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MSDZip: Universal Lossless Compression for Multi-source Data
via Stepwise-parallel and Learning-based Prediction

Anonymous Author(s)∗†

Abstract
With the rapid development of the Internet, the huge amount of
Multi-Source Data (MSD) brings challenges in data sharing and
storing. Lossless data compression is the major way to solve those
problems. Nowadays, neural-network technologies bring significant
advantage in data modeling, making learning-based lossless com-
pressors (LLCs) for multi-source data have emerged continuously.
Comparedwith traditional compressors, the LLCs aremore useful to
catch complex redundancy patterns in MSD, and thus have great po-
tential in enhancing compression ratio. However, existing LLCs still
suffer from unsatisfactory compression ratios and lower throughput.
To solve those problems, we propose a novel universal MSD lossless
compressor calledMSDZip via Stepwise-parallel and learning-based
prediction technologies, it introduces two major designs: 1) We pro-
pose a Local-Global-Deep Mixing block in the learning-based pre-
diction module to establish dependencies for MSD symbols, where
designed Deep Mixing block solves the problem of unstable weights
in the perceptual layers caused by cold-start problem to enhance
the compression ratio significantly. 2) We design a Stepwise-parallel
multi-GPU-accelerated compression strategy to address the com-
pression speed and graphics memory constraints of single GPU in
the face of large-scale data. The Stepwise-parallel module passes
the source MSD to learning-based prediction model through the
data chunking strategy, where the model of the previous chunk is
used to guide the compression of the next chunk in parallel. We
compare MSDZip with 5 classical learning-based and 6 traditional
compressors on 12 well-studied real-world datasets. The experi-
mental results demonstrate that MSDZip optimizes 3.418%∼69.874%
in terms of compression ratio and 31.171%∼495.649% in terms of
throughput compared to advanced LLCs. The source code of MS-
DZip and the linkages of the experimental datasets are available at
https://anonymous.4open.science/r/MSDZip-0E4E/.

CCS Concepts
• Information systems→ Data compression.

Keywords
multi-source data, lossless data compression, neural networks, deep
learning, parallel computing
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1 Introduction
With the rapid development of the worldwide Internet, the volume
of Multi-Source Data (MSD), like images, texts, videos and audios,
showing explosive growth [11, 47, 48]. As IDC report [42], the global
data size is expected to climb to 284 ZB (1 Zettabyte = 270 bytes)
by 2027. This surge in data volume poses significant pressure and
challenges in MSD sharing and storing in the Internet-connected
web world. Therefore data compression is critical in the web. For
example, compression of CSS and JavaScript files on websites can
reduce the file size, thus reducing the number of HTTP requests
and transmission time; compression of website data (e.g., PNG [2]
lossless format of images), which can improve page loading speed
and user experience; and compression of redundant indexes in the
server database can reduce thememory consumption and accelerate
the query speed at the same time [28].

Universal methods for lossless MSD compression are either tra-
ditional or learning-based. Traditional compressors suffer from
inferior compression effect, because they fail to fully consider
the contextual environment of the redundancy symbols in the to-
be-compressed-MSD. Recently, with deeper research into neural-
network technologies, an emerging trend is to combine deep learn-
ing models with entropy coding algorithms [20, 41] to achieve
more efficient lossless compression, such as PAC [33], TRACE [32],
OREA [31], DZip [13], lstm-compress [23], et al. The learning-based
Lossless Compression method shows significant compression po-
tential on MSD datasets, as their excellent fitting and accurate
modeling abilities of to-be-compressd-MSD. However, the existing
LLCs still face the following shortcomings.

• Poor Compression Ratio. The existing LLCs face poor
compression ratio problem, for three reasons: 1) Insufficient
contextmodeling capability for redundant to-be-compressed-
MSD; 2) The cold-start problem in the initial compression
stage of the dynamic prediction module. 3) Unstable layer
contribution in the prediction module.

• Low Throughput. The low throughput limits the wide-
spread and use of LLCs, especially in large-scale MSD com-
pression scenarios. For example, in our testing, in one 100
MB MSD dataset, CMIX [22] and NNCP [1] consume up
to 67 hours and 18.7 hours in total time, respectively. The
throughput of CMIX and NNCP are only 412 and 1483
bytes/second, respectively. We argue for two reasons: 1)
Complex deep learning model is not practical for LLC, as
the reasoning overhead of the model is expensive. 2) Low
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algorithm parallelism degree, especially in the era of multi-
GPU.

To address those problems, we propose a novel lossless MSD
compressor named MSDZip with the following contributions.

• We analyze the problem of unstable layer contribution in
LLCs like OREO [31] and PAC [33], and propose a Feature
Extracting Module (FEM) and a Local-Global-Deep three-
layer Feature Mixing Module (FMM) to solve them. Here,
the FEM is used to extract the features of MSD symbols and
FMM includes three crucial components Local Mixing Block
(LMB), Global Mixing Block (GMB), and Deep Mixing Block
(DMB) for local features mixing, global features mixing, and
deep output mixing, respectively.

• We design a Stepwise-parallel strategy to accelerate MSD
compression on multi-GPU. It takes advantage of the princi-
ple that neighboring regions of the MSD have the same dis-
tribution as the next data partition to compress the model
obtained from the current data partition. The model ob-
tained is used as a bootstrap model for the compression of
the next data partition, alleviating the problem of deteri-
orating compression ratios due to cold-start problem and
parallelism.

