
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

MSDZip: Universal Lossless Compression for Multi-source Data
via Stepwise-parallel and Learning-based Prediction

Anonymous Author(s)∗†

Abstract
With the rapid development of the Internet, the huge amount of
Multi-Source Data (MSD) brings challenges in data sharing and
storing. Lossless data compression is the major way to solve those
problems. Nowadays, neural-network technologies bring significant
advantage in data modeling, making learning-based lossless com-
pressors (LLCs) for multi-source data have emerged continuously.
Comparedwith traditional compressors, the LLCs aremore useful to
catch complex redundancy patterns in MSD, and thus have great po-
tential in enhancing compression ratio. However, existing LLCs still
suffer from unsatisfactory compression ratios and lower throughput.
To solve those problems, we propose a novel universal MSD lossless
compressor calledMSDZip via Stepwise-parallel and learning-based
prediction technologies, it introduces two major designs: 1) We pro-
pose a Local-Global-Deep Mixing block in the learning-based pre-
diction module to establish dependencies for MSD symbols, where
designed Deep Mixing block solves the problem of unstable weights
in the perceptual layers caused by cold-start problem to enhance
the compression ratio significantly. 2) We design a Stepwise-parallel
multi-GPU-accelerated compression strategy to address the com-
pression speed and graphics memory constraints of single GPU in
the face of large-scale data. The Stepwise-parallel module passes
the source MSD to learning-based prediction model through the
data chunking strategy, where the model of the previous chunk is
used to guide the compression of the next chunk in parallel. We
compare MSDZip with 5 classical learning-based and 6 traditional
compressors on 12 well-studied real-world datasets. The experi-
mental results demonstrate that MSDZip optimizes 3.418%∼69.874%
in terms of compression ratio and 31.171%∼495.649% in terms of
throughput compared to advanced LLCs. The source code of MS-
DZip and the linkages of the experimental datasets are available at
https://anonymous.4open.science/r/MSDZip-0E4E/.

CCS Concepts
• Information systems→ Data compression.

Keywords
multi-source data, lossless data compression, neural networks, deep
learning, parallel computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’25, April 28–May 02, 2025, Sydney, Australia
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/25/04
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Anonymous Author(s). 2025. MSDZip: Universal Lossless Compression for
Multi-source Data via Stepwise-parallel and Learning-based Prediction.
In Proceedings of Make sure to enter the correct conference title from your
rights confirmation emai (WWW ’25). ACM, New York, NY, USA, 9 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
With the rapid development of the worldwide Internet, the volume
of Multi-Source Data (MSD), like images, texts, videos and audios,
showing explosive growth [11, 47, 48]. As IDC report [42], the global
data size is expected to climb to 284 ZB (1 Zettabyte = 270 bytes)
by 2027. This surge in data volume poses significant pressure and
challenges in MSD sharing and storing in the Internet-connected
web world. Therefore data compression is critical in the web. For
example, compression of CSS and JavaScript files on websites can
reduce the file size, thus reducing the number of HTTP requests
and transmission time; compression of website data (e.g., PNG [2]
lossless format of images), which can improve page loading speed
and user experience; and compression of redundant indexes in the
server database can reduce thememory consumption and accelerate
the query speed at the same time [28].

Universal methods for lossless MSD compression are either tra-
ditional or learning-based. Traditional compressors suffer from
inferior compression effect, because they fail to fully consider
the contextual environment of the redundancy symbols in the to-
be-compressed-MSD. Recently, with deeper research into neural-
network technologies, an emerging trend is to combine deep learn-
ing models with entropy coding algorithms [20, 41] to achieve
more efficient lossless compression, such as PAC [33], TRACE [32],
OREA [31], DZip [13], lstm-compress [23], et al. The learning-based
Lossless Compression method shows significant compression po-
tential on MSD datasets, as their excellent fitting and accurate
modeling abilities of to-be-compressd-MSD. However, the existing
LLCs still face the following shortcomings.

• Poor Compression Ratio. The existing LLCs face poor
compression ratio problem, for three reasons: 1) Insufficient
contextmodeling capability for redundant to-be-compressed-
MSD; 2) The cold-start problem in the initial compression
stage of the dynamic prediction module. 3) Unstable layer
contribution in the prediction module.

• Low Throughput. The low throughput limits the wide-
spread and use of LLCs, especially in large-scale MSD com-
pression scenarios. For example, in our testing, in one 100
MB MSD dataset, CMIX [22] and NNCP [1] consume up
to 67 hours and 18.7 hours in total time, respectively. The
throughput of CMIX and NNCP are only 412 and 1483
bytes/second, respectively. We argue for two reasons: 1)
Complex deep learning model is not practical for LLC, as
the reasoning overhead of the model is expensive. 2) Low

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

algorithm parallelism degree, especially in the era of multi-
GPU.

To address those problems, we propose a novel lossless MSD
compressor named MSDZip with the following contributions.

• We analyze the problem of unstable layer contribution in
LLCs like OREO [31] and PAC [33], and propose a Feature
Extracting Module (FEM) and a Local-Global-Deep three-
layer Feature Mixing Module (FMM) to solve them. Here,
the FEM is used to extract the features of MSD symbols and
FMM includes three crucial components Local Mixing Block
(LMB), Global Mixing Block (GMB), and Deep Mixing Block
(DMB) for local features mixing, global features mixing, and
deep output mixing, respectively.

• We design a Stepwise-parallel strategy to accelerate MSD
compression on multi-GPU. It takes advantage of the princi-
ple that neighboring regions of the MSD have the same dis-
tribution as the next data partition to compress the model
obtained from the current data partition. The model ob-
tained is used as a bootstrap model for the compression of
the next data partition, alleviating the problem of deteri-
orating compression ratios due to cold-start problem and
parallelism.

• We benchmark our MSDZip and 11 advanced compressors
on 12 classical real-world datasets to measure the perfor-
mance. The experimental results show that our MSDZip
outperforms existing compression solutions in terms of
compression ratio and throughput.

2 Background
Traditional statistical modeling-based algorithms can encode the
probability of occurrence of symbols in any given data to get as close
as possible to the information entropy [4, 5, 19, 21, 34]. However, it is
well known that the probability of the same MSD symbol appearing
in different locations depends on its contextual context [13, 23,
33]. Compared with statistical models, learning-based predictive
models have more powerful expressive ability to deal with complex
patterns, and achieve a large advantage in compression ratio. In
this section, we first introduce the compression and decompression
process of the LLCs, then give their classification philosophy.

We denote symbol as the smallest compression unit, usually
one byte, target symbol is the symbol to be compressed, history
symbols denote the symbols adjacent to the target symbol, variable
t represents the timestep.

