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ABSTRACT

Bayesian optimization (BO) has been widely used to optimize expensive and
black-box functions across various domains. Existing BO methods have not ad-
dressed tensor-output functions. To fill this gap, we propose a novel tensor-output
BO method. Specifically, we first introduce a tensor-output Gaussian process
(TOGP) with two classes of tensor-output kernels as a surrogate model of the
tensor-output function, which can effectively capture the structural dependencies
within the tensor. Based on it, we develop an upper confidence bound (UCB) ac-
quisition function to select the queried points. Furthermore, we introduce a more
complex and practical problem setting, named combinatorial bandit Bayesian op-
timization (CBBO), where only a subset of the outputs can be selected to con-
tribute to the objective function. To tackle this, we propose a tensor-output CBBO
method, which extends TOGP to handle partially observed outputs, and accord-
ingly design a novel combinatorial multi-arm bandit-UCB2 (CMAB-UCB?2) cri-
terion to sequentially select both the queried points and the optimal output subset.
Theoretical regret bounds for the two methods are established, ensuring their sub-
linear performance. Extensive synthetic and real-world experiments demonstrate
their superiority.

1 INTRODUCTION

Bayesian optimization (BO) is a widely used strategy for optimizing expensive, black-box objective
functions (Frazier, 2018; [Wang et al., 2023)). Its effectiveness has led to successful applications in
various domains such as hyperparameter tuning, experimental design, and robotics (Snoek et al.,
2012; Shields et al., [2021; [Wang et al., 2022). Most existing BO methods focus on scalar outputs
(Bull, 20115 (Wu et al., 2017), while some recent studies have extended BO to handle multi-output
scenarios (Chowdhury & Gopalan| 2021} Tu et al.| [2022; Maddox et al.| [2021; [Song et al. [2022).
However, to the best of our knowledge, no prior work has addressed tensor-output BO, where the
system output is a multi-mode tensor. In contrast, tensor-output data have been extensively explored
in other areas, including tensor decomposition (Abed-Meraim et al.}|2022), tensor regression (Lock,
2018)), and tensor completion (Song et al.,2019), among others.

In current multi-output BO (MOBO) methods, a surrogate model, typically a multi-output Gaussian
process (GP) or multiple scalar-output GPs, is constructed from observed data, and an acquisition
function is used to sequentially select queried points by balancing exploration and exploitation.
A straightforward approach to handling the tensor output is to vectorize them and apply existing
MOBO methods. However, this neglects the intrinsic structural correlations within tensors, particu-
larly the mode-wise dependencies that are critical in many applications. As a result, when optimizing
the acquisition function to identify the global optimum, MOBO methods may become less effective.
As such, it is essential to construct a GP to directly model tensor structures. Existing tensor-output
GP methods are based on full separable structures, where the joint covariance is decomposed into a
Kronecker product of covariance matrices across each output mode and the input. (Kia et al.,2018;
Zhe et al.||2019; Belyaev et al.| 2015). While computationally attractive, such separability assumes
that correlations across tensor modes are independent of the input, which is often unrealistic in com-
plex real-world systems such as spatiotemporal processes (Hristopulos| [2023). This mismatch can
lead to inaccurate modeling, numerical instability in posterior inference, and ultimately degraded
BO performance. Therefore, in this paper, we first aim to construct a more flexible and scalable GP
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model that can capture input-dependent correlations within tensor outputs. Then, we aim to design
an acquisition function and the sequential querying policy tailored for tensor-output BO.