• We benchmark our MSDZip and 11 advanced compressors
on 12 classical real-world datasets to measure the perfor-
mance. The experimental results show that our MSDZip
outperforms existing compression solutions in terms of
compression ratio and throughput.

2 Background
Traditional statistical modeling-based algorithms can encode the
probability of occurrence of symbols in any given data to get as close
as possible to the information entropy [4, 5, 19, 21, 34]. However, it is
well known that the probability of the same MSD symbol appearing
in different locations depends on its contextual context [13, 23,
33]. Compared with statistical models, learning-based predictive
models have more powerful expressive ability to deal with complex
patterns, and achieve a large advantage in compression ratio. In
this section, we first introduce the compression and decompression
process of the LLCs, then give their classification philosophy.

We denote symbol as the smallest compression unit, usually
one byte, target symbol is the symbol to be compressed, history
symbols denote the symbols adjacent to the target symbol, variable
t represents the timestep.

When compressing the target symbol 𝑥𝑖 in sequence 𝑆 , the
compressor inputs 𝑡 history symbols {𝑥𝑖−𝑡 , ..., 𝑥𝑖−1} into the pre-
dictor to obtain the probability distribution 𝑝 (𝑥𝑖 |𝑥𝑖−𝑡 , ..., 𝑥𝑖−1) of
the 𝑥𝑖 , and then inputs the probability distribution and 𝑥𝑖 into
the entropy encoder to compress it into a smaller state 𝑐𝑖 , where
𝑖 = 𝑡, ..., |𝑠 | − 1 and |𝑠 | is the length of the to-be-compressed-MSD
sequence. Meanwhile, the predictor calculates the cross-entropy
loss between 𝑝 (𝑥𝑖 |𝑥𝑖−𝑡 , ..., 𝑥𝑖−1) and 𝑥𝑖 , and computes the gradi-
ent of the loss with respect to the model parameters by the back-
propagation algorithm, and then updates the model parameters
using gradient descent to improve the model prediction capability.

The decompression process differs from the compression process
in that the input to the entropy encoder is a probability distribution

of 𝑝 (𝑥𝑖 |𝑥𝑖−𝑡 , ..., 𝑥𝑖−1) and the compressed state 𝑐𝑖 , and the output
is the original symbol 𝑥𝑖 , where 𝑖 = 𝑡, ..., |𝑆 | − 1.

3 Related Work
Existing DL-based algorithms are categorized into static, dynamic,
and semi-dynamic based on whether or not the compressor updates
the model parameters during the compression process [13, 32, 45].

3.1 Static
Static compressor uses a probabilistic predictive model to pre-train
the to-be-compressed-MSD in multiple epochs before compression
and saves the model parameters. At the beginning of compres-
sion, after loading the trained model parameters the probabilistic
predictor no longer performs backpropagation to update the pa-
rameters. DeepZip [12] and DecMac [27] use RNN [44] and its
variant LSTM [43] as probabilistic predictive models, respectively.
Athough there is no need for backpropagation to update the param-
eters, multiple epochs of pre-training add additional time overhead.
The recently emerging large language model-based compressors
LLMZip [51] and LMIC [8] use Chinchilla [16] and LLaMa [50]
as predictors, respectively. Despite good compression ability in
some datasets they get, possess a large inference cost due to the
large model. For example, LLMZip’s throughput on the Enwik8
dataset [30] is only 27 bytes/s [45].

3.2 Dynamic
Dynamic compressors require no pre-training, it start the model
with random parameters, and update the parameters in real time
during compression to better fit the data distribution. CMIX [22]
mixes the probability distributions of more than two thousand
models, including several specialized models, and has very good
compression ratio but very slow compression speeds. NNCP [1]
and lstm-compress [23] use the LSTM as a probabilistic prediction
model, where NNCP also uses the LSTM [43] as a predictor of the
probability. NNCP and lstm-compress use LSTM as a probabilis-
tic prediction model, where NNCP also preprocesses the data to
extract repeated patterns, mapping the original file to a smaller
one, which has a better compression ratio but also a larger time
overhead. TRACE [32] uses a variant of Transformer [52], the Per-
former [3, 25], as a predictor. OREA [31] and PAC [33] use Multi-
Layer Perception (MLP) [26] in combination with a sequential mask
to achieve compression. sequential masks in combination to achieve
compression with less computational cost.

3.3 Semi-Dynamic
DZip [13] combines static and dynamic compression algorithms
that not only pre-train the data, but also introduce additional models
to correct the predicted probability distribution during the actual
compression process to achieve better compression ratios.

Existing static and semi-dynamic, despite having better compres-
sion ratios overall, require additional time for model pre-training
and additional space for storing model parameters for decompres-
sion. Dynamic compression algorithms have overall lower time and
space overheads, but the presence of later cold-start problems [32]
with the model leads to poor compression ratios. Therefore, due
to issues such as insufficient modeling capabilities of the model,
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Figure 1: Compression pipeline of the proposed MSDZip. 𝑆 , 𝑃 , 𝐵 denote the inputted sub-sequence collection,probability
distribution collection, and arithmetic encode byte-stream, respectively.

cold-start problems, and low parallelism design, existing LLCs have
significant room for improvement in terms of compression ratio
and throughput.

