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ABSTRACT

A subgraph is a data structure that can represent various real-world problems. We
propose Subgraph-To-Node (S2N) translation, which is a novel formulation to
efficiently learn representations of subgraphs. Specifically, given a set of sub-
graphs in the global graph, we construct a new graph by coarsely transform-
ing subgraphs into nodes. We perform subgraph-level tasks as node-level tasks
through this translation. By doing so, we can significantly reduce the memory and
computational costs in both training and inference. We conduct experiments on
four real-world datasets to evaluate performance and efficiency. Our experiments
demonstrate that models with S2N translation are more efficient than state-of-the-
art models without substantial performance decrease.

1 INTRODUCTION

Graph neural networks (GNNs) have been developed to learn representations of nodes, edges, and
graphs (Bronstein et al., 2017; Battaglia et al., 2018; Zhou et al., 2020). Recently, Alsentzer et al.
(2020) has proposed SubGNN, a specialized architecture for learning representations of subgraphs.
This architecture outperforms prior models; however, it requires a lot of memory and computations
to learn the non-trivial structure and various attributes in subgraphs.

In this paper, we propose ‘Subgraph-To-Node (S2N)’ translation, a novel method to create data
structures to solve subgraph-level prediction tasks efficiently. The S2N translation constructs a new
graph where its nodes are original subgraphs, and its edges are relations between subgraphs. The
GNN models can encode the node representations in the translated graph. Then, we can get the
results of the subgraph-level tasks by performing node-level tasks from these node representations.

For example, in a knowledge graph where subgraphs are diseases, nodes are symptoms, and edges
are relations between symptoms based on knowledge in the medical domain, the goal of the diag-
nosis task is to predict the type of a disease (i.e., the class of a subgraph). Using S2N translation,
we can make a new graph of diseases, nodes of which are diseases and edges of which are relations
between them (e.g., whether two diseases share any symptoms).

The S2N translation enables efficient subgraph representation learning for the following two reasons.
First, it provides a small and coarse graph in which the number of nodes is reduced to the number of
original subgraphs. We can load large batches of subgraphs on the GPU and parallelize the training
and inference. Second, there is a wider range of models to choose from in encoding translated
graphs. We confirm that even a simple pipeline of DeepSets (Zaheer et al., 2017) and GCN (Kipf &
Welling, 2017) can outperform state-of-the-art models.

We conduct experiments with four real-world datasets to evaluate the performance and efficiency
of S2N translation. We measure the number of parameters, throughput (samples per second), and
latency (seconds per forward pass) for efficiency (Dehghani et al., 2021). We demonstrate that
models with S2N translation are more efficient than the existing approach without a significant
performance drop. Even some models perform better than baselines in three of the four datasets.
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(a) The S2N translation. Subgraphs Si and Sj

are transformed into nodes v̂i and v̂j by Tv , and
an edge êij between them is formed by Te.
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(b) Models for graphs translated by S2N. We treat the node
v̂ in the translated graph as a set of nodes in the original
subgraph S. Thus, we apply a set encoder first, then a graph
encoder (GNN) to their outputs for the prediction.

Figure 1: Overview of the Subgraph-To-Node translation and the models for translated graphs.

2 SUBGRAPH-TO-NODE TRANSLATION

We introduce the Subgraph-To-Node (S2N) translation and our specific design choices. We also
suggest model families for the subgraph prediction task using S2N translated graphs.

Notations We first summarize the notations in the subgraph representation learning, particularly
in the subgraph classification task. Let G = (V,A,X) be a global graph where V is a set of nodes
(|V| = N ), A ∈ {0, 1}N×N is an adjacency matrix, and X ∈ RN×F0 is a node feature matrix. A
subgraph S = (Vsub,Asub) is a graph formed by subsets of nodes and edges in the global graph G.
For the subgraph classification task, there is a set of M subgraphs S = {S1,S2, ...,SM}, and for
Si = (Vsub

i ,Asub
i ), the goal is to learn its representation and the logit vector yi ∈ RC where C is the

number of classes.

