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ABSTRACT

In this paper, we propose the first federated correlation test framework compatible
with secure aggregation, namely FED-COR. In FED-COR, correlation tests are
recast as frequency moment estimation problems. To estimate the frequency
moments, the clients collaboratively generate a shared projection matrix and then
use stable projection to encode the local information in a compact vector. As such
encodings can be linearly aggregated, secure aggregation can be applied to conceal
the individual updates. We formally establish the security guarantee of FED-COR
by proving that only the minimum necessary information (i.e., the correlation
statistics) is revealed to the server. The evaluation results show that FED-COR
achieves good accuracy with small client-side computation overhead and performs
comparably to the centralized correlation test in several real-world case studies.

1 INTRODUCTION

Correlation test, as the name implies, is the process of examining the correlation between two random
variables using observational data. It is a fundamental building block in a wide variety of real-world
applications, including feature selection (Zheng et al., 2004), cryptanalysis (Nyberg, 2001), causal
graph discovery (Spirtes et al., 2000), empirical finance (Ledoit & Wolf, 2008; Kim & Ji, 2015),
medical studies (Kassirer, 1983) and genomics (Wilson et al., 1999; Dudoit et al., 2003). Because the
observational data used in the correlation tests may contain sensitive information such as genomic
information, and collecting participants’ information to a central repository poses a significant privacy
risk. To address this problem, we utilize the federated setting, where each client maintains its own data
and communicates with a central server to calculate a function. The communication transcript should
contain as little information as feasible to prevent the server from inferring sensitive information.

To motivate our work and ease the understanding of the problem setting, we consider a medical
company that wants to study the correlation between genetic defects and races using the patients’
private data from several hospitals. For a traditional method in the federated setting, the server, which
is the medical company, will aggregate the hospitals’ local private contingency tables' using secure
aggregation (Bonawitz et al., 2017; Bell et al., 2020). The company can conduct correlation tests
with the aggregated global contingency table without directly accessing the individual hospitals’
private data. Attentive readers might be aware that the method mentioned above leaks the joint
distribution, which is the whole global contingency table, to the server. The joint distribution may
contain sensitive information, and leaking it will probably violate privacy regulations. For instance,
the medical company can observe the genetic distribution across races from the global table.

The secure aggregation primarily supports linear aggregation. However, in correlation tests, the
computation involves computing a summed p-th moment over the aggregated data, where p €
(0,1) U (1,2]. Thus, the joint distribution will be leaked if we directly apply secure aggregation.
To bridge the gap between secure aggregation and federated correlation tests, we take an important
step towards designing non-linear secure aggregation protocols. Specifically, we design a federated
protocol framework, namely FED-COR, optimized for a class of correlation tests, such as X2—test
and G-test. FED-COR is designed to have low computation and communication costs and only
disclose information that is much less sensitive than the joint distribution. Our first insight is to recast
correlation tests as frequency moment estimation problems. To approximate the frequency moments

! Contingency table contains the frequency distribution of the variables; see (Wikipedia, 2021).
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in a federated manner, each client collaborates with the other clients to generate a projection matrix
and encodes its raw data into a low-dimensional vector via stable random projection (Indyk, 2006;
Vempala, 2005; Li, 2008). Such encodings can be aggregated with only summation, allowing clients
to leverage secure aggregation to aggregate the encodings. The server then decodes the aggregated
encoding to approximate the frequency moments. As secure aggregation conceals each client’s
individual update within the aggregated global update, the server learns only necessary information
for the correlation test.

To illustrate the power of FED-COR, we instantiate it with a representative correlation test, namely
Pearson’s y2-test (Pearson, 1900) and refer to the concrete protocol as FED-y2. We evaluate FED-
x? on 4 synthetic datasets and 16 real-world datasets. The results show that FED-x? can replace
centralized correlation tests with good accuracy. Compared to the traditional method with secure
aggregation mentioned above, FED-x? saves a factor of O(m) communication cost per client, where
m is the size of the contingency tables. In FED-y 2, clients only need to upload a low-dimensional
encoding with size ¢ < m, while in the traditional method the clients will upload the complete
contingency tables. Additionally, we analyze FED-x? in two real-world use cases: feature selection
and online false discovery rate control. The results show that FED-x? can achieve comparable
performance with centralized correlation tests and can withstand up to 20% of clients dropping out
with only minor influence on the accuracy. Besides Pearson’s y2-test, we also demonstrate how to
accommodate other commonly used correlation tests such as G-test in FED-COR.

In summary, we make the following contributions:

* We propose FED-COR, the first secure federated correlation test framework. FED-COR is
computation- and communication-efficient and leaks much less information than directly using
secure aggregation to collect the contingency table, which completely leaks the joint distribution.

* FED-COR decomposes correlation test into frequency moments estimation that can easily be
encoded/decoded using stable projection and secure aggregation techniques. We provide formal
security proof and utility analysis of the protocol.

* We demonstrate how to accommodate x2-test and G-test in FED-COR, and empirically evaluate
FED-x? in several real-world use cases. The findings suggest that FED-) can substitute centralized
x2-test with comparable accuracy. Besides, FED-x? can tolerate up to 20% of clients dropout with
minor accuracy drop. We provide the code in the supplementary material for results verification.

2 RELATED WORK

There have been a line of works studying secure federated learning or statistics. Bonawitz et al. (2017)
proposed the well-quoted secure aggregation protocol as a low-cost way to securely calculate linear
functions in a federated setting. It has seen many variants and improvements since then. For instance,
Truex et al. (2019) and Xu et al. (2019) employed advanced crypto tools for secure aggregation,
such as threshold homomorphic encryption and functional encryption. So et al. (2021) proposed
TURBOAGG, which combines secure sharing with erasure codes for better dropout tolerance. To
improve communication efficiency, Bell et al. (2020) and Choi et al. (2020) replaced the complete
graph in secure aggregation with either a sparse random graph or a low-degree graph.

Secure aggregation is deployed in a variety of applications. Agarwal et al. (2018) added binomial
noise to local gradients, resulting in both differential privacy and communication efficiency. Wang
et al. (2020) replaced the binomial noise with discrete Gaussian noise, which is shown to exhibit better
composability. Kairouz et al. (2021) proved that the sum of discrete Gaussian is close to discrete
Gaussian, thus discarding the common random seed assumption from Wang et al. (2020). The above
three works all incorporate secure aggregation in their protocols to lower the noise scale required for
differential privacy. Chen et al. (2020) added an extra public parameter to each client to force them to
train in the same way, allowing for the detection of malicious clients during aggregation. Nevertheless,
designing secure federated correlation tests, despite its importance in real-world scenarios, is not
explored by existing research in this field.