When compressing the target symbol 𝑥𝑖 in sequence 𝑆 , the
compressor inputs 𝑡 history symbols {𝑥𝑖−𝑡 , ..., 𝑥𝑖−1} into the pre-
dictor to obtain the probability distribution 𝑝 (𝑥𝑖 |𝑥𝑖−𝑡 , ..., 𝑥𝑖−1) of
the 𝑥𝑖 , and then inputs the probability distribution and 𝑥𝑖 into
the entropy encoder to compress it into a smaller state 𝑐𝑖 , where
𝑖 = 𝑡, ..., |𝑠 | − 1 and |𝑠 | is the length of the to-be-compressed-MSD
sequence. Meanwhile, the predictor calculates the cross-entropy
loss between 𝑝 (𝑥𝑖 |𝑥𝑖−𝑡 , ..., 𝑥𝑖−1) and 𝑥𝑖 , and computes the gradi-
ent of the loss with respect to the model parameters by the back-
propagation algorithm, and then updates the model parameters
using gradient descent to improve the model prediction capability.

The decompression process differs from the compression process
in that the input to the entropy encoder is a probability distribution

of 𝑝 (𝑥𝑖 |𝑥𝑖−𝑡 , ..., 𝑥𝑖−1) and the compressed state 𝑐𝑖 , and the output
is the original symbol 𝑥𝑖 , where 𝑖 = 𝑡, ..., |𝑆 | − 1.

3 Related Work
Existing DL-based algorithms are categorized into static, dynamic,
and semi-dynamic based on whether or not the compressor updates
the model parameters during the compression process [13, 32, 45].

3.1 Static
Static compressor uses a probabilistic predictive model to pre-train
the to-be-compressed-MSD in multiple epochs before compression
and saves the model parameters. At the beginning of compres-
sion, after loading the trained model parameters the probabilistic
predictor no longer performs backpropagation to update the pa-
rameters. DeepZip [12] and DecMac [27] use RNN [44] and its
variant LSTM [43] as probabilistic predictive models, respectively.
Athough there is no need for backpropagation to update the param-
eters, multiple epochs of pre-training add additional time overhead.
The recently emerging large language model-based compressors
LLMZip [51] and LMIC [8] use Chinchilla [16] and LLaMa [50]
as predictors, respectively. Despite good compression ability in
some datasets they get, possess a large inference cost due to the
large model. For example, LLMZip’s throughput on the Enwik8
dataset [30] is only 27 bytes/s [45].

3.2 Dynamic
Dynamic compressors require no pre-training, it start the model
with random parameters, and update the parameters in real time
during compression to better fit the data distribution. CMIX [22]
mixes the probability distributions of more than two thousand
models, including several specialized models, and has very good
compression ratio but very slow compression speeds. NNCP [1]
and lstm-compress [23] use the LSTM as a probabilistic prediction
model, where NNCP also uses the LSTM [43] as a predictor of the
probability. NNCP and lstm-compress use LSTM as a probabilis-
tic prediction model, where NNCP also preprocesses the data to
extract repeated patterns, mapping the original file to a smaller
one, which has a better compression ratio but also a larger time
overhead. TRACE [32] uses a variant of Transformer [52], the Per-
former [3, 25], as a predictor. OREA [31] and PAC [33] use Multi-
Layer Perception (MLP) [26] in combination with a sequential mask
to achieve compression. sequential masks in combination to achieve
compression with less computational cost.

3.3 Semi-Dynamic
DZip [13] combines static and dynamic compression algorithms
that not only pre-train the data, but also introduce additional models
to correct the predicted probability distribution during the actual
compression process to achieve better compression ratios.

Existing static and semi-dynamic, despite having better compres-
sion ratios overall, require additional time for model pre-training
and additional space for storing model parameters for decompres-
sion. Dynamic compression algorithms have overall lower time and
space overheads, but the presence of later cold-start problems [32]
with the model leads to poor compression ratios. Therefore, due
to issues such as insufficient modeling capabilities of the model,

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

MSDZip: Universal Lossless Compression for Multi-source Data via Stepwise-parallel and Learning-based Prediction WWW ’25, April 28–May 02, 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Stepwise-Parallel
Processor

Feature
Extracting

Module

Feature
Mixing
Module

Learning-based Probability Predictor

Softmax
 Module

Arithmetic
Encoder

Entropy Encoder
MSDZip

Compressed
Binary File

GPU 0
GPU 1

GPU 2Stepwise
Passing

P BSSource
File

Figure 1: Compression pipeline of the proposed MSDZip. 𝑆 , 𝑃 , 𝐵 denote the inputted sub-sequence collection,probability
distribution collection, and arithmetic encode byte-stream, respectively.

cold-start problems, and low parallelism design, existing LLCs have
significant room for improvement in terms of compression ratio
and throughput.

4 Method
In this paper, variable 𝝆 represents the parallel number, and variable
d denotes the embedding dimension when symbols are input to the
model.

4.1 Framework
Fig. 1 shows the workflow of the proposed MSDZip, which includes
three important components.

• Stepwise-parallel Processor (SP). In order to improve
the compression speed, SP employs a novel multi-GPU
Stepwise-parallel compression strategy. SP splits the read-
in byte stream 𝐵 into 𝜌 equal-length sequences {𝑆𝑖 }𝜌−1𝑖=0 and
is responsible for loading the model, inputting the data, and
saving the model in a stepped form. Compared with ordi-
nary chunk parallelism, Stepwise-parallel strategy not only
reduces the time overhead, but also effectively alleviates
the problem of deteriorating compression ratio caused by
random parameter startup (cold-start) of the model.

• Probability Predictor (PP). PP includes three modules:
Feature Extracting Module (FEM), Feature Mixing Mod-
ule (FMM), and Softmax Module (SM). For each target
symbol 𝑥𝑖 in sequence 𝑆 , PP inputs the 𝑥𝑖 into FEM to
obtain the feature vector ℎ𝑖 , mixes ℎ𝑖 with the feature
vectors {ℎ𝑖−𝑡 , ..., ℎ𝑖−1} of history symbols vim FMM to es-
tablish symbol dependencies and outputs logits Λ𝑖 , and
feeds Λ𝑖 into SM to obtain the probability distribution
𝑝 (𝑥𝑖 |𝑥𝑖−𝑡 , ..., 𝑥𝑖−1) of 𝑥𝑖 .

• Entropy Encoder (EE). EE uses Arithmetic Coding [20, 41]
to compress the target symbol 𝑥𝑖 into a binary stream based
on its probability distribution 𝑝 (𝑥𝑖 |𝑥𝑖−𝑡 , ..., 𝑥𝑖−1).

4.2 Stepwise-parallel Processor (SP)
Analysis. LLCs have achieved a large advantage in compression
ratio, but the compression speed has always been one of the biggest
factors limiting their wide application [45]. With the gradual in-
crease of the data-size, single GPU is overstretched both in terms

Compression Time Line

GPU Unit

G
PU

 0
G

PU
 1

G
PU

 2

�0

�1

�2
Stepwise
Passing

�0

�1

�2

M: Learning-based prediction model, S: Partitioned MSD

Used to train the starting model

Figure 2: The schematic diagram of Stepwise-parallel

of speed and graphics memory, so multi-GPU parallel compression
has a wider research prospect [29, 45].