Overview of S2N Translation The S2N translation reduces the memory and computational costs
in the model training and inference by constructing a new coarse graph that summarizes the original
subgraph into a node. As illustrated in Figure 1a, for each subgraph Si ∈ S in the global graph G,
we create a node v̂i = Tv(Si) in the translated graph Ĝ; for all pairs (Si,Sj) of two close subgraphs
in G, we make an edge êij = Te(Si,Sj) between corresponding nodes in Ĝ. Here, Tv and Te are
translation functions for nodes and edges in Ĝ, respectively. Formally, the S2N translated graph
Ĝ = (V̂, Â) where |V̂| = M and Â ∈ {0, 1}M×M is defined by

V̂ = {v̂i|v̂i = Tv(Si), Si ∈ S}, Â[i, j] = êij = Te(Si,Sj). (1)

We can choose any function for Tv and Te. They can be simple heuristics or modeled with neural
networks to learn the graph structure (Franceschi et al., 2019; Kim & Oh, 2021; Fatemi et al., 2021).

Detailed Design of S2N Translation In this paper, we choose straightforward designs of Tv and
Te with negligible translation costs. For Tv , we use a function that ignores the internal structure
Asub

i of the subgraph Si = (Vsub
i ,Asub

i ) and treats the node as a set (i.e., Vsub
i ). For Te, we make an

edge if at least one common node between two subgraphs Si and Sj . They are defined as follows:

v̂i = Tv(Si) = Vsub
i , êij = Te(Si,Sj) =

{
1 if |Vsub

i ∩ Vsub
j | ≠ 0

0 otherwise
. (2)

In some cases, this particular translation provides a more intuitive description for real-world prob-
lems than a form of subgraphs. For a fitness social network (EM-User) from Alsentzer et al. (2020)
(subgraphs: users, nodes: workouts, edges: whether multiple users complete workouts), it will be
translated into a network of users connected if they complete the same workouts. This graph di-
rectly expresses the relation between users and follows the conventional approach to express social
networks where nodes are users.

Models for S2N Translated Graphs We propose simple but strong model pipelines for S2N
translated graphs. Since the node v̂i is a set of original nodes in Si, we first use a set encoder
Eset : V̂ → RF (Wagstaff et al., 2021) where F is a dimension of the representation. It takes a set of
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Table 1: Statistics of real-world datasets before and after S2N translation.

PPI-BP HPO-Neuro HPO-Metab EM-User
# nodes (before → after) 17.1K → 1.6K 14.6K → 4.0K 14.6K → 2.4K 57.3K → 324
# edges (before → after) 317.0K → 55.7K 3.2M → 6.6M 3.2M → 2.5M 4.6M → 87.2K
Density (before → after) 0.002 → 0.021 0.030 → 0.413 0.030 → 0.439 0.003 → 0.830
# classes 6 10 6 2
Node / Edge homophily 0.449 / 0.391 0.176 / 0.175 0.195 / 0.189 0.514 / 0.511

node features in v̂i as an input and generates the representation ĥi ∈ RF of v̂i, that is,

ĥi = Eset(v̂i) = Eset(Vsub
i ) = Eset({xu|xu = X[u, :], u ∈ Vsub

i }). (3)

Then, given the node representation ĥi, we apply a graph encoder Egraph : RM×F × {0, 1}M×M →
RM×C to get the logit vector ŷi ∈ RC . For the input and output of Egraph, we use matrices Ĥ ∈
RM×F and Ŷ ∈ RM×C where the ith rows are ĥi and ŷi, respectively.

Ŷ = Egraph(Ĥ, Â). (4)

For Egraph, we can take any GNNs that perform message-passing between nodes. This node-level
message-passing on translated graphs is analogous to message-passing at the subgraph level in Sub-
GNN (Alsentzer et al., 2020).