3 METHODOLOGY

In this section, we elaborate on the design of FED-COR. Sec. 3.1 formalizes the problem, establishes
the notation system, and introduces the threat model. In Sec. 3.2, we detail the design of FED-COR
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by instantiating FED-COR with Pearson’s 2-test, namely FED-y2. In Sec. 3.3 and 3.4, we present
the security proof, utility analysis, communication and computation analysis of FED-x?2.

3.1 PROBLEM SETUP

We now formulate the problem of the federated correlation test and establish the notation system.
We use [n] to denote {1, -+ ,n}. We denote vectors with bold lower-case letters (e.g., a, b, ¢) and
matrices with bold upper-case letters (e.g., A, B, C).

For the ease of representation, we use the example we mentioned in Sec. 1 to introduce all the
notations. A medical company is studying the correlation between genetic defects (denoted by
variable X) and race (denoted by variable Y'). The support domain of X (or Y') is denoted by X" (or
V). In the example, X = {yes, no} representing whether the participant has the genetic defect, and
Y is the set of all races. We denote the size of X" as m, the size of ) as m,,.

The company wants to use the patient records from n hospitals to conduct the research. Concretely,

each hospital holds a 2-dimensional local contingency table D; = {z € X,y € V' : vg(fy) e {0}U[M]},
where z is the row label, y is the column label, and Ugy) is the number of patients with the label (z, y).
We use m = m,m, to denote the size of the contingency table.

The first step of the traditional method in federated setting is to collect all the hospitals’ contingency
tables on a centralized server S of the company and sum them to obtain the global contingency table

D={z,y:vey =3 iy vély)} The total number of samples with row label z (or column label
y) is defined as v, = Zyey Ugy (OF v, = ZI cx Uzy)- The total number of samples observed is

v = erx,yey Vzy-

The next step is to calculate a test statistic, s(D), on the global table. For Pearson’s X2—test, the
statistic is as below:

= \2
@)= Y Gl (M

V.
TEX,yeY Y

where ¥, = % is the expectation of v, if X and Y are uncorrelated. The statistics is then
compared with a threshold to decide whether X and Y are correlated.

Attentive readers might be aware that the method described above incurs severe ethical issues that
the patient records from different hospitals are collected on a centralized server of the company,
which probably violates corresponding privacy regulations. In this work, our aim is to design a
secure federated correlation test protocol only leaking non-sensitive information with low computa-
tion/communication cost. Concretely, we trade off accuracy for security, as long as the estimation
error is small with a high probability. Formally, if FED-COR outputs §, whose corresponding standard
centralized correlation test output is s, the following accuracy requirement should be satisfied with
small multiplicative error bound € and small failure probability J:

Pl(1-€)s<3<(1+e)s]>1—6 2)

Threat Model. We assume that the centralized server S is honest but curious. It honestly follows the
protocol due to regulatory or reputational pressure but is curious to discover extra private information
from clients’ legitimate updates for profit or surveillance purposes. As a result, client updates should
contain as little sensitive information as feasible.

On the other hand, we assume the clients (e.g. the hospitals) are honest and won’t collude with
the server. Specifically, we do not consider client-side adversarial attacks (e.g., data poisoning
attacks (Bagdasaryan et al., 2020; Bhagoji et al., 2019)). However, we allow a small portion of clients
to drop out during the execution. We also provide further security analysis when collusion between
the server and the client happens in Appendix G.

More importantly, we assume that the marginal distributions of the variables are not sensitive while
the joint distribution is. The above example is a natural case where such an assumption holds. The
aggregated marginal distributions of the genetic defects and the races won’t leak sensitive information.
However, the correlation between a specific pair of race and genetic defect can be easily observed if
the joint distribution, which is the aggregated global contingency table, is obtained by the server.
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3.2 FEDERATED CORRELATION TEST WITH SECURE AGGREGATION

In this section, we introduce the design of FED-COR in detail by instantiating FED-COR with
Pearson’s y2-test. We also discuss how the design generalizes to other statistical tests such as
G-test (SOKAL et al., 1995) in Sec. 5.

From Federated Correlation Test to Frequency Moments Estimation. The a-th frequency moment
of a key-value stream is formally defined as below:

Definition 1 (a-th frequency moment). Given a key-value stream {a; € A, b; € B}ycir), the a-th
frequency moment of S is defined as:

Fo(8):=Y (Y b)° 3)

acA te[T):ar=a

We observe that the test statistics of many correlation tests can be rewritten as frequency moments.
For example, the statistic of x2-test can be reformatted as a second frequency moment:

_ 2 _
Vgy — Uz Vgy — Uz
SX2(D):E( y_ y) :Z( Y _ y)Q )
Vay Vzy
x,y z,Y
W) _g
In the federated setting, the i*" client calculates the vector u;(z,y) := % and the above
Ty
formula can be rewritten as a second frequency moment estimation problem:
Vgy — Uzy 2 2
s2(D) = Z(%) => (> wilx,y) ©)
z,y Yy z,y i€[n]

Federated Frequency Moments Estimation. Now that we have reformatted the problem, the second
step is to design the messages transmitted in FED-COR for o*" frequency moments estimation. We
choose stable projection (Indyk, 2006; Vempala, 2005) to encode the client-side information and
geometric mean estimator (Li, 2008) to decode the aggregated message. Before we dive into the
details, let’s refresh some preliminaries. See Appendix A for more details on stable distribution.

Definition 2 (Symmetric a-stable distribution). A random variable X follows a symmetric o-stable

distribution Qg If its characteristic function is as follows:
yiye’

¢x (t) = exp(=F[t|*(1 — V=18 sgn(t) tan(=,))), (6)

where F is the scale, o' € (0,2] is the stability parameter, and (3 is the skewness.

a-stable distribution is named due to its property called a-stability. Briefly, the sum of independent
a-stable variables still follows an a-stable distribution with a different scale.

Definition 3 (a-stability). If random variables X ~ Q, g1,Y ~ Qq g1 and X andY are indepen-
dent, then C1 X + CYY ~ Qa,ﬁ,Cf—i—C;-

Inspired by the idea of Indyk’s well-cited paper (Indyk, 2006), we encode the frequency moments in
the scale parameter of a stable distribution. To encode information contained in the local contingency
table D;, the i*" client collaborates with other clients to generate a projection matrix P € Rf*™
projection matrix, where / is the encoding size. The components of P are drawn independently from
an a-stable distribution Q, 1. The client then calculates u; as defined in Eq. 5 and applies the
projection get e; := P x u; as the encoding (lines 1-2 in Alg. 1).

To decode, the server first sums the encodings from all the clients e := ), cn) &i- According to the

a-stability defined in Definition 3, every component ey, in the encoding vector e, k € [¢], follows this
stable distribution Q,, o s(p)- Thus, the statistic of the correlation test can be estimated with the scale
of the distribution. We estimate the scale using an unbiased geometric mean estimator (Li, 2008)
(lines 3-4 in Alg. 1).