4 Method
In this paper, variable 𝝆 represents the parallel number, and variable
d denotes the embedding dimension when symbols are input to the
model.

4.1 Framework
Fig. 1 shows the workflow of the proposed MSDZip, which includes
three important components.

• Stepwise-parallel Processor (SP). In order to improve
the compression speed, SP employs a novel multi-GPU
Stepwise-parallel compression strategy. SP splits the read-
in byte stream 𝐵 into 𝜌 equal-length sequences {𝑆𝑖 }𝜌−1𝑖=0 and
is responsible for loading the model, inputting the data, and
saving the model in a stepped form. Compared with ordi-
nary chunk parallelism, Stepwise-parallel strategy not only
reduces the time overhead, but also effectively alleviates
the problem of deteriorating compression ratio caused by
random parameter startup (cold-start) of the model.

• Probability Predictor (PP). PP includes three modules:
Feature Extracting Module (FEM), Feature Mixing Mod-
ule (FMM), and Softmax Module (SM). For each target
symbol 𝑥𝑖 in sequence 𝑆 , PP inputs the 𝑥𝑖 into FEM to
obtain the feature vector ℎ𝑖 , mixes ℎ𝑖 with the feature
vectors {ℎ𝑖−𝑡 , ..., ℎ𝑖−1} of history symbols vim FMM to es-
tablish symbol dependencies and outputs logits Λ𝑖 , and
feeds Λ𝑖 into SM to obtain the probability distribution
𝑝 (𝑥𝑖 |𝑥𝑖−𝑡 , ..., 𝑥𝑖−1) of 𝑥𝑖 .

• Entropy Encoder (EE). EE uses Arithmetic Coding [20, 41]
to compress the target symbol 𝑥𝑖 into a binary stream based
on its probability distribution 𝑝 (𝑥𝑖 |𝑥𝑖−𝑡 , ..., 𝑥𝑖−1).

4.2 Stepwise-parallel Processor (SP)
Analysis. LLCs have achieved a large advantage in compression
ratio, but the compression speed has always been one of the biggest
factors limiting their wide application [45]. With the gradual in-
crease of the data-size, single GPU is overstretched both in terms

Compression Time Line

GPU Unit

G
PU

 0
G

PU
 1

G
PU

 2

�0

�1

�2
Stepwise
Passing

�0

�1

�2

M: Learning-based prediction model, S:  Partitioned MSD

Used to train the starting model

Figure 2: The schematic diagram of Stepwise-parallel

of speed and graphics memory, so multi-GPU parallel compression
has a wider research prospect [29, 45].

Compared with the static compressor that requires pre-training,
the dynamic compressor does not, it starts the model with random
parameters to realize the prediction of probability distribution [31–
33], and adjusts the parameters in real time during the compression
process to converge gradually. As the model is trained while com-
pression, the loss value is gradually decreasing, and the loss value is
highly correlated with the information entropy [12, 53]. This means
that the compression of those symbols at the beginning of the model
startup is not ideal (also called the cold-start problem in [32]. Thus
plainly chunking the data and compressing it in parallel at the same
time only amplifies this problem.

Design. In order to alleviate the problem of poor compression
ratio caused by cold-start, we design a Stepwise-parallel Proces-
sor, a multi-GPU parallel compression strategy containing three
operations: loading, training, and saving model.

Let the initial random parameter model be𝑀0, for any sequence
𝑆𝑖 obtained from the segmentation of byte stream 𝐵, where 𝑖 =

0, ..., 𝜌 − 2. SP first loads the model𝑀𝑖 , and then inputs the history
and target symbols into PP and EE to realize the compression. The
current model state is saved as𝑀𝑖+1 after compressing 𝑛 symbols.
While 𝑆𝑖 continues to be compressed,𝑀𝑖+1 is used as the starting
model to start the compression of 𝑆𝑖+1, and so on, until the last
sequence 𝑆𝜌−1 is completely compressed. The whole compression
process ends. The Fig. 4 gives an example of Stepwise-parallel by
using three GPUs.
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In designed SP, all the passed intermediate models are obtained
from the previous model training, and the initial𝑀0 can be derived
from a fixed random seed, so this parallel compression process does
not need to save the model parameters for decompression as in
the case of static compressors, but only needs to repeat the above
process in reverse.

Explanation. The effectiveness of SP mainly utilizes the princi-
ple of closer distribution of data in adjacent regions [33]. Taking 𝑆𝑖
as an example, to support batch compression, the algorithm sets
equally spaced anchor points in 𝑆𝑖 and compresses the Target Sym-
bol at the anchor points at the same time, where 𝑖 = 0, ..., 𝜌 − 2.
In the next batch, all anchor points are moved backward by one
timestep. This means that the model senses the distribution of data
in the tail of 𝑆𝑖 at the beginning, which in turn is spatially adjacent
to the head of 𝑆𝑖+1. Thus the model trained on 𝑆𝑖 can be used to
bootstrap the compression against 𝑆𝑖+1.

