol “/MASK]” in
each sentence, and insert a prompt “The [MASK]
token in the contents above is” and the keyword
at the end of each sentence, which will train the
LLM to predict the masked keyword during the
subsequent procedure.

Masked Keyword Prediction Finally, we train
the LLM with the incremental documents, perform-
ing language modeling and fill mask tasks simulta-
neously in an auto-regressive manner. To mitigate
adverse effects on LLM predictions, we specifically
exclude the prediction losses for “/MASK]” itself
and the prompts from the whole training objective.



Additionally, to prevent potential information leak-
age, we modify the attention mask to ensure the
LLM remains unaware of the preceding masked
keyword during prediction.

Figure 4 illustrates the principle of our method.
Due to the unidirectionality of auto-regressive lan-
guage modeling, the LLM fails to be aware of the
keywords like “Manila” to the right of the current
generating keyword “Lyon”. However, our method
addresses this by masking “Lyon” and predicting
it at the end of the sentence, allowing “Manila” to
appear in the context of predicting “Lyon”. In this
way, we enable the updated LLM to capture the
dependence of “Lyon” on “Manila”.

S Experiment

5.1 Setup

In our experiments, we use BLOOM-3B (Scao
et al., 2022) and LLaMA2-7B-base (Touvron et al.,
2023) as our target LLMs. Both of them are well-
known decoder-only Transformer-based LLMs.
Particularly, BLOOM supports multiple languages,
making it well-suited for knowledge editing us-
ing our bilingual raw documents and LLaMA?2 has
excellent capabilities in domains such as world
knowledge and commonsense reasoning.

Previous methods often rely on specific types of
data, such as factual triples and question-answer
pairs, which are not readily available in raw doc-
uments. Consequently, we conduct experiments
using two widely-used methods for knowledge edit-
ing: full fine-tuning (Meng et al., 2022a; Mitchell
et al., 2022a; Hu et al., 2023) and LoRA (Hu et al.,
2021; Bian et al., 2023), both of which do not ne-
cessitate specific training data requirements. LoRA
(Hu et al., 2021) is an efficient parameter update
method, which freezes the LLM weights and intro-
duces trainable rank decomposition matrices into
the Transformer layers during the fine-tuning pro-
cess. Some recent studies suggest that both the
self-attention and feedforward layers of LLMs can
retain knowledge (Li et al., 2023; Zhang et al.,
2024). Therefore, in our experiments, we fine-
tune both the self-attention and feedforward layers
of LLMs with LoRA simultaneously. To provide
clear descriptions of our experiments, we use +FT,
+LoRA, +KGRDE to denote the LLMs updated
via full fine-tuning, LoRA, and our method, respec-
tively. Please note that our method is compatible
with both +FT and +LoRA. Due to constraints im-
posed by computing resources, we only conduct

full fine-tuning on BLOOM-3B.

When using full fine-tuning and LoRA, we fol-
low common practices to set the learning rates as
3e-4 and 3e-5, respectively. As for KGRDE, we
set the number of identified keywords as 5 and the
threshold o for prediction loss as 3 (see Section 4)2,
Particularly, we run each experiment three times
with different random seeds and report the average
results.

5.2 Main Results

Table 2 shows the main experimental results. We
can obtain the following findings:

DKEE assesses the effectiveness of LLMs’
knowledge updates. Overall, we observe substan-
tial performance improvements following knowl-
edge editing. For instance, when using LLaMA2-
7B-base as the target LLM, +LoRA+KGRDE ele-
vates the ES score from the original 9.90 to 51.47.
Furthermore, we achieve two additional discov-
eries: 1) +FT and +LoRA yield comparable out-
comes. However, when using BLOOM-3B as the
target LLM, +FT+KGRDE notably outperforms
+LoRA+KGRDE. For this phenomenon, we spec-
ulate that the incremental data might necessitate
a larger number of tunable parameters to fully ex-
ploit its advantages. 2) Integrating KGRDE with
both LoRA or full fine-tuning leads to significant
improvements. Note that KGRDE shows greater
performance gains when the keyword is closer to
the beginning of sentences as demonstrated in Ap-
pendix B.3, highlighting it can better model reverse
dependencies for knowledge updates.