Compared with the static compressor that requires pre-training,
the dynamic compressor does not, it starts the model with random
parameters to realize the prediction of probability distribution [31–
33], and adjusts the parameters in real time during the compression
process to converge gradually. As the model is trained while com-
pression, the loss value is gradually decreasing, and the loss value is
highly correlated with the information entropy [12, 53]. This means
that the compression of those symbols at the beginning of the model
startup is not ideal (also called the cold-start problem in [32]. Thus
plainly chunking the data and compressing it in parallel at the same
time only amplifies this problem.

Design. In order to alleviate the problem of poor compression
ratio caused by cold-start, we design a Stepwise-parallel Proces-
sor, a multi-GPU parallel compression strategy containing three
operations: loading, training, and saving model.

Let the initial random parameter model be𝑀0, for any sequence
𝑆𝑖 obtained from the segmentation of byte stream 𝐵, where 𝑖 =

0, ..., 𝜌 − 2. SP first loads the model𝑀𝑖 , and then inputs the history
and target symbols into PP and EE to realize the compression. The
current model state is saved as𝑀𝑖+1 after compressing 𝑛 symbols.
While 𝑆𝑖 continues to be compressed,𝑀𝑖+1 is used as the starting
model to start the compression of 𝑆𝑖+1, and so on, until the last
sequence 𝑆𝜌−1 is completely compressed. The whole compression
process ends. The Fig. 4 gives an example of Stepwise-parallel by
using three GPUs.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

In designed SP, all the passed intermediate models are obtained
from the previous model training, and the initial𝑀0 can be derived
from a fixed random seed, so this parallel compression process does
not need to save the model parameters for decompression as in
the case of static compressors, but only needs to repeat the above
process in reverse.

Explanation. The effectiveness of SP mainly utilizes the princi-
ple of closer distribution of data in adjacent regions [33]. Taking 𝑆𝑖
as an example, to support batch compression, the algorithm sets
equally spaced anchor points in 𝑆𝑖 and compresses the Target Sym-
bol at the anchor points at the same time, where 𝑖 = 0, ..., 𝜌 − 2.
In the next batch, all anchor points are moved backward by one
timestep. This means that the model senses the distribution of data
in the tail of 𝑆𝑖 at the beginning, which in turn is spatially adjacent
to the head of 𝑆𝑖+1. Thus the model trained on 𝑆𝑖 can be used to
bootstrap the compression against 𝑆𝑖+1.

4.3 Probability Predictor (PP)
Analysis. OREO [31] and PAC[33] are the current state-of-the-art
LLCs based on MLP [37], and they utilize sequential importance to
establish the dependency between symbols. Gradual aggregation
of features is achieved by stacking multiple compression modules.
In the prevailing view of LLCs, the deeper the neural network,
the better the model fits the data, and hence the better the com-
pression [45]. However, as shown in Fig. 3(a), when we used the
PAC [33] to test with different layers of compression modules on
xml, x-ray, mr and osdb datasets from the Silesia corpus [9], we
found that the time overhead keeps increasing as more modules are
stacked, but the compression ratio becomes worse instead. Based
on this observation, we added a mask with a weight of 1 to the
output of each compression module used by PAC, and recorded the
change of the mask weight in real time during the compression
process. As shown in Fig. 3(b), we have observed that the ranking
of the contribution to the final logits are different for compression
modules throughout the process. This is because deeper networks
may suffer from the problem of vanishing gradients, causing the
model to converge more slowly. Especially on small datasets, there
may be situations where the model is still converging but the data
has already been compressed.

Design. In order to improve the performance of the compres-
sion model, we propose an improved Learning-based Probability
Predictor based on the individual-mix autoregressive compression
framework [33], which contains three parts: Feature Extracting
Module (FEM), Feature Mixing Module (FMM) and Softmax Module
(SM).

The following will introduce each module as an example of
compressing the symbol 𝑥𝑖 in the sequence 𝑆 , where 𝑖 = 0, ..., |𝑆 | −1.

4.3.1 Feature Extracting Module (FEM). Feature Extracting
Module is used to extract the feature of the symbol 𝑥 .

As shown in Fig. 1, FEM first embeds 𝑥 to higher dimensions
to enhance the representation and capture the semantic relations,
yielding 𝑒 ∈ R1×𝑑 . Next, as shown in Eq. 1, the FEM performs linear
projection and nonlinear activation [33] on 𝑒 to obtain the feature

(a) Relationship between compression ratio and number of layers

(b) Contribution of different layers in the iterative process

Figure 3: Influence of layer depth on compression effect

vector ℎ ∈ R1×𝑑 of 𝑥 .

ℎ𝛼 = 𝛿 (𝑒), ℎ𝛼 ∈ R1×𝑑

ℎ𝛽 = 𝜃 (𝛿 (ℎ𝛼𝑊 + 𝑏)), ℎ𝛽 ∈ R1×𝑑 ,𝑊 ∈ R𝑑×𝑑 , 𝑏 ∈ R1×𝑑

ℎ =
ℎ𝛼 + ℎ𝛽

2

(1)

where 𝛿 and 𝜃 are the LayerNorm [24] layer and the activation
function GELU [15], respectively, and𝑊 and 𝑏 are the learnable
weight and bias, respectively. Learnable weight and bias can enable
the establishment of dependencies and ordered importance [31, 33]
between symbols.

Based on above feature extraction approach, for the symbol 𝑥𝑖
in 𝑆 , where 𝑖 = 0, ..., |𝑆 | − 1:

• If 0 ≤ 𝑖 < 𝑡 , FEM extracts the features ℎ𝑖 ∈ R1×𝑑 of 𝑥𝑖 and
stores it in Cache, then skips FMM and SM and directly
takes the average probability distribution 1/255 of 𝑥𝑖 as the
output of PP.

• If 𝑡 ≤ 𝑖 < |𝑆 |, FEM fetches the features 𝐻 = {ℎ𝑖−𝑡 , ..., ℎ𝑖−1}
of 𝑡 history symbols from the Cache, and inputs 𝐻 into
FMM for training and prediction to obtain the probability
distribution 𝑝 (𝑥𝑖) to compress 𝑥𝑖 . At the same time, FEM
extracts the feature ℎ𝑖 of 𝑥𝑖 via Eq. 1, and adds it to the tail

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

MSDZip: Universal Lossless Compression for Multi-source Data via Stepwise-parallel and Learning-based Prediction WWW ’25, April 28–May 02, 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Feature Extracting Module (FEM)

 ... xi-2 xi-1 ...xi

LayerNorm

Linear LayerNorm

GELU

Embedding

hi

+

...
hi-t+1

CacheInput Sequence

add

e

ℎ�

ℎ�

Figure 4: The schematic diagram of Feature Extracting Mod-
ule (FEM)

of Cache while removing the first oldest feature vector ℎ𝑖−𝑡
in preparation for compressing the next symbol.

Compared to [12, 13, 23, 32], FEM uses Cache to save features
of symbols so that each symbol is processed only once during
compression process, greatly reducing computational cost.

