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Abstract

As important events in textual data are usu-001
ally highly specific in terms of tasks and do-002
mains, a change in data distribution would have003
a significant impact on detection performance.004
Recent methods addressing unsupervised do-005
main adaptation for event detection task typ-006
ically extracted domain-invariant representa-007
tions through combining and balancing various008
objectives to align the feature space between009
source and target domains. While effective,010
these methods are impractical as large-scale011
language models are drastically growing bigger012
to achieve optimal performance. To this end,013
we propose Meta Self-Paced Domain Adaption014
framework (MSP-DA) that effectively and effi-015
ciently alleviates the need for domain-specific016
hyperparameter tuning. By imitating the train-017
test dataset split based on the difficulties of018
source domain’s samples, the model is trained019
through a meta-learning process that learns020
to weigh the importance of each labeled in-021
stance and to balance every alignment objec-022
tive, simultaneously. Extensive experiments023
demonstrate our framework substantially im-024
proves performance on target domains, surpass-025
ing state-of-the-art approaches. Furthermore,026
we present detailed analyses to validate our027
method and provide insight into how each do-028
main affects the learned hyperparameters.029

1 Introduction030

Event detection (ED) task requires models trained031

to both locate event triggers in an event mention032

and classify them into one of the pre-specified event033

types. In unsupervised domain adaptation (UDA)034

setting, the problem becomes more complicated035

while also much more practical, in which the goal036

is to detect events in a different domain compare to037

the source domain of the labeled training dataset,038

given the additional access to easy-to-collect un-039

labeled data from the target domain. This poses a040

major challenge for standard systems due to both041

the intrinsic variation of linguistics (e.g., lexical042

Figure 1: An example where domain shift between source
domain (grey colors) and target domain (deep color) results
in significant overlaps between high-loss regions of source
decision boundary (lime) with high-density target clusters.

shift, semantic shift) and the extrinsic factors such 043

as how event-based datasets are collected and anno- 044

tated. For example, a model trained to predict news 045

events may easily recognize, from medical domain, 046

"died" as an event, but would not be able to de- 047

tect obvious events such as "mutation" or "cancer". 048

Such a model may even fail to generalize to closer 049

adaptation settings (e.g. news from different times 050

and sources). 051

The majority of existing UDA approaches com- 052

bined various training objectives to align different 053

aspects of domain-specific extracted features. In 054

particular, the most prominent approach is domain- 055

adversarial neural network (DANN) (Ganin et al., 056

2016) that employs a domain-adversarial training 057

procedure between a domain classifier and the 058

network’s feature extractor to learn a discrimina- 059

tive and domain-invariant joint feature representa- 060

tion. The simplicity of DANN allows researchers 061

to incorporate it with multiple other objectives 062

such as semi-supervised learning (SSL) regular- 063

izers (Shu et al., 2018), discrepancy metrics (Long 064

et al., 2015), co-training (Kumar et al., 2018), and 065

auxiliary tasks (Bousmalis et al., 2016). Each of 066

them plays an important role in enhancing domain 067
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adaptation ability of models in the current state-068