4.3 Probability Predictor (PP)
Analysis. OREO [31] and PAC[33] are the current state-of-the-art
LLCs based on MLP [37], and they utilize sequential importance to
establish the dependency between symbols. Gradual aggregation
of features is achieved by stacking multiple compression modules.
In the prevailing view of LLCs, the deeper the neural network,
the better the model fits the data, and hence the better the com-
pression [45]. However, as shown in Fig. 3(a), when we used the
PAC [33] to test with different layers of compression modules on
xml, x-ray, mr and osdb datasets from the Silesia corpus [9], we
found that the time overhead keeps increasing as more modules are
stacked, but the compression ratio becomes worse instead. Based
on this observation, we added a mask with a weight of 1 to the
output of each compression module used by PAC, and recorded the
change of the mask weight in real time during the compression
process. As shown in Fig. 3(b), we have observed that the ranking
of the contribution to the final logits are different for compression
modules throughout the process. This is because deeper networks
may suffer from the problem of vanishing gradients, causing the
model to converge more slowly. Especially on small datasets, there
may be situations where the model is still converging but the data
has already been compressed.

Design. In order to improve the performance of the compres-
sion model, we propose an improved Learning-based Probability
Predictor based on the individual-mix autoregressive compression
framework [33], which contains three parts: Feature Extracting
Module (FEM), Feature Mixing Module (FMM) and Softmax Module
(SM).

The following will introduce each module as an example of
compressing the symbol 𝑥𝑖 in the sequence 𝑆 , where 𝑖 = 0, ..., |𝑆 | −1.

4.3.1 Feature Extracting Module (FEM). Feature Extracting
Module is used to extract the feature of the symbol 𝑥 .

As shown in Fig. 1, FEM first embeds 𝑥 to higher dimensions
to enhance the representation and capture the semantic relations,
yielding 𝑒 ∈ R1×𝑑 . Next, as shown in Eq. 1, the FEM performs linear
projection and nonlinear activation [33] on 𝑒 to obtain the feature

(a) Relationship between compression ratio and number of layers

(b) Contribution of different layers in the iterative process

Figure 3: Influence of layer depth on compression effect

vector ℎ ∈ R1×𝑑 of 𝑥 .

ℎ𝛼 = 𝛿 (𝑒), ℎ𝛼 ∈ R1×𝑑

ℎ𝛽 = 𝜃 (𝛿 (ℎ𝛼𝑊 + 𝑏)), ℎ𝛽 ∈ R1×𝑑 ,𝑊 ∈ R𝑑×𝑑 , 𝑏 ∈ R1×𝑑

ℎ =
ℎ𝛼 + ℎ𝛽

2

(1)

where 𝛿 and 𝜃 are the LayerNorm [24] layer and the activation
function GELU [15], respectively, and𝑊 and 𝑏 are the learnable
weight and bias, respectively. Learnable weight and bias can enable
the establishment of dependencies and ordered importance [31, 33]
between symbols.

Based on above feature extraction approach, for the symbol 𝑥𝑖
in 𝑆 , where 𝑖 = 0, ..., |𝑆 | − 1:

• If 0 ≤ 𝑖 < 𝑡 , FEM extracts the features ℎ𝑖 ∈ R1×𝑑 of 𝑥𝑖 and
stores it in Cache, then skips FMM and SM and directly
takes the average probability distribution 1/255 of 𝑥𝑖 as the
output of PP.

• If 𝑡 ≤ 𝑖 < |𝑆 |, FEM fetches the features 𝐻 = {ℎ𝑖−𝑡 , ..., ℎ𝑖−1}
of 𝑡 history symbols from the Cache, and inputs 𝐻 into
FMM for training and prediction to obtain the probability
distribution 𝑝 (𝑥𝑖 ) to compress 𝑥𝑖 . At the same time, FEM
extracts the feature ℎ𝑖 of 𝑥𝑖 via Eq. 1, and adds it to the tail

4
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Figure 4: The schematic diagram of Feature Extracting Mod-
ule (FEM)

of Cache while removing the first oldest feature vector ℎ𝑖−𝑡
in preparation for compressing the next symbol.

Compared to [12, 13, 23, 32], FEM uses Cache to save features
of symbols so that each symbol is processed only once during
compression process, greatly reducing computational cost.

4.3.2 Feature Mixing Module (FMM). According to the au-
toregressive compression process in FEM, it can be seen that no
dependency has been established between the new input feature
vector and the old history features in Cache. For this reason, we
design the FMM for mixing the features between the symbols to
establish the connection.

FMM consists of several perceptual layers with the same struc-
ture, where each layer contains Local Mixing, Global Mixing, and
Deep Mixing blocks. FMM receives the feature vectors of 𝑡 history
symbols from FEM to form the initial feature matrix 𝐻0 ∈ R𝑡×𝑑 .
Fig. 5 shows the workflow of each block.

Take the 𝑙-th Perceptual Layer as an example and define its input
as 𝐻 𝑙 , where 𝑙 = 0, ..., 𝑙𝑜𝑔2𝑡 .

(1) Local Mixing Block (LMB): When 𝑙 > 0, LMB mixes the
feature vectors of locally adjacent 2𝑙 symbols in 𝐻 𝑙 . LMB
first concatenates the local 2𝑙 feature vectors to form a new
feature vector ℎ𝑙𝛼 ∈ R1×(2𝑙×𝑑 ) . Then LMB performs linear
projection [33] of ℎ𝑙𝛼 to obtain ℎ𝑙

𝛽
∈ R1×(2𝑙×𝑑 ) via Eq. 2.

ℎ𝑙
𝛽
= 𝜃 (𝛿 (ℎ𝛼𝑊 + 𝑏)),𝑊 ∈ R(2

𝑙×𝑑 )×(2𝑙×𝑑 ) , 𝑏 ∈ R1×(2𝑙×𝑑 ) (2)

Finally, the mapped vectors are concatenated and flattened
to form 𝐻 𝑙

𝐿
∈ R𝑡×𝑑 .