4.3.2 Feature Mixing Module (FMM). According to the au-
toregressive compression process in FEM, it can be seen that no
dependency has been established between the new input feature
vector and the old history features in Cache. For this reason, we
design the FMM for mixing the features between the symbols to
establish the connection.

FMM consists of several perceptual layers with the same struc-
ture, where each layer contains Local Mixing, Global Mixing, and
Deep Mixing blocks. FMM receives the feature vectors of 𝑡 history
symbols from FEM to form the initial feature matrix 𝐻0 ∈ R𝑡×𝑑 .
Fig. 5 shows the workflow of each block.

Take the 𝑙-th Perceptual Layer as an example and define its input
as 𝐻 𝑙 , where 𝑙 = 0, ..., 𝑙𝑜𝑔2𝑡 .

(1) Local Mixing Block (LMB): When 𝑙 > 0, LMB mixes the
feature vectors of locally adjacent 2𝑙 symbols in 𝐻 𝑙 . LMB
first concatenates the local 2𝑙 feature vectors to form a new
feature vector ℎ𝑙𝛼 ∈ R1×(2𝑙×𝑑) . Then LMB performs linear
projection [33] of ℎ𝑙𝛼 to obtain ℎ𝑙

𝛽
∈ R1×(2𝑙×𝑑) via Eq. 2.

ℎ𝑙
𝛽
= 𝜃 (𝛿 (ℎ𝛼𝑊 + 𝑏)),𝑊 ∈ R(2

𝑙×𝑑)×(2𝑙×𝑑) , 𝑏 ∈ R1×(2𝑙×𝑑) (2)

Finally, the mapped vectors are concatenated and flattened
to form 𝐻 𝑙

𝐿
∈ R𝑡×𝑑 .

(2) Global Mixing Block (GMB): GMB mixes the features of
all history symbols. GMB first maps 𝐻 𝑙

𝐿
to higher dimen-

sions to enhance the representation via Eq. 3 to obtain the
matrix 𝐻 𝑙

𝛼 ∈ R𝑡×2𝑘 .

𝐻 𝑙
𝛼 = 𝜃 (𝐻 𝑙

𝐿𝑊𝛼 + 𝑏𝛼),𝑊𝛼 ∈ R𝑑×2𝑘 , 𝑏𝛼 ∈ R1×2𝑘 (3)

LMB

GMB

DMB

LMB

GMB

DMB

LMB

GMB

DMB

Layer 0 Layer 1 Layer ���2�

Feature Mixing Module (FMM)

...

�0
����2�+1

Figure 5: The schematic diagram of Feature Mixing Module
(FMM). 𝐻0, 𝐻 𝑙𝑜𝑔2𝑡+1 denote the input and output feature ma-
trices of FMM, respectively. LMB, GMB, DMB represent Local
Mixing, Global Mixing, and Deep Mixing block, respectively

The GMB then employs the spatial gating unit (SGU) [26]
to capture more complex patterns in the sequence via Eq.4,
and obtain 𝐻 𝑙

𝛽
∈ R𝑡×𝑘 .

𝑈 = 𝐻 𝑙
𝛼 [:, 0 : 𝑘],𝑈 ∈ R𝑡×𝑘

𝑉 = 𝐻 𝑙
𝛼 [:, 𝑘 : 2𝑘],𝑉 ∈ R𝑡×𝑘

𝐻 𝑙
𝛽
= 𝑈 ⊙ (𝑊𝛽𝑉 + 𝑏𝛽),𝑊𝛽 ∈ R𝑡×𝑡 , 𝑏𝛽 ∈ R1×𝑘

(4)

Where the symbol ⊙ represents the dot product operation.
Finally GMB maps 𝐻 𝑙

𝛽
to 𝐻 𝑙

𝐺
∈ R𝑡×𝑑 via Eq. 5.

𝐻 𝑙
𝐺 = 𝜃 (𝛿 (𝐻 𝑙

𝛽
𝑊𝛾 + 𝑏𝛾)),𝑊𝛾 ∈ R𝑘×𝑑 , 𝑏𝛾 ∈ R1×𝑑 , (5)

(3) Deep Mixing Block (DMB): In order to avoid problems
such as gradient explosion or disappearance to improve
the compression ratio, DMB mixes 𝐻 𝑙

𝐺
with 𝐻 𝑙 via Eq. 6 to

generate 𝐻 𝑙+1 ∈ R𝑡×𝑑 .

𝐻 𝑙+1 = 𝜎 (𝜔𝑙) × 𝐻 𝑙
𝐺 + (1 − 𝜎 (𝜔𝑙)) × 𝐻 𝑙 (6)

where 𝜎 is the activation function Sigmoid and 𝜔𝑙 is the
learnable weight of 𝑙-th layer, which is initially set to zero.

Finally FMM feeds the output logits Λ = 𝐻 𝑙𝑜𝑔𝑡+1 to the Softmax
Module.

4.3.3 SoftmaxModule (SM). Softmax Module receives the logits
Λ from the FMM and then flattens it to get Λ𝛼 ∈ R1×(𝑡×𝑑) , then
mapsΛ𝛼 into |𝐴| dimensions to obtainΛ𝛽 ∈ R1×|𝐴 | = {𝜆0, ..., 𝜆 |𝐴 |−1},
where𝐴 represents the alphabet. Finally SM gets the probability dis-
tribution 𝑝 (𝑥𝑖 |𝑥𝑖−𝑡 , ..., 𝑥𝑖−1) = {𝑝 𝑗 } |𝐴 |−1𝑗=0 of 𝑥𝑖 , where 𝑝 𝑗 is defined
as:

𝑝 𝑗 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝜆 𝑗) =
𝑒𝜆 𝑗∑ |𝐴 |−1

𝑚=0 𝑒𝜆𝑚
, 𝑗 = 0, ..., |𝐴| − 1 (7)

input the Λ into the Softmax activation function to obtain the
probability distribution 𝑝 (𝑥𝑖 |𝑥𝑖−𝑡 , ..., 𝑥𝑖−1) of 𝑥𝑖 .

4.4 Entropy Encoder (EE)
Entropy Encoder encodes 𝑥𝑖 into a binary stream according to
its probability distribution 𝑝 (𝑥𝑖 |𝑥𝑖−𝑡 , ..., 𝑥𝑖−1) to achieve lossless
compression. Common entropy coding algorithms are Arithmetic

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Coding [20, 41], Huffman Coding [17] and Asymmetric Numeral
Systems [10]. In this paper, we apply the most used Arithmetic
Coding in similar studies [7, 12, 13, 31–33] as the entropy encoder
because it has the best compression effect.

To easily understand the whole process of MSDZip, we give a
detailed description of the compression process as shown in Algo-
rithm 1. Decompression process is similar to compression, except
that the input is reversed compared to the compression.