of-the-art methods. However, it is not trivial to069

apply these techniques to textual tasks, where large070

transformer-based language models are essential071

to achieve top performance, because of the time072

and resource required to fine-tune and balance the073

effects of these terms for multiple different adapta-074

tion scenarios. For example, state-of-the-art UDA075

method for ED is DAA (Ngo et al., 2021), which076

involves manually tuning weights of four auxiliary077

objectives, several of which even have their own078

respective hyperparameters.079

Meta-learning (ML) framework is an effective080

solution for the problem of hyperparameter opti-081

mization (Franceschi et al., 2018; Behl et al., 2019).082

Furthermore, it has been widely applied by recent083

works on Domain Generalization (DG) (Li et al.,084

2018; Dou et al., 2019), in which a learning pro-085

cedure similar to that of Model-Agnostic Meta-086

Learning (MAML) (Finn et al., 2017) is leveraged087

to simulate the domain shift in train-test datasets088

by a virtual meta train-test set created from data089

drawn only from source domains. Though DG and090

UDA share close similarities, the final goal of each091

learning setting is different. More importantly, the092

MAML procedure is not applicable for UDA prob-093

lem because of the lack of a clean validation dataset094

for meta-test step.095

To this end, we propose to dynamically partition096

the training source data into a low-loss meta-source097

domain and a high-loss meta-target domain, in-098

spired by self-paced learning (SPL) approach (Ku-099

mar et al., 2010). Our framework, called Meta Self-100

Paced Domain Adaptation (MSP-DA), employs a101

meta-SPL module to control the data selection pro-102

cess for meta train-test set using a learnable age103

hyperparameter as threshold while also introduc-104

ing optimized weighting mechanisms for each of105

the combined loss’ terms, including instance-wise106

weighting for the main classification task and layer-107

wise weighting for domain alignment losses. The108

weighted objectives on meta-source domain are109

minimized in meta-train step in a direction such110

that also leading to improvement in model’s pre-111

dictions on meta-target domain. During the learn-112

ing process, the weighting coefficients and the age113

threshold are updated based on the model’s evalua-114

tion performance in meta-test step, mimicking the115

standard hyperparameter tuning process.116

While the meta-target set does not contain sam-117

ples from the true target domain, we argue that our118

formulation is beneficial for UDA because of the 119

two following reasons. First, the proposed partition 120

can result in two virtual domains with a signifi- 121

cant discrepancy, and through learning to address 122

in this hard setting that the model would gain the 123

ability to adapt to other, possibly easier, domains. 124

Another reason is based on the cluster assumption 125

from SSL methods (Chapelle et al., 2006), which 126

states that data points of the same class should 127

concentrate around the same cluster, effectively 128

forming a high-density low-loss region. In case of 129

adapting between two highly dissimilar domains, 130

these regions may get shifted significantly, as a con- 131

sequence low-loss regions of target domain may 132

contain considerable intersection with high-loss re- 133

gions of source domain, as illustrated in Fig. 1. 134

In other words, by learning to adapt the high-loss 135

meta-target domain, the model would also be able 136

to generalize to a significant portion of the true 137

target domain. 138

We provide extensively evaluation of the pro- 139

posed framework for event detection task on ACE- 140

05 dataset, along with additional results for sen- 141

timent analysis task on FDU-MTL dataset. The 142

experimental results when adapting to multiple dif- 143

ferent domains clearly demonstrate the effective- 144

ness of the model. Ablation studies and detailed 145

analyses are provided to validate each main com- 146

ponent of our model and provide insights for future 147

researches. 148

2 Related Work 149

Event Detection and Unsupervised Domain 150

Adaptation Previous line of research on ED 151

mostly addressed the standard supervised learn- 152

ing setting (Li et al., 2013; Nguyen and Grishman, 153

2016a; Yang and Mitchell, 2016; Nguyen et al., 154

2021), with cross-domain evaluation (Nguyen and 155

Grishman, 2016b; Hong et al., 2018). Recently, sev- 156

eral works have focused on the UDA problem of the 157

simpler Event Identification task (Naik and Rosé, 158

2020) using domain-adversarial training. Ngo et al. 159

(2021) further incorporated shared-private architec- 160

ture efficiently through domain-specific adapters 161

(Houlsby et al., 2019) to solve UDA ED task. 162

Sample Weighting Originally a preprocessing 163

step to pre-evaluate each sample contribution for 164

the training loss using prior knowledge or statis- 165

tics of given data (Zadrozny, 2004), the method 166

has evolved into designing a weighting function 167

that takes in as input the training loss to adaptively 168
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output weight of the corresponding sample during169

the training process. There are two main research170

directions of this approach: addressing class imbal-171

ance by monotonically increasing function that im-172

poses larger weights to ones with larger loss values173

(Sun et al., 2007; Lin et al., 2017), and suppress-174

ing the effect of noisy labels using monotonically175

decreasing function which focus on low-loss easy176

samples (Kumar et al., 2010; Jiang et al., 2014).177

Although straightforward to apply, the above meth-178

ods are limited in that they all need a pre-specified179

closed-form weighting function, while their respec-180

tive hyperparameters are sensitive to the change of181

training data such that careful tuning is required.182

Meta Learning Originally designed to mimic a183

human’s ability to quickly learn and adapt to new184

concepts based on prior knowledge (Schmidhuber,185

1987; Thrun and Pratt, 1998), ML is progressively186

becoming more popular in deep learning researches.187

There are three main categories of ML algorithms:188

learning a metric space to measure distance or sim-189

ilarity among data (Vinyals et al., 2016; Sung et al.,190

2018), learning an optimizer which updates all of191

model’s parameters in a latent parameter space192

(Andrychowicz et al., 2016; Chen et al., 2018), and193

learning an initialization that is good for all tasks194

and able to fast adapt to unseen tasks (Finn et al.,195

2017; Jamal and Qi, 2019). Our approach falls into196

the last category, where the learning process fol-197

lows MAML, more specifically its variant for DG198

problem in (Li et al., 2018).

Figure 2: Architecture overview. (gray) Fixed BERT layers.
(green) Adapter layers, bottleneck outputs of which are then
fed into domain classifier heads (red). The meta-SPL module
consists of instance-wise weighting head (purple) for main
task classification (orange) and a layer-wise balancing head
(blue) for domain adversarial training.199