A significant advantage of stable projection is that the encodings are linearly aggregatable and thus
compatible with secure aggregation. Secure aggregation only reveals the aggregated encoding to
the server and greatly reduces the privacy leakage. Furthermore, in Sec. 3.4, we show that a small
encoding size suffices to accurately approximate the frequency moments with high probability and
can potentially improve communication cost with certain setups.
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Algorithm 1 The encoding and decoding scheme (Indyk, 2006) for federated frequency moments estimation.
Note that the encoding and decoding themselves do not provide any security guarantee.

Function Excopr (P, u;) :
| returnP x u;
Function DEcobE (e) :

[Th_y lewl?/*
CTr)ra-1)sin(3))*

‘ return // f is the encoding size.

Algorithm 2 The complete FED-x? protocol. SECUREAGG is a remote procedure that receives inputs from the
clients and returns the summation to the server. INITSECUREAGG is the corresponding setup protocol deciding
the communication graph and other hyper-parameters.

Round 1: Reveal the marginal statistics
INITSECUREAGG (n) // m: clients number
for z € [m;] do v, = SECUREAGG ({vg(f>}i€[n])
for y € [m,] do v, = SecureAcc ({v)” }icin)
Server
| Calculate v = Y v, and Broadcast v, {vs }, and {vy } to all the clients
Round 2: Approximate the statistics
Client i € [n]
Calculate v, =

Vp Uy
v

0

Ua(r;y —Vay/m
NG
Randomly sample a random seed r; and broadcast to all the other clients

Collect the random seeds from the other clients and obtain the shared random seed r = 3. r;

Sample the projection matrix P from Qé,xof'{ using the common random seed r

Calculate e; = EncopE (P, u;)
€ = SECUREAGG (QUANTIZE ({€i}ic[n]))
Server

| 3,2 =DEcoDE (e)

Prepare u; s.t. u;(z,y) =

FED-Y? Protocol. We instantiate FED-COR with Pearson’s y-test, and the complete FED-x? protocol
is presented in Alg. 2. Firstly, the marginal statistics v, v, and v are collected with secure aggregation
and broadcasted to all the clients (lines 1-6 of Alg. 2). This step can be omitted if the marginal
statistics are already known. The i'” client calculates u; (lines 9-10 of Alg. 2), and samples a random
seed r; and broadcasts to other clients (line 11 of Alg. 2). Then, the clients receive the random

seeds and sample the projection matrix P from the «-stable distribution Qéff{ using the common

random seed 7 (lines 12—13 of Alg. 2). The i*" client projects u; to obtain the encoding e; (line 14
of Alg. 2). Then, the encodings are quantized and aggregated with secure aggregation (line 15 of
Alg. 2). As we have already known the marginal statistics in the first round, the quantization bound
can be set accordingly. Additionally, we can use high precision for quantization, such as 64 bits,
such that the precision of the quantized float numbers is comparable to or even better than the IEEE
floating numbers. We validate this conjecture with empirical evaluation and hence ignore the effect
of quantization on accuracy in the analysis. In the last step, the server gets the x-test statistics using
the decoding algorithm described in Alg. 1 (line 17 of Alg. 2).

Remark: Client Dropout. Attentive readers might ask what if some clients drop out during the protocol
execution? We argue that dropouts in the first round have no effect on the test’s accuracy as long as
the secure aggregation used is resilient to dropout, such as (Bonawitz et al., 2017; Bell et al., 2020).
On the other hand, dropouts in the second round will affect the accuracy of the test. However, since
the x2 value is typically far from the decision threshold, FED-x? is intrinsically robust to a small
portion of clients dropping out (see Section 4 for empirical assessment).

Remark: The Selection of Secure Aggregation. As introduced in Sec. 2, there are a variety of secure
aggregation protocols for different setups (Bonawitz et al., 2017; Truex et al., 2019; Xu et al., 2019; So
etal., 2021; Bell et al., 2020; Choi et al., 2020). In the rest of the paper, we choose the state-of-the-art
cross-device secure aggregation protocol by Bell et al. (2020) due to its simple trust assumption
and low communication cost. We want to emphasize that FED-COR can incorporate any secure
aggregation protocols as needed.
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3.3 SECURITY ANALYSIS

We now prove the security enforced by Alg. 2 via a standard simulation proof process (Lindell, 2017)
on the basis of Theorem 1.

Theorem 1 (Security). Let I be an instantiation of Alg. 2 with the secure aggregation protocol in
Alg. 4 of Appendix B with cryprographic security parameter \. There exists a PPT simulator SIM
such that for all clients C, the number of clients n, all the marginal distributions v, v,, and the
aggregated encoding e, the output of SIM is indistinguishable from the view of the real server Il¢ in
that execution, i.e., Il¢c ~) SIM(e,v;,v,,n).

Intuitively, Theorem 1 illustrates that no more information about the clients except the aggregated
updates is revealed to the centralized server. Note that this is the minimal necessary information for
the server to estimate the test statistic. The complete proof for Theorem 1 is deferred to Appendix D.

To further emphasize the privacy protection of our protocol, we also provide analysis on the leakage
when the server colludes with a client in Appendix G. We show that even the collusion happens,
our protocol can still successfully hide the information in a subspace with exponential possible
distributions, which practically enforce privacy given the considerably large size of the solution space.

3.4 UTILITY, COMMUNICATION & COMPUTATION ANALYSIS

We first present the utility analysis of FED-x? in Alg. 2. We show that the output of FED-y?, Sy2, 18
a fairly accurate approximation (parameterized by €) to the correlation test output s, 2 in the standard
centralized setting with high probability parameterized by & when / is appropriately chosen. The
proof is deferred to Appendix E.

Theorem 2 (Utility). Let I be an instantiation of Alg. 2 with secure aggregation protocol in Alg. 4 of
Appendix B. 11 is parameterized with £ = 5 log(1/0) for some constant c. After executing ¢ on all
clients C, the server yields 342, whose distance to the accurate correlation test output s, is bounded
with high probability as follows:

P2 < (1 —€)s,2 V52> (14€)s,2] <9 @)

Then we present the communication and computation cost of Alg. 2.

Theorem 3 (Communication Cost). Let Il be an instantiation of Alg. 2 with secure aggregation
protocol in Alg. 4 of Appendix B, then (1) the client-side communication cost is O(logn + m,, +
my, + £); (2) the server-side communication cost is O(nlogn + nm, + nm,, + nt).