Furthermore, we consider a more complex and practical setting in which only a subset of the tensor
outputs can be selected to contribute to the objective function. This naturally transforms the problem
into a combinatorial multi-armed bandit (CMAB) setting. Specifically, each tensor element is treated
as an individual arm, and at each round a subset of arms, referred to as a super-arm, is selected. The
objective value associated with the chosen super-arm is then observed, which we interpret as the
reward. We term this novel problem as combinatorial bandit Bayesian optimization (CBBO).
The goal of CBBO with tensor outputs is to jointly identify the optimal input in the search space and
the corresponding best super-arm over the tensor outputs. Recent studies have explored combining
BO with multi-armed bandits (MAB), often under the name bandit Bayesian optimization (BBO),
to address mixed input spaces with both continuous and categorical variables (Nguyen et al., 2020}
Ru et al] [2020; [Huang et all, [2022). In such settings, categorical variables are viewed as tensor
modes, with their categories corresponding to elements along each mode. Selecting one category
per mode corresponds to choosing a single arm along each mode, which can be viewed as a special
case of CBBO. However, existing BBO methods cannot be directly extended to the CBBO setting
for two main reasons. First, they typically model the outputs associated with categorical variables
using independent GPs, thereby failing to capture the rich structural correlations inherent in tensor
outputs. Second, their selection strategies rely on multiple independent MABs (i.e., selecting one
arm per mode independently), whereas CBBO requires joint selection of multiple correlated arms.
Thus, these BBO methods have less potential to be extended to our CBBO framework.

To address the aforementioned challenges, we propose a novel tensor-output Bayesian optimization
framework, named TOBO, together with its extension to the CBBO setting, named TOCBBO. Our
main contributions are summarized as follows:

* We propose a tensor-output Gaussian process (TOGP) with two classes of tensor-output
kernels that explicitly incorporate tensor structure by extending the linear model of core-
gionalization from vector-valued outputs to tensor-valued outputs. The proposed kernels
capture rich dependencies across tensor modes and across the input domain.

* Using the TOGP model as a surrogate, we develop a TOBO framework based on the upper
confidence bound (UCB) acquisition. We establish a sublinear regret bound for TOBO,
which is the first regret analysis for tensor-valued outputs under a Bayesian framework.

* We formulate a novel problem setting, referred to as CBBO. To address this setting, we de-
sign the TOCBBO framework by introducing a CMAB-UCB?2 acquisition function, which
integrates the UCB criterion for input selection with the CMAB-UCB criterion for super-
arm selection. We further establish a sublinear regret bound for TOCBBO.

* We demonstrate the efficiency and superiority of our methods through three synthetic ex-
periments and four real-world applications.

Notably, compared to existing TOGP methods (Belyaev et al} 2013}, [Kia et all [2018} [Zhe et al.]

[2019), our model provides a more general kernel construction framework, as their tensor-output
kernels correspond to specific choices of low-rank tensor decompositions, while our LMC-based
formulation allows arbitrary tensor constraints to be incorporated into the coregionalization matrix.
Compared to existing BO methods (Srinivas et al] 2009} [Belakaria et al] 2019} [Chowdhury &
[2021)), our work is the first to establish a BO framework for tensor outputs and further
extend it to the proposed CBBO setting. Moreover, our contributions lie in deriving regret bounds
for both TOBO and TOCBBO based on concentration inequalities tailored to the proposed TOGP
under the Bayesian framework.

2 RELATED WORKS

High-order Gaussian process (HOGP): Existing studies for modeling HOGP rely on separable
kernel structures. In particular, Belyaev et al| (2015) proposes a tensor-variate GP with separable
covariance across tensor modes, |Kia et al. develops a scalable multi-task GP for tensor out-
puts by factorizing the cross-covariance kernel into mode-wise and input components, and Zhe et al.|
(2019) introduces a scalable high-order GP framework based on Kronecker kernels. While such for-
mulations simplify computation, they inherently assume that correlations across tensor modes are
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independent of the input, which limits their ability to capture input-dependent dependencies. Re-
cent studies have studied non-separable kernel functions for multi-output GPs (MOGPs), including
convolution emulator-based kernels (Fricker et al., 2013), linear model of coregionalization-based
kernels (Fricker et al.,[2013; [Li & Zhou, 2016} Bruinsma et al.| [2020), and linear damped harmonic
oscillator-based kernels (Hristopulos, 2023). Another equivalent formulation for MOGP is called
multi-task GPs, where each task corresponds to an element of the outputs (Yu et al.,|2018}; (Chowd-
hury & Gopalan, [2021; Maddox et al., [2021). However, these approaches generally treat outputs as
vectors and cannot exploit the inherent multi-mode structure of tensor data, see Section