3 Model200

We denote the source dataset S = {(xsi , ysi )}
Ns

i=1201

consisted of N s samples and an unlabeled set of N t202

samples T =
{
xti
}Nt

i=1
drawn from target domain.203

Label space Y = {1, 2, · · · ,K} of K classes is 204

shared across domains. 205

Our model’s feature encoder is a fixed pre- 206

trained BERT encoder with hidden dimension Rdh , 207

augmented by adapters with bottleneck represen- 208

tation of size Rda . We refer to the main model 209

learnable parameters as θ = (θa, θc, θd), which 210

includes the parameters of adapters, the main clas- 211

sification head, and the DANN heads. Following 212

prior work (Ngo et al., 2021), low dimensional out- 213

put from each layer’s adapter is used by a separate 214

DANN head for domain adversarial training. Our 215

meta-SPL module consists of two weighting mech- 216

anisms: an instance-wise fv(θv) : R → R which 217

weighs the contribution vi of each example based 218

on the its classification loss and a learnable age 219

parameter λa; and a layer-wise fw(θw) : Rda → 1 220

that takes adapter representation of each layer and 221

outputs the relative "magnitude" wl of which the 222

corresponding layer l should be aligned. We re- 223

fer to the set of source samples whose losses are 224

less than λa as meta-source domain Str while the 225

rest is meta-target domain Sts. The latter acts, in 226

meta-test step, as a validation set used to evaluate 227

the model after meta-train step and provide learn- 228

ing signals to tune the "hyperparameters" from the 229

meta-SPL module. The overall architecture is pre- 230

sented in Fig. 2. 231

3.1 Meta Self-Paced Learning 232

Self-Paced Learning Kumar et al. (2010) 233

devised Self-Paced Learning method that extends 234

Curriculum Learning (Bengio et al., 2009) 235

to jointly learn the model and its curriculum, 236

circumventing the need for an ad-hoc implemen- 237

tation of easiness based on some predetermined 238

heuristics. Specifically, SPL employs an age 239

hyperparameter λa that represents the current 240

learning pace of the model. The objective is then 241

reformulated as a weighted loss where each in- 242

stance’s contribution is thresholded by λa as follow: 243

L =
n∑

i=1

vi(li;λa)li ; vi =

{
1, if li < λa

0, otherwise.
(1) 244

245

where li is the corresponding loss of i-th 246

training sample. Intuitively, λa is the "age" of the 247

model which is set to gradually grow as training 248

proceed. Thus, only easy samples are considered 249

at the initial learning stage while samples with 250

larger losses will be slowly added to the model’s 251

curriculum as it progresses. 252
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Adaptive SPL via Meta Learning The advan-253

tage of incorporating SPL into a ML framework is254

two-fold. First, ML provides a way to adaptively255

tune the highly sensitive λa, alleviating the need256

for manually devising an age scheduler. At the257

same time, SPL helps address the lack of clean258

validation data, by splitting the source domain259

instances of the current mini-batch into two260

disjoint sets based on the age value λa. The261

easy samples are used for meta-train step, in262

which the objective consists of a domain adver-263

sarial loss and a SPL-weighted classification loss:264

Ltr (Str,T; θ) = Lce (Str; θa, θc) + Ld (Str,T; θa, θd) (2)