3 EXPERIMENTS

This section describes the experimental setup, including datasets, training, evaluation, and models.

Datasets We use four real-world datasets, PPI-BP, HPO-Neuro, HPO-Metab, and EM-User, intro-
duced in Alsentzer et al. (2020). The task is subgraph classification where nodes V, edges A, and
subgraphs S ∈ S are given in datasets. There are two input node features X pretrained with GIN or
GraphSAINT from the same paper. Detailed description and statistics are in Appendix B.

Training and Evaluation In the original setting from the SubGNN paper, evaluation (i.e., valida-
tion and test) samples cannot be seen during the training stage. Following this protocol, we create
different S2N graphs for each stage using train and evaluation sets of subgraphs (Strain and Seval).
For the S2N translation, we use Strain only in the training stage, and use both Strain ∪ Seval in the
evaluation stage. That is, we predict unseen nodes based on structures translated from Strain ∪ Seval
in the evaluation stage. In this respect, node classification on S2N translated graphs is inductive.

Models for S2N Translated Graphs We use two- or four-layer DeepSets (Zaheer et al., 2017)
with sum or max operations as Eset for all S2N models. For Egraph, we use well-known graph neural
networks: GCN (Kipf & Welling, 2017) and GAT (Veličković et al., 2018). In addition, LINKX (Lim
et al., 2021) and FAGCN (Bo et al., 2021), models that perform well in non-homophilous graphs are
employed. All GNNs are one- or two-layer models. See Appendix C.1 for their hyperparameters.
Since LINKX is designed for the transductive setting, we make a small change in LINKX to work
in the inductive setting. We call this variant LINKX-I. See Appendix C.2 for this modification.

Baselines We use current state-of-the-art models for subgraph classification as baselines:
Sub2Vec (Adhikari et al., 2018), Graph-level GIN (Xu et al., 2019), and SubGNN (Alsentzer et al.,
2020). We report the best performance among three variants for Sub2Vec (N, S, and NS) and two
results by different pretrained embeddings for SubGNN. All baselines results are reprinted from
Alsentzer et al. (2020).

4 RESULTS

In this section, we analyze the characteristics of S2N translated graphs and compare our models and
baselines on classification performance and efficiency.
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Table 2: Summary of classification performance in mean micro-F1 score over 10 random
seeds for real-world datasets. Results of the unpaired t-test with the best baseline are de-
noted by colors and superscripts ( ∼: no statistically significant difference, i.e., p-value > .05 ,

⋆: outperformed with p-value < .05 ). We mark with daggers (†) the reprinted results from
Alsentzer et al. (2020).

Model Embedding PPI-BP HPO-Neuro HPO-Metab EM-User
Sub2Vec Best† - 30.9±2.3 22.3±6.5 13.2±4.7 85.9±1.4