Multi-output Bayesian optimization (MOBO): MOBO typically refers to either multi-task BO
or multi-objective BO (Frazier} 2018} Wang et al.l [2023). A desirable property of BO algorithms
is to be no-regret, i.e., achieving cumulative regret R(T) = o(T) after T rounds (Srinivas et al.,
2009} |Chowdhury & Gopalan, 2021). Recent works have proposed various MOBO methods with
theoretically grounded acquisition functions. In particular, Chowdhury & Gopalan|(2021)); Dai et al.
(2020); Sessa et al.| (2023) employed UCB for multi-task BO and obtained O(\/T ) regret. For multi-
objective BO, Belakaria et al.| (2019); Zhang et al.|(2025)) study multi-objective BO using max-value
entropy search and achieved O(\/T) regret, and Daulton et al.| (2022a)) proposes a trust-region-
based criterion with O(y/T log T') regret. In contrast, another class of MOBO methods focuses on
empirical performance without regret guarantees, including improvement-based criteria (Uhrenholt
& Jensen, 2019; |Daulton et al.l [2020; 2022b), entropy-based search criteria (Hernandez-Lobato
et al.,2014;|2016; [Tu et al.,|2022)), and information gain-based approaches (Chowdhury & Gopalan)
2021)). While effective in multi-output settings, these methods do not directly leverage the structured
tensor correlations and are thus less suitable for our TOBO framework. Furthermore, hypervolume-
based and entropy search-based multi-objective BO methods cannot be applied to tensor outputs
because their prohibitive computational complexity as the number of objectives grows.

Bandit Bayesian optimization (BBO): BBO combines BO with multi-armed bandit algorithms to
handle optimization problems in mixed input spaces with both continuous and categorical variables.
Nguyen et al.|(2020); [Huang et al.|(2022) considers an optimization problem with one continuous
and one categorical variable, integrating BO with MAB-Thompson sampling with O(v/T*+!logT)
regret. Ru et al.[(2020) extends this idea to multiple categorical variables, introducing CoCaBO, by
employing EXP3 (Auer et al., 2002) for categorical selection and achieving O(v/T log T') regret.
Although such settings can be regarded as special cases of CBBO, directly extending them is chal-
lenging due to the tensor-output structure and the need to jointly select multiple correlated arms.

Table 1: Comparison of related works and our proposed method
GP

Tensor Separable Non-separable
Type Literature - (Independent  (Cross-mode BO (Regret) BBO (Regret) CBBO (Regret)
structure N
modes) correlations)

Belyaev et al.|(2015)
HOGP Kia et al. {2018} Vv Vv x X X X
Zhe et al.|(2019)
Fricker et al.|[(2013}

MOGP L1 & Zhou|(2016) X X Vv X X X
Hristopulos (2023}
“Dai et al. (2020}
MTBO Sessa et al.|(2023) * v x v (O(\/T” x x
MTBO Chowdhury & Gopalan|(2021) x N N V (OWT) X x
Belakaria et al.|(2019)
MOBO “[Zhang et al.[(2025] x X x Vv (OWT) X X
MOBO Daulton et al. |(2022a) x x X v (O(VTlogT)) X X
Nguyen et al. (2020} i
BBO Tuang et al J(2027] X Vv X V(OWT+10gT))  /(O(VT+1ogT)) X
BBO Ru et al. |(2020] x N x V (O(VTlogT)) V (O(VTlogT)) x
TOBO+TOCBBO Our proposed method v v v V (O(VTlogT)) V(OWTlogT))  /(O(TlogT))

3 TENSOR-OUTPUT BAYESIAN OPTIMIZATION

In this section, we propose a novel tensor-output Bayesian optimization (TOBO) framework for
optimizing systems with tensor-valued outputs. Let f : X — ) denote the black-box, expensive-to-
evaluate function, where the input @ = (x1, ..., xq) is a d-dimensional vector defined on a compact
and convex region X C R?, and the output f(x) € Y C Ri1%--Xtm js a tensor with m modes.
Denote f;, .. i (x)asthe (i1,...,i,)-th entry of the tensor, where §; = 1,...,¢; forl =1,...,m,
and let 7" = [, , t; be the total number of elements. To optimize tensor-output systems, an intuitive
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way is to map the tensor-valued objective into a scalar function. To this end, we introduce a bounded
linear operator L; € L(Y,R), where £(Y,R) denotes the set of bounded linear operators from
to R. The optimization problem is thus

x* = argglea/%(Lff(m). (1)

To solve this problem, the proposed TOBO aims to sequentially select inputs x; and observe the
corresponding tensor outputs,

where g; € R*Xtm denotes i.i.d. measurement noise with vec(e;) ~ N(0,7%Ir), and vec :
Y — R7 is the vectorization operator.