Theorem 4 (Computation Cost). Let II be an instantiation of Alg. 2 with secure aggregation protocol
in Alg. 4 of Appendix B, then (1) the client-side computation cost is (’)(1og2 n+(l+mgy+my)logn+
mf); (2) the server-side computation cost is O(nlog® n + n(f + m, +my) logn + £).

Note that compared with the original computation cost presented in (Bell et al., 2020), the client-side
overhead has an extra O(m/) term. This term is incurred by the encoding overhead. We also give an
empirical evaluation on the client-side computation overhead in Sec. 4.1. Please refer to Appendix F
for the detailed proof of Theorem 3 and Theorem 4.

4 EVALUATION

Experiment Setup. To assess FED-y2’s accuracy, we simulate it on four synthetic datasets and 12
e . 3 2(D)—s, 2(D
real-world datasets. We compare the multiplicative error € := %
X
with that of the standard centralized x2-test. The four synthetic datasets are independent, linearly
correlated, quadratically correlated, and logistically correlated. For the real-world datasets, we report
the details in Appendix H.

and power of FED-Y?

We evaluate FED-x2’s utility in two real-world application scenarios: feature selection and online
false discovery rate (FDR) control. For feature selection, we report the model accuracy trained on the
selected features. For online FDR control, we report the average false discovery rate. We compare
the performance of FED-y? with that of the centralized x2-test in each of the three experiments.
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Figure 1: Multiplicative error and power of FED-x? w.r.t. encoding size ¢ with and without dropout.

For secure aggregation, we discretize all the real numbers to 64-bit fix-point numbers. We provide
further evaluation on the influence of finite field size in Appendix M, which shows that FED-)? is
numerically stable under different finite field sizes.

Unless otherwise specified, experiments are launched on an Ubuntu 18.04 LTS server equipped with
32 AMD Opteron(TM) Processor 6212 and 512GB RAM.

4.1 EVALUATION RESULTS

Accuracy. We begin by evaluating the accuracy of FED-y?, as illustrated in Fig. 1. Each point
represents the mean of 100 independent runs with 100 clients, while the error bars indicate the
standard deviation. We choose m, = m, = 20 in this experiment. Note that the accuracy drop of
FED-Y? is independent of the number of clients.

From Fig. 1, we observe that the larger the encoding size ¢, the smaller the multiplicative error. When
¢ = 50, the multiplicative error € = 0.2. This conforms with Theorem 2, in which the multiplicative

error € = |/ log(2/0) decreases as £ increases.

We also evaluate the power (Cohen, 2013) of FED-x2. We set the p-value threshold as 0.05. From
the dashed lines in Fig. 1, we can tell that the power of FED-Y? is high. This conforms with our
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observation on the multiplicative errors. Specifically, since the x? values are typically far from the
decision threshold, a multiplicative error of 0.2 rarely flips the final decision.

We also present the results when 5% of clients drop out in the second round of FED-y? in Fig. 1.
The results show that FED-y? is robust to a small portion of dropouts. In Appendix J, we present
the results in terms of 10%, 15%, and 20% dropout rates. The results further show that FED—X2 can
tolerate a considerable portion of clients dropout in Round 2 of Alg. 2.

Client-side Computation Overhead. To assess extra computation
overhead incurred by FED-x? on the client side, we measure the
execution time of the encoding scheme on an Android 10 mobile
device equipped with a Snapdragon865 CPU and 12GB RAM. We use
PyDroid (Sandeep Nandal, 2020) to run the client-side computation
of FED-x2 on the Android device.

40

30

20

10

Avg. Encoding Time (ms)

As shown in Fig. 2, each point represents the average of 100 separate
runs, with accompanying error bars. The overhead is generally neg-
ligible. For example, for a 500 x 500 contingency table, the encoding
takes less than 30ms. The overhead grows linearly in relation to m,,
(m,) and consequently quadratically in Fig. 2, where m, = m,,.

100 200 300 400 500
my (my)

Figure 2: Client-side encoding
overhead.

4.2 DOWNSTREAM USE CASE STUDY

Feature Selection. Our first case study explores secure federated feature selection using FED-y2.
The setting is that each client holds data with a large feature space and wants to collaborate with
other clients to rule out unimportant features and retain features with top-k highest y? scores. We use
Reuters-21578 (Hayes & Weinstein, 1990), a standard text categorization dataset (Yang, 1999; Yang
& Pedersen, 1997; Zhang & Yang, 2003), and pick the top-20 most frequent categories using 17,262
training and 4,316 test documents. These documents are distributed randomly to 100 clients, each of
whom receives the same number of training documents. After removing all numbers and stop-words,
we obtain 167,135 indexing terms.

The contingency table is of size 2x 20 where 2 corresponds 80
to whether a term occurs in an article and 20 corresponds
to the number of different article categories. After per-
forming feature selection using FED-Y?2, we select the top

—no feature selection
—FED-y? no dropout
FED-x? 10% dropout
~— FED-y? 20% dropout
— centralized y?-test

704

60 -|

40,000 terms with the highest 2 scores. When compared
with the centralized XQ—test, 38,012 (95.03%) of the se-
lected terms are identical, indicating that FED-x? produces 10
highly consistent results with the standard x2-test.

Model Accuracy (%)

0 30 60 9 120 150

Epoch
We then train logistic regression models using the terms  Figure 3: Accuracy of models trained with
selected by FED-x? and the centralized x>-test, respec- features selected by FED-x? and centralized
tively. All hyper-parameters are the same. The details of  x>-test.
these models are reported in Appendix I. The training and
testing splits are the same for FED-x?2, centralized x2-test, and model without feature selection (i.e.
there are 17,262 training and 4,316 test documents). We use the same learning rate; random seed and
all other settings are also the same to make the comparison fair. We get the result of Fig. 3 and the
models are all trained on NVIDIA GeForce RTX 3090.

The results in Fig. 3 further demonstrate that FED-y? exhibits comparable performance with the
centralized x2-test. When 10% and 20% of clients dropout in the second round of FED-x?, the
accuracy of the trained model using the features selected by FED-y? does not drop much. We also
examine performance without feature selection, and as expected, model accuracy is significantly
greater after feature selection. Note that the model without feature selection has 2,542,700 more
parameters than the model with feature selection. Hence, feature selection effectively improves model
accuracy while reducing model size and computational cost. We also provide further evaluation on
the influence of encoding size ¢ in Appendix L, which shows that FED-x? can achieve comparable
performance with the centralized y2-test under different /.

Online False Discovery Rate Control. In the third case study, we explore federated online false
discovery rate (FDR) control (Foster & Stine, 2008) with FED-XQ. In an online FDR control problem,
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a data analyst receives a stream of hypotheses on the database, or equivalently, a stream of p-values:
p1, P2, - -. At each time ¢, the data analyst should pick a threshold «; to reject the hypothesis when
p: < ay. The error metric is the false discovery rate, and the objective of online FDR control is to
ensure that for any time ¢, the FDR up to time ¢ is smaller than a pre-determined quantity. We use the
SAFFRON procedure (Ramdas et al., 2018), the state-of-the-art online FDR control, for multiple
hypothesis testing. The x? results and corresponding p-values are calculated by FED-y2. We present
the SAFFRON algorithm in Appendix C.