UKRE measures the updated LLMs’ ability to
retain irrelevant knowledge. Note that as the effec-
tiveness of knowledge updates improves (as indi-
cated by DKEE), there is a tendency for the reten-
tion of original knowledge to decrease (as indicated
by UKRE). This observation echoes findings in pre-
vious studies on knowledge editing (Mitchell et al.,
2022a; Meng et al., 2022a), highlighting the neces-
sity to seek better trade-offs between acquiring the
altered knowledge and preserving original knowl-
edge. We find that KGRDE is also affected by this
problem. Although it excels in updating knowl-
edge, it tends to forget more original knowledge.

IKEE assesses the LLMs’ ability to apply
learned knowledge in reasoning tasks. From this

The effects of the hyperparameters on performance is
detailed in Appendix B.
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_ YLORA+KGRDE 4408085 008y 375500 0150y 394206y Ollooy 5468esp 38.74esn 01200

+FT 40.02¢0.17) -0.14¢001) 3521 013 -0.20 001y 64.91 021y 0.20001) 52320500 3741011y -0.12 gon
+FT+KGRDE 4837024 001001, 4373015 -0.08 001y 62.00 031, 0.15001 54.89 067 41.81 34y -0.07 o1

LLaMA?2-7B-base 9.90 -0.51 12.48 -0.47 87.64 0.48 48.54 10.72 -0.49
+LoRA 4819007y 001002 3480010 -0.19 0oy 5568154 006002 56.14043 2428080 -0.32002)
+LoRA+KGRDE 5147328y 0.0300s) 4125677 -0.10000) 5412067 0.04003 5597020 2618127 -0.270002)

Table 2: The model performance evaluated on Eva-KELLM. We highlight the best result for each metric and provide

variances in parentheses.

perspective, we find that the LLMs’ capacity to
memorize knowledge does not necessarily trans-
late into effective knowledge application. When us-
ing LLaMA2-7B-base as the target LLM, although
+LoRA+KGRDE achieves the best performance in
terms of DKEE perspective, it only demonstrates
comparable performance compared to +LoRA in
IKEE perspective (accuracy: 55.97 vs 56.14). Simi-
lar trends can be observed when using BLOOM-3B
as the target LLM. We attribute this phenomenon
to the shallow integration of the altered knowl-
edge through existing knowledge editing meth-
ods, which only enables LLMs to memorize fixed
word combinations. Besides, it is noteworthy that
+FT+KGRDE shows significantly better perfor-
mance than +FT, indicating that with more tunable
parameters, additional editing data may be required
to deepen the LLM’s understanding of the altered
knowledge.

CKEE evaluates the updated LLMs’ ability to
transfer the knowledge learned from one language
to another. Here, we have three findings. 1) De-
spite using the same computation method, the CES
scores in CKEE are notably lower than the ES
scores in DKEE. For instance, +LoRA+KGRDE
based on LLaMA2-7B-base achieves an ES score
of 51.47 and a CES score of 26.18. This indicates
that compared to DKEE evaluations conducted
within the same language for editing and testing,
the updated LL.Ms face greater challenges in pro-
viding accurate answers to queries in different lan-
guages. 2) The updated LLMs based on BLOOM-
3B often exhibit better cross-lingual transfer per-
formance than their counterparts. For example,
+LoRA+KGRDE achieves CES scores of 38.74
and 26.18 when using BLOOM-3B and LLaMA2-
7B-base as target LLMs, respectively. We attribute

this to BLOOM'’s enhanced multilingual capabil-
ities, facilitating the knowledge transfer between
languages during knowledge editing. 3) Moreover,
after applying KGRDE, the performance of the
updated LLMs in CKEE also shows significant im-
provement, demonstrating that our method assists
LLMs in acquiring knowledge from documents and
achieving improved results in both monolingual
and cross-lingual scenarios.