vi = fv ◦max(0,
−li
λa

+ 1); Lce (Str) =
∑

xi,yi∈Str

vili (3)
265

266

where li = l(xi, yi; θ) is the loss of each267

sample and Ld is the weighted domain adversarial268

objective that is explained in the following section.269

fv is a small feed-forward network with sigmoid as270

final activation function to guarantee the resulting271

weights located in the interval of [0, 1], and272

with no bias so that the 0-valued inputs will also273

correspond to outputs of the same value.274

Typically, k gradient steps are applied to275

approximate the optimal solution that mini-276

mizes the current meta-train objective. Because277

of the sizeable transformer encoder, a high278

value of k will cost serious computation over-279

head. Thus, we decide to use k = 1, from280

which we observe no significant performance loss:281

θ̄ = θ − α∇θ(Lce (θa, θc) + Ld (θa, θd)) (4)
282

283

where α is meta-train learning rate. Next,284

the meta-test objective is the standard cross-285

entropy loss on samples in meta-target do-286

main Sts with loss values higher than λa:287

Lts

(
Sts; θ̄

)
=

∑
xi,yi∈Sts

(xi, yi; θ̄) (5)288

This acts as a hard, distinct domain that provides289

tuning signals for guiding model updates of both290

model’s parameters in θ and hyperparameters vi291

and λa.292

3.2 Balancing domain adversarial objectives293

The survey presented by (Rogers et al., 2020) pro-294

vides a detailed probing and understanding of how295

the different layer-block of BERT encodes differ-296

ent types of information. In summary, lower-level297

layers, positioning near the original inputs, thus298

contain mostly general statistical knowledge. This299

information gradually transformed as middle lay- 300

ers predominantly represent syntactic knowledge, 301

which is the most transferable across tasks. On the 302

other hand, the topmost layers are the closest to the 303

learning of the downstream task, hence encoding 304

extremely specific semantic knowledge regarding 305

the corresponding task. Accordingly, each layer 306

should contain a different amount of discrepancy 307

between source and target domains. 308

To align these representation spaces between 309

the two domains, we employ multiple do- 310

main classifiers at the bottleneck of every adapter: 311

Ld =
L∑
l=1

wlLl
d(z

l
d,yd; θ

l
d) (6) 312

313

where each Ll
d is an adversarial term of a 314

different DANN , taking adapter representations 315

zld of layer lth and domain labels yd as inputs. 316

These losses are weighted by a set of coefficients 317

{wl} that corresponds to how important it is 318

for the representations at the respective layer 319

to be aligned. Following standard learning 320

procedure, they would be hyperparameters that 321

required careful tuning for each specific domain, 322

which would be impractical (in our setting, there 323

would be a total of 12 hyperparameters). To 324

address the above issue, we employ a small 325

feed-forward network fw with a final softmax 326

layer to output the relative layer-wise weights: 327

W = [w0, · · · , wL−1] = fw(Zd; θw) (7)
328

329

where Zd ∈ RL×da is a set of layer repre- 330

sentations, each element of which is the sum of 331

all adapter representations of the corresponding 332

layer with respect to the current mini-batch. As 333

θw is updated throughout the ML process, W 334

is dynamically tuned to maintain high perfor- 335

mance on meta-test set while domain-adversarial 336

training makes representations across layers 337

domain-invariant. 338

Meta Optimization Following MLDG, 339

meta-train and meta-test losses are com- 340

bined in the final objective as follow: 341

argmin
θ

βLts

(
θ̄
)
+ Ltr (θ) ; argmin

θw,θv ,λa

Lts

(
θ̄
)

(8) 342

343

where β is meta-test balancing term. The 344

second term in Eq. 8 is the result of passing the 345

weights computed by meta-SPL module in Eq. 3 346

and 7 into Eq. 2 as pre-determined values, not 347

learnable variables. 348
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3.3 Incorporating Pseudo Label349