Each time, there are 100 independent hypotheses, with a probability of 0.5 that each hypothesis
is either independent or correlated. The time sequence length is 100, and the number of clients is
10. The data are synthesized from a multivariate Gaussian distribution. For the correlated data, the
covariance matrix is randomly sampled from a uniform distribution. For the independent data, the
covariance matrix is diagonal, and its entries are randomly sampled from a uniform distribution.

At time t, we use FED-x? to calculate the p-values p; of all the hy- 100

potheses, and then use the SAFFRON procedure to estimate the reject |
threshold oy using p;. The relationship between the average FDR and
encoding size ¢ is shown in Fig. 4. We observe that the variance of
independent runs is very small, so we omit the error bars. FED-y?
achieves good performance (FDR lower than 10%) when the encoding
size [ is larger than 200. In Fig. 4, we also provide the FDR result of
the centralized y2-test as well as the true discovery rate (TDR, i.e.,
#correct reject / #should reject). In addition, we provide statistics for Encoding Size ¢

each encoding size [ that was evaluated in Appendix K. The results Figure 4: FDR & TDR w.r.t. £
indicate that by increasing the encoding size ¢, FED-x? can achieve for SAFFRON.

comparable performance to the centralized x2-test. The results further

demonstrate that FED-x? can be employed in practice to facilitate online FDR control.
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5 DISCUSSION: CORRELATION TESTS BEYOND X2—TEST

Pearson’s x2-test is not the only correlation test compatible with FED-COR. To demonstrate the
extensibility of FED-COR, we show how to recast G-test (SOKAL et al., 1995) to a frequency
moments estimation problem. The reduction is more involved as the statistics in G-test contains a
logarithmic term, and we rewrite s as shown below:

Vg _
sG (D) =2 Z Vzy lOg T)mz =2 Z Vzy log Vzy — 2 Z Vzy 10g Vzy (8)
Y z,y Y

Similar to x*-test, U,y = “*>“* is the expectation of v, if X and Y are uncorrelated. The first term

can be approximated using the following formula (Zhao et al., 2007) with small A:

1 _
Z Vzy log vy = BTN (Z ”alc;_A - Z Uﬂlcy ) O
x,y z,y z,y

In this way, we recast G-test to two frequency moments estimation of orders 1 + A and 1 — A. The
rest of the protocol is the same as FED-x? in Alg. 2 except that we estimate two frequency moments.

6 CONCLUSION & FUTURE WORKS

This paper takes an important step towards designing non-linear secure aggregation protocols in
the federated setting. Specifically, we propose a universal secure protocol to evaluate frequency
moments in the federated setting. We focus on an important application of the protocol: correlation
test. We give formal security proof and utility analysis on our proposed protocol and validate them
with empirical evaluations and downstream use case studies.

We also discuss a potential future direction. We deem it promising to provide stronger privacy guaran-
tee for FED-COR by incorporating differential privacy techniques like differentially private frequency
moments estimation (Wang et al., 2021) or adding calibrated discrete Gaussian noise (Canonne et al.,
2020) to the users’ local updates.
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APPENDIX

A STABLE DISTRIBUTION REFRESHER

A non-degenerate distribution is said to be stable if for X and Y sampled from the distribution,
aX 4+ bY for some constants a, b > 0 has the same distribution up to location and scale parameters.
Paul Léby first systematically study the stable distribution family in his master piece: Calcul des
probabilités (Lévy & Lévy, 1925) so stable distribution is also referred to as Léby a-stable distribution.
Stable distributions are parameterized by location u, scale F', the stability parameter o and the
skewness 3. When « # 1, the characteristic function is as below:

éx (t) = explitn — FIt|" (1 — V=1Bsgn(t) tan(7)) (10)

When o = 1, the characteristic function is given by:

) 2
¢x (t) = exp(itp — FIt|*(1 + —v—15sgn(t) log [¢])) (11)
In the main text, we only consider a subset of stable distributions where ;1 = 0 and @ # 1.

Stable distribution family contains many familiar distributions. For example, 1-stable distribution
is Cauchy distribution, 2-stable distribution is Gaussian distribution, and 1/2-stable distribution is
known as Levy distribution.

Stable distributions also have discrete analogues defined by their probability generating function
G(t) = exp(~Ft*), (12)

where F' is the scale and « is the stability parameter. However, for discrete stable distribution, the
support domain of « is (0, 1] instead of (0, 2].

B SECURE AGGREGATION REFRESHER

The secure aggregation protocol from Bell et al. (2020) is presented in Alg. 4. The first step of the
protocol is to generate a k-regular graph GG, where the n vertices are the clients participating in the
protocol. The server runs a randomized graph generation algorithm INITSECUREAGG presented
in Alg. 3 that takes the number of clients » and samples output (G, t, k) from a distribution D. In
Alg. 3, we uniformly rename the nodes of a graph known as a Harary graph defined in Definition 4
with n nodes and k degrees. The graph G is constructed by sampling & neighbours uniformly and
without replacement from the set of remaining n — 1 clients. We choose k = O(log(n)), which is
large enough to hide the updates inside the masks. ¢ is the threshold of the Shamir’s Secret Sharing.

In the second step, the edges of the graph determine pairs of clients, each of which runs key agreement
protocols to share random keys. The random keys will be used by each party to derive a mask for her
input and enable dropouts.

In the third step, each client ¢;,7 € A; sends secret share to its neighbors. In the fourth step, the
server checks whether the clients dropout exceeds the threshold ¢, and lets the clients know their
neighbors who didn’t dropout.

In the fifth step, each pair (i, j) of connected clients in G runs a A-secure key agreement protocol
si; = KA. Agree(sk;, pkjl) which uses the key exchange in the previous step to derive a shared
random key s; ;. The pairwise masks m; ; = F(s; ;) can be computed, where F’ is the pseudorandom
generator (PRQG). If the semi-honest server announces dropouts and later some masked inputs of
the claimed dropouts arrive, the server can recover the inputs. To prevent this happening, another
level of masks, called self masks, r; is added to the input. Thus, the input of client ¢; is: y, =

€ +r;— ZjeN(;(i),j<i m; ; + ZjeNG(i),j>i m; ;.

