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ABSTRACT

Detecting distinct submatrices of low rank property is a highly desirable matrix
representation learning technique for the ease of data interpretation, called the
matrix local low rank representation (MLLRR). Based on different mathematical
assumptions of the local pattern, the MLLRR problem could be categorized into
two sub-problems, namely local constant variation (LCV) and local linear low
rank (LLR). Existing solutions on MLLRR only focused on the LCV problem,
which misses a substantial amount of true and interesting patterns. In this work, we
develop a novel matrix computational framework called RPSP (Random Probing
based submatrix Propagation) that provides an effective solution for both of the
LCV and LLR problems. RPSP detects local low rank patterns that grow from small
submatrices of low rank property, which are determined by a random projection
approach. RPSP is supported by theories of random projection. Experiments on
synthetic data demonstrate that RPSP outperforms all state-of-the-art methods,
with the capacity to robustly and correctly identify the low rank matrices under
both LCV and LLR settings. On real-world datasets, RPSP also demonstrates its
effectiveness in identifying interpretable local low rank matrices.

1 INTRODUCTION

Matrix approximation has found wide-range utilities in recommendation systems, computer vision
and text mining. Traditional matrix low rank approximation methods, such as truncated singular
value decomposition (SVD) and rank minimization, assumes that the observed matrix has a global
low-rank, indicating that the low rank components are dense. This becomes challenging in the phase
of data interpretation. In real world data, both features and incidences may form sparse subspace
structures. As illustrated in Fig 1, a matrix can be generated as the sum of a series of local low rank
matrices, each consists of a sparse set of features and incidences. One example of such ‘locality’
property is the purchase history data, where a subset of items were purchased under a common reason
by a subset of customers, while neither the items bought together or the users sharing a common
purchase reason is known Cheng et al. (2014). Similarly, in biological single cell RNA-sequencing
data, a subgroup of genes may be regulated by an unknown signal that is activated only in a subset of
cells, which forms a local low rank gene co-regulation module Xia et al. (2017); Wan et al. (2019a);
Chang et al. (2020). In addition, shapes, numbers and words in imaging data are also local low rank
Lee et al. (2016). In these situations, Matrix Local Low Rank Representation (MLLRR) is more
advantageous with its locality assumptions to uncover more interpretable patterns hidden in the data.

Figure 1: One example of the Matrix Local Low Rank Representation (MLLRR) Problem.
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For an input matrix X ∈ RM×N , MLLRR aims to identify submatrices XIk×Jk
, k = 1...K, each

with a distinct low rank structure, where Ik and Jk represents row and column indices. The total
number of possible Ik×Jk combinations is 2N+M , making the MLLRR problem NP-hard Stockmeyer
(1975). Existing methods for MLLRR fall into three categories: (1) co-clustering approaches that
identify submatrices with distinct mean comparing to background Wan et al. (2019b); Banerjee et al.
(2007); (2) Sparse matrix decomposition based methods that penalize the number of non-zero entries
in the factor/singular matrices Yang et al. (2014); Shen & Huang (2008); Lee et al. (2010); Sill et al.
(2011); Witten et al. (2009); Hochreiter et al. (2010); and (3) Anchor-based methods that first pinpoint
local regions using certain primitive similarity measure, and further conduct a low rank fitting to
each anchored region Lee et al. (2016). Noted, all these methods rely on the assumption that the
low rank submatrix has a distinctly spiked mean compared to the background Yang et al. (2014).
Identification of submatrices with a more general definition of low rank property remain unsolved,
including: (1) the submatrices having a low rank and a similar mean compared to the background, (2)
the background noise matrix having heterogeneous and even contaminated distributions, and (3) the
submatrices is of a small size or has heterogeneous error distributions.

In this study, we re-visit the tasks of MLLRR from the perspective of random projection and
developed a new framework, namely RPSP (Random Probing-based Sub-matrix Propagation). RPSP
first evaluates low rankness of a large set of randomly sampled small submatrices, and gradually grow
these low rank submatrices using a propagation strategy. RPSP adopts a random projection approach
to approximate the singular values of submatrices that drastically improved the computational
efficiency compared to the conventional QR decomposition-based computation.

We systematically benchmarked RPSP with state-of-the-arts (SOTA) methods on comprehensively
simulated data and two real-world datasets. RPSP outperformed all SOTA methods on different
senarios. RPSP is shown to have the unique capability to handle heteroscedastic error distributions,
and distinguish a true local low matrix from background noise with or without spiked mean struc-
ture. Application of RPSP on real world datasets demonstrated its capability in detecting context
meaningful local low rank matrices.

The key contributions of this work include:
(1) RPSP is the first general solution for the LCV and unsolved LLR problems: Compared to
existing methods, RPSP is the only method that can robustly solve the MLLRR problem when (i)
the patterns are small, (ii) the mean of patterns is not necessarily distinct compared to background,
(iii) the background error is non-Gaussian or heterogeneous, and (iv) there are a large of low rank
submatrices of different size and ranks.
(2) A new perspective in analyzing and embedding local low rankness: We developed new
framework for computing and propagating local low rankness of submatrices by estimating singular
values of randomly sampled small submatrices and propagating small low rank submatrices to
gradually grow into larger ones. This framework directly computes the probability of local low
rankness, which also serves an interpretable embedding of matrix data.
(3) A theoretical framework is developed from mathematical theories of random projection that
support: (i) the identifiability of local low rankness, (ii) bound of sensitivity and specificity, and (iii)
impact of errors and pattern sizes with respect to the setting of hyperparameters of RPSP.
(4) An efficient computation of singular values: A random projection and parallel computing-based
method on GPU was developed to drastically increase the computation efficiency of singular values
for a large set of small matrices.

2 PRELIMINARIES

2.1 NOTATIONS AND MATHEMATICAL BACKGROUNDS

We denote a matrix X of M rows and N columns as XM×N , and its (i, j)-th entry as Xij . We
use Ik ⊂ {1, ...,M} and Jk ⊂ {1, ..., N} to denote row and column indices, and XIk×Jk

means
a submatrix indexed by Ik × Jk. ||X||1, ||X||2, ||X||∗ denote element-wise L-1, L-2, and nuclear
norms of a matrix, here nuclear norm is the sum of all singular values of X . For Z ∈ RM×N , we
use Rank(Z) to denote the rank of the matrix. Rank(Z) = r if and only if Z = UV T , where
U ∈ RM×r and V ∈ RN×r are two orthogonal rank-r matrices. To say that Z has a low rank
property, we mean r ≪ min(M,N). Intuitively, a random matrix will have a rank of min(M,N).
The low rank property of a matrix added by background noise is commonly characterized by truncated
SVD, as defined below.
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Definition 1. Truncated SVD. Let ZM×N = UΣV T (M ≥ N) be the singular value decomposition
(SVD) of Z, where UM×N and V N×N are left and right singular vector matrices, ΣN×N is a
diagonal matrix of singular values. Define diagonal matrix Σ(r)N×N such that Σ(r)

ii = Σii, i ≤ r;
Σ

(r)
ii = 0, i > r, i.e., the top r singular values. The truncated SVD of Z of rank r is defined as

tSVDr(Z) = UΣ(r)V T . By its definition, the numerical rank of Z is r if and only if Z = UΣ(r)V T .
When Z is added by noise, we utilize optimal tSVD to characterize the low rank property of Z,
which has been widely utilized in low rank representation of a matrix with errors Owen et al. (2009);
Wold (1978). Specifically, the optimal tSVD of Z is defined as tSV D∗(Z) = UΣ(r∗)V T , where r∗

is the smallest number such that E := Z − UΣ(r∗)V T that forms an independent and identically
distributed noise matrix or any predefined noise structure. We call r∗ as the estimated rank of
Z. Noted, estimating the exact rank r∗ requires additional assumption of noise, which is not the
primary focus of this work. Nonetheless, a matrix is low rank if and only if

∑k
n=1 Σii

||Z||∗ (∀k ≤ r∗) is
substantially larger compared to a random noise matrix.