Algorithm 1: Compression Process of MSDZip
Input: input file; timestep 𝑡 ; parallel number 𝜌
Output: compressed file Φ

1 𝐵← Read the input file in byte-stream format;
2 𝑃 ← Initialize the Probability Predictor;
3 𝐸← Initialize Arithmetic Encoder;
4 {𝑆𝑖 }𝜌−1𝑖=0 ← Partition 𝐵 uniformly into 𝜌 sequences;
5 function COMPRESSION(𝑆 , 𝜑) {
6 Let 𝑆 = {𝑥𝑖 } |𝑆 |−1𝑖=0 and 𝜑 are input and output data;
7 for 𝑖 = 0 to 𝑡 − 1 do
8 𝑝 (𝑥𝑖)← Get average probability 1

256 of 𝑥𝑖 using 𝑃 ;
9 𝜀 (𝑥𝑖) ← Apply 𝐸 to encode 𝑥𝑖 according to 𝑝 (𝑥𝑖);

10 for 𝑖 = 𝑡 to |𝑆 | − 1 do
11 𝑝 (𝑥𝑖 |𝑥𝑖−𝑡 , ..., 𝑥𝑖−1) ← Get probability distribution

of 𝑥𝑖 using 𝑃 ;
12 𝜀 (𝑥𝑖) ← Apply 𝐸 to encode 𝑥𝑖 according to

𝑝 (𝑥𝑖 |𝑥𝑖−𝑡 , ..., 𝑥𝑖−1);
13 Backpropagate to update 𝑃 to minimize the loss;

14 Write binary data {𝜀 (𝑥𝑖)} |𝑆 |−1𝑖=0 to the file 𝜑 ;
15 }
16 𝑀0← Initialize the model with random parameters;
17 for 𝑖 = 0 to 𝜌 − 1 Stepwise-parallel do
18 Load the model𝑀𝑖 ;
19 COMPRESSION(𝑆𝑖 , 𝜑𝑖);
20 𝑀𝑖+1← Save the model at a fixed moment;

21 Φ←Merge all compressed files {𝜑𝑖 }𝜌−1𝑖=0

5 Results
All experiments were conducted on a server equipped with 4 × Intel
Xeon Silver 4310 CPUs (2.10 GHz, 48 cores in total), 4 × NVIDIA
GeForce RTX 4090 GPUs (16,384 CUDA cores, 24 GB of GPU mem-
ory), and 256 GB of DDR4 RAM. The server runs the Linux operating
system Ubuntu 20.04.6 LTS.

5.1 Setup
5.1.1 Datasets. We used 12 classical well-studied datasets [9, 18,
30, 32, 39, 40, 52, 54–56] of different types to test the performance
of MSDZip and similar compressors. The details of the datasets are
shown in Table 1.

5.1.2 Baselines. We compare MSDZip with 5 advanced open-
sourced LLCs lstm-compress [23], DeepZip [12], DZip [13], TRACE [32],

and PAC [33], and 6 classical traditional compressors Gzip [14],
PBZIP2 [36], Snzip [49], LZMA2 [35], PPMD [5], and LZ4 [6].

5.1.3 Metrics. We measure the compression effectiveness and
efficiency of all compressors with the classical metrics, Compres-
sion Ratio (CR) and Throughput (THP), respectively. Among them,
compression ratio is defined as [38, 45–47]:

𝐶𝑅 =
𝑆𝑖𝑧𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑

𝑆𝑖𝑧𝑒𝑠𝑜𝑢𝑟𝑐𝑒
× 8 𝑏𝑖𝑡𝑠/𝑏𝑎𝑠𝑒 (8)

Here, the 𝑆𝑖𝑧𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 and 𝑆𝑖𝑧𝑒𝑠𝑜𝑢𝑟𝑐𝑒 represent the size of com-
pressed file and source file, respectively. Smaller values of CR indi-
cate the better performance. The THP is defined as [45]:

𝑇𝐻𝑃 =
𝑆𝑖𝑧𝑒𝑠𝑜𝑢𝑟𝑐𝑒

𝐶𝑇 + 𝐷𝑇 𝑏𝑦𝑡𝑒𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 (9)

Here, the CT and DT represent the time costs of compression and
decompression, respectively.

5.1.4 Parameters Setting. All baselines use the default param-
eters according there papers and reports [12, 13, 23, 32, 33]. Our
proposed MSDZip applies the parameters batchsize, timestep, em-
bedding dimension, and hidden dimension to 512, 16, 16, and 256, re-
spectively, the same as the MLP-based compressor PAC [33]. When
executing parallel compression, we used two GPUs, i.e., 𝜌 = 2.

5.2 Compression Ratio
Table 2 shows the compression ratio of MSDZip with baselines on
all datasets. In order to show the advantage of LLC in compres-
sion ratio, we have additionally tested the compression ratios of
6 classic traditional algorithms Gzip [14], PBZIP2 [36], Snzip [49],
LZMA2 [35], PPMD [5], and LZ4 [6] as a comparison.

From the results, it can be seen that the CR of MSDZip on all 12
classical datasets are significantly better than other advanced LLCs
and traditional compressors. This is due to the fact that MSDZip
employs a proposed Local-Global-Deep Mixing structure in each
perceptual layer of the Feature Mixing Module in PP to fully estab-
lish the dependencies between symbols, and also introduces the
SGU to enhance the information interaction across spatial symbols.
We have counted the overall compression ratios of all the compres-
sors and calculated the improvement of MSDZip over baselines via
Eq. 10.

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
𝐶𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 −𝐶𝑅𝑜𝑢𝑟𝑠

𝐶𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
× 100% (10)

From the results, we can see that MSDZip has improved by 3.418%
∼69.874% in terms of compression ratio as compared to baselines.

Besides, we also found that the lstm-compress [23] performs
significantly worse than other compressors on the ImageTest (D8)
and DNACorpus (D11) datasets. We believe this is due to gradient
explosion or vanishing issues during the training process, which
prevents the model from converging well and fitting the data prop-
erly. DeepZip [12] seems to exhibit this problem even more severely,
as it results in compressed files that are much larger than the source
files on datasets such as CLIC (D7), ImageTest (D8), GoogleSpeech
(D9), and LJSpeech (D10). On top of its improved version, DZip [13],
not only includes pre-training but also introduces an additional
model during the compression process to update parameters in
real-time, thus avoiding this issue.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

MSDZip: Universal Lossless Compression for Multi-source Data via Stepwise-parallel and Learning-based Prediction WWW ’25, April 28–May 02, 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Detailed information of all datasets

Index Dataset Type Size (bytes) Description

D1 Enwik8 [30] text 100000000 First 108 bytes of the English Wikipedia dump on 2006

D2 Text8 [30] text 100000000 First 108 bytes of the English Wikipedia (only text) dump on 2006

D3 Enwik9 [30] text 1000000000 First 109 bytes of the English Wikipedia dump on 2006

D4 Book [52] text 1000000000 First 109 bytes of BookCorpus

D5 Silesia [9] heterogeneous 211938580 A heterogeneous corpus of 12 documents with various data types

D6 Backup [32] heterogeneous 1000000000 109 bytes random extract from the disk backup of TRACE

D7 CLIC [55] image 243158876 Classical image compression benchmark (validation) of the CLIC 2024

D8 ImageTest [40] image 470611702 A new 8-bit benchmark dataset for image compression evaluation

D9 GoogleSpeech [54] audio 327759206 First 10,000 audio files of the Google Speech Commands Dataset

D10 LJSpeech [18] audio 293847664 First 10,000 audio files of the LJSpeech Dataset

D11 DNACorpus [39] genome 685597124 A corpus of DNA sequences from 15 different species

D12 GenoSeq [56] genome 1926041160 A collection of genomics sequencing dataset with FastQ format

Table 2: Compression Ratio (bits/base) of MSDZip and baselines. The Boldface means the best result.