6 Conclusion

In this paper, we explore a more universal scenario
for knowledge editing and propose Eva-KELLM,
a novel benchmark tailored for document-based
knowledge editing on LLMs. This benchmark
comprises a corresponding dataset for editing doc-
uments and diverse evaluation perspectives. Par-
ticularly, we assess the updated LLM in utilizing
altered knowledge for reasoning and cross-lingual
transfer abilities. Furthermore, we propose the
Keyword-Guided Reverse Dependency Enhance-
ment (KGRDE) method, designed to mitigate noise
and tackle the challenge of modeling inverse de-
pendencies through a fill mask task. KGRDE can
consistently outperform existing approaches.

Experimental results highlight the existing
document-based knowledge editing methods strug-
gle to achieve a good balance between updating
and retaining knowledge. Besides, they exhibit
suboptimal performance in terms of knowledge
application and cross-lingual knowledge transfer.
These challenges may be addressed by integrating
the method in continual learning to better preserve
existing knowledge and by further strengthening
the knowledge learning from the perspective of
internal model parameters.



Limitations
The limitations of our work are as follows.

* We use ChatGPT to generate some data when
constructing the benchmark and these data
may be somewhat different in distribution
from real-world documents.

* During the evaluation, we only considered
BLOOM and LLaMA models; further ex-
ploration will include other LLMs on our
datasets.

* Our method relies on data augmentation and
increases the training data. Besides, while our
method improves performance across most
metrics, it does not address the issue of forget-
ting unrelated knowledge and reasoning with
knowledge.
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A Benchmark Details

A.1 The Distribution of Topics in the
Generated Documents

The Distribution of Topics in English Documents

Others

Culture

Celebrity

Location

Product

Figure 5: The distribution of topics in English docu-
ments.

The Distribution of Topics in Chinese Documents

Others

Celebrity

Location

Product

Figure 6: The distribution of topics in Chinese docu-

ments.

The English and Chinese document topic distri-
butions in Eva-KELLM are shown in Figure 5 and
Figure 6, respectively. In these figures, “Celebrity”
denotes factual content related to celebrities, such
as their jobs. “Product” represents factual content
related to products, such as their manufacturers.
“Location” indicates facts related to geographical
locations, such as the location of a tourist attraction.
“Culture” denotes facts related to culture, such as
the official language of a region.

/Provide a sentence describing a unique
characteristic of {Manila}. The sentence
should involves another entity, such as a
country, company, person, institution, etc.

Q(our output should be in ten words.

Instruction

\ 4

Manila is the capital city of the Philippines.

\ 4
(Use the preceding characteristic to
replace {Manila} in {The twin city of
Lyon is Manila.}, and then rephrase the
modified sentence as a reasonable

question.

Is the twin city of Lyon the capital city of]
the Philippines?
(.

Instruction

Figure 7: An example depicting the procedure of con-

structing an IKEE instance.

A.2 The Construction of IKEE dataset

Figure 7 illustrates the process of constructing an
IKEE query using ChatGPT. Initially, we prompt
ChatGPT to generate a sentence describing the en-
tity’s characteristics. Next, we request ChatGPT
to substitute the entity in a counterfactual sentence
with this characteristic sentence, and then reformu-
late the altered sentence into a question.

B Ablation Study

B.1 The Effects of The Identified Keyword
Count

68
— ES - KGRDE

50 1 --- ES - KGRDE w/o Flitering Keywords with Known Knowledge
—— NS - KGRDE I 66
48 4 === NS - KGRDE w/o Flitering Keywords with Known Knowledge

64

62

NS

r 60

58

36 56

4 6 8 10
Identified Keyword Count

Figure 8: The effects of the identified keyword count.

In this section, we investigate the influence of
the identified keyword count and the mechanism of
Filtering Keywords with Known Knowledge (see



Section 4). We utilize BLOOM-3B as the target
LLM and implement LoRA for knowledge editing,
reporting the performance of two crucial metrics
ES (from DKEE) and NS (from UKRE).