2.2 PROBLEM STATEMENT

Definition 2. Matrix Local Low Rank Representation (MLLRR). For a given matrix XM×N ,
MLLRR identifies K low rank submatrices Xk := XIk×Jk

, Ik ⊂ {1...M}, Jk ⊂ {1...N}, k =

1, ...,K, s.t. tSV D∗(Xk) = UkΣ
(rk)
k V T

k , Uk ∈ Rmk×rk , Vk ∈ Rnk×rk , rk ≪ min(mk, nk), i.e.,
Xk are low rank submatrices added with error. Here mk and nk denote the cardinality of Ik and Jk.

The MLLRR problem could be categorized into two sub-problems based on the low-rank property:
(i) LCV (Local Constant Variation) considers submatrices with spiked expected means (E) compared
to the background, i.e. E(Xij) = uk,∀(i, j) ∈ Ik × Jk, E(Xij) = u0,∀(i, j) /∈ {Ik × Jk}Kk=1.
(ii) LLR (Local Low Rank) considers submatrices whose optimal tSVD are of a low rank rk, i.e.
tSVD∗(XIk×Jk

) = UkΣ
(rk)
k V T

k , where 1 ≤ rk ≪ min(mk, nk).

Noted, the LCV problem is a special case of LLR. We separate the two problems because most
existing approaches only solve the LCV problem. Let Ek := Xk − tSV D∗(Xk) be the background
noise of the kth submatrix. Importantly, real world data is often noisy and heteroscedastic, meaning
(1) the distribution across different Ek may not be identical; (2) for (i, j) /∈ {Ik × Jk}Kk=1 , Xij may
not be identically distributed; and (3) certain entries in Xk may be outliers that could corrupt its low
rank structure. Of note, in this study, we do not restrict the form of the background noise distribution.

2.3 RELATED WORKS

Currently, there exits three types of methods that can solve the MLLRR problem, namely co-clustering,
sparse matrix decomposition, and anchor-based approaches. The main goal of co-clustering is to find a
matrix partition such that the intra-co-cluster distance could be minimized, where the distance measure
is defined as the Kullback–Leibler divergence in Bregman co-clustering Banerjee et al. (2007), and
Euclidean distance in the plaid model Lazzeroni & Owen (2002). For matrix decomposition based
methods, they identify local low rank matrices by imposing sparsity constraints to the factor or
singular matrices U, V Witten et al. (2009); Yang et al. (2014); Lee et al. (2010); Shen & Huang
(2008); Sill et al. (2011). For anchor-based methods, Lee et al. proposed the LLORMA method by
using prior knowledge to select anchors of local low rank patterns and their nearby points with a
smooth kernel function Lee et al. (2016); Chen et al. proposed the WEMAREC method that builds
upon the submatrices identified by co-clustering methods Chen et al. (2015). More details on the
existing method formulations were provided in APPENDIX. Among the three types of methods,
co-clustering only solves the LCV problem. Although both matrix decomposition and anchor-based
methods focus on detecting LLR submatrices, only those submatrices with a distinct spiked mean
could be detected. In other words, only the LLR submatrices having the LCV property could be
detected. In addition, sparse matrix decomposition tends to detect large submatrix that may explain
better the variance of the whole matrix, while sacrificing the locality of the low rankness Yang et al.
(2014); Shen & Huang (2008), and the high computational cost of anchor-based methods are not
scalable to large matrix Lee et al. (2016); Chen et al. (2015). And none of the existing methods is
capable of handling outliers or heteroscedastic errors. In summary, there is lack of an effective and
scalable solution for the general MLLRR problem, especially when the mean of the target submatrix
is not different from the background and the data contains outliers and/or heteroscedastic errors.
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3 RPSP AND ITS MATHEMATICAL BASIS

The biggest challenge with local low rank submatrix detection lies in that neither the row or column
indices of the submatrix is known. As given in Definition 2, the low rankness property of a submatrix
is evaluated through the computation of its singular values, which apparently can’t be evaluated
until the submatrix has been presented. However, it is computationally impossible to go through
all the submatrices of an input matrix. RPSP grows a submatrix of low rank from smaller ones,
which utilizes two facts. Firstly, for a low rank matrix XM×N of rank r ≪ min(M,N), the self
consistency property suggests that any M0 ×N0 submatrix (M0, N0 ≥ r) randomly sample from X
is most likely to have a rank of r (Lemma 1 in Owen et al. (2009)). Secondly, for a given matrix,
the total number of square submatrices of dimension M0 grows exponentially with M0. The first
fact indicates that, any submatrix of low rank is a collage or complete coverage of its own (smaller)
submatrices, which are also of low rank. The second fact indicates that the only way for us to grow
a local low rank submatrix is to start from the much smaller submatrices. In fact, for M0 as small
as 2, it is computationally feasible for us to obtain a full collection of M0 ×M0 submatrices that
could densely cover XM×N . By teasing out all the M0 ×M0 submatrices of low rank, we could
then gradually build them up into larger low rank submatrices. The evaluation of the low rankness
for a large number of submatrices now becomes computationally expensive. In RPSP, our biggest
contribution is that we have developed a singular value approximation method using random project
to efficiently evaluate the low rankness of any given submatrix, making it possible for us to reconstruct
a low rank submatrix from its parts.

Figure 2: Mathematical considerations of random projection-based singular value computation.

3.1 EFFICIENT COMPUTATION OF SINGULAR VALUES FOR A LARGE SET OF SMALL MATRICES

Conventionally, singular values are computed by QR decomposition of O(n3) complexity. In this
study, we developed an alternative approach to drastically increase the efficiency of computing
singular values for a large amount of small matrices from the perspective of random projection.
Without loss of generality, we illustrate our mathematical bases and the computation of singular
values on square matrices. In Lemma 1, we first proved that the singular values of X can be estimated
via simple operations against a set of randomly sampled unit vectors, including inner products, sum
of squares, and max pooling, which can be efficiently computed on GPU. Lemma 2 derived from
the theories in Random Covering of Unit R-Sphere suggests the minimal requirement for densely
covering a Unit R-dimensional Sphere. It estimates the number of random unit vectors that are needed
to ensure that for any vector in RR there almost surely exists at least one random unit vector, whose
cosine similarity to the vector is larger than cos θ.

Lemma 1. For a given dimension R, denote XR×R as an input matrix and P ∈ RR×NR

as a
matrix of NR randomly generated unit vectors in RR. Y = XP denotes a random projection

of X , then lim
NR→∞

max
1≤j≤NR

√∑R
i=1 Y

2
ij = σ1 and lim

NR→∞
min

1≤j≤NR

√∑R
i=1 Y

2
ij = σR, here σ1

and σR are the largest and smallest singular values of X . Denote P(1) = argmax
P·,j

√∑R
i=1 Y

2
ij ,

lim
NR→∞

max
P·,j∈Sp(P(1))⊥

√∑R
i=1 Y

2
ij = σ2, where Sp(P(1))

⊥ denotes the null (or complemented) space

of the linear space spanned by P(1). Similarly, define P(r) = argmax
P·,j∈Sp(P(1),...,P(r−1))⊥

√∑R
i=1 Y

2
ij ,

lim
NR→∞

max
P·,j∈Sp(P(1),...,P(r−1))⊥

√∑R
i=1 Y

2
ij = σr, for r ∈ 3, ..., R− 1.
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Lemma 2. The minimum number of caps of half angle θ required to cover the unit Euclidean
R-sphere is called the Random Covering of the Unit R− Sphere. Then

Nc(R, θ) = exp(R · fc(θ)(1 + ϵR(θ)))
, where ϵR −→ 0 as R −→ ∞ and fc(θ) = −log sin θ. Here Nc(R, θ) is the minimum number
of caps with the given dimension R and half angle θ. This means, when R is large enough, if
we randomly choose exp(−Rlogsinθ + o(R)) caps, then the area of the uncovered surface of the
R-sphere will be almost negligible.