Compressor text heterogeneous image audio genome Overall Improvement

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 (%)

Traditional MSD Compressor

Gzip 2.916 2.644 2.581 2.875 2.554 6.237 7.992 5.885 5.770 6.851 2.171 1.616 3.534 37.634

PBZIP2 2.321 2.112 2.033 2.143 2.063 5.978 7.977 4.643 4.754 5.872 2.103 1.324 3.048 27.690

Snzip 4.475 4.303 4.020 4.678 3.829 7.100 8.001 7.326 7.387 7.982 3.682 2.676 4.800 54.083

LZMA2 1.989 1.858 1.718 2.027 1.839 5.084 7.956 4.786 4.717 5.850 1.800 1.198 2.799 21.258

PPMD 1.853 1.712 1.602 1.801 1.816 5.706 7.956 4.437 4.453 5.587 1.944 1.209 2.805 21.426

LZ4 3.359 3.117 2.980 3.263 2.921 6.653 8.000 6.658 6.514 7.728 2.734 1.977 3.985 44.693

Learning-based MSD Compressor

lstm-compress 1.854 1.756 1.571 1.704 1.776 4.475 7.505 7.225 3.623 4.459 7.605 0.934 3.156 30.165

DeepZip 1.952 1.806 18.027 1.681 1.870 4.340 22.204 20.272 14.398 20.833 1.863 1.018 7.316 69.874

DZip 1.875 1.757 1.539 1.591 1.716 4.236 8.021 3.595 3.805 4.921 1.799 0.908 2.366 6.847

TRACE 1.870 1.782 1.556 1.781 1.771 4.547 7.757 3.496 3.664 4.486 1.870 0.988 2.427 9.188

PAC 1.695 1.626 1.377 1.590 1.604 4.200 7.507 3.362 3.869 4.784 1.802 0.849 2.282 3.418

MSDZip (Ours) 1.635 1.592 1.298 1.549 1.502 4.074 7.475 3.334 3.517 4.317 1.783 0.847 2.204 —

On the whole, except for DeepZip, which has compression anom-
alies, the compression ratios of LLCs are significantly better than
that of traditional compressors. This is due to the fact that neural
network-based prediction models have stronger modeling capabil-
ities compared to traditional statistical methods that can capture
more heterogeneous patterns in the data.

5.3 Compression & Decompression Throughput
We tested the throughput of MSDZip and baselines on all datasets
in the same experimental configurations. The results are shown in
Table 3. Table 3 shows that our proposed MSDZip obtains the best
THP values on all datasets. This is due to the fact that MSDZip uses
multiple GPUs for compression, which alleviates the limitations of

a single GPU in terms of speed and graphics memory to achieve
compression for large-scale data. At the same time, MSDZip adopts
the Stepwise-parallel compression strategy, which greatly improves
compression speed while ensuring that the compression ratio does
not deteriorate as much as possible.

We also calculate the overall throughput and improvement rate
of MSDZip compared to baselines by using Eq. 11.

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
𝑇𝐻𝑃𝑜𝑢𝑟𝑠 −𝑇𝐻𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑇𝐻𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
× 100% (11)

From the results, we see that MSDZip improves 31.171% to 495.649%
in throughput compared to baselines.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Throughput (bytes/second) of MSDZip and baselines. The Boldface means the best result.

Compressor text heterogeneous image audio genome Overall Improvement

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 (%)

lstm-compress 2481 3529 2312 2336 2096 2211 2108 2024 2245 1974 4027 3575 2597 495.649

DeepZip 7191 5377 7465 7363 7154 6186 7023 6293 4613 6638 10507 9262 7422 108.421

DZip 4264 3820 5425 3921 4207 4063 4687 5052 2661 4416 4483 5857 4594 236.722

TRACE 12071 11328 9956 12038 11175 10655 10586 11230 11396 10617 11416 11811 11186 38.289

PAC 11733 11409 12197 11671 11790 11439 11018 11680 11449 11046 11816 12186 11793 31.171

MSDZip 15364 15446 15555 15377 15604 15219 14908 14985 15689 15091 16057 15615 15469 —

Table 4: The results of ablation study.

MSDZip- Component Compression Ratio THP

SGU DMB SimP SP D1 D5 D7 D9 D11 (B/s)

A ✗ ✗ ✗ ✗ 1.638 1.571 7.459 3.816 1.800 9389

B ✓ ✗ ✗ ✗ 1.605 1.539 7.453 3.801 1.795 8761

C ✓ ✓ ✗ ✗ 1.587 1.524 7.430 3.487 1.791 8159

D ✓ ✓ ✓ ✗ 1.652 1.510 7.481 3.526 1.783 17367

E ✓ ✓ ✗ ✓ 1.635 1.502 7.475 3.517 1.783 15686

NOTE: SimP (Simple Parallel) indicates that each data chunk is compressed
at the same time with a randomly initialized model.

It is also worth noting that DZip introduces Support Model on
the basis of DeepZip, which solves the problem of disappearing
or exploding gradients that occurs in DeepZip, and achieves a
better compression ratio. However, at the same time, Support Model
needs to update the parameters in real time during the compression
process, so adds more time overhead. Especially on the DNACorpus
(D11) dataset, DZip’s throughput is even less than half of DeepZip’s.
TRACE employs a single-layer Performer as a predictor and a Byte-
grouping strategy to reduce the length of sentences for speedup,
and thus it ranks third in terms of throughput. PAC has a better
throughput than TRACE because it adopts MLP as the predictor
with lower computational cost, combined with Ordered Mask to
realize lossless compression.

5.4 Ablation Study
We performed ablation study on 5 different types of datasets to vali-
date the effectiveness of the additional components used to optimize
compression performance. The results are shown in Table 4.

As shown in Table 4, after the introduction of SGU and DMB in
turn, the throughput of the compressor is slightly reduced, but the
compression ratio is significantly improved. This is because SGU is
able to capture the information interactions across spatial symbols
when performing the mixing of global features and has a stronger
modeling capability. And DMB solves the problem of unstable layer
contributions due to cold-start by mixing the outputs between
neighboring layers. When using Simple-parallel compression strat-
egy, where multiple data chunks are compressed simultaneously
with random parameter initiation, the throughput is significantly

improved, but the compression ratio is slightly degraded by the cold-
start problem of the model. When Stepwise-parallel is used instead
of Simple-parallel, the compressor achieves a better compression ra-
tio with higher throughput. This is because Stepwise-parallel takes
advantage of the principle that data distribution in neighboring
regions is more similar to pass the model between data chunks,
which alleviates the model cold-start problem to some extent.