Based on the collected data, we construct a tensor-output Gaussian process (TOGP) with two classes
of tensor-output kernels to model f, as detailed in Subsection Then, we develop a UCB-based
acquisition strategy to efficiently identify the maximizer o*, as presented in Subsection

3.1 TENSOR-OUTPUT GAUSSIAN PROCESS

Define the prior of f : X — ) as a tensor-output Gaussian process (TOGP):
vec (f(z)) ~ TOGP (p, 0’ K(z,z')), Ve, x' € X, (3)

where p € R is the prior mean, o > 0 is a variance hyperparameter, and K (z, ') € R"*T is a
symmetric and positive semi-definite kernel function. The classes of K(x, x’) is discussed later.

. . T .
Given n observations X,, = (x1,...,%,)  andY, = (vec(y1)',...,vec(y,)") . the posterior
of the vectorized f at a new input x € X is a T-dimensional Gaussian with mean and covariance,

fin(@) = p+ K, () (K +0ur) ™ (Vo — 1, @ ), 4)
Kn(w, z) =o? |K(z,z) - KI(:E) (K, + r]InT)f1 Kn(:v)} , 35

where K, (z) € R"T*T is the block column matrix with i-th block K (z;, %), K,, € R"T*"T s the
block matrix with (4, j)-block K(z;, x;), 1,, is the n-dimensional vector of ones, and ) = 72 /52,

To specify the tensor-output kernel for TOGP, we introduce two classes of kernels. The first class
is the non-separable tensor-output kernel. Specifically, any GP can be represented as a convolution
of white noise processes (Higdon, [2002)). For a tensor-output system f with GP prior, each element
of f can be expressed as f;, . (x) = fx Girooiv (2 — @) Wiy 4 (2)dz, Where w;, ;. (2)
denotes an independent white noise process with zero mean and covariance k;, . ;, (z — 2’). In-
spired by the linear model of coregionalization (LMC) (Fricker et al., 2013; [Li & Zhoul [2016)),

we consider a degenerate choice g;,,. ;. (z — ) = Y |-, 2?:1 Ai(i1y ..., im)0(z — @), so that
fila“-ﬂ;'m ($) = Z?;l E?:l Al (Zl’ st 7im)w7;1>~-<7i'm (:E)’ Where Al7i17~~-77:7n denOtes the (21’ R Zm)_
th element of the tensor A; € R *Xim  Expanding the LMC along tensor modes yields
flz) = Y0, ?21 A;w(x) with zero mean and the covariance Cov(vec(f(x)), vec(f(x'))) =
Sy Z;l: L vec(A;) vec(A;) T ky;(z, ). The non-separable tensor-output kernel is defined as

Definition 1. Define the non-separable tensor-output kernel K(x, x') for any x,x’ € X:

m 1
K(z,z') = ZZvec(Al)vec(Al)Tklj(m,w’), (6)

=1 j=1

where A; € R\ Xtm js q core tensor and ki (z,x') are base kernels (e.g., Matérn or Gaussian)
on X. This construction induces correlations both across and within tensor modes that vary with
the input, thus yielding a non-separable covariance structure.

Furthermore, if all w;, .. ;, (z) share the same covariance k(z, z’) fori; € [t;], l = 1,...,m, and
the convolution degenerates to g;,.. ;.. (2) = A d(z — x), then the induced tensor-output
kernel reduces to a separable structure as

11s5-e05tm
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Definition 2. Define the separable tensor-output kernel K(x, ') for any x, 2’ € X:
K(z,z') = vec(A)vec(A)Tk(a:,:c’). (7)

where A € R'** " *tm js g core tensor, and k(-,-) is a base kernel on X. This structure yields a
separable kernel in which the correlations across tensor modes are independent of the input.