The proof of Lemma 1 is given in APPENDIX and the Lemma 2 was proven as a Corollary in the
section II of Wyner (1967). Lemma 1 and 2 together suggest that for a given matrix and the level
of error to be tolerated, its singular values could be estimated by simple operations against a set of
randomly generated unit vectors, which form the mathematical bases of Algorithm 1: Singular
Value Approximation. Its input includes a matrix X (Fig 2a) and a set of randomly generated unit
vectors P (Fig 2b), whose cardinality is bounded by Lemma 2. It projects X onto P and iteratively
estimates singular values and the null space of the approximated left singular vectors (Fig 2c).

Algorithm 1: Singular Value Approximation (Based on Random Projection)

Inputs: XR×R, NR randomly generated unit vectors denoted as P ∈ RR×NR

, cutoff θ
Outputs: Estimated singular values σ1, σ2, ..., σR

Singular Value Approximation(X,P, θ):
Y ← XP

Generate vector E, Ej ←
√∑R

i=1 Y
2
ij

σ1 ← max {Ej |1 ≤ j ≤ NR}
σR ← min {Ej |1 ≤ j ≤ NR}
P(1) = argmax

P·,j

E, Pnullsp
0 ← {Pj |Pj are columns of P}

for r in 1,...,R− 1 do
Pnullsp
r ← {Pj |Pj ∈ Pnullsp

r−1 ,max{cos(Pj , P(1)), ..., cos(Pj , P(r))} < cos(θ)}
σr+1 ← max {Ej |the corresponding Pj of Ej ∈ Pnullsp

r }
P(r+1) ← argmax

Pj

{E|Pj ∈ Pnullsp
r }

end
return {σ1, σ2, ..., σR}

In Algorithm 1, P(r) and Pnullsp
r are estimated rth left singular vector and the null space of the

linear space spanned by the first r left singular vectors, respectively. As randomly generated vectors
cannot be stringently orthogonal, θ is a hyper-parameter that determines the randomly generated
vectors that are in the null space of P(r). Noted, the null space of the linear space spanned by each Pj

does not rely on X that can be computed before the random projection. Thus, the random projection
and iterative computing of σr and P(r) only involve inner product, max, and sum of squares, which
can be efficiently and parallelly computed on GPU for a very large set of small matrices.

We have evaluated the computational efficiency and accuracy of Algorithm 1 versus conventional
QR decomposition-based SVD on both GPU and CPU servers (see more details in APPENDIX). We
tested the two methods 50 times on 105, 106, 107 and 108 2× 2, 105 4× 4, and 105 8× 8 matrices.
The averaged normalized root mean squared error between estimated and true singular values is 0.07.
We observed that Algorithm 1 used 10−5−10−2 seconds, which is consistently about 105 faster than
QR decomposition-based SVD. The max pooling step can be further optimized by first clustering the
random unit vectors into groups of high cosine similarities (Fig 2d), as detailed in APPENDIX.

3.2 THE RPSP FRAMEWORK

Algorithm 2 and Fig 3 illustrate the main framework of RPSP. The inputs of RPSP include a
matrix XM×N and hyper-parameters. The output are identified local low rank matrices, denoted
as {XIk×Jk

}, k = 1, ...,K. The initialization step of RPSP generates random unit vectors for
estimating singular values of small matrices. Specifically, Nt random vectors of length 2t, denoted as
Pt, t = 1...T will be generated, where T is the number of layers for submatrices propagation.
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Figure 3: The framework of the RPSP algorithm.

RPSP first randomly samples L1 2 × 2 submatrices from X , whose singular values are estimated
by Algorithm 1 against P1, as described in 3.1. Noted, 2 × 2 is the smallest unit submatrix that
possess a low rank structure. Our evaluation of Algorithm 1 suggests that the computation for
L1 = 10112× 2 matrices uses less than 10s. The value σ1

||P ||∗ characterizes the low rank property of
a 2× 2 matrix P , where σ1 and ||P ||∗ denote the first singular value and nuclear norm of P . The low
rank property of the 2× 2 submatrices is further propagated by a weighted sampling to generate L2

4× 4 submatrices. Specifically, a pair of none overlapped 2× 2 matrices were randomly sampled by
a probability weighted by the average of their σ1

||P ||∗ values. The row and column induces of the two
samples matrices form a new 4× 4 submatrix. The singular values of the 4× 4 submatrices will be
estimated by random projection and orthogonal pooling against P2. This procedure will be iteratively
conducted T times, by which LT 2T × 2T submatrices will be randomly sampled weighted by the
low rankness propagated through the T layers, whose singular values will be estimated. For each
t = 1, ..., T , RPSP also computes a M × N scoring matrix St, in which St

ij stores the frequency
of observing a large value of σ1

||P ||∗ among all the sampled 2t × 2t submatrices that hits to Xij . ST
ij

can be viewed as an approximation of the probability that Xij is contained by a LLR submatrix
with a size of 2T × 2T or larger. The local low rank submatrices in X can be further identified by a
co-clustering over ST . RPSP (Algorithm 2) consists the following sub algorithms:
(i) Singular Value Approximation (Algorithm 1) computes singular values for the 2t × 2t subma-
trices, as described in 3.1.
(ii) submatrix Propagation generate 2t+1 × 2t+1 submatrices by randomly sample pairs of non-
overlapped 2t × 2t submatrices with a probability weighted by the average of the low rankness score.
This approach enable the propagation of the low rankness of two small submatrices to a larger one if
the two small submatrices truly hit one local low rank submatrix. (Detailed in APPENDIX)
(iii) Local Low Rank Prediction reconstructs the local low rank matrices in X based on the scoring
matrix ST (Detailed in APPENDIX).

In the Algorithm 2, Pt denote the sets of randomly generated unit vectors;Rt denote the sets of the
2t × 2t submatrices randomly sampled (t = 1) or weighted sampled (t = 2, ..., T ) by submatrix
Propagation; Rt[j] denotes the jth submatrix in R; Et,t×Lt store the estimated singular values;
LowRankScoreT is a vector stores the top singular value divided by the nuclear norm of each
2T × 2T submatrix and ST denotes the scoring matrix, where ST

ij is the frequency of observing
LowRankScoreT > C for all the submatrices that contains Xij . Noted, the hyper-parameters T and
Lt can be easily determined based on the computational capability while C and Nt can be determined
based on the level of errors can be tolerated (see details in APPENDIX).

4 EXPERIMENTS ON SYNTHETIC DATA

We evaluated the overall performance and computational cost of RPSP on different scenarios of
MLLRR problem compared with SOTA methods on a comprehensive setup of synthetic datasets.