Pseudo Label is an effective method to improve350

target domain performance by leveraging the pre-351

dictions of previous step on unlabeled target data352

as additional learning signals for the main down-353

stream task. We use the pseudo-labeled target354

data only for Lce from Eq. 2 in meta-train step,355

in which they are weighted and thresholded by356

meta-SPL module using the same λa as source357

data: Lce

(
Str,T

)
=

∑
xi,yi∈Str∪T

vili, where T is358

the set of target samples with losses lower than359

λa. To alleviate the confirmation bias in pseudo-360

labeling, (Xie et al., 2019) provided strong regular-361

izations and data augmentations to prevent model362

from propagating its own inaccuracy throughout363

the training process. In our case, meta-SPL mod-364

ule would ensure that only high confident pseudo365

labels are used, thus suppressing the noises and366

providing a robust training for the model. In addi-367

tion, as we will discuss later section, the gradient368

updates of these samples are also regularized by369

the ML framework, forcing them to be consistent370

with meta-target domain.371

4 Experiments372

4.1 Datasets, Settings, and Baselines373

We evaluate the proposed model on ED task in374

UDA setting. In addition, we also demonstrate the375

generalization of our framework when applying to376

multi-domain sentiment analysis (SA) task.377

ACE-05 (Walker et al., 2005) A densely anno-378

tated corpus collected from 5 different domains.379

Two of which are used as source data, while each380

of the rest is a target domain for an adaptation set-381

ting. Given a trigger word in the context of an382

event mention, the model is required to perform383

a multi-class classification task that assigns a pre-384

dicted label into one of the pre-defined 34 event385

types (including 1 negative type).386

FDU-MTL (Liu et al., 2017) A dataset included387

reviews from 16 domains for binary sentiment clas-388

sification task. In each adaptation setting, a single389

domain is assigned as the target with unlabeled data390

while the other 15 are labeled source. Given the391

contextual sequence computed by models from a392

review, we use the first token [CLS] as the feature393

to predict its positive or negative sentiment.394

Detail setting of each dataset for UDA is de-395

scribed in Appendix B.396

ED baselines We provide a comprehensive com- 397

parison of our proposed method with multiple base- 398

lines from 3 categories: (No Weighting) mod- 399

els that do not leverage any weighting mechanism. 400

BERT is only fine-tuned on only labeled source 401

domain, whereas BERT+DANN follows the stan- 402

dard adversarial training; (Functional) weight 403

of each sample is given by a pre-determined func- 404

tion. Uniform treats each sample’s loss equally, Fo- 405

cal Loss down-weights well-classified instance ex- 406

ponentially (Lin et al., 2017), and Class-Balanced 407

uses a weighting factor that is inversely propor- 408

tional to the number of samples (Cui et al., 2019); 409

(Curriculum) a curriculum is used to compute 410

the contribution of each training instance. In Dom- 411

Cls, the weights are provided in prior by a do- 412

main classifier of a trained DANN to output the 413

probabilities of a sample belonging to target do- 414

main; whereas SPL’s dynamic curriculum com- 415

putes the weighting coefficients based on the corre- 416

sponding losses as in Eq. 1. Noted that models in 417

Functional and Curriculum categories em- 418

ploy both adapter-based fine-tuning and adversarial 419

training procedure. Finally, we include results from 420

recent approach DAA (Ngo et al., 2021), in which 421

three adapters were employed to create shared- 422

private representations through layer-wise domain 423

adversarial training, Wasserstein-based data selec- 424

tion, similarity constraint, and a self-supervised 425

auxiliary task. 426

SA baselines ASP-MTL (Liu et al., 2017) and 427

DAEA (Cai and Wan, 2019) are LSTM-based ap- 428

proaches, while BERT and BERT+DANN are the 429

same as in ED baselines. Finally, BertMasker 430

(Yuan et al., 2021) is the state-of-the-art approach 431

that learns to explicitly mask domain-related words 432

from text, resulting in domain-agnostic sentences. 433

4.2 Main Results 434

Event Dectection The first three row-blocks of 435

Table 1 present the performances of the above 436

baselines in each domain adaptation scenario. 437

BERT+DANN only provides slight improvement 438

for domain bc compare to BERT, while signif- 439

icantly degrades model’s performances on the 440

other two. Similarly, applying DANN for the 441

adapter-based model without any weighting mech- 442

anism, as in Uniform, also has adverse effects on 443

out-of-domain performances. Regarding instance- 444

weighting baselines, the change in data distribution 445

across domains results in Class-Balanced’s low 446
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System In-domain(bn+nw) Out-of-domain (bc) Out-of-domain (cts) Out-of-domain (wl)
P R F P R F P R F P R F aF1

BERT 75.8 72.5 74.1 73.5 68.9 71.1 73.7 69.5 71.5 62.2 51.6 56.4 66.3
BERT+DANN 73.4 76.0 74.7 73.9 69.4 71.5 76.4 53.0 62.5 59.9 53.2 56.3 63.4
Uniform 76.8 79.4 78.1 75.4 66.3 70.5 80.4 21.0 33.3 61.8 45.7 52.6 52.1
Focal 78.2 77.6 77.9 71.7 72.9 72.2 72.9 68.5 70.1 64.8 54.2 59.0 67.1
Class-Balanced 79.3 78.3 78.7 77.8 68.0 72.5 78.0 44.0 56.2 59.0 50.3 54.3 61.0
SPL 77.1 80.0 78.5 77.9 70.7 74.2 79.2 53.0 63.5 62.1 53.2 57.1 64.9
DomCls 79.6 76.4 77.9 73.0 74.5 73.7 78.2 48.7 59.9 62.9 53.1 57.5 63.7
DAA 79.7 75.7 77.7 78.5 75.6 76.9 78.4 73.2 75.6 66.2 60.3 63.1 71.9
MSP-DA 75.4 80.0 77.7 76.2 75.5 75.8 75.3 76.8 76.1 70.8 59.9 64.8 72.2

Table 1: UDA performances for ED task on ACE-05 test datasets. aF1 is the average out-of-domain F1 score.
System MR Appr. Baby Books Cam. DVD Elec. Hlth. IMDB Kitc. Magz. Musics Softw. Sport Toys Video aAcc
ASP-MTL 76.7 87.0 88.2 84.0 89.2 85.5 86.8 88.2 85.5 86.2 92.2 82.5 87.2 85.7 88.0 84.5 86.1
DAEA 77.0 89.0 92.3 89.0 92.0 88.3 91.8 89.8 90.8 90.3 96.5 88.0 92.8 90.8 91.8 92.3 90.2
BERT 90.5 90.8 90.3 91.3 91.5 89.0 91.3 91.3 91.3 90.0 88.5 90.3 90.5 92.0 90.8 92.0 90.7
BERT+DANN 90.5 91.8 92.5 90.8 90.0 91.3 90.5 90.8 91.0 91.8 91.0 90.5 91.0 90.5 90.3 90.3 90.9
BertMasker 83.8 92.3 92.8 93.0 92.8 89.3 93.3 95.3 86.0 90.8 94.5 89.5 93.0 92.5 93.8 91.3 91.5
MSP-DA 93.3 93.1 92.5 93.2 93.3 92.4 93.1 93.2 93.4 93.0 93.1 92.7 93.1 93.3 93.5 92.8 93.0

Table 2: UDA performances for SA task on FDU-MTL test datasets. aAcc is the average accuracy score across all domains.

domain adaptation ability. Focal Loss and SPL447

perform generally better in out-of-domain settings448

as they generate weighting coefficients adaptively449

based on the current losses, without involving any450

domain-specific statistics. On the other hand, Dom-451

Cls requires computing a specific curriculum for452

each domain, yet performs worse than the dynamic453

curriculum imposed by SPL. Finally, MSP-DA454

provides consistent improvements for all domains,455

even achieving on average 0.3 points higher in456

F1 score compared to the state-of-the-art DAA, in457

particular the significant 1.7 points increase when458

adapting to hardest domain wl.