Steps 68 deal with the clients dropout by recovering the self masks r; of clients who are still
active and pairwise masks m; ; of the clients who have dropped out. Finally, the server can
cancel out the pairwise masks and subtract the self masks in the final sum: }_,_ m (y;, —r; +

ZjeNG(i)ﬂ(A/l\A/z),O<j<i m; ; — ZjeNG(i)ﬂ(A/l\A/z),i<j§n m; ;).

13
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Definition 4 (HARARY (n, k) Graph). Let HARARY (n, k) denotes a graph with n nodes and degree
k. This graph has vertices V = [n] and an edge between two distinct vertices i and j if and only if
j—1i (modn) < (k+1)/20rj—i (modn)>n—k/2

Algorithm 3 INITSECUREAGG: Generate Initial Graph for SECUREAGG.

Function INITSECUREAGG (1) :

> n: Number of nodes.

> t: Threshold of Shamir’s Secret Sharing.

k= O(log(n)).

Let H = HARARY (N, k).

Sample a random permutation 7 : [n] — [n].

Let G be the set of edges {(m (i), 7(4))|(i,4) € H}.
return (G, 1, k)

C SAFFRON PROCEDURE REFRESHER

In Sec. 4.2, we adopt the SAFFRON procedure (Ramdas et al., 2018) to perform online FDR control.
SAFFRON procedure is currently the state of the arts for multiple hypothesis testing. In Alg. 5, we
formally present the SAFFRON algorithm.

The initial error budget for SAFFRON is (1 — A;Wp) < (1 — Aj«), and this will be allocated to
different tests over time. The sequence {\; } 22, is defined by g; and \; serves as a weak estimation of
;. g+ can be any coordinate wise non-decreasing function (line 8 in Alg. 5). R; = I(p; < «; ) is the
indicator for rejection, while C; := I(p; < A;) is the indicator for candidacy. 7; is the 4" rejection
time. For each p,, if p; < A\, SAFFRON adds it to the candidate set C; and sets the candidates after
the j'" rejection (lines 9-10 in Alg. 5). Further, the oy is updated by several parameters like current
wealth, current total rejection numbers, the current size of the candidate set, and so on (lines 11-14 in
Alg. 5). Then, the decision R; is made according to the updated «; (line 15 in Alg. 5).

The hyper-parameters for the SAFFRON procedure in online false discovery rate control of Sec. 4
are aligned with the setting in Ramdas et al. (2018). The target FDR level is a = 0.05, the initial
1/(j+1)"°

wealth is Wy = 0.0125, and +; is calculated in the following way: 7v; = ST G e

D PROOF FOR THEOREM 1

Proof for Theorem 1. To prove Theorem 1, we need the following lemma.

Lemma 1 (Security of secure aggregation protocol). Let SECUREAGG be the secure aggregation
protocol in Alg. 4 of Appendix B instantiated with cryprographic security parameter \. There exists
a probabilistic polynomial-time (PPT) simulator SIMS A such that for all clients C, the number of
clients n, and the aggregated encoding e, the output of SIMSA is perfectly indistinguishable from
the view of the real server, i.e., SECUREAGG¢ =) SIMSA (e, n).

Lemma 1 is derived from the security analysis of our employed secure aggregation protocol (Theorem
3.6 in Bell et al. (2020)), which establishes that the secure aggregation protocol securely conceals the
individual information in the aggregated result. With this lemma, we are able to prove the theorem for
federated correlation test by presenting a sequence of hybrids that begin with real protocol execution
and end with simulated protocol execution. We demonstrate that every two consecutive hybrids are
indistinguishable, illustrating that the hybrids are indistinguishable according to transitivity.

HyYB; This is the view of the server in the real protocol execution, REAL¢.

HyB> In this hybrid, we replace the view during the execution of each SECUREAGG({V;(Z) Fien))
in line 3 of Alg. 2 with the output of SIMSA(v,, n) one by one correspondingly. According
to Lemma 1, each replacement does not change the indistinguishability. Hence, HYB is
indistinguishable from HYB; .

14
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HyB3 Similar to HYBs, we replace the view during the execution of each SECUREAGG({VZ(}) i)
in line 4 of Alg. 2 with the output of SIMSA(v,,n) one by one. According to Lemma I,
HYBj; is indistinguishable from HYBs.

HYB4 In this hybrid, we replace the view during the execution of SECUREAGG({e; };c[n]) in line 15
of Alg. 2 with the SIMSA (e, n). This hybrid is the output of SIM. According to Lemma 1,
HYB, is indistinguishable from HYBs;. O

Algorithm 4 SECUREAGG: Secure Aggregation Protocol. (Algorithm 2 from Bell et al. (2020))

Function SECUREAGG ({€;}ic[n)) :

> Parties: Clients cq, - - - , ¢,,, and Server.

> I: Vector length.

> X!': Input domain, e; € X',

> F:{0,1}* — X' PRG.

> We denote by A1, As, Az the sets of clients that reach certain points without dropping out.
Specifically Ay consists of the clients who finish step (3), Ao those who finish step (5), and A3
those who finish step (7). For each A;, Al is the set of clients for which the server sees they have
completed that step on time.

(1) The server runs (G, ¢, k) = INITSECUREAGG (n) , where G is a regular degree-k undirected
graph with n nodes. By N¢(4) we denote the set of k nodes adjacent to ¢; (its neighbors).

(2) Client ¢;,i € [n], generates key pairs (sk},pk}), (sk?,pk?) and sends (pk},pk?) to the
server who forwards the message to Ng(4).

(3) for each Client ¢;,i € Ay do

¢ Generates a random PRG seed b;.

¢ Computes two sets of shares:
HY ={hly, -+ Y.} = ShamirSS(t, k,b;)
HY ={h{,, - ,hj,} = ShamirSS(t, k, sk})

* Sends to the server a message m = (j,¢; ;), where ¢; ; = Equen.Enc(k; j, (z||j||hfj|\hfj)),
kij = KA. Agree(sk;, pk3), for each j € Ne(i).

(4) The server aborts if | A} | < (1 — §)n and otherwise forwards (7, ¢; ;) to client ¢; who deduces
1N NG (j).
(5) for each Client c;,i € Ay do

b

+ Computes a shared random PRG seed s; ; as s; ; = KA. Agree(sk;, pk}).
» Computes masks m; ; = F'(s; ;) and r; = F'(b;).
* Sends to the server their masked input

Yy, =¢€ +1r; — Z m; ; + Z m; ;

J€[n],j<i J€E[n].j>i

(6) The server collects masked inputs. It aborts if |A5| < (1 — d)n and otherwise sends
(AL U Ng(i), (A1\AL) U Ng(i)) to every client ¢;, 7 € Ab.

(7)Client ¢, j € Ag receives (R1, Ro) from the server and sends {(¢, h?,j)}ieRl U{(4, h{ ;) Yier,
obtained by decrypting the ¢; ; received in Step (3).