4.1 EXPERIMENTAL SETUP

We simulate X ∈ RM×N as X =
∑K

k=1 X
k + E. Here, entries in Xk is padded by zero except

for those indexed by Ik and Jk, corresponding to a local low rank submatrix with mk rows and nk

columns. E is background noise simulated by Ei,j ∼ N(0, αk ∗ sd),∀i ∈ Ik, j ∈ Jk; and the rest
of the entries in E follows N(0, sd). In evaluating the algorithm’s scalability, we allow M and N
to have three different values. Otherwise, we let M = N = 1000. To simulate Xk

Ik×Jk
, we first

simulated Yk as Yk = UkV
T
k , where Uk ∈ Rmk×rk and Vk ∈ Rnk×rk , and entries in Uk, Vk all

follow U(0, 1). Then Xk
Ik,Jk

is simulated as Yk − Yk + µk. Here, Yk denotes the element-wise mean
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Algorithm 2: RPSP
Inputs: XM×N , hyper-parameters T,Nt, Lt, C, t = 1, ..., T
Outputs: The indices set {I × J }, where Ik ∈ I, Jk ∈ J , XIk×Jk

is a local low rank matrix.
RPSP(X,T,Nt, Lt, C):
for t in 1,...,T do

Pt ←{Nt randomly generated unit vectors of length 2t}
end
R1 ← {L1 2× 2 submatrices randomly sampled from X}
E1,2×L1 ← Singular Value Approximation(R1, P1)
for t in 2,...,T do
Rt ← submatrix Propagation(X,Rt−1, E

t−1, Lt)

Et,2t×Lt ← Singular Value Approximation(Rt, Pt)
end
for j in 1,...,LT do

LowRankScoreT [j]← ET
1,j∑T

i=1 ET
i,j

end
for i in 1,...,M do

for j in 1,...,N do
ST
ij ← frequency of LowRankScoreT [k] > C for allRt[k] contains Xij

end
end
I × J ← Local Low Rank Prediction(ST )
return I × J

of matrix Yk, and hence µk mimics the overall mean of the k-th pattern matrix, and αk mimics the
relative noise level of the local low rank matrix to the overall background noise matrix. In total, we
obtained 284 different simulation scenarios, each has 5 repetitions, which include:

(1) Perturbed pattern mean: pattern mean µk = βk ∗ sd, where βk is a sequence from 0 to 3 with
step size 0.1; relative noise level αk = {0, 0.1}; pattern size mk = nk = {200, 500}.
(2) Perturbed background error: pattern mean µk = βk ∗ sd, where βk = {0, 0.1}; relative noise
level αk is a sequence from 0 to 3 with step size 0.1; pattern size mk = nk = {200, 500}.
(3) Perturbed pattern size: pattern mean µk = βk ∗ sd, where βk = {0, 0.1}; relative noise level
αk = {0, 0.1}; pattern size mk = nk is a sequence from 100 to 500 with step size of 20.

We evaluated the method performance of RPSP and selected SOTA methods on these synthetic
datasets, based on how well the identified patterns hit the true ones, and avoid the background noise.
We label the entries hitting true patterns as "positive" and the rest as "negative", and the True Positive
(TP), False Negative (FP), False Positive (FP), and True Negative (TN) occurrences are defined as the
number of "positive" entries that are identified as pattern (TP) or background (FP), or the number
of "negative" entries that are identified as pattern (FP) or background (TN). The overall prediction
accuracy is defined as TP+TN

TP+TN+FP+FN .

4.2 PERFORMANCE EVALUATION OF RPSP

We benchmarked RPSP with five SOTA methods, namely Bregman co-clustering (CC) Banerjee et al.
(2007) and Plaid Lazzeroni & Owen (2002), two sparse matrix decomposition methods (SSVD Yang
et al. (2014) and SPCA Zou et al. (2006)), and one anchor based method LLORMA Lee et al. (2016).
Detailed parameter setting of RPSP and other methods are provided in APPENDIX.

Accuracy in solving the LCV and LLR problems. Fig 4a-c illustrated the accuracy (y-axis) of
RPSP (red) and other methods for solving the LCV and LLR problem in different scenarios. Overall,
RPSP achieved higher than 0.8 accuracy under most settings, which is consistently higher than
baseline methods. On the dense data, SPCA failed to identify any pattern while CC detects the whole
matrix as one pattern, hence these two methods were excluded from further analysis. RPSP is the
only method that can identify local low rank pattern when its mean is close to the background mean
(Fig 4a), i.e., the LRR problem without the LCV property. As expected, we observed the prediction
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Figure 4: Benchmark of RPSP on Synthetic Data.

accuracy of the baseline methods to increase as the mean difference becomes larger (Fig 4a), and
all methods to have decreased performance with the increase of the noise level (Fig 4b). RPSP and
LLORMA are more robust to high noise level compared to SSVD and Plaid. The size test suggested
that RPSP can accurately identify the pattern when its size is even smaller than 100 × 100 in a
1000× 1000 matrix (Fig 4c). When the pattern size increases, the prediction accuracy of RPSP and
LLORMA also increase, but not SSVD or Plaid. An explanation is that a larger pattern is easier to be
hit by the randomly sampled submatrices in RPSP or the anchoring in LLORMA, while SSVD and
Plaid rely on the pattern sparsity assumption and are less sensitive to large patterns.

Power in detecting multiple patterns and the submatrices of different ranks. Where there exists
more than 1 local rank-1 sub matrices, RPSP again achieved high performance (Fig 4d1-2). The
way RPSP detects local low rank matrices is from the scoring matrices, which is less impacted by
the number of patterns. It is noteworthy that we focus on the LLR problem in a dense matrix, while
LLORMA and Plaid are more efficient on the LCV problem in a sparse matrix. On the dense matrix,
all the baseline methods failed to identify the LLR pattern when the mean difference of the pattern and
the background is low. We also evaluated RPSP on identifying LLR patterns of different dimensions
(Fig 3d4). Our results demonstrated that RPSP has a high robustness in detecting patterns of different
dimensions. Noted, the specificity of RPSP is always bounded by 1− a, where a is the probability of
presence of a local low rank matrix in a noise matrix.

Running time. We evaluated the time consumption of the methods on dense matrices of three sizes,
M = N = 102, 103, 104 (Fig 3d3). The running time of RPSP, Plaid and LLORMA are at a similar
level. Detailed experimental results and parameters of the GPU and CPU server for the experiment
are provided in APPENDIX.
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Table 1: Experiment on real-world data.

CR Time(s) CR Time(s)
0.82 0.8 0.76 1.90E+03 2.50E+03 2.50E+03 0.7 0.5 0.47 1.10E+05 1.00E+05 8.90E+04
0.76 0.73 0.72 1.70E+03 7.00E+02 7.00E+02 0.44 0.43 0.43 6.00E+04 4.90E+04 4.00E+04
0.58 0.54 0.52 2.50E+03 2.40E+03 2.50E+03 0.39 0.39 0.38 1.90E+04 1.90E+04 1.90E+04
0.52 0.52 0.51 2.50E+03 2.30E+03 2.50E+03 0.24 0.21 0.19 1.90E+04 1.90E+04 1.90E+04
0.59 0.5 0.5 2.50E+03 2.60E+03 2.30E+03 0.41 0.29 0.25 1.90E+04 1.90E+04 1.90E+04
0.5 0.5 0.49 2.30E+03 2.50E+03 2.50E+03 0.24 0.2 0.19 1.90E+04 1.90E+04 1.90E+04

0.48 0.48 0.48 2.30E+03 2.30E+03 2.30E+03 0 0 0 198 198 198
0.48 0.48 0.48 2.50E+03 2.50E+03 2.50E+03 0 0 0 198 198 198
NA NA NA NA NA NA 0.31 NA NA 8.10E+03 NA NA
NA NA NA NA NA NA NA NA NA NA NA NA

0.51 NA NA 6.00E+04 NA NA 0.28 NA NA 4.10E+05 NA NA
NA NA NA NA NA NA NA NA NA NA NA NA

0.05 951

2.00E-04 3.55

1.00E-03 182.84

0.02 49.59

GSE103322
Low Rankness Size

0.08 300.6

MovieLens
Low Rankness Size

0.02 637

RPSP 0.1 52.03

0.06 41.96LLORMA

NA

0.18 363

0.06 1.37

0.06 0.15

SSVD

SPCA

PLAID

CC

NA

5 EXPERIMENTS ON REAL-WORLD DATA

We benchmarked RPSP on two real-world datasets of different density rates (proportion of non-zero
entities in the overall input matrix), error distributions, and local low rank patterns, namely (1) the
MovieLens data and (2) single cell RNA-seq data. Details of data processing and algorithm settings
are given in APPENDIX. Four metrics were utilized to evaluate the performance of each method,
namely (1) the Low Rankness, calculated as the averaged σ1

||P ||∗ and (2) the averaged Size of the
identified submatrices P , (3) the total Coverage Rate(CR), defined as the total number of entries in
the top-k patterns divided by the size of the input matrix, and (4) the Running Time. In addition,
context specific meaning was evaluated based on prior knowledge.