Note that K(x, ') is designed to capture both the correlation across inputs and the correlation
within the tensor output. For the non-separable tensor-output kernel in (EI), the base kernel k;; (z, ')
models the covariance between the inputs = and ', while the matrix vec(A;) vec(A;) T describes
the covariance structure among the elements of the output tensor. For the separable tensor output
kernel in , k(z, ') captures the input correlation, and vec(A) vec(A) T specifies the mode-wise
covariance structure within the tensor output.

Proposition 1. The kernel function K in Definitions [IH2] for the TOGP is symmetric and
positive semi-definite on X. Specifically: (1) Vx,x' € X, the kernel satisfies symmetry:
K(z,z') = K(z',2)T; (2) Yy1,- - ,¥yn € Y, the Gram matrix is positive semi-definite:
>t jer veelyi) TK (g, xj)vec(y;) = 0.

Its proof is given in Appendix[E] Proposition [T]thus ensures that two classes of tensor-output kernels
yield valid covariance kernels for TOGP, ensuring that the induced TOGP is well defined.

Remark 1. For the core tensors { A} | in (@ and A in (IZ) there are mT and T parameters to be

estimated, respectively. To reduce the complexity, some low-rank decomposition-based structure can
be applied to core tensors, such as CANDECOMP/PARAFAC (CP) decomposition

2015) and tensor-train (TT) decomposition 20T1). Details are shown in Appendix|B|

Denote the hyperparameters as @ = {07 a, o2, 72}. For the kernel in (EI), 6 =0, ]};"le are the

LM are the parameters of {A;}",.

scale parameters of the base kernels {k; ;}, and @ = {a;};;7

mtl

For the kernel in (EI) 0 = {01,...,04} is the scale parameters of k, and @ = {a;;}; ;" are the
parameters of A. The hyperparameters ® are estimated via maximum likelihood. The detailed
estimation, algorithm, and complexity analysis are provided in Appendix [C|

Remark 2. The ranks of the core tensors A; in the proposed TOGP model are chosen via cross-
validation forl = 1,--- ;m. Let R. = {ry,...,r.} be the set of candidate ranks, we fit the TOGP
model and evaluate its predzcnve accuracy on a held-out validation set using the mean absolute
error (MAE) criterion. The selected rank is given by r* = arg min,cr, MAE(r), where MAE(r) =

1 Nest || £ 7f‘i (7'>
TMiest Z’:l H f;
mitigating overfitting while preserving expressive capacity.

. The data-driven selection balances model flexibility and complexity, thereby

Remark 3. To improve scalability for large tensor outputs, we adopt a Nystrom low-rank approxi-
mation strategy Specifically, based on data X, and'Y,,, consider the spectral decomposition K,, =

U,,A,,Un , where A,, = diag(\1, \a, ..., \y7) denotes eigenvalues ordered as \y > Xy > ... >
Ao > 0. We approximate K,, using the leading | (< nT') eigenpairs, that is, K,, ~ UlAlUl ,
where U; € R contains the first | eigenvectors and A; = diag(A1, ..., \). The rank l is se-

lected by cumulative explained variance: | = min,, {lo e{l,...,nT}: Z LA /Z"T i > r}

The Nystrom method approximates K,, by selecting n; (< nT') landmark columm and extending
a small eigendecomposition, which yields a computational cost of evaluating (K,, + nL,7)~! as

O(nTn? + n?) (Williams & Seeger} [2000). Thus, the overall computational complexity for training
TOGP becomes O ((nT'ni + n} +n*T?my)logn).

3.2 UPPER CONFIDENCE BOUND ACQUISITION STRATEGY

Building on the proposed TOGP as a surrogate for f, we now develop a UCB-based acquisition
strategy. At round n + 1, given past observations X,, and Y,,, we update the hyperparameters ®,,
as well as the posterior mean and covariance (3) of f. The UCB acquisition function for the
scalarization-based objective in (1)) is defined as

1/2

aven(@ | Dn) = Lyfin(x) + Bo||Kn(z,2)|| ®)
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where 3,, > 0 is a tuning parameter that balances exploration and exploitation. This criterion en-
courages exploration in directions with greater predictive uncertainty under the tensor-output setting.
The next query is then selected by maximizing (8):

Tpi1 = argmax aycp(T | Dn). )
reX
The complete TOBO algorithm and its complexity analysis are given in Appendix
We now analyze the theoretical properties of the TOBO method under specific conditions. To this

end, we first introduce the following definition for two commonly used regrets.