Graph-level GIN† - 39.8±5.8 53.5±3.2 45.2±2.5 56.1±5.9

SubGNN† GIN 59.9±2.4 63.2±1.0 53.7±2.3 81.4±4.6

SubGNN† GraphSAINT 58.3±1.7 64.4±1.9 42.8±3.5 81.6±4.0

S2N + GCN GIN 61.4∼±1.6 59.0±0.7 51.6±1.8 70.2±2.3

S2N + GCN GraphSAINT 60.6∼±1.2 59.9±0.7 50.6±1.9 69.0±4.5

S2N + GAT GIN 60.8∼±2.7 53.1±1.9 47.9±3.4 71.4±6.3

S2N + GAT GraphSAINT 60.4∼±1.4 54.6±2.0 49.4±4.5 80.2±4.8

S2N + LINKX-I GIN 60.9∼±1.8 62.9±1.1 55.9∼±2.6 83.3±3.6

S2N + LINKX-I GraphSAINT 61.3∼±1.5 62.9∼±1.3 57.9⋆±2.1 84.7∼±2.9
S2N + FAGCN GIN 62.8⋆±1.2 64.5∼±1.3 58.2⋆±2.7 80.0±4.0

S2N + FAGCN GraphSAINT 60.7∼±3.1 63.3∼±1.1 57.5⋆±3.3 82.9±3.7

Analysis of S2N Translated Graphs Table 1 summarizes dataset statistics before and after S2N
translation, including node (Pei et al., 2020) and edge homophily (Zhu et al., 2020). Except for
HPO-Neuro, translated graphs have a smaller number of nodes (×0.006 – ×0.03) and edges (×0.17
– ×0.78) than original graphs. For HPO-Neuro, it has twice as many edges as the original graph, but
has ×0.27 fewer nodes. Since the number of edges decreased less than nodes, translated graphs are
denser than originals (×9.7 – ×297). We also find that they are non-homophilous (low homophily),
which means there are many connected nodes of different classes.

Note that we propose multi-label node and edge homophily for multi-label datasets (HPO-Neuro):

hnode, ml =
1

|V|
∑
v∈V

 1

|N (v)|
∑

u∈N (v)

|Lu ∩ Lv|
|Lu ∪ Lv|

 , hedge, ml =
1

|A|
∑

(u,v)∈A

|Lu ∩ Lv|
|Lu ∪ Lv|

, (5)

where Lv is a set of labels of v, N (v) is a set of neighbors of v, and A = {(u, v)|A[u, v] = 1}.
They generalize the existing multi-class homophily and we discuss more in Appendix D.

Performance In Table 2, we report the mean and standard deviation of micro-F1 score over ten
runs of our models and baselines. LINKX-I and FAGCN, which are known to work well in non-
homophilous graphs, perform on par with or better than the best baseline in 12 of 16 cases. Here,
‘performance on par with the baseline’ implies no significant difference from the t-test at a level
of 0.05 (∼: p-value > .05), which does not mean that our model is superior. For PPI-BP and
HPO-Metab, some models even outperform SubGNN with statistical significance (⋆: p-value < .05).
Notably, all S2N models outperform SubGNN in the PPI-BP, which has relatively high homophily.
GCN and GAT underperform LINKX-I and FAGCN for most experiments.

Efficiency In Figure 2, we show the number of parameters, throughput (subgraphs per second),
and latency (seconds per forward pass) of S2N models and SubGNN on HPO-Neuro, HPO-Metab, and
EM-User. We cannot experiment with PPI-BP since it takes more than 48 hours in pre-computation.
We make three observations in this figure. First, S2N models use fewer parameters and process
many samples faster (i.e., higher throughput and lower latency) than SubGNN. In particular, for
throughput, S2N models can process 8 to 300 times more samples than SubGNN for the same
amount of time. Second, the training throughput is higher than the inference throughput in S2N
models. Generally, as in SubGNN, throughput increases in the inference step, which does not require
gradient calculation. This is because the S2N models use message-passing between training and
inference samples (See §3). Thus, they compute both training and inference samples, requiring more
computation for the inference stage. Lastly, as one exception to general trends, the training latency
of GAT on HPO-Metab is higher than that of SubGNN. Note that latency ignores the parallelism
from large batch sizes (Dehghani et al., 2021). Our model can show relatively high latency since it
requires full batch computation. See Appendix E for the experimental setup.
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(a) Efficiency of S2N models and SubGNN on HPO-Neuro.

2.0 2.5
Params. 1e6

0.45

0.50

0.55

0.60

Pe
rfo

rm
an

ce

103 104 105

Throughput (#/sec)

0.45

0.50

0.55

0.60 Stage = Training

103 104 105

Throughput (#/sec)

Stage = Inference

0.0 0.2
Latency (sec/forward)

0.45

0.50

0.55

0.60 Stage = Training

0.0 0.2
Latency (sec/forward)

Stage = Inference
Use S2N

Yes
No

Model
SubGNN
GCN
GAT
LINKX-I
FAGCN

(b) Efficiency of S2N models and SubGNN on HPO-Metab.
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(c) Efficiency of S2N models and SubGNN on EM-User.