(2) Global Mixing Block (GMB): GMB mixes the features of
all history symbols. GMB first maps 𝐻 𝑙

𝐿
to higher dimen-

sions to enhance the representation via Eq. 3 to obtain the
matrix 𝐻 𝑙

𝛼 ∈ R𝑡×2𝑘 .

𝐻 𝑙
𝛼 = 𝜃 (𝐻 𝑙

𝐿𝑊𝛼 + 𝑏𝛼 ),𝑊𝛼 ∈ R𝑑×2𝑘 , 𝑏𝛼 ∈ R1×2𝑘 (3)

LMB

GMB

DMB

LMB

GMB

DMB

LMB

GMB

DMB

Layer 0 Layer 1 Layer ���2�

Feature Mixing Module (FMM)

...

�0
����2�+1

Figure 5: The schematic diagram of Feature Mixing Module
(FMM). 𝐻0, 𝐻 𝑙𝑜𝑔2𝑡+1 denote the input and output feature ma-
trices of FMM, respectively. LMB, GMB, DMB represent Local
Mixing, Global Mixing, and Deep Mixing block, respectively

The GMB then employs the spatial gating unit (SGU) [26]
to capture more complex patterns in the sequence via Eq.4,
and obtain 𝐻 𝑙

𝛽
∈ R𝑡×𝑘 .

𝑈 = 𝐻 𝑙
𝛼 [:, 0 : 𝑘],𝑈 ∈ R𝑡×𝑘

𝑉 = 𝐻 𝑙
𝛼 [:, 𝑘 : 2𝑘],𝑉 ∈ R𝑡×𝑘

𝐻 𝑙
𝛽
= 𝑈 ⊙ (𝑊𝛽𝑉 + 𝑏𝛽 ),𝑊𝛽 ∈ R𝑡×𝑡 , 𝑏𝛽 ∈ R1×𝑘

(4)

Where the symbol ⊙ represents the dot product operation.
Finally GMB maps 𝐻 𝑙

𝛽
to 𝐻 𝑙

𝐺
∈ R𝑡×𝑑 via Eq. 5.

𝐻 𝑙
𝐺 = 𝜃 (𝛿 (𝐻 𝑙

𝛽
𝑊𝛾 + 𝑏𝛾 )),𝑊𝛾 ∈ R𝑘×𝑑 , 𝑏𝛾 ∈ R1×𝑑 , (5)

(3) Deep Mixing Block (DMB): In order to avoid problems
such as gradient explosion or disappearance to improve
the compression ratio, DMB mixes 𝐻 𝑙

𝐺
with 𝐻 𝑙 via Eq. 6 to

generate 𝐻 𝑙+1 ∈ R𝑡×𝑑 .

𝐻 𝑙+1 = 𝜎 (𝜔𝑙 ) × 𝐻 𝑙
𝐺 + (1 − 𝜎 (𝜔𝑙 )) × 𝐻 𝑙 (6)

where 𝜎 is the activation function Sigmoid and 𝜔𝑙 is the
learnable weight of 𝑙-th layer, which is initially set to zero.

Finally FMM feeds the output logits Λ = 𝐻 𝑙𝑜𝑔𝑡+1 to the Softmax
Module.

4.3.3 SoftmaxModule (SM). Softmax Module receives the logits
Λ from the FMM and then flattens it to get Λ𝛼 ∈ R1×(𝑡×𝑑 ) , then
mapsΛ𝛼 into |𝐴| dimensions to obtainΛ𝛽 ∈ R1×|𝐴 | = {𝜆0, ..., 𝜆 |𝐴 |−1},
where𝐴 represents the alphabet. Finally SM gets the probability dis-
tribution 𝑝 (𝑥𝑖 |𝑥𝑖−𝑡 , ..., 𝑥𝑖−1) = {𝑝 𝑗 } |𝐴 |−1𝑗=0 of 𝑥𝑖 , where 𝑝 𝑗 is defined
as:

𝑝 𝑗 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝜆 𝑗 ) =
𝑒𝜆 𝑗∑ |𝐴 |−1

𝑚=0 𝑒𝜆𝑚
, 𝑗 = 0, ..., |𝐴| − 1 (7)

input the Λ into the Softmax activation function to obtain the
probability distribution 𝑝 (𝑥𝑖 |𝑥𝑖−𝑡 , ..., 𝑥𝑖−1) of 𝑥𝑖 .

4.4 Entropy Encoder (EE)
Entropy Encoder encodes 𝑥𝑖 into a binary stream according to
its probability distribution 𝑝 (𝑥𝑖 |𝑥𝑖−𝑡 , ..., 𝑥𝑖−1) to achieve lossless
compression. Common entropy coding algorithms are Arithmetic
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Coding [20, 41], Huffman Coding [17] and Asymmetric Numeral
Systems [10]. In this paper, we apply the most used Arithmetic
Coding in similar studies [7, 12, 13, 31–33] as the entropy encoder
because it has the best compression effect.

To easily understand the whole process of MSDZip, we give a
detailed description of the compression process as shown in Algo-
rithm 1. Decompression process is similar to compression, except
that the input is reversed compared to the compression.