Application to MovieLens data. MovieLens 25M data is a common benchmark dataset. It contains
the ratings of 62,000 movies by 162,000 users provided by GroupLensHarper & Konstan (2015).
We selected the top 600 active users(rows) and the 600 most rated movies(columns), reaching a
density rate of 20.0%. This is a relatively sparse dataset. Indeed, on sparse data, all baseline methods
tend to identify LCV submatrices, but still RPSP is more favorable than others in terms of the low
rankness, coverage rate. As shown in Table 1, the low rankness of the top six significant local low
rank matrices identified by RPSP is consistently higher (∼0.75) than the ones detected by baseline
methods (∼0.5). While the patterns detected by RPSP is of smaller sizes, their coverage rate is higher
than LLORMA, SSVD and SPCA because RPSP tends to detect non-overlapped patterns while the
top patterns identified by baseline methods are heavily overlapped.

Application to single cell (sc)RNA-seq data. The local low rank submatrices in scRNA-seq corre-
spond to sub-population of cells with distinct functions and the error distribution is heteroscedastic
and non-Gaussian Hou et al. (2020); Wan et al. (2019a). We applied RPSP and baseline methods
on a head and neck cancer scRNA-seq data, namely GSE103322 Puram et al. (2017). Here we
removed certain genes and cells with low expression, bringing the density rates to 75.71%. As
shown in Table 1, the low rankness, size and coverage rate of the top patterns identified by RPSP are
consistently higher than the ones detected by baseline methods. We conducted enrichment analysis of
the gene features in each detected submatrix to examine their interpretability Huang et al. (2007). We
found three local low rank matrices identified by RPSP that significantly enrich biological functions
including cell metabolism, cell proliferation, and antigen presentation.

In summary, RPSP outperforms all baseline methods in detecting local low rank matrices on the
real-world datasets, in terms of the low rankness, size, coverage rate, and contextual interpretability of
detected local low rank patterns. The running time of RPSP is at a similar level of baseline methods.

6 CONCLUSION

In this work, we provided a new computational framework, namely RPSP, to detect local low
rank matrices. RPSP is supported by rigorously derived mathematical theories. While existing
methods mainly focused on one sub-problem of MLLRR, our developed RPSP is the first method
capable of handling the general MLLRM problem. RPSP utilizes an efficient random projection
and GPU-based computation of singular values for a large set of small matrices. It propagates the
low rankness identified from small matrices to larger ones to identify local low rank submatrices
of coherent patterns. On both synthetic and real-world experiments, we demonstrated that RPSP
outperforms all baseline methods on the LLR problems for data of different sparsity level and error
distributions. Particularly, RPSP could detect low rank submatrices even when its mean structure is
not distinguishable from the background, or when the error distribution is heteroscedastic.
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A APPENDIX

A.1 SUB-ALGORITHMS OF RPSP

A.1.1 SUBMATRIX PROPAGATION

The Algorithm 3 submatrix Propagation conducts weighted sampling to generate 2t × 2t submatri-
ces based on the low rankness of 2t−1 × 2t−1 submatrices. The input of Algorithm 3 submatrix
Propagation include the input matrix X , sampled 2t−1 × 2t−1 submatrices, their singular values Et,
and the number of to be generated 2t × 2t submatrices Lt.

Algorithm 3: submatrix Propagation
Inputs: X,Rt−1, E

t−1, Lt

Outputs: Rt

submatrix Propagation(X,Rt−1, E
t−1, Lt):

Rt ← ∅
while |Rt| < Lt do

Prob ∼ U(0, 1)
Randomly pick two non-overlapping submatrices fromRt−1, denoted asRt−1[i] and
Rt−1[j]

W ← Et−1
1,i Et−1

1,j∑2t−1

k=1 Et−1
k,i

∑2t−1

k=1 Et−1
k,j

if Prob<W then
I ←Row indices ofRt−1[i] andRt−1[j]
J ←Column indices ofRt−1[i] andRt−1[j]
append(Rt, XI×J)

end
returnRt

A.1.2 LOCAL LOW RANK PREDICTION

RPSP further utilizes Algorithm 4 Local Low Rank Prediction to identify and reconstruct the local
low rank matrices. RPSP computes a M ×N scoring matrix ST , in which ST

ij stores the frequency of
observing a large value of σ1

||P ||∗ among all the sampled 2T × 2T submatrices that hits to Xij . Hence,
ST
ij can be viewed as an approximation of the probability that Xij is contained by a LLR submatrix

with a size of 2T × 2T or larger. Here we applied the Spectral Co-Clustering method developed by
Dhillon et al Dhillon (2001) and the python library provided by scikit-learn Pedregosa et al. (2011)
on ST to identify local low rank submatrices. With the indices of each possible local low rank matrix
identified, the local patterns were ranked by the level of their top singular values normalized by the
sum of all singular values. Here the local patterns of the top K significant low rank property or with
the top singular values large than a certain threshold form the final output of RPSP.

Algorithm 4: Local Low Rank Prediction
Inputs: ST,M×N

Outputs: I × J
Local Low Rank Prediction(ST,M×N ):
I × J ← Spectral Co-Clustering(ST )
return I × J
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A.1.3 OPTIMIZE THE MAX POOLING WITH RESPECT TO NULL SPACE IN ALGORITHM 1

The max pooling with respect to null space can be further optimized by clustering the random unit
vectors into groups of high cosine similarities. Specifically, the randomly sampled unit vectors were
first clustered by using K-mean of their cosine distance (1-cosine similarity). Then after P(1), ..., P(r)

were identified, the null space of the linear span of {P(1), ..., P(r)} was estimated by the union
of the clusters whose center PC satisfies max{cos(PC , P(1)), ..., cos(P

C , P(r))} < cos(θ)}. This
approach effectively reduce the number of cosine distance needed to be computed.

A.1.4 ASSESSMENT OF HYPER-PARAMETERS OF RPSP

RPSP has four hyper-parameters T , C, Lt, and Nt. Lt (number of randomly sampled or propagated
submatrices) can be determined based on the input matrix size and computational capacity. T
(number of layers for submatrix propagation) is set as 4 for efficient computation. C (threshold of
LowRankScore) can be computed by randomly sampling 2T × 2T submatrices of pure noise from
randomly shuffled X and generating an empirical null distribution of LowRankScore. Nt (number
of random unit vectors) can be determined by Lemma 2.