System In-domain(bn+nw) Out-of-domain (bc) Out-of-domain (wl)
P R F P R F P R F

MSP-DA – mSPL 74.5 79.7 77.0 77.5 72.0 74.6 64.1 51.9 57.4
MSP-DA – DANN 74.3 80.3 77.2 75.7 72.9 74.2 61.6 51.9 56.3
MSP-DA – PL 77.8 75.1 76.4 75.1 73.5 74.3 62.6 52.4 57.0
MSP-DA (Random) 73.0 76.4 74.7 75.6 73.3 74.4 61.0 50.3 55.0
MSP-DA (Reverse) 77.7 75.0 76.3 78.2 70.6 74.2 65.0 50.7 57.0
MSP-DA (Ours) 75.4 80.0 77.7 76.2 75.5 75.8 70.8 59.9 64.8

Table 3: Performances for Ablation Study459

System Out-of-domain (bc) Out-of-domain (wl)
P R F P R F

Fixed (25) 79.3 68.9 73.7 65.8 50.0 56.8
Fixed (50) 75.0 73.7 74.3 66.3 49.5 56.6
Fixed (75) 76.4 72.0 74.1 65.9 52.7 58.6
Linear Incrs 74.9 71.7 73.3 61.6 54.7 57.9
Meta (Ours) 76.2 75.5 75.8 70.8 59.9 64.8

Table 4: Performances for Age Hyperparameter Analysis

System Out-of-domain (bc) Out-of-domain (wl)
P R F P R F

Constant 75.8 71.5 73.6 63.2 52.6 57.4
Anneal Up 75.4 71.0 73.1 63.5 52.6 57.4
Anneal Down 74.0 74.8 74.4 62.3 51.1 56.1
Meta (Ours) 76.2 75.5 75.8 70.8 59.9 64.8

Table 5: Performances for DANN Weighting Analysis

Sentiment Analysis SA results are presented460

in Table 2. While simple model using contex-461

tual embedding BERT outperforms all previous462

LSTM-based methods, we again observe little to463

no improvement applying domain adversarial train-464

ing naively with it. In contrast, our framework465

achieves the best performance for 13 out of 16 re-466

view domains, surpassing the current state-of-the- 467

art method BertMasker by 1.5 points on average. 468

4.3 Ablation Study 469

In the first row-block of Table 3, we conduct an 470

ablation study to validate the effectiveness of each 471

of our main components by investigating the per- 472

formance of the following variations of our model: 473

MSP-DA–mSPL follows the normal SPL process 474

to produce the weighting coefficients and train-test 475

datasets for ML; MSP-DA–DANN trains only on 476

source domain without utilizing unlabeled target 477

data for domain adversarial objective; and MSP- 478

DA–PL in which no pseudo-labels are leveraged 479

for training. In general, our full model outperforms 480

all variants across domains, even in the in-domain 481

setting, which confirms the superiority and flexibil- 482

ity provided by the jointly optimized pacing and 483

weights from our meta-SPL module. Especially for 484

wl domain, domain adversarial training in MSP- 485

DA manages to improve more than 8 F1 points. 486

Meta-test Selection To examine the correctness 487

of our assumption, we augment the data selection 488

process for meta domains in Random and Reverse 489

variants. The former randomly selects training sam- 490

ples for each meta domain, whereas the latter im- 491

plements the opposite hypothesis by choosing hard 492

and easy instances for meta-train and meta-test sets, 493

respectively. Both variants result in a considerable 494

decline in domain adaptation results as shown in 495

3. Notably, the significant performance drop in the 496

in-domain setting of Random indicates that simply 497

constructing train-test sets without any appropriate 498

condition can do more harm than good for the ML 499

process. These empirical observations further con- 500

firm our initial assumption on how domain shift 501

correlates well with the easy meta-train and hard 502
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Figure 3: Three columns in each subplot correspond to domain bc, cts, wl, respectively. (Left) Layer-wise DANN weights at
each training step. (Right) source and target age percentiles at each training step.