Algorithm 1: Compression Process of MSDZip
Input: input file; timestep 𝑡 ; parallel number 𝜌
Output: compressed file Φ

1 𝐵← Read the input file in byte-stream format;
2 𝑃 ← Initialize the Probability Predictor;
3 𝐸← Initialize Arithmetic Encoder;
4 {𝑆𝑖 }𝜌−1𝑖=0 ← Partition 𝐵 uniformly into 𝜌 sequences;
5 function COMPRESSION(𝑆 , 𝜑) {
6 Let 𝑆 = {𝑥𝑖 } |𝑆 |−1𝑖=0 and 𝜑 are input and output data;
7 for 𝑖 = 0 to 𝑡 − 1 do
8 𝑝 (𝑥𝑖 )← Get average probability 1

256 of 𝑥𝑖 using 𝑃 ;
9 𝜀 (𝑥𝑖 ) ← Apply 𝐸 to encode 𝑥𝑖 according to 𝑝 (𝑥𝑖 );

10 for 𝑖 = 𝑡 to |𝑆 | − 1 do
11 𝑝 (𝑥𝑖 |𝑥𝑖−𝑡 , ..., 𝑥𝑖−1) ← Get probability distribution

of 𝑥𝑖 using 𝑃 ;
12 𝜀 (𝑥𝑖 ) ← Apply 𝐸 to encode 𝑥𝑖 according to

𝑝 (𝑥𝑖 |𝑥𝑖−𝑡 , ..., 𝑥𝑖−1);
13 Backpropagate to update 𝑃 to minimize the loss;

14 Write binary data {𝜀 (𝑥𝑖 )} |𝑆 |−1𝑖=0 to the file 𝜑 ;
15 }
16 𝑀0← Initialize the model with random parameters;
17 for 𝑖 = 0 to 𝜌 − 1 Stepwise-parallel do
18 Load the model𝑀𝑖 ;
19 COMPRESSION(𝑆𝑖 , 𝜑𝑖 );
20 𝑀𝑖+1← Save the model at a fixed moment;

21 Φ←Merge all compressed files {𝜑𝑖 }𝜌−1𝑖=0

5 Results
All experiments were conducted on a server equipped with 4 × Intel
Xeon Silver 4310 CPUs (2.10 GHz, 48 cores in total), 4 × NVIDIA
GeForce RTX 4090 GPUs (16,384 CUDA cores, 24 GB of GPU mem-
ory), and 256 GB of DDR4 RAM. The server runs the Linux operating
system Ubuntu 20.04.6 LTS.

5.1 Setup
5.1.1 Datasets. We used 12 classical well-studied datasets [9, 18,
30, 32, 39, 40, 52, 54–56] of different types to test the performance
of MSDZip and similar compressors. The details of the datasets are
shown in Table 1.

5.1.2 Baselines. We compare MSDZip with 5 advanced open-
sourced LLCs lstm-compress [23], DeepZip [12], DZip [13], TRACE [32],

and PAC [33], and 6 classical traditional compressors Gzip [14],
PBZIP2 [36], Snzip [49], LZMA2 [35], PPMD [5], and LZ4 [6].

5.1.3 Metrics. We measure the compression effectiveness and
efficiency of all compressors with the classical metrics, Compres-
sion Ratio (CR) and Throughput (THP), respectively. Among them,
compression ratio is defined as [38, 45–47]:

𝐶𝑅 =
𝑆𝑖𝑧𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑

𝑆𝑖𝑧𝑒𝑠𝑜𝑢𝑟𝑐𝑒
× 8 𝑏𝑖𝑡𝑠/𝑏𝑎𝑠𝑒 (8)

Here, the 𝑆𝑖𝑧𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 and 𝑆𝑖𝑧𝑒𝑠𝑜𝑢𝑟𝑐𝑒 represent the size of com-
pressed file and source file, respectively. Smaller values of CR indi-
cate the better performance. The THP is defined as [45]:

𝑇𝐻𝑃 =
𝑆𝑖𝑧𝑒𝑠𝑜𝑢𝑟𝑐𝑒

𝐶𝑇 + 𝐷𝑇 𝑏𝑦𝑡𝑒𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 (9)

Here, the CT and DT represent the time costs of compression and
decompression, respectively.

5.1.4 Parameters Setting. All baselines use the default param-
eters according there papers and reports [12, 13, 23, 32, 33]. Our
proposed MSDZip applies the parameters batchsize, timestep, em-
bedding dimension, and hidden dimension to 512, 16, 16, and 256, re-
spectively, the same as the MLP-based compressor PAC [33]. When
executing parallel compression, we used two GPUs, i.e., 𝜌 = 2.

5.2 Compression Ratio
Table 2 shows the compression ratio of MSDZip with baselines on
all datasets. In order to show the advantage of LLC in compres-
sion ratio, we have additionally tested the compression ratios of
6 classic traditional algorithms Gzip [14], PBZIP2 [36], Snzip [49],
LZMA2 [35], PPMD [5], and LZ4 [6] as a comparison.

From the results, it can be seen that the CR of MSDZip on all 12
classical datasets are significantly better than other advanced LLCs
and traditional compressors. This is due to the fact that MSDZip
employs a proposed Local-Global-Deep Mixing structure in each
perceptual layer of the Feature Mixing Module in PP to fully estab-
lish the dependencies between symbols, and also introduces the
SGU to enhance the information interaction across spatial symbols.
We have counted the overall compression ratios of all the compres-
sors and calculated the improvement of MSDZip over baselines via
Eq. 10.