Figure 2: The number of parameters, throughput, and latency of S2N models and SubGNN on HPO-
Neuro (Top), HPO-Metab (Middle) and EM-User (Bottom).

5 CONCLUSION AND FUTURE RESEARCH

We propose Subgraph-To-Node (S2N) translation, a novel way to learn representations of subgraphs
efficiently. Using S2N, we create a new graph where nodes are original subgraphs, edges are re-
lations between subgraphs, and perform subgraph-level tasks as node-level tasks. S2N translation
significantly reduces memory and computation costs without performance degradation.

There are limitations in this research. First, we used simple translate functions and did not explore
them deeply. How do we define aggregated features and structures in translated graphs? Second,
we do not yet know the properties of subgraphs that affect the performance of the S2N translation.
What properties of subgraphs can be learned after translation? We leave these as future directions.
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Sebastian Köhler, Leigh Carmody, Nicole Vasilevsky, Julius O B Jacobsen, Daniel Danis, Jean-
Philippe Gourdine, Michael Gargano, Nomi L Harris, Nicolas Matentzoglu, Julie A McMurry,
et al. Expansion of the human phenotype ontology (hpo) knowledge base and resources. Nucleic
acids research, 47(D1):D1018–D1027, 2019.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34, 2021.

Andreas Loukas. Graph reduction with spectral and cut guarantees. Journal of Machine Learning
Research, 20:1–42, 2019.

Andreas Loukas and Pierre Vandergheynst. Spectrally approximating large graphs with smaller
graphs. In International Conference on Machine Learning, pp. 3237–3246. PMLR, 2018.

Changping Meng, S Chandra Mouli, Bruno Ribeiro, and Jennifer Neville. Subgraph pattern neural
networks for high-order graph evolution prediction. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

Dylan Mordaunt, David Cox, and Maria Fuller. Metabolomics to improve the diagnostic efficiency
of inborn errors of metabolism. International journal of molecular sciences, 21(4):1195, 2020.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 4602–4609,
2019.

Jianmo Ni, Larry Muhlstein, and Julian McAuley. Modeling heart rate and activity data for person-
alized fitness recommendation. In The World Wide Web Conference, pp. 1343–1353, 2019.

7

https://openreview.net/forum?id=Wi5KUNlqWty


Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural net-
works for graphs. In International conference on machine learning, pp. 2014–2023. PMLR, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in neural information processing systems, pp.
8026–8037, 2019.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=S1e2agrFvS.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &amp; Data
Mining, pp. 1150–1160, 2020.

Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, Benjamin L Ebert,
Michael A Gillette, Amanda Paulovich, Scott L Pomeroy, Todd R Golub, Eric S Lander, et al.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expres-
sion profiles. Proceedings of the National Academy of Sciences, 102(43):15545–15550, 2005.
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Table 3: Statistics of real-world datasets in original forms (before S2N translation).

PPI-BP HPO-Neuro HPO-Metab EM-User
# nodes 17,080 14,587 14,587 57,333
# edges 316,951 3,238,174 3,238,174 4,573,417
# subgraphs 1,591 4,000 2,400 324
Train/Valid/Test splits 80/10/10 80/10/10 80/10/10 75/15/15
Density of the global graph 0.0022 0.0304 0.0304 0.0028
Average # nodes / subgraph 10.2±10.5 14.8±6.5 14.4±6.2 155.4±100.2