In summary, SGU and DMB substantially optimize the com-
pression ratio, while the Stepwise-parallel compression strategy
significantly improves the compression speed while maintaining
the compression ratio.

6 Conclusion
In this paper, we explored two major impacts of the cold-start
problem on the compression effect of adaptive learning-based com-
pressors: 1) The cold-start problem leads to different convergence
speeds for different perceptual layers, and thus the ranking of the
contribution of each perceptual layer changes during the iteration,
which leads to different compression effectiveness of symbols at
different iteration moments. 2) The parallel acceleration further
amplifies the above problem, resulting in poorer compression ratios,
despite a substantial increase in throughput. To address them, we
proposed the MSDZip with Stepwise-parallel compression strategy
and a new learning-based predictor. MSDZip firstly extracts the
features of the symbols by Feature Extracting Module, and then
fully mixes the features using Local-Global-Deep Mixing Blocks
in Feature Mixing Module to sufficiently establish the dependency
relationships of symbols. Deep Mixing Block can mix the outputs
of upper and lower layers to solve the problem of unstable weight
ranking due to cold-start and significantly improve the compres-
sion ratio. Stepwise-parallel compression strategy performs contex-
tual modeling of data chunks, and then passes the model among
neighboring data chunks with more similar data distributions to
mitigate the problem of compression ratio decay due to cold-start
while increasing throughput substantially. The experimental results
of MSDZip and baselines on 12 well-studied datasets show that
our proposed MSDZip has a better compression ratio and higher
throughput compared to other advanced compressors.

In the future, we will investigate the impact of data distribution
and different neural networks on the performance of the compressor
and seek a more efficient and scalable parallel compression strategy.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

MSDZip: Universal Lossless Compression for Multi-source Data via Stepwise-parallel and Learning-based Prediction WWW ’25, April 28–May 02, 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] F Bellard. 2019. NNCP: Lossless Data Compression with Neural Networks.

https://bellard.org/nncp/.
[2] Thomas Boutell. 1997. PNG (Portable Network Graphics) Specification.
[3] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song,

Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin,
Lukasz Kaiser, et al. 2020. Rethinking Attention with Performers. arXiv preprint
arXiv:2009.14794 (2020).

[4] John G. Cleary and W. J. Teahan. 1997. Unbounded Length Contexts for PPM.
Comput. J. 40, 2/3 (1997), 67–75.

[5] John G. Cleary and Ian H. Witten. 1984. Data Compression Using Adaptive
Coding and Partial String Matching. IEEE Trans. Commun. 32, 4 (1984), 396–402.

[6] Yann Collet. 2011. LZ4 Official Website. https://github.com/lz4/lz4.
[7] Wenwen Cui, Zhaoyang Yu, Zhuangzhuang Liu, Gang Wang, and Xiaoguang Liu.

2020. Compressing genomic sequences by using deep learning. In International
Conference on Artificial Neural Networks. Springer, 92–104.

[8] Grégoire Delétang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim
Genewein, Christopher Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew
Aitchison, Laurent Orseau, et al. 2023. Language modeling is compression. arXiv
preprint arXiv:2309.10668 (2023).

[9] Sebastian Deorowicz. 1985. Silesia Corpus.
https://sun.aei.polsl.pl// sdeor/index.php?page=silesia.

[10] Jarek Duda. 2013. Asymmetric numeral systems: entropy coding combining
speed of Huffman coding with compression rate of arithmetic coding. arXiv
preprint arXiv:1311.2540 (2013).

[11] Lewis Y Geer, Aron Marchler-Bauer, Renata C Geer, Lianyi Han, Jane He, Siqian
He, Chunlei Liu, Wenyao Shi, and Stephen H Bryant. 2010. The NCBI biosystems
database. Nucleic acids research 38, suppl_1 (2010), D492–D496.

[12] Mohit Goyal, Kedar Tatwawadi, Shubham Chandak, and Idoia Ochoa. 2018.
DeepZip: Lossless Data Compression using Recurrent Neural Networks. arXiv
preprint arXiv:1811.08162 (2018).

[13] Mohit Goyal, Kedar Tatwawadi, Shubham Chandak, and Idoia Ochoa. 2021. DZip:
improved general-purpose lossless compression based on novel neural network
modeling. In 2021 data compression conference (DCC). IEEE, 153–162.

[14] Gzip. 1996. Gzip Official Website. http://www.gzip.org/.
[15] Dan Hendrycks and Kevin Gimpel. 2016. Gaussian Error Linear Units (GELUs).

arXiv preprint arXiv:1606.08415 (2016).
[16] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,

Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Jo-
hannes Welbl, Aidan Clark, et al. 2022. Training compute-optimal large language
models. arXiv preprint arXiv:2203.15556 (2022).

[17] David A. Huffman. 1952. A Method for the Construction of Minimum-
Redundancy Codes. Proceedings of the IRE 40, 9 (1952), 1098–1101.

[18] Keith Ito and Linda Johnson. 2017. The LJ Speech Dataset. https://keithito.com/LJ-
Speech-Dataset.

[19] Uthayakumar Jayasankar, Vengattaraman Thirumal, and Dhavachelvan Ponnu-
rangam. 2021. A survey on data compression techniques: From the perspective
of data quality, coding schemes, data type and applications. Journal of King Saud
University-Computer and Information Sciences 33, 2 (2021), 119–140.

[20] Glen G. Langdon Jr. 1984. An Introduction to Arithmetic Coding. IBM J. Res.
Dev. 28, 2 (1984), 135–149.

[21] Ravneet Kaur, Inderveer Chana, and Jhilik Bhattacharya. 2018. Data dedupli-
cation techniques for efficient cloud storage management: a systematic review.
The Journal of Supercomputing 74 (2018), 2035–2085.

[22] Byron Knoll. 2016. CMIX. https://github.com/byronknoll/cmix.
[23] Byron Knoll. 2017. lstm-compress. https://github.com/byronknoll/lstm-

compress.
[24] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer Normaliza-

tion. ArXiv e-prints (2016), arXiv–1607.
[25] Valerii Likhosherstov, Krzysztof M Choromanski, Jared Quincy Davis, Xingyou

Song, and Adrian Weller. 2021. Sub-linear memory: How to make performers
slim. Advances in Neural Information Processing Systems 34 (2021), 6707–6719.

[26] Hanxiao Liu, Zihang Dai, David So, and Quoc V Le. 2021. Pay attention to mlps.
Advances in neural information processing systems 34 (2021), 9204–9215.

[27] Qian Liu, Yiling Xu, and Zhu Li. 2019. DecMac: A deep context model for
high efficiency arithmetic coding. In 2019 International Conference on Artificial
Intelligence in Information and Communication (ICAIIC). IEEE, 438–443.