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
𝐶𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 −𝐶𝑅𝑜𝑢𝑟𝑠

𝐶𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
× 100% (10)

From the results, we can see that MSDZip has improved by 3.418%
∼69.874% in terms of compression ratio as compared to baselines.

Besides, we also found that the lstm-compress [23] performs
significantly worse than other compressors on the ImageTest (D8)
and DNACorpus (D11) datasets. We believe this is due to gradient
explosion or vanishing issues during the training process, which
prevents the model from converging well and fitting the data prop-
erly. DeepZip [12] seems to exhibit this problem even more severely,
as it results in compressed files that are much larger than the source
files on datasets such as CLIC (D7), ImageTest (D8), GoogleSpeech
(D9), and LJSpeech (D10). On top of its improved version, DZip [13],
not only includes pre-training but also introduces an additional
model during the compression process to update parameters in
real-time, thus avoiding this issue.
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Table 1: Detailed information of all datasets

Index Dataset Type Size (bytes) Description

D1 Enwik8 [30] text 100000000 First 108 bytes of the English Wikipedia dump on 2006

D2 Text8 [30] text 100000000 First 108 bytes of the English Wikipedia (only text) dump on 2006

D3 Enwik9 [30] text 1000000000 First 109 bytes of the English Wikipedia dump on 2006

D4 Book [52] text 1000000000 First 109 bytes of BookCorpus

D5 Silesia [9] heterogeneous 211938580 A heterogeneous corpus of 12 documents with various data types

D6 Backup [32] heterogeneous 1000000000 109 bytes random extract from the disk backup of TRACE

D7 CLIC [55] image 243158876 Classical image compression benchmark (validation) of the CLIC 2024

D8 ImageTest [40] image 470611702 A new 8-bit benchmark dataset for image compression evaluation

D9 GoogleSpeech [54] audio 327759206 First 10,000 audio files of the Google Speech Commands Dataset

D10 LJSpeech [18] audio 293847664 First 10,000 audio files of the LJSpeech Dataset

D11 DNACorpus [39] genome 685597124 A corpus of DNA sequences from 15 different species

D12 GenoSeq [56] genome 1926041160 A collection of genomics sequencing dataset with FastQ format

Table 2: Compression Ratio (bits/base) of MSDZip and baselines. The Boldface means the best result.

Compressor text heterogeneous image audio genome Overall Improvement

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 (%)

Traditional MSD Compressor

Gzip 2.916 2.644 2.581 2.875 2.554 6.237 7.992 5.885 5.770 6.851 2.171 1.616 3.534 37.634

PBZIP2 2.321 2.112 2.033 2.143 2.063 5.978 7.977 4.643 4.754 5.872 2.103 1.324 3.048 27.690

Snzip 4.475 4.303 4.020 4.678 3.829 7.100 8.001 7.326 7.387 7.982 3.682 2.676 4.800 54.083

LZMA2 1.989 1.858 1.718 2.027 1.839 5.084 7.956 4.786 4.717 5.850 1.800 1.198 2.799 21.258

PPMD 1.853 1.712 1.602 1.801 1.816 5.706 7.956 4.437 4.453 5.587 1.944 1.209 2.805 21.426

LZ4 3.359 3.117 2.980 3.263 2.921 6.653 8.000 6.658 6.514 7.728 2.734 1.977 3.985 44.693

Learning-based MSD Compressor

lstm-compress 1.854 1.756 1.571 1.704 1.776 4.475 7.505 7.225 3.623 4.459 7.605 0.934 3.156 30.165

DeepZip 1.952 1.806 18.027 1.681 1.870 4.340 22.204 20.272 14.398 20.833 1.863 1.018 7.316 69.874

DZip 1.875 1.757 1.539 1.591 1.716 4.236 8.021 3.595 3.805 4.921 1.799 0.908 2.366 6.847

TRACE 1.870 1.782 1.556 1.781 1.771 4.547 7.757 3.496 3.664 4.486 1.870 0.988 2.427 9.188

PAC 1.695 1.626 1.377 1.590 1.604 4.200 7.507 3.362 3.869 4.784 1.802 0.849 2.282 3.418

MSDZip (Ours) 1.635 1.592 1.298 1.549 1.502 4.074 7.475 3.334 3.517 4.317 1.783 0.847 2.204 —

On the whole, except for DeepZip, which has compression anom-
alies, the compression ratios of LLCs are significantly better than
that of traditional compressors. This is due to the fact that neural
network-based prediction models have stronger modeling capabil-
ities compared to traditional statistical methods that can capture
more heterogeneous patterns in the data.

5.3 Compression & Decompression Throughput
We tested the throughput of MSDZip and baselines on all datasets
in the same experimental configurations. The results are shown in
Table 3. Table 3 shows that our proposed MSDZip obtains the best
THP values on all datasets. This is due to the fact that MSDZip uses
multiple GPUs for compression, which alleviates the limitations of

a single GPU in terms of speed and graphics memory to achieve
compression for large-scale data. At the same time, MSDZip adopts
the Stepwise-parallel compression strategy, which greatly improves
compression speed while ensuring that the compression ratio does
not deteriorate as much as possible.

We also calculate the overall throughput and improvement rate
of MSDZip compared to baselines by using Eq. 11.