meta-test sets.503

4.4 The Values of Age Hyperparameter504

Age hyperparameter λa is usually the hardest to505

tune in a SPL system due to the fact that aside506

from the initial value, determining how λa changes507

throughout the training process also has a major im-508

pact on the final performance. Several prior works509

(Li and Gong, 2017; Ren et al., 2017) have pro-510

posed alternative age schedulers in place of the511

naive strategy which adds/multiples λa with a con-512

stant at each epoch. However, the value of λa in513

these methods still follows a predefined sequence,514

implying the need for a meticulous tuning process.515

In contrast, our meta-SPL module updates λa based516

on optimization signals from meta-test set, thus517

always able to create an appropriate dynamic cur-518

riculum regardless of different learning tasks and519

datasets. In Table 4, we examine how different520

values and schedules of age hyperparameter affect521

performances on bc and wl domains. The Fixed522

(p) settings with p ∈ [25, 50, 75] are variations523

of our model with λa values always correspond-524

ing to the unchanged p-th percentile of the current525

mini-batch’s sample losses; or in other words, the526

number of samples in meta-train set is always a527

constant p percent that of the current mini-batch.528

Additionally, we evaluate the case in which p is lin-529

early increased as training proceeds, similar to the530

standard SPL process, in Linear Incrs setting. The531

results show that the lower p is, the worse model532

performs, indicating that with too few meta-train533

data, the model will not be able to adapt to the534

hard meta-test domain. Surprisingly, the gradual535

rising scheduler of Linear Incrs is not as effective536

as the other Fixed variants. This means that the537

easy-to-hard assumption of prior SPL systems is538

not suitable for our ML framework.539

λa Visualization To gain more insight into how540

age hyperparameter changes throughout the train-541

ing process of each domain, we plot the values of 542

λa in source-losses percentile against the number 543

of update steps for 10 epochs in the right subplot of 544

Fig. 3. While λa quickly follows the standard in- 545

cremental trend initially, it starts to plateau within 546

the 60-70 percentile range until eventually start- 547

ing to decrease. Notably, behavior of λa diverges 548

across domains in subsequent steps. Whereas λa 549

continues the to decline in bc and cts domains, it 550

experiences a complete trend reversal at the end of 551

the training of wl domain. We hypothesis that this 552

drastic change of λa is because of the gradients’ 553

dot product term that the objective in Eq. 8 implies, 554

which we will delve deeper into in the discussion 555

section below. The
⋂

shape of λa correlates with 556

the term’s value as the model maximizes it to align 557

the gradient directions between the meta train-test 558

domains, going from negative initially as the train- 559

ing started, to 0 which causing the plateau, then 560

gradually becoming positive as the model was able 561

to adjust the updates of meta-train set to be consis- 562

tent with that of meta-test set. However, for hard 563

adaptation such as wl domain, too few data in meta- 564

train set can cause a major disparity between the 565

two meta domains again, thus the resulting trend 566

reversal at the last few steps. 567

We also visualize the same plot for target- 568

pseudo-losses percentile, which leads to an inter- 569

esting observation: Initially, the model followed 570

its own pseudo labels without any constraint and 571

the high value of λa percentile represents model’s 572

incorrect overconfidence. However, these pseudo- 573

label updates will cause discrepancies with meta- 574

test domain, thus the ML framework will gradually 575

fix the corresponding predictions, allowing only 576

quality pseudo samples to be included in meta-train 577

set. Eventually, the target trend converges with the 578

source ones, suggesting that model’s predictions 579

on pseudo labels are then as consistent as on clean 580

training labels. 581
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4.5 Balancing Domain Adversarial Losses582

Previous works have observed that the weight of583

DANN in the combined objective has a significant584

impact on the overall adaptation performance of585

the model. We further validate this point by inves-586

tigating how different domain adversarial weight-587

ing schemes affect the results on bc and wl do-588

mains. Specifically, we evaluate 3 types of layer-589

wise weighting: (i) Constant - all layers share590

the same wl value, (ii) Anneal Up - wl slowly591

increases from lower to higher layers, and (iii) An-592

neal Down - wl is highest for the first layer and593

gradually declines for subsequent layers. The re-594

sults are present in Table 3, in which none of the595

schemes is better than the others in both domains.596

In contrast, the meta-learned coefficients of our597

framework manage to boost model’s performances598

in every adaptation setting, especially for the hard599

wl domain where domain adversarial training mat-600

ters the most.601

We further visualize how each layer’s weight602

changes during the learning process across domains603

in the left subplot of Fig. 3. In particular, we parti-604

tion 12 layers of BERT-base model into 3 groups of605

4 sequential layers, each of which is known to con-606

tain a different type of information that is important607

for a different type of task as described in the pre-608

vious section. We can observe from the graphs a609

certain pattern: the higher level the group is, the610

more volatile its layers’ coefficients are. However,611

there is no specific rule shared among all domains612

regarding the value of each layer’s weight. This613

affirms the sensitivity of domain adversarial bal-614

ancing term to each individual domain and further615

justifies the effectiveness of the jointly optimized616

weighting in our framework.617

5 Discussion618

Following the analysis of MLDG framework619

presented in (Li et al., 2018), we decompose the620

meta-test loss, given that θ̄ = θ − αL′
tr(θ),621

using the first order Taylor expansion:622

Lts

(
θ − αL′

tr(θ)
)
= Lts (θ) +

∂Lts (θ)

∂θ

(
−α

∂Ltr (θ)

∂θ

)
(9)623

624

Denoting G = ∂Lts(θ)
∂θ · ∂Ltr(θ)

∂θ and plug-625

ging Eq. 9 into the final objective to up-626

date main model’s parameters from Eq. 8627

results in the following optimization problem:628

argmin
θ

Ltr (θ) + Lts (θ)− βαG (10)629

630

The third term in Eq. 10 is a gradient-based 631

regularization that penalizes inconsistency between 632

parameter updates of meta-train and meta-test 633

domains. By enforcing loss gradients of the two 634

domains to follow a similar direction, Eq. 10 635

prevents the model from over-fitting to a single 636

domain, effectively improves model’s adaptation 637

capacity provided that meta-test set is ’close’ to 638

target domain. 639

We further examine how the ML frame- 640

work affects the values of meta-SPL module’s 641

parameters (θw, θv, λa) in our model. Plug- 642

ging Eq. 9 into the gradient of λa, we have: 643

∂Lts

(
θ̄
)

∂λa
= −α

∂Lts (θ)

∂θ
· ∂

2Ltr (θ)

∂θ∂λa
= −αG · ∂fv(λa)

∂λa
(11)