(8) The server aborts if |A5| < (1 — §)n and otherwise:

 Collects, for each client ¢;, 7 € Ab, the set B; of all shares in Hf sent by clients in A3. Then
aborts if | B;| < t and otherwise recovers b; and r; using the ¢ shares received which came from
the lowest client IDs.

* Collects, for each client ¢;,i € (A1\A}), the set S; of all shares in H sent by clients in Aj.
Then aborts if |\S;| < ¢ and otherwise recovers sk} and m; ;.

* return ZieA’Q (yi —ri+ ZjeNG(i)m(A;\A;),oqq m;; — ZjeNG(i)m(Ag\A;),stn m; ;).
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E PROOF FOR UTILITY

Proof for Theorem 2. First, we introduce the following lemma from Li (2008).

Lemma 2 (Tail bounds of geometric mean estimator (Li, 2008)). The right tail bound of geometric

mean estimator is: )

P(8y2 — sy2 > €5,2) < exp(—éé—)7 (13)
R

where é—; = C1log(1 +€) — C1ye(a — 1) — log(2T'(aCy)I(1 — Cy) sin(T%EL)), a = 2 in our
setting, C1 = % tan™! (%), and . is the Euler’s constant.

The left tail bound of the geometric mean estimator is:
2

P(3y2 — 52 < —esy2) < exp(—(—), (14)
: eh
where £ >, 5—1 = —Czlog(l — e) — log(—%F(—aC’Q)F(l 4 Cg)sin(”‘c“f?)) _
(oCs log(2T(£)T(1 — £)sin(5£)), and Cy = B 5.

With Lemma 2, Taking ¢ > max(Gg,Gr) and § = 2exp(—%), we are able to prove P[3,2 <
(1—€)sy2 V8,2 > (1+4¢€)sy2] < & with union bound, which is achieved when £ = 5 log(2/6). O

F PROOF FOR COMMUNICATION & COMPUTATION COST

In this section, we prove Theorem 3 and Theorem 4.

Theorem 3 (Communication Cost). Let II be an instantiation of Alg. 2 with secure aggregation
protocol from Bell et al. (2020), then (1) the client-side communication cost is O(log n+mg,+m,+¢);
(2) the server-side communication cost O(nlog n + nmg, + nm,, + nf).

Proof sketch for Theorem 3. Each client performs k key agreements (O(k) messages, line 9 in Alg. 4)
and sends 3 masked inputs (O(my + m, + £) complexity, lines 3, 4, 15 in Alg. 2 and line 10 in
Alg. 4). Thus, the client communication cost is O(logn + mg, + m, + £).

The server receives or sends O(logn + m, + m, + £) messages to each client, so the server
communication cost is O(nlog n + nmg, + nm,, + nt). O

Algorithm 5 SAFFRON Procedure.

Function SAFFRONPROCEDURE ({p1, p2,- - }, o, Wy, {7]-}3?';0) :

> {p1,p2,- -+ }: Stream of p-values computed by FED-y 2.

> «: Target FDR level.

> Wy: Initial wealth.

> {7 };‘;O: Positive non-increasing sequence summing to one.

140 // Set rejection number.
for each p-value p; € {p1,p2,---} do

At < g¢(Ri:4-1,Cri—1)
Ci <+ I(pr < M\t) // Set the indicator for candidacy C;.
Cit Zf;iﬁl C; // Set the candidates after the j* rejection.
if ¢t = 1 then
| a1+ (1=2)mWo
else
‘ ay < (1 - )‘t)(WO’yt—Co+ + (Oé - WO)’Yt_-,-l_Cl+ + 2322 Oé’Yt—Tj—Cj+)
Ry« I(py < ) // Output R;.
if R; = 1 then
11+ 1 // Update rejection number.
Tt // Set the i’ rejection time.

return { Ry, Ry,---}
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Theorem 4 (Computation Cost). Let I be an instantiation of Alg. 2 with secure aggregation protocol
from Bell et al. (2020), then (1) the client-side computation cost is O(m,, log n+m, logn+{logn+
md); (2) the server-side computation cost is O(my + my, + £).

Proof sketch for Theorem 4. Each client computation can be broken up as k key agreements (O(k)
complexity, line 9 in Alg. 4), generating masks m, ; for all neighbors ¢; (O(k(my + my + £))
complexity, lines 3, 4, 15 in Alg. 2 and line 10 in Alg. 4), sampling encoding matrix P cost O(m/),
line 13 in Alg. 2, and encoding computation cost O(mf) (line 14 in Alg. 2). Thus, the client
computation cost is O(m,, logn + m, logn + £logn + mf).

The server-side follows directly from the semi-honest computation analysis in Bell et al. (2020). The
extra O(¢) term is the complexity of the geometric mean estimator.

O

G FURTHER SECURITY ANALYSIS WHEN COLLUSION HAPPENS

‘We have shown that Alg. 2 provides strong security guarantee when there is no collusion between
the clients and the server. That is, the server only knows the non-private marginal distribution of
the contingency table and the final aggregated results. In the following section, we will analyze the
leakage of Alg. 2 when the collusion happens to demonstrate that FED-y? provides strong privacy
guarantee and also help the readers better understand our protocol.

Remark: what does Alg. 2 leak when collusion between the server and the client happens? If the
server colludes with one client, then it knows the random seed r (line 12 of Alg. 2) used to generate
the projection matrix P. In the following, we will analyze the leakage of client private data when the
server knows P.

By Theorem 1, we show that individual updates of clients are perfectly hidden in the aggregated
results and FED-x? leaks no more than a linear equation system if the server knows P:

Pxv =eT
Jim, x VI =vI | (15)
Jim, xV  =v]

where J1,n, and J1 p,, are 1 x m; and 1 X m,, unit matrices, V is an m; x m, matrix whose
elements are {v, }, and v is the flattened vector of V.

To understand (15), v (or V) is sensitive and all the other matrices and vectors are already known
to the server. Also note that due to the requirement of secure aggregation, all the values in (15) are
discretized into a finite field. Thus, the server can solve the system of equations (15) on a finite field
to get information about v. The following theorem establishes an important fact: the above equation
system has a large solution space, which conceals the real joint distribution.

Proposition 1. Given a projection matrix P € Z*™, v, € L', v, € Zq" and e € Z., if

m—Ll—mg

m > {4+ mg + my, there are at least q ~™y solutions to the system of equations (15).