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
𝑇𝐻𝑃𝑜𝑢𝑟𝑠 −𝑇𝐻𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑇𝐻𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
× 100% (11)

From the results, we see that MSDZip improves 31.171% to 495.649%
in throughput compared to baselines.
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Table 3: Throughput (bytes/second) of MSDZip and baselines. The Boldface means the best result.

Compressor text heterogeneous image audio genome Overall Improvement

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 (%)

lstm-compress 2481 3529 2312 2336 2096 2211 2108 2024 2245 1974 4027 3575 2597 495.649

DeepZip 7191 5377 7465 7363 7154 6186 7023 6293 4613 6638 10507 9262 7422 108.421

DZip 4264 3820 5425 3921 4207 4063 4687 5052 2661 4416 4483 5857 4594 236.722

TRACE 12071 11328 9956 12038 11175 10655 10586 11230 11396 10617 11416 11811 11186 38.289

PAC 11733 11409 12197 11671 11790 11439 11018 11680 11449 11046 11816 12186 11793 31.171

MSDZip 15364 15446 15555 15377 15604 15219 14908 14985 15689 15091 16057 15615 15469 —

Table 4: The results of ablation study.

MSDZip- Component Compression Ratio THP

SGU DMB SimP SP D1 D5 D7 D9 D11 (B/s)

A ✗ ✗ ✗ ✗ 1.638 1.571 7.459 3.816 1.800 9389

B ✓ ✗ ✗ ✗ 1.605 1.539 7.453 3.801 1.795 8761

C ✓ ✓ ✗ ✗ 1.587 1.524 7.430 3.487 1.791 8159

D ✓ ✓ ✓ ✗ 1.652 1.510 7.481 3.526 1.783 17367

E ✓ ✓ ✗ ✓ 1.635 1.502 7.475 3.517 1.783 15686

NOTE: SimP (Simple Parallel) indicates that each data chunk is compressed
at the same time with a randomly initialized model.

It is also worth noting that DZip introduces Support Model on
the basis of DeepZip, which solves the problem of disappearing
or exploding gradients that occurs in DeepZip, and achieves a
better compression ratio. However, at the same time, Support Model
needs to update the parameters in real time during the compression
process, so adds more time overhead. Especially on the DNACorpus
(D11) dataset, DZip’s throughput is even less than half of DeepZip’s.
TRACE employs a single-layer Performer as a predictor and a Byte-
grouping strategy to reduce the length of sentences for speedup,
and thus it ranks third in terms of throughput. PAC has a better
throughput than TRACE because it adopts MLP as the predictor
with lower computational cost, combined with Ordered Mask to
realize lossless compression.

5.4 Ablation Study
We performed ablation study on 5 different types of datasets to vali-
date the effectiveness of the additional components used to optimize
compression performance. The results are shown in Table 4.

As shown in Table 4, after the introduction of SGU and DMB in
turn, the throughput of the compressor is slightly reduced, but the
compression ratio is significantly improved. This is because SGU is
able to capture the information interactions across spatial symbols
when performing the mixing of global features and has a stronger
modeling capability. And DMB solves the problem of unstable layer
contributions due to cold-start by mixing the outputs between
neighboring layers. When using Simple-parallel compression strat-
egy, where multiple data chunks are compressed simultaneously
with random parameter initiation, the throughput is significantly

improved, but the compression ratio is slightly degraded by the cold-
start problem of the model. When Stepwise-parallel is used instead
of Simple-parallel, the compressor achieves a better compression ra-
tio with higher throughput. This is because Stepwise-parallel takes
advantage of the principle that data distribution in neighboring
regions is more similar to pass the model between data chunks,
which alleviates the model cold-start problem to some extent.

In summary, SGU and DMB substantially optimize the com-
pression ratio, while the Stepwise-parallel compression strategy
significantly improves the compression speed while maintaining
the compression ratio.

6 Conclusion
In this paper, we explored two major impacts of the cold-start
problem on the compression effect of adaptive learning-based com-
pressors: 1) The cold-start problem leads to different convergence
speeds for different perceptual layers, and thus the ranking of the
contribution of each perceptual layer changes during the iteration,
which leads to different compression effectiveness of symbols at
different iteration moments. 2) The parallel acceleration further
amplifies the above problem, resulting in poorer compression ratios,
despite a substantial increase in throughput. To address them, we
proposed the MSDZip with Stepwise-parallel compression strategy
and a new learning-based predictor. MSDZip firstly extracts the
features of the symbols by Feature Extracting Module, and then
fully mixes the features using Local-Global-Deep Mixing Blocks
in Feature Mixing Module to sufficiently establish the dependency
relationships of symbols. Deep Mixing Block can mix the outputs
of upper and lower layers to solve the problem of unstable weight
ranking due to cold-start and significantly improve the compres-
sion ratio. Stepwise-parallel compression strategy performs contex-
tual modeling of data chunks, and then passes the model among
neighboring data chunks with more similar data distributions to
mitigate the problem of compression ratio decay due to cold-start
while increasing throughput substantially. The experimental results
of MSDZip and baselines on 12 well-studied datasets show that
our proposed MSDZip has a better compression ratio and higher
throughput compared to other advanced compressors.

In the future, we will investigate the impact of data distribution
and different neural networks on the performance of the compressor
and seek a more efficient and scalable parallel compression strategy.
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