A.2 MATHEMATICAL DERIVATIONS AND CONSIDERATIONS

A.2.1 MATHEMATICAL CONSIDERATIONS OF THE MLLRR PROBLEM

The biggest challenge with local low rank submatrix detection lies in that neither the row or column
indices of the submatrix is known. As given in Definition 2, the low rankness property of a submatrix
is evaluated through the computation of its singular values, which apparently can’t be evaluated
until the submatrix has been presented. However, it is computationally impossible to go through
all the submatrices of an input matrix. RPSP grows a submatrix of low rank from smaller ones,
which utilizes two facts. Firstly, for a low rank matrix XM×N of rank r ≪ min(M,N), the self
consistency property suggests that any M0 ×N0 submatrix (M0, N0 ≥ r) randomly sample from X
is most likely to have a rank of r (Lemma 1 in Owen et al. (2009)). Secondly, for a given matrix,
the total number of square submatrices of dimension M0 grows exponentially with M0. The first
fact indicates that, any submatrix of low rank is a collage or complete coverage of its own (smaller)
submatrices, which are also of low rank. The second fact indicates that the only way for us to grow
a local low rank submatrix is to start from the much smaller submatrices. In fact, for M0 as small
as 2, it is computationally feasible for us to obtain a full collection of M0 ×M0 submatrices that
could densely cover XM×N . By teasing out all the M0 ×M0 submatrices of low rank, we could
then gradually build them up into larger low rank submatrices. The evaluation of the low rankness
for a large number of submatrices now becomes computationally expensive. In RPSP, our biggest
contribution is that we have developed a singular value approximation method using random project
to efficiently evaluate the low rankness of any given submatrix, making it possible for us to build a
submatrix from its parts.

A few examples can illustrate that why a global search cannot effectively solve the MLLRR problem.
We consider the following square matrices:

(1) XM ×M in which Xij ∼ N(0, 1) i.i.d.. Here X is a matrix of standard Gaussian error. The
largest singular value of X is about 2

√
M .

(2) Y M ×M in which Yi,· ≡ Y ′, Y ′[i] ∼ N(0, 1) i.i.d.. Here Y is a matrix of rank=1 that have the
same level of mean and standard deviation as X . Noted, the largest singular value of Y is about M .
(3) ZM×M in which Zij ≡ a. The largest singular value of Y is M × a.

Hence for a low rank sub-matrix of size
√
2M×

√
2M or smaller, whose mean and standard deviation

is not different to the background’s, it is less likely to be identified by a global SVD as the largest
singular value of the sub-matrix is about the same level of the largest singular value of the background
noise matrix. However, if the low rank sub-matrix has a spiked mean, its largest singular valued will
be amplified by the spiked mean and the top singular vector of the whole matrix is naturally sparse.
Hence, a LCV problem is more likely to be solved by a global search while the LLR problem of
insignificant mean difference between pattern and background is less likely to be detected by a global
search. So, it is necessary to think alternative approach to solve the general MLLRR problem. Noted,
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the idea of screening a large set of small submatrices and propagate the low rank property of smaller
ones to bigger submatrices only involves the computing of singular values of local patterns. Hence,
we do not expect that the RPSP method may have disparate performances in solving LCv and LRR
problems.

A.2.2 MATHEMATICAL FORMULATIONS OF SOTA METHODS

Co-clustering methods simultaneously clusters rows and columns of a two-dimensional data matrix.
The general assumption is that the targeted submatrix has a larger or small mean value comparing
to the background noise. The Bregman co-clustering method generates a matrix partition Ik, Jk
by preserving the maximum information of data X within the partitions. The approximation error
M(I, J)−M(Ĩ , J̃) represents the difference of the preserved information and original data, here
M(I, J) is the mutual information and M(I, J) − M(Ĩ − J̃) = KL(dist1(I, J)||dist2(I, J)).
Laura et al. proposed the Plaid model to detect the submatrix by fitting each entry Xij with K layers
and make sure the summation of all layers

∑K
k=1 µkIkJk approximate the original value. Sparse

SVD based methods identify local low rank matrix by adding L1 sparse panelty to a global truncated
SVD fitting. However, this type of methods still demands distinct mean difference between pattern
and background and trend to detect large low rank pattern that may explain the variance of the whole
matrix. Lee et al. proposed the LLORMA method by using prior knowledge to select anchors of
local low rank patterns. As listed in table 1, Kh

Ω is the kernel function with bandwith h to smooth the
projection value PΩ(·) near the anchor points Ω. However, this type of methods,highly depends on
prior knowledge that cannot solve the general MLLRR problem.

Table 2: Existing methods of MLLRR
Methods Examples Formulation Tasks Assumption

Co-clustering Bregman; minIk,Jk,µk

∑
k

∑
i∈Ik,j∈Jk

d(xij , µk) LCV Matrix
Plaid partition

Matrix SSVD; min
U,V

(||X − UV T ||2F + λu||U ||1 + λv||V ||1), LCV Sparse
decomposition SPCA LLR patterns
Anchor based LLORMA min

Î,Ĵ,X̂
(KX[Î,Ĵ] ⊙ PX[Î,Ĵ](X − X̂)) LLR submatrix

methods WEMAREC detection

A.2.3 PROOFS OF LEMMA 1

Lemma 1. For a given dimension R, denote XR×R as an input matrix and P ∈ RR×NR

as a
matrix of NR randomly generated unit vectors in RR. Y = XP denotes a random projection

of X , then lim
NR→∞

max
1≤j≤NR

√∑R
i=1 Y

2
ij = σ1 and lim

NR→∞
min

1≤j≤NR

√∑R
i=1 Y

2
ij = σR, here σ1

and σR are the largest and smallest singular values of X . Denote P(1) = argmax
P·,j

√∑R
i=1 Y

2
ij ,

lim
NR→∞

max
P·,j∈Sp(P(1))⊥

√∑R
i=1 Y

2
ij = σ2, where Sp(P(1))

⊥ denotes the null (or complemented) space

of the linear space spanned by P(1). Similarly, define P(r) = argmax
P·,j∈Sp(P(1),...,P(r−1))⊥

√∑R
i=1 Y

2
ij ,

lim
NR→∞

max
P·,j∈Sp(P(1),...,P(r−1))⊥

√∑R
i=1 Y

2
ij = σr, for r ∈ 3, ..., R− 1.

Proof. Noted,
∑R

i=1 Y
2
ij is the norm of the projection of X onto Y·,j . Y·,j = XP·,j =

UΣV TP·,j =
∑R

k=1 U·,kΣkkV
T
k,·P·,j , here UΣV T is the SVD of X . Then we have

∑R
i=1 Y

2
ij =∑R

i=1(
∑R

k=1 UikΣkkV
T
k,·P·,j)

2=
∑R

k=1

∑R
i=1(Uik)

2(Σkk)
2(V T

k,·P·,j)
2=

∑R
k=1(Σkk)

2(V T
k,·P·,j)

2

as U is orthogonal, both Σkk and V T
k,·P·,j are scalars. Hence the largest and smallest

∑R
i=1 Y

2
ij is

Σ11 and ΣRR, which are achieved when P·,j is V T
1,· and V T

R,·, respectively. As Sp(Y(1), ..., Y(r−1))
⊥

is the null space of the linear span of Y(1), ..., Y(r−1), the largest projection of X onto this space is
σr when P·,j is V T

r,·.
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A.3 EXPERIMENTAL DETAILS

Detailed experimental parameters, data and analysis are provided below. We conducted experiments
on a GPU server of Cray HPE EX architecture featured with 64 nodes, 4 A100 GPUs, 64 core and
256GB per node and a CPU server features 640 compute nodes, each equipped with 256 GB of
memory and two 64-core, 2.25 GHz, 225-watt AMD EPYC 7742 processors.