[28] Xinyu Liu, Zijing Wei, Wenqing Yu, Shaozhi Liu, Gang Wang, Xiaoguang Liu,
and Yusen Li. 2023. Khronos: A Real-Time Indexing Framework for Time Series
Databases on Large-Scale Performance Monitoring Systems. In Proceedings of the
32nd ACM International Conference on Information and Knowledge Management.
1607–1616.

[29] Huidong Ma, Hui Sun, Liping Yi, Xiaoguang Liu, and Gang Wang. 2024. MSDLC.
https://github.com/mhuidong/MSDLC.

[30] Matt Mahoney. 2006. Large Text Compression Benchmark.
https://www.mattmahoney.net/dc/textdata.html.

[31] YuMao, Yufei Cui, Tei-Wei Kuo, and Chun Jason Xue. 2022. Accelerating General-
purpose Lossless Compression via Simple and Scalable Parameterization. In
Proceedings of the 30th ACM International Conference on Multimedia. 3205–3213.

[32] Yu Mao, Yufei Cui, Tei-Wei Kuo, and Chun Jason Xue. 2022. TRACE: A Fast
Transformer-based General-Purpose Lossless Compressor. In Proceedings of the
ACM Web Conference 2022. 1829–1838.

[33] Yu Mao, Jingzong Li, Yufei Cui, and Chun Jason Xue. 2023. Faster and Stronger
Lossless Compression with Optimized Autoregressive Framework. In 2023 60th
ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[34] Alistair Moffat. 1990. Implementing the PPM data compression scheme. IEEE
Trans. Commun. 38, 11 (1990), 1917–1921.

[35] Igor Pavlov. 2013. LZMA Official Website. https://tukaani.org/lzma/.
[36] PBzip2. 2015. pbzip2 - parallel bzip2 file compressor.

https://linux.die.net/man/1/pbzip2.
[37] Marius-Constantin Popescu, Valentina E Balas, Liliana Perescu-Popescu, and

Nikos Mastorakis. 2009. Multilayer perceptron and neural networks. WSEAS
Transactions on Circuits and Systems 8, 7 (2009), 579–588.

[38] Diogo Pratas. 2024. JARVIS3: an improved encoder for genomic sequences.
[Online]. Available: https://github.com/cobilab/jarvis3.

[39] Diogo Pratas and Armando J Pinho. 2019. A DNA Sequence Corpus for Com-
pression Benchmark. In Practical Applications of Computational Biology and
Bioinformatics, 12th International Conference. Springer, 208–215.

[40] Rawzor. 2008. Image Compression Benchmark. http://imagecompression.info/.
[41] Jorma Rissanen and Glen G. Langdon Jr. 1981. Universal modeling and coding.

IEEE Trans. Inf. Theory 27, 1 (1981), 12–22.
[42] John Rydning. 2023. Data Marketplaces, and Data as a Service.

https://www.idc.com/getdoc.jsp?containerId=IDC_P38353.
[43] Hochreiter Sepp and Schmidhuber Jürgen. 1997. Long Short-Term Memory.

Neural Computation MIT-Press (1997).
[44] Alex Sherstinsky. 2020. Fundamentals of recurrent neural network (RNN) and

long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena 404
(2020), 132306.

[45] Hui Sun and Huidong Ma. 2024. Neural-Network-Based Lossless Universal
Compressions Benchmark. [Online]. Available: https://fahaihi.github.io/NNLCB.

[46] Hui Sun, Huidong Ma, Yingfeng Zheng, Haonan Xie, Xiaofei Wang, Xiaoguang
Liu, and Gang Wang. 2023. SR2C: A Structurally Redundant Short Reads
Collapser for Optimizing DNA Data Compression. In 2023 IEEE 29th Interna-
tional Conference on Parallel and Distributed Systems (ICPADS). 60–67. https:
//doi.org/10.1109/ICPADS60453.2023.00018

[47] Hui Sun, Huidong Ma, Yingfeng Zheng, Haonan Xie, Meng Yan, Cheng Zhong,
Xiaoguang Liu, and GangWang. 2024. LRCB: A Comprehensive Benchmark Eval-
uation of Reference-free Lossless Compression Tools for Genomics Sequencing
Long Reads Data. In 2024 Data Compression Conference (DCC). IEEE, 584–584.

[48] Hui Sun, Yingfeng Zheng, Haonan Xie, Huidong Ma, Cheng Zhong, Meng
Yan, Xiaoguang Liu, and Gang Wang. 2024. PQSDC: a parallel lossless com-
pressor for quality scores data via sequences partition and Run-Length pre-
diction mapping. Bioinformatics (05 2024), btae323. https://doi.org/10.1093/
bioinformatics/btae323 arXiv:https://academic.oup.com/bioinformatics/advance-
article-pdf/doi/10.1093/bioinformatics/btae323/57728452/btae323.pdf

[49] Kubo Takehiro. 2016. Snzip, a compression/decompression tool based on snappy.
https://github.com/kubo/snzip.

[50] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[51] Chandra Shekhara Kaushik Valmeekam, Krishna Narayanan, Dileep Kalathil,
Jean-Francois Chamberland, and Srinivas Shakkottai. 2023. Llmzip: Lossless
text compression using large language models. arXiv preprint arXiv:2306.04050
(2023).

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, and Łukasz Kaiser. 2017. Attention Is All You Need. Advances
in Neural Information Processing Systems 30 (2017).

[53] Rongjie Wang, Yang Bai, Yan-Shuo Chu, Zhenxing Wang, Yongtian Wang, Min-
grui Sun, Junyi Li, Tianyi Zang, and YadongWang. 2018. DeepDNA: A hybrid con-
volutional and recurrent neural network for compressing human mitochondrial
genomes. In 2018 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM). IEEE, 270–274.

[54] PeteWarden. 2018. Speech Commands: A Dataset for Limited-Vocabulary Speech
Recognition. arXiv preprint arXiv:1804.03209 (2018).

[55] CLIC Official Website. 2006. CLIC Corpus. https://www.compression.cc/tasks/.
[56] NCBI Official Website. 2021. Genome sequencing data (ERR7091247).

https://www.ncbi.nlm.nih.gov/sra/ERR7091247.

9

https://doi.org/10.1109/ICPADS60453.2023.00018
https://doi.org/10.1109/ICPADS60453.2023.00018
https://doi.org/10.1093/bioinformatics/btae323
https://doi.org/10.1093/bioinformatics/btae323
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btae323/57728452/btae323.pdf
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btae323/57728452/btae323.pdf

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	3.1 Static
	3.2 Dynamic
	3.3 Semi-Dynamic

	4 Method
	4.1 Framework
	4.2 Stepwise-parallel Processor (SP)
	4.3 Probability Predictor (PP)
	4.4 Entropy Encoder (EE)

	5 Results
	5.1 Setup
	5.2 Compression Ratio
	5.3 Compression & Decompression Throughput
	5.4 Ablation Study

	6 Conclusion
	References