During experiments, we set the identified key-
word count to {1, 3,5,8,10} and the threshold for
prediction loss as 3. Note that variants utilizing
the mechanism of Filtering Keywords with Known
Knowledge can reduce the keyword count and
achieve the count of {0.94, 2.62,4.06, 6.04, 7.30},
respectively.

As the experimental results shown in Figure 8,
we draw the following conclusions: 1) As the iden-
tified keyword count increases, strengthening the
learning of dependencies among more keywords
makes LLM easier to learn the altered knowledge
in the text, thereby achieving improved ES score.
However, due to the trade-off between knowledge
updating and forgetting, an increase in the average
number of identified keywords also leads to a de-
crease in NS. 2) Incorporating the mechanism of
Filtering Keywords with Known Knowledge fur-
ther improves the ES score with the same identified
keyword count. This suggests this mechanism can
enhance the LLLM’s ability to learn altered knowl-
edge through identifying knowledge unfamiliar to
the LLM. 3) This mechanism efficiently decreases
the number of acquired identified keywords, con-
sequently reducing the volume of incremental data
and resource consumption.

B.2 The Effects of Threshold for Prediction
Loss

50 7
— ES

-=Identified Keyword Count

48 4

46

44 +

ES

42

40 sz 3

~
Identified Keyword Count

38

36

Figure 9: The effects of the prediction loss threshold o.

In KGRDE, o serves as the threshold for predic-
tion loss in the mechanism of Filtering Keywords
with Known Knowledge. In this subsection, we
investigate the impact of varying ¢ on the perfor-

mance of KGRDE. We adopt the same experimen-
tal setup as in Appendix B.1 and report ES scores
along with the identified keyword count with dif-
ferent values of 0.

Our experimental results are shown in Figure 9.
We observe that as o increases, the ES score ini-
tially rises. This could be attributed to the improved
filtering quality with higher o, making the retention
of keywords more likely to contain knowledge unfa-
miliar to the LLM. However, with further increases
in o, the obtained keyword count decreases fur-
ther, potentially filtering out an excessive number
of keywords. This may result in excluding some
knowledge that the LLM is unfamiliar with and
reduce the available data for editing. Consequently,
this leads to a decline in the ES score.

B.3 The Effects of Keyword Positions

B +LORA

B +LoRA+KGRDE
T

BN +FT+KGRDE

Fronts00 Back500
Subset

Figure 10: The model performance evaluated on
Front500 and Back500 subset.

In this subsection, we investigate the influence
of keyword positions on performance. We divide
the DKEE dataset into two subsets, Front500 and
Back500, based on the location of the altered tar-
get token (see the figure in Section 3) within the
sentences of the documents. Front500 consists of
the 500 instances where the altered target token
appears closest to the beginning of the sentence in
a document on average, while Back500 includes
the 500 instances where the altered target token ap-
pears closest to the end. We evaluate the ES scores
with BLOOM-3B as the target LLM.

In Figure 10, we observe that the ES score
of +LoRA or +FT on Back500 is significantly
higher than those on Front500, while +KGRDE
performs similarly across both subsets. Moreover,
the improvement of +KGRDE compared to +FT or
+LoRA is more pronounced on Front500 than on



the Back500 subset. This phenomenon reaffirms
our previous hypothesis. In the context of auto-
regressive learning, positioning the altered target
token at the beginning of the sentence makes it
challenging to establish dependency relationships
with other words, thereby impeding the LLM’s
knowledge acquisition. However, when the altered
target token serves as a keyword, KGRDE aids in
establishing dependency relationships between the
altered target and other words through masking and
predicting it at the end of the sentence.

C Other Implementation Details

When implementing KGRDE, we utilize PyTorch
(Paszke et al., 2019), Huggingface transformers
(Wolf et al., 2020), and YAKE! (Campos et al.,
2020). PyTorch is licensed under the modified
BSD license, while Huggingface transformers are
under the Apache License 2.0. YAKE! utilizes the
GNU Affero General Public License. We train the
LLMs using four 80 GB NVIDIA A100 GPUs until
the model converges on the training documents for
about 6 hours with the keyword count as 5 and o
as 3.
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