Table 3: The Singular Value Approximation and SVD Running Time C.

q=2,nc=5 Inner time(gpu) Inner time(cpu) Svd time(cpu)
ns=1e4 0.00002 0.0003 0.9
ns=1e5 0.00002 0.0031 0.1166
ns=1e6 0.000036 0.0328 1.1563
ns=1e7 0.0002 0.3664 11.6114
ns=1e8 0.037 3.6 116
q=4,nc=27 Inner time(gpu) Inner time(cpu) Svd time(cpu)
ns=1e4 0.000027 0.00235 0.0325
ns=1e5 0.000028 0.02436 0.3077
q=8,nc=767 Inner time(gpu) Inner time(cpu) Svd time(cpu)
ns=1e4 0.000032 0.0959 0.0828
ns=1e5 0.000059 0.9422 0.8171
q=16,nc=588804 Inner time(gpu) Inner time(cpu) Svd time(cpu)
ns=500 0.000349 NA NA
q=16,nc=3544 Inner time(gpu) Inner time(cpu) Svd time(cpu)
ns=1000 0.00003 0.1071 0.0268
ns=10000 0.000056 1.07 0.2542

A.3.1 BENCHMARK OF ALGORITHM 1: SINGULAR VALUE APPROXIMATION

We have evaluated the computational efficiency and accuracy of versus on conventional QR
decomposition-based computation of singular values. We tested Algorithm 1 on the GPU server and
QR decomposition-based SVD on both of the GPU server and a CPU server. Noted, due to the nature
of QR decomposition, it is slower on GPU compared to CPU. We tested the two methods 50 times on
106 2× 2, 105 4× 4, and 105 8× 8 matrices. The Algorithm 1 used less than 10−4 second, which is
on average about 105 faster than QR decomposition-based SVD. We also tested the methods 50 times
on 105, 106, 107 and 108 2× 2 matrices and have observed the speed of Algorithm 1 is consistently
105 faster than conventional SVD.

A.3.2 PARAMETER SETTINGS OF RPSP

In this study, we set T = 4 and have validated this setting can accurately identify LLR submatrices
in different scenarios. In this study, we set N1 =40, N2 =200, N3 =2000, and N4 =6000 that
guarantee almost surely that the max cosine distance between any 2, 4, 8, and 16 dimension vector
and the random unit vectors is larger than 0.98, 0.95, 0.92 and 0.8, respectively. We set the initial
L1=107, Lt =

Lt−1

10 , and we also accumulated the scoring matrix St by adding St−1, and forgetting
some scores with a random probability. This accumulation strategy can help our model learn from
the previous iterations, and thus drastically reduce the running time and increase accuracy.
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A.3.3 PARAMETER SETTINGS OF BASELINE METHODS

RPSP is implemented by python 3.9.8 version and the python libraries numpy(1.19.0)Harris
et al. (2020), pandas(1.4.1)pandas development team (2020), pytorch(1.6.0)Paszke et al.
(2019),numba(0.50.1)Lam et al. (2015) etc.

The baseline methods includes SSVD Yang et al. (2014), SPCA Erichson et al. (2020), Plaid Lazzeroni
& Owen (2002), CC Banerjee et al. (2007), LLORMA Lee et al. (2016). The first four methods
were implemented in R environment. For SSVD, we used R package ssvd (version 1.0) and default
parameters. For SPCA, we used R package sparsepca (version 0.1.2) and default parameters. For two
bicluster methods Plaid and CC, we used R package biclust (version 2.0.1). Specifically for Plaid, we
set ‘background’ parameter as True, ‘fit.model’ parameter as y ∼ m+ a+ b as tutorial. And for CC
method, the parameter δ and α was set as 1.0 and 1.5 as instructed by the tutorial.

For LLORMA, we used the Global LLORMA from author’s GitHub1 with library Tensorflow-GPU
1.4.0. For synthetic data experiments, all experiments were conducted by setting PRE_RANK=1
along with other default parameters. In real-world data experiments, we set PRE_RANK = 10 along
with other parameters in default. We used default learning rate parameter for all cases except for
when testing the time consumption on input matrices of sizes 10000×10000 and 5000×5000, where
the learning rate is set to be PRE_LARNING_RATE = 2e-5.

A.3.4 EVALUATION METRIC OF SYNTHETIC DATA BASED EXPERIMENTS

For the simulated data. The Accuracy of detecting the true pattern and the back ground noise is used
in our experiments to evaluate the performance of RPSP and the benchmarks. For one simulated
input matrix XM×N , we labeled the true pattern as "1" and the back ground noise as "0". We keep
tracking the index of the true pattern, thus we could generate a binary matrix as the ground-truth
GTM×N . If we define the output from the methods above to be XM×N

output and change the non-zero
elements in XM×N

output to "1". We could get the output binary matrix GTM×N
output. Then we can get the

criterion of True Positive(TP), True Negative(TN), False Positive(FP), False Negative(FP) and the
Accuracy by the following function:

TP, FP, FN, TN ← Confusion_Matrix(GTM×N
output, GTM×N ) (1)

Accuracy ← TP + TN

TP + TN + FP + FN
(2)

Note that in some simulation settings, the method SPCA failed, so we gave its Accuracy of 0. In fact,
all "0" Accuracy in the figures are because the methods could failed to give an output. For method
CC, it sometimes detects the whole matrix as one pattern matrix, meaning that CC could not identify
any of the true pattern. Under our evaluation metrics, CC will result in TP=1,TN=0,FP=0,FN=1, so
we gave the Accuracy of 0.5.

A.3.5 REAL-WORLD DATA PROCESSING

MovieLens data: We have gotten the permission from GroupLens to use the MovieLens
datasetHarper & Konstan (2015) in our experiments and the datasets don’t include sensitive in-
formation. MovieLens 25M data contains the ratings of 62,000 movies by 162,000 users. The
MovieLens data is commonly used as a benchmark data for pattern detection. To ensure the rigor of
evaluation, we selected the top 600 active users(rows) and the 600 most rated movies(columns) to
build a testing dataset with a density rate of 20.0%. This is a relatively sparse dataset. Indeed, on
high sparsity dataset, all baseline methods tend to identify LCV submatrices, but still RPSP is more
favorable than others in terms of the low rankness and coverage rate of the detected patterns.

Single Cell RNA-sequencing data: Single cell RNA-sequencing (scRNA-seq) is a high throughput
technique that measures the gene expression profile of individual cells Tirosh et al. (2016); Puram
et al. (2017). The researchers are allowed to use the dataset in their study and the datasets don’t

1https://github.com/JoonyoungYi/LLORMA-tensorflow
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include sensitive information. The real application performed on two biomedical datasets, which are
melanoma and head and neck cancer scRNA-seq data. We collected these two datasets from Gene
Expression Omnibus (GEO) database, with accession ID GSE72056 and GSE103322. The cell type
label and sample information provided in the original work were directly utilized. The GSE72056
data is collected on human melanoma tissues. The original paper provided cell classification and
annotations including B cells, cancer-associated fibroblast (CAF) cells, endothelial cells, macrophage
cells, malignant cells, NK cells, T cells, and unknown cells. The GSE103322 data is collected on head
and neck cancer tissues. The original paper provided cell classification and annotations including
B cells, dendritic cells, endothelial cells, fibroblast cells, macrophage cells, malignant cells, mast
cells, myocyte cells, and T cells. We utilized a standard normalization protocol (FPKM) for both
datasets, and selected the 4000 genes (rows) and 2000 cells (columns) with the highest expression
values, bringing the density rates to 70.14% (GSE72056) and 75.71% (GSE103322). Notably, as
indicated by the original work, malignant cells have high intertumoral heterogeneity. Theses two
datasets provide us great opportunity to analysis the biological mechanism by identifying the local
low rank pattern within data. And the total citation of two work is above 2000.

Both data sets have been utilized in more than 100 studies, in which GSE72056 contains 23684 genes
and 4486 cell, and GSE103322 contains 22494 genes and 5902 cell. We utilize the standardized TPM
measure of gene expression level as the input. Firstly, we first conducted a standardized normalization
of the data by taking log+1: X ← log2(X + 1). We further selected the 4000 genes (rows) of top
averaged expression level and the 2000 cells (columns) of the top total expression level to build our
input testing data X4000×2000. The Low Rankness, Coverage Size(Size), Coverage Rate, Running
Time were used as metrics in our experiments to evaluate the performance of RPSP and benchmark
with other methods. For each submatrices calculated by the methods above, we compute its COR
rate, Size(how many elements in it) and the coverage of rate of the submatrix to the input real data.