Average density of subgraphs 0.216±0.188 0.767±0.141 0.757±0.149 0.010±0.006

Average # components / subgraph 7.0±5.5 1.5±0.7 1.6±0.7 52.1±15.3

# classes 6 10 6 2
Single- or multi-label Single-label Multi-label Single-label Single-label

A RELATED WORK

Subgraph Representation Learning There have been various approaches to use subgraphs for
expressiveness (Niepert et al., 2016; Morris et al., 2019; Bouritsas et al., 2020), scalability (Hamil-
ton et al., 2017; Chiang et al., 2019; Zeng et al., 2020), and augmentation (Qiu et al., 2020; You
et al., 2020). However, only a few studies deal with learning representations of subgraphs. The Sub-
graph Pattern Neural Network (Meng et al., 2018) learns subgraph evolution patterns but does not
generalize to subgraphs with varying sizes. The Subgraph Neural Network (SubGNN) (Alsentzer
et al., 2020) is the first approach of subgraph representation learning using topology, positions, and
connectivity. However, SubGNN requires large memory and computation costs to encode the men-
tioned information for prediction. Our method allows efficient learning of subgraph representations
without a complex model design.

Graph Coarsening Our S2N translation summarizes subgraphs into nodes, and in that sense, it is
related to graph coarsening methods (Loukas & Vandergheynst, 2018; Loukas, 2019; Bravo Herms-
dorff & Gunderson, 2019; Jin et al., 2020; Deng et al., 2020; Cai et al., 2021; Huang et al., 2021).
They focus on creating coarse graphs while preserving specific properties in a given graph, such as
spectral similarity or distance. The difference between them and ours is whether the node bound-
aries in coarse graphs (or super-nodes) are given or not. Super-nodes are unknown in existing works
of graph coarsening; thus, algorithms to decide on super-nodes are required. In S2N translation, we
treat subgraphs as super-nodes and can create coarse graphs with simple heuristics.

B DATASETS

Subgraph datasets PPI-BP, HPO-Neuro, HPO-Metab, and EM-User are proposed in Alsentzer et al.
(2020), and can be downloaded from the GitHub repository1. In Table 3, we summarize statistics
of datasets in original forms without S2N translation. We describe their nodes, edges, subgraphs,
tasks, and references in the following paragraphs.

PPI-BP The global graph of PPI-BP (Zitnik et al., 2018; Subramanian et al., 2005; Consortium,
2019; Ashburner et al., 2000) is a human protein-protein interaction (PPI) network; nodes are pro-
teins, and edges are whether there is a physical interaction between proteins. Subgraphs are sets of
proteins in the same biological process (e.g., alcohol bio-synthetic process). The task is to classify
processes into six categories.

HPO-Neuro and HPO-Metab These two HPO (Human Phenotype Ontology) datasets (Hartley
et al., 2020; Köhler et al., 2019; Mordaunt et al., 2020) are knowledge graphs of phenotypes (i.e.,
symptoms) of rare neurological and metabolic diseases. Each subgraph is a collection of symp-
toms associated with a monogenic disorder. The task is to diagnose the rare disease: classifying the
disease type among subcategories (ten for HPO-Neuro and six for HPO-Metab).

1https://github.com/mims-harvard/SubGNN
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EM-User EM-User (Users in EndoMondo) dataset is a social fitness network from Endomondo (Ni
et al., 2019). Here, subgraphs are users, nodes are workouts, and edges exist between workouts
completed by multiple users. Each subgraph represents the workout history of a user. The task is to
profile a user’s gender.

C MODELS

This section describes the model details we used: hyperparameter tuning and LINKX-I design. All
models are implemented with PyTorch (Paszke et al., 2019), PyTorch Geometric (Fey & Lenssen,
2019), and PyTorch Lightning (Falcon & The PyTorch Lightning team, 2019).

C.1 HYPERPARAMETERS

We tune seven hyperparameters using TPE (Tree-structured Parzen Estimator) algorithm in Op-
tuna (Akiba et al., 2019) by 30 trials: weight decay (10−9 – 10−6), the number of layers in Eset (2
or 4), the number of layers in Egraph (1 or 2), the pooling operating in Eset (sum or max), dropout
of channels and edges ({0.0, 0.1, ..., 0.5}), and gradient clipping ({0.0, 0.1, ..., 0.5}). We use batch
normalization (Ioffe & Szegedy, 2015) for all S2N models except LINKX-I.