Definition 3. Az each round n, the TOBO method selects a queried input x,, € X. The instantaneous
regret is defined as v, = Lf(x*) — Lyf(x,,), and the cumulative regret up to round N is defined

as Ry = Yoo, [Lyf(a*) — Lyf ()]

The regret quantifies the gap from not knowing the objective in advance. A good strategy can achieve
a sub-linear cumulative regret, so that the average regret per round converges to zero as N — oo.
Assumption 1. Assume that the true system f is a TOGP with kernel K as defined in ([6)—(7).

Assumption 2. The scalarization operator Ly in is L-Lipschitz with respect to £ under the o
norm, i.e., for any &;,x; € X, |L¢(f(x;)) — Ly (f(x;)| < L||f(x;) — f(a;)| holds.

Assumption 1| ensures that the objective function f is a TOGP, which is a basic setting under the
Bayesian framework. Assumption [2] demonstrates that the scalarization-based objective is stable
under small perturbations of the input.

Lemma 1. Let dvec(f)/dxz; € RT be the gradient of vec(f) with respect to the j-th coordinate of

x € X. Then, vec(f)/0x; is a GP with covariance KV (x;, x;). UnderAssumptions given data
X, and Y, withn > 1, there exist constants a,b > 0 such that

Pr (sup |Ovec(f)/dx;|| > L' + C’v> <aexp(=L?/b?), j=1,---,d. (10)
TeEX

where Cy = supgcy \/ tr(KY (2, ;) and L' > 0.

Its proof is given in Appendix [F} Lemma|[I|shows that the derivative of the vectorized TOGP remains
Gaussian, and holds high-probability confidence bounds.

Theorem 1. Under Assumptions define C,, = SUpgcx tr(Kn(a:,a:))//\g,Qx(m) where
)\I(I@X(:c) is the largest eigenvalue of Kn(a:,:c) Suppose X C [0,7]%.  Then for any
§ € (0,1), the TOBO method with 3, = +/C, + 2dlog(rdn?(b\/log(da/d) + Cv)/d)
holds that, Pr <RN SL(«/CWN(K,n)NﬁN—i—’Tﬁ.:)) > 1 - 5, where yw(K,n) =

maxXx, cx % log det (I NT + TflK N) denotes the maximum information gain.

Its proof is given in Appendix [G] Theorem [I] establishes that the cumulative regret of TOBO is
sub-linear with high probability.

Proposition 2. If K(x,x’) is specified as the separable kernel in Definition |2} then the maximum
information gain satisfies v, (K,n) = O (T log(n)*™') when k(x,x') is a Gaussian kernel, and
(K, n) = O(Tndd+0)/@vdd+1)) 160 (n)) when k(x, ') is a Matérn kernel with smoothness
parameter v > 1. Details of the analysis are provided in Appendix|[H|

4 TENSOR-OUTPUT COMBINATORIAL BANDIT BAYESIAN OPTIMIZATION

We now consider a more challenging optimization problem in which only £ < 7' elements of the ten-
sor output can contribute to the objective function. Formally, we define f(x, A) = e(A)vec(f(x)) €
Y, where A = (A1,...,Ap)" is a binary indicator vector in A = {X € {0,1}7 : 1JX = k}
and e(A) € {0,1}**7T is a binary selection matrix whose j-th row selects the i,-th coordinate of
vec(f(x)). The goal is to jointly identify the optimal input £* € X and the optimal subset of k
elements, represented by a binary vector A* € A, that maximize

(ZB A ) = argwe%?)z(EAHff(w,A)’ (11)
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where Hy is a bounded linear operator Hy € L(Y,R). By interpreting each tensor element as
an individual arm, the selected subset of k elements corresponds to a super-arm S, with j € S if
Aj = land j ¢ S otherwise. At each round ¢ € [N], the learner selects an input &, and a super-arm
S; = {i1,..., i} of size k, equivalently encoded by A; € A. The observed output is partial tensor
7; € R¥ indexed by S;, while outputs for unselected elements j ¢ S; remain unobserved.