The rows represent the genes and the columns represent the cell. Each element in the matrix means
the gene expression. The scRNA-seq data is sparse, the zero value in the matrix means the gene is
not expressed in the cell. Thus, we just select 4000 rows and 2000 columns by their top mean value
in our experiments. Specifically, the scRNA-seq data is the unstructured data, it isn’t like the image
data, the order of row or column doesn’t have special mean. The experiments on scRNA-seq data,
our goal is to get the local low rank submatrix from these data. The results (Fig S1) show that RPSP
performances great to get the submatrices of LLR structure. The figures of Coverage Rate and Size
show that RPSP can get the most obvious LLR structure submatrix and coverage enough submatrix
size(product of number of row and column). The Running Time shows that RPSP has good time
performance. RPSP consistently identified the local rank-1 pattern under this experimental setting.

Spatial transcriptomics data: 10x Genomics spatial transcriptomics (ST) is a recent com-
mercialized technique to measure spatial coordinates associated gene expression signal from a
biological tissue sample, and it has a huge utilization in biomedical studies. The researchers
are allowed to use the dataset in their study and the datasets don’t include personal information.
We collected the spatial transcriptomics data human breast cancer tissue (v1.1 section 1) from
https://www.10xgenomics.com/resources/datasets/, consisting 13161 genes and 3798 spatial
spots. The data was processed and visualized by using Seurat 4.0 R packageHao et al. (2021).
Counts data were directly utilized as the input of RPSP and other baseline methods. The row
represents the genes and the column represents the cell. our goal is to get the local low rank sub-
matrix form this data. The result(Fig S1e) shows one case of local low rank submatrix found by RPSP.

A.3.6 EVALUATION METRICS OF REAL-WORLD DATA

Four evaluation metrics were utilized to evaluate the performance of each method, namely (1)
the Low Rankness, evaluated by σ1

||XIk×Jk
||∗ of an identified local low rank matrix XIk×Jk

:∑
i∈Ik

PCC(Xi,Jk
, V,1), where σ1 is the largest singular value and ||XIk×Jk

||∗ is the nuclear
norm of XIk×Jk

, (2) the Size of a local low rank matrix, (3) the total Coverage Rate defined as the
total number of entries in the top-k identified patterns divided by the size of the input matrix, and (4)
the Running Time. In addition, context specific meaning of the identified patterns were evaluated by
prior knowledge on the row/column-wise features.
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A.3.7 COMPREHENSIVE SUMMARY OF REAL-WORLD DATA BASED EXPERIMENTS
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Fig S1. Experiment on real-world data.

Application on movieLens data: MovieLens 25M data contains the ratings of 62,000 movies by
162,000 users provided by GroupLensHarper & Konstan (2015). The MovieLens data is commonly
used as a benchmark data for pattern detection. To ensure the rigor of evaluation, we selected the
top 600 active users(rows) and the 600 most rated movies(columns) to build a testing dataset with a
density rate of 20.0%. This is a relatively sparse dataset. Indeed, on high sparsity dataset, all baseline
methods tend to identify LCV submatrices, but still RPSP is more favorable than others in terms of
the low rankness, coverage rate.

We evaluated the top significant local low rank matrices identified by each method. The low rankness
of the top six significant local low rank matrices identified RPSP is consistently higher (∼0.8) than
the ones detected by baseline methods (∼0.55) (Fig S1a), while the size of the patterns detected by
RPSP is lower but at a similar level of the ones detected by LLORMA, SSVD and SPCA Fig S1b).
Although the patterns detected by RPSP is slightly smaller, their coverage rate is higher than the
results of LLORMA, SSVD and SPCA. This is because the ones detected by RPSP are distinctly
non-overlapping while the top patterns identified by baseline methods are heavily overlapped (Fig
S1c). On this data, Plaid did not detect any pattern while CC detected a large pattern formed by
309 users and 221 movies, whose low rankness is lower than the ones detected by RPSP. The RPSP
has longer running time than LLORMA, SSVD and SPCA but is faster than CC. In sum, on the
MovieLens data, FFLRM could detect distinct local low rank matrices of specifically high low
rankness.

Application on single cell RNA-seq data: Single cell RNA-sequencing (scRNA-seq) is a high
throughput technique commonly used in studying complex biological systems Tirosh et al. (2016);
Puram et al. (2017). A typical scRNA-seq data is a matrix of ∼10,000 genes (rows) in ∼5,000
individual cells (columns) with a density rate in the range of 5% − 50%. The LCV and LLR
submatrices in a scRNA-seq data directly correspond to sub-population of cells with distinct functions
Wan et al. (2019a). We applied RPSP and SOTA methods on two real-world scRNA-seq data that are
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most commonly utilized in testing pattern detection methods, namely GSE72056 (melanoma) and
GSE103322 (head and neck cancer) Tirosh et al. (2016); Puram et al. (2017). Due to page limit, we
only presented the results on GSE103322 in the main text. But here, we are presenting the results
for both scRNA-Seq datasets. We utilized a standard normalization protocol (FPKM) and built the
testing data by selecting the 4000 genes (rows) and 2000 cells (columns) with the highest expression
values, bringing the density rates to 70.14% (GSE72056) and 75.71% (GSE103322).

On the two scRNA-seq data, both the low rankness and the size of the top patterns identified by
RPSP are consistently higher than the ones detected by baseline methods (Fig S1a-b). The patterns
detected by RPSP are much less overlapped than the ones detected by LLORMA and SSVD. RPSP
also achieved the highest total coverage rate comparing to all baseline methods (Fig S1c). Plaid and
CC only detected one local pattern, whose low rankness is much lower than the ones detected by
RPSP, LLORMA and SSVD. The RPSP had longer running time than SSVD and SPCA but is faster
than LLORMA and CC on the scRNA-seq data (Fig S1c). We also examined the biological meaning
of the low rank patterns detected by RPSP, LLORMA and CC, by testing the enrichment of the gene
features of each pattern against known biological pathways. Noted, only in RPSP, we found three
local low rank matrices significantly enrich distinct biological functions including cell metabolism,
cell proliferation, and antigen presentation. In summary, RPSP outperforms all baseline methods in
detecting local low rank matrices on the scRNA-seq data sets, in terms of the low rankness, size,
coverage rate and biological interpretability of detected patterns.

Application on spatial transcriptomic data: 10x Genomics spatial transcriptomics (ST) is a recent
commercialized technique to measure spatial coordinates associated gene expression signal from a
biological tissue sample, and it has been widely utilized in biomedical studies. A typical ST data
is a matrix of ∼15,000 genes (rows) in ∼4,000 individual spatial spots (columns), and each spot
has a 2D spatial coordinate (Fig S1d). A key challenge in ST data analysis is to infer the spatially
dependent biological functional variations, which could be modeled as local low rank matrices formed
by functionally associated genes over a certain spatial region, i.e. a MLLRR problem.

We applied RPSP and SOTA methods on the v1.1 ST data of breast cancer provided by 10xge-
nomics.com, consisting of 13161 genes and 3798 spatial spots with a density rate of 40.56%. Noted,
as we have seen in the MovieLens and scRNA-seq data, RPSP is the only method that detected
patterns of strong low-rankness. We showcased one of the LLR patterns specifically detected by
RPSP (Fig S1e). The genes of this submatrix include two major groups, MHC class-I (immune signal
given from cancers) and MHC class-II (immune signal received by immunes) antigen presenting
genes. The spatial coordinates and signal level of this submatrix suggested the region of different
levels of immune response in the cancer tissue (red regions in Fig S1f are of high immune response).
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