C.2 INDUCTIVE LINKX (LINKX-I)

Given node features X ∈ RN×F0 and an adjacent matrix A ∈ RN×N , LINKX (Lim et al., 2021)
model computes the logit matrix Y ∈ RN×C by following equations,

HA = MLPA(A) ∈ RN×F , HX = MLPX(X) ∈ RN×F , (6)

Y = MLPf (ReLU(Wf [HA∥HX ] +HA +HX)) where Wf ∈ RF×2F (7)
The computation of the first single layer in MLPA = LinearA ◦ReLU ◦ LinearA ◦ ... is as follows

LinearA(A) = AWA, (AWA)[i, k] =
∑

j∈N (i)

WA[j, k], WA ∈ RN×F . (8)

In our inductive setting, we have Âtrain and Âtrain+eval, the shapes of which are

Âtrain ∈ {0, 1}Mtrain×Mtrain , Âtrain+eval ∈ {0, 1}(Mtrain+Meval)×(Mtrain+Meval). (9)

If we train MLPA on Âtrain, we cannot process Âtrain+eval, because shapes of matrix multiplication
do not match (i.e., Mtrain +Meval ̸= Mtrain). Thus, in LINKX-I, we use the modified matrix multi-
plication ⊛ in MLPA to aggregate parameters corresponding training nodes only. Formally, for the
matrix ÂM∗ ∈ RM∗×M∗ of the arbitrary shape,

(ÂM∗ ⊛WA)[i, k] =
∑

j∈N (i)∧j∈Vtrain

WA[j, k], (ÂM∗ ⊛WA) ∈ RM∗×F (10)

The remaining parts are the same as LINKX.

D GENERALIZATION OF HOMOPHILY TO MULTI-LABEL CLASSIFICATION

Node (Pei et al., 2020) and edge homophily (Zhu et al., 2020) are defined by,

hedge =
|{(u, v)|(u, v) ∈ A ∧ yu = yv}|

|A|
, hnode =

1

|V|
∑
v∈V

|{(u, v)|u ∈ N (v) ∧ yu = yv}|
|N (v)|

, (11)

where yv is the label of the node v. In the main paper, we define multi-label node and edge ho-
mophily by,

hedge, ml =
1

|A|
∑

(u,v)∈A

|Lu ∩ Lv|
|Lu ∪ Lv|

, hnode, ml =
1

|V|
∑
v∈V

 1

|N (v)|
∑

u∈N (v)

|Lu ∩ Lv|
|Lu ∪ Lv|

 . (12)

If we compute r = |Lu∩Lv|
|Lu∪Lv| for single-label multi-class graphs, r = 1

1 = 1 for nodes of same classes,
and r = 0

2 = 0 for nodes of different classes. That makes hedge, ml = hedge and hnode, ml = hnode for
single-label graphs.
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E DETAILS ON EFFICIENCY EXPERIMENTS

We compute throughput (subgraphs per second) and latency (seconds per forward pass) by following
equations.

Training throughput =
# of training subgraphs

training wall-clock time (seconds) / # of epochs
, (13)

Inference throughput =
# of validation subgraphs

validation wall-clock time (seconds) / # of epochs
, (14)

Training latency =
training wall-clock time (seconds)

# of training batches
, (15)

Inference latency =
validation wall-clock time (seconds)

# of validation batches
. (16)

We use the best hyperparameters (including batch sizes) for each model and take the mean wall-
clock time over 50 epochs. Our computation device is Intel(R) Xeon(R) CPU E5-2640 v4 and
single GeForce GTX 1080 Ti.

11


	Introduction
	Subgraph-To-Node Translation
	Experiments
	Results
	Conclusion and Future Research
	Related Work
	Datasets
	Models
	Hyperparameters
	Inductive LINKX (LINKX-I)

	Generalization of Homophily to Multi-label Classification
	Details on Efficiency Experiments