644

645

From Eq. 11, we see that the multiplicative 646

factor G also controls how the value of λa changes 647

throughout the ML process. When there is a 648

significant discrepancy between meta-train and 649

meta-test domain, G would have a negative 650

value, which would in effect push λa higher and 651

allow more samples into meta-train set for easier 652

adaptation to meta-test set. Conversely, a positive 653

G would imply that the model is good enough to 654

align the current meta domains, thus gradually 655

pulling λa down to make the task harder. This 656

behavior is clearly illustrated in Fig. 3. Similar 657

arguments can be made for the meta-learned 658

weighting coefficients, where G would encourage 659

samples whose gradients are similar across 660

domains while decreasing the contribution of those 661

whose gradients are not. These understanding are 662

also presented in (Shu et al., 2019) and closely 663

related to how MAML works (Nichol et al., 2018; 664

Raghu et al., 2019) 665

6 Conclusion 666

We present a novel ML framework for UDA set- 667

ting that achieves state-of-the-art performance on 668

ED task. In particular, a meta-SPL module is em- 669

ployed to adaptively partition source domain into 670

meta-train and meta-test set, while simultaneously 671

learns the instance-wise and layer-wise weights for 672

the loss terms of downstream task and domain ad- 673

versarial task respectively. The proposed model 674

significantly improves domain adaptation perfor- 675

mances against various baselines on every domain 676

without domain-specific hyperparameter tuning. In 677

the future, we intend to apply our approach to other 678

domains and tasks while incorporating different 679

novel domain adaptation regularization methods. 680
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A Implementation Details905

All models are implemented in Pytorch. We lever-906

age pre-trained BERT-base models and checkpoints907

from Huggingface repository. (Wolf et al., 2020).908

Meta-learning process is implemented following909

ANIL algorithm in (Arnold et al., 2020).910

Bounds for each hyperparameter Adapter lay-911

ers injected after every feed-forward sub-blocks912

have bottleneck feed-forward architecture with913

down-sampled dimension chosen among [48, 96,914

128]. All of the downstream heads are implemented915

as feed-forward networks with activation functions916

between layers. Each weighting net of meta-SPL917

module is a feed-forward network with 2 or 3 layers918

with hidden vectors of size [100, 50] or [200, 100,919

50], respectively To train the proposed model, we920

use Adam optimizer with meta-train and meta-test921

learning rates α and γ both chosen from [5e-5, 1e-922

4, 5e-4, 1e-3, 5e-3], the mini-batch size from [50,923

100, 150] of which 20% or 40% are unlabeled tar-924

get data, and the meta-test balancing term β from925

[5, 2, 1, 0.5, 0.1].926

Method of choosing hyperparameter values927

We tune the hyperparameters for the proposed928

model using a random search. All hyperparam-929

eters are selected based on the F1 scores on the930

development set of bc domain. The same hyperpa-931

rameters from this fine-tuning are then applied for932

other domains.933

Best hyperparameter configuration In the best934

model, fixed pre-train BERT-base layers aug-935

mented by adapters with bottleneck size 96 are936

used as our feature encoder. All objective heads937

have 2 hidden layers. We use Adam optimizer with938

a learning rate of 1e-4 for both meta-train and meta-939

test step, 100 for mini-batch size with 20% target940

data, and the meta-test balancing term is 2. Our941

reported results are averages of five runs using the942

best hyperparameter configuration with different943

random seeds.944

B Data Settings945

We provide statistics of each domain in UDA set-946

ting for ACE-05 and FDU-MTL in Table 6 and947

Table 7, respectively.948

For ACE-05 dataset, we gather data from two949

closely related domains, bn and nw, to create a siz-950

able source domain dataset, 80% of which are used951

for training whilst the rest are used as test target952

domain for in-domain setting. For out-of-domain 953

settings, each of the other domains is considered 954

the target domain of a single adaptation scenario, 955

where 20% of its documents are unlabeled training 956

target data and the remainders are utilized as the 957

test dataset. All of the considered models’ hyper- 958

parameters are only tuned based on bc domain. 959

Domains Train Unlabeled Test
bn+nw 38644 N/A 9661
bc N/A 3130 12520
cts N/A 2885 10972
wl N/A 3424 12767

Table 6: Statistics of ACE-05’s domains in UDA setting.

For FDU-MTL dataset, each of the 16 domains 960

has a test set of 400 samples. The amount of train- 961

ing labeled and unlabeled data vary across domains, 962

ranging from 1400 to 2000 samples. In each adap- 963

tation setting, a single domain is designated as the 964

target domain while its unlabeled data are used 965

in training set together with labeled data from the 966

other 15 domains. 967

Domains Train Unlabeled Test
Books 1400 2000 400
Elec. 1398 2000 400
DVD 1400 2000 400
Kitchen 1400 2000 400
Apparel 1400 2000 400
Camera 1397 2000 400
Health 1400 2000 400
Music 1400 2000 400
Toys 1400 2000 400
Video 1400 2000 400
Baby 1300 2000 400
Magaz. 1370 2000 400
Soft. 1315 475 400
Sport 1400 2000 400
IMDb 1400 2000 400
MR 1400 2000 400

Table 7: Statistics of the 16 domains in FDU-MTL
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