Proof sketch for Proposition 1. The system of linear equations on Z, contains m +m,, 4 equations
and m variables. Given m > m, + m, + ¢, the rank of the coefficient matrix is no more than
mg + my + £. According to the Rouché—Capelli theorem (Brunetti & Renato, 2014) on finite fields,
the solution forms a at least m — m, — m, — ¢-dimensional traslation of subspace of ZZ]”. As aresult,

we know that the solution space contains at least g™ ="+~ solution vectors. O

Theorem 1 shows an important fact that the joint distribution is hidden in a subspace with exponential
possible distributions. Although the collusion between the client and the server is not likely to happen
in the cross-silo federated settings (consider our example in Sec. 3.1) and thus not considered in our
threat model, we still show that Alg. 2 practically enforce privacy given the considerably large size of
the solution space.
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H DETAILS OF DATASETS

The details for the real-world datasets used in Sec. 4.1 are provided in Table 1. The license of
Credit Risk Classification (Govindaraj, Praveen) is CC BY-SA 4.0, the license of German Traffic
Sign (Houben et al., 2013) is CCO: Public Domain. Other datasets without a license are from UCI
Machine Learning Repository (Dua & Graff, 2017).

Table 1: Dataset details.

1D Data Attr #1 A#1 Cat Attr #2 A#2 Cat
1 Adult Income (Kohavi, 1996; Kohavi, Ronny and Becker, Barry) Occupation 14 Native Country 41
2 Credit Risk Classification (Govindaraj, Praveen) Feature 6 14 Feature 7 11
3 Credit Risk Classification (Govindaraj, Praveen) Credit Product Type 28 Overdue Type 1 35
4 Credit Risk Classification (Govindaraj, Praveen) Credit Product Type 28 Overdue Type II 35
5 Credit Risk Classification (Govindaraj, Praveen) Credit Product Type 28 Overdue Type 11T 36
6 German Traffic Sign (Houben et al., 2013) Image Width 219 Traffic Sign 43
7 German Traffic Sign (Houben et al., 2013) Image Height 201 Traffic Sign 43
8 German Traffic Sign (Houben et al., 2013) Upper left X coordinate 21 Traffic Sign 43
9 German Traffic Sign (Houben et al., 2013) Upper left Y coordinate 16 Traffic Sign 43
10 German Traffic Sign (Houben et al., 2013) Lower right X coordinate 204 Traffic Sign 43
11 German Traffic Sign (Houben et al., 2013) Lower right Y coordinate 186 Traffic Sign 43
12 Mushroom (Schlimmer, Jeff) Cap color 10 Odor 9
13 Mushroom (Schlimmer, Jeff) Gill color 12 Stalk color above ring 9
14 Mushroom (Schlimmer, Jeff) Stalk color below ring 9 Ring Type 8
15 Mushroom (Schlimmer, Jeff) Spore print color 9 Habitat 7
16 Lymphography (Kononenko, Igor and Cestnik, Bojan) Structure Change 8 No. of nodes 8

I DETAILS OF REGRESSION MODELS

The details of the regression models trained in feature selection in Sec. 4.2 is reported in Table 2. The
training and testing splits are the same for FED-Y?2, centralized y2-test and model without feature
selection (i.e. there are 17,262 training and 4,316 test documents). We use the same learning rate;
random seed and all other settings are also the same to make the comparison fair. We get the result of
Fig. 3 and the models are all trained on NVIDIA GeForce RTX 3090.

J FURTHER RESULTS ON FED-y? WITH DROPOUTS

We present the results of 10%, 15%, and 20% clients dropout in Fig. 5. The results further show that
FED-Y2 can tolerate a considerable portion of clients dropout in Round 2 of Alg. 2.

K FURTHER RESULTS FOR ONLINE FDR CONTROL

In this section, we provide further results for online FDR control. As we have shown in Fig. 4,
FED-Y? achieves good performance when the encoding size [ is larger than 200. In addition, we
provide statistics for each encoding size [ that was evaluated in Table 3. These results demonstrate
that FED-x? performs well and is comparable to the centralized x2-test when the encoding size [ is
increased.

L  FURTHER RESULTS FOR FEATURE SELECTION

Our results in Sec. 4.2, paragraph Feature Selection, demonstrate that FED-y? performs well when
encoding size [ = 50. We conduct experiments with different encoding sizes [ to further assess their
effect on FED-x2’s performance. In Fig. 6, we present the effect of encoding size [ on the ratio of the
commonly-selected features between the original centralized x2-test and FED-x2. A larger ratio of
commonly-selected features means that FED-y? performs more closely to the original centralized
x2-test. And if the ratio is 1, these two algorithms select the identical features. The results in Fig. 6
show that when the encoding size [ increases, the performance of FED-y? approaches that of the
original centralized y>2-test.

Similar to Sec. 4.2, we evaluate FED-x?’s performance under different encoding sizes [ by training
the model with the features selected by FED-x2. Fig. 7 shows the results. When trained with FED-
x2-selected features, the model can achieve comparable accuracy to the model trained with features
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Table 2: Model details.

Task Model Size | Learning Rate | Random Seed
FED-x> 40000 x 20 0
Centralized x*-test 40000 x 20 0
Without Feature Selection | 167135 x 20 0
— Error of 10% dropout —— Error of 15% dropout —— Error of 20% dropout
--- ACC of 10% dropout --- ACC of 15% dropout --- ACC of 20% dropout
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Figure 5: Multiplicative error and accuracy of FED-x? w.r.t. encoding size £ w/ and w/o dropout.

selected by the original centralized y>-test. Also, consistent with the results in Fig. 3 in Sec. 4.2, we
see that when the encoding size [ > 25, models trained by FED-y2-selected features achieve higher
accuracy than that of the models without feature selection. These results further demonstrate the

effectiveness of FED-x2.

M INFLUENCE OF FINITE FIELD SIZE

As shown in Fig. 8, we test the performance of FED-? under different finite field size . We observe
that when ¢ € {216,232 264} there is almost no difference in the performance. The result shows

that FED-? is numerically stable.
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Table 3: Detailed results for online FDR control.

#should reject | #should accept | #correct reject | #false reject
FED-x?, 1 = 10 5,900 4,100 5,144 1,392
FED-x%, [ = 25 5,900 4,100 5,328 1,356
FED-x2, | = 50 5,900 4,100 5,325 1,143
FED-x?, [ = 100 5,900 4,100 5,398 943
FED-x7, | = 150 5,900 4,100 5,393 765
FED-x?, [ = 200 5,900 4,100 5,377 687
FED-x7, [ = 250 5,900 4,100 5,328 615
FED-x72, | = 300 5,900 4,100 5,361 556
centralized XQ-test 5,900 4,100 5,294 408

g 100 < —no feature selection
° & —FED-}% | =50
S 95 2 FED-X2%, 1 =35
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Figure 6: Ratio of commonly-selected features be-  Figure 7: Accuracy of model trained w/ FED-y ?-select
tween FED-x? and original centralized y>-test. features under different encoding size [.
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Figure 8: Performance of FED-x? with different finite field size on synthetic data 3.
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