In this section, we propose a novel tensor-output combinatorial bandit Bayesian optimization
(TOCBBO) framework to solve the above problem. In Subsection 4.1} we extend the TOGP model
for partially observed outputs. In Subsection we develop an efficient CMAB-UCB2 acquisition
strategy that combines UCB for input selection with CMAB-UCB for super-arm selection.

4.1 PARTIALLY OBSERVED TENSOR-OUTPUT GAUSSIAN PROCESS

From the proposed TOGP in , the prior of f cXxA = Yisa partially observed TOGP (PTOGP):
f(,A) ~ PTOGP (e(A)p(x), T2e(NK(z, 2 )e(N)T), Va,z' € X, AN €A (12)

Let X,, = (1,...,2,) . Ay = (A1,...,An) . and Y,, = (§1,...,9,)" be n partially ob-
servations, where A; corresponds to the selected super-arm S;, and §; = f(x;, A;) + &; with

- iid . e .
€; '~ N (p, 721}). Then, for a new input z and a super-arm S with indicator vector A, the posterior
distribution of f is a k-dimensional Gaussian with mean and covariance

fin (2, \) = e(A)p(z) + o2e(NK] (z)E] 51 (Vec(f/n) _E,(1,® u)) : (13)
K, (z,z'; A\, X) = o’ [eANK(z,z')e(N) " — o?e(VNK] (2)E,Z,'E, K, (z')e(X)T], (14)

where 3, = 0?E, K,E + 721, and E,, € R™**"T is a n x n block-diagonal matrix with the
i-block given by e()\i). It is easy to verify that the posterior covariance remains positive definite
and symmetric. For hyperparameter estimation, we also employ the maximum likelihood estima-
tion (MLE) framework for training the PTOGP. The detailed estimation, algorithm and complexity
analysis are presented in Appendix [C]

4.2 CMAB-UCB2 ACQUISITION STRATEGY

Building on the PTOGP, we now develop the TOCBBO method to sequentially select queried inputs
{x1,...,xN} together with their associated super-arm indicators {1, ..., Ay }. Directly optimiz-
ing over both x and A is computationally intractable, since identifying the optimal super-arm of
size k from T arms requires a combinatorial search over (f) possible configurations. When coupled
with the continuous optimization over X, this joint problem becomes computationally prohibitive.
To overcome this challenge, we propose a CMAB-UCB?2 criterion that decomposes the optimization

into two sequential steps.

At round n + 1, let } and A}, denote the best input and super-arm identified from the previous
n rounds, that is, {x}, A} } = argmaxig, x,},i=1,...n Hsf(€i, A;). In the first step, we fix the
super-arm to A}, and query the next input by maximizing the UCB acquisition function conditioned
on the fixed super-arm, i.e.,

Tyl = arg mea%Hfﬂn(a:, AS) 4 Bl K (2, 23 X5, N5 ||V/2. (15)
T

In the second step, given the chosen input x,, 1, the optimization problem for selecting A, 11 re-
duces to a CMAB problem. To this end, we adopt the CMAB-UCB criterion by constructing an
UCB for each super-arm and selecting the one that maximizes the sum of upper confidence value:

)\n+1 = arg Iilea‘/}\{ Hflln (wn+1a )‘) + ﬁnHKn(xn-ﬁ—la Lp+1; Aa A) Hl/Q. (16)

Here, 3,, and pn, are tuning parameters controlling the trade-off between exploration and exploita-
tion. The compute TOCBBO algorithm and its computational complexity analysis are provided in

Appendix

We further analyze the regret bound of the TOCBBO method under specific conditions. The regret
for CBBO is defined as follows:
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Definition 4. Ar each round n, the TOCBBO method selects a queried input x, € X and
a super arm S,, with indicator A, € A. The instantaneous regret is defined as r, =
Hif(x*, A*) — Hyf(xn, An), and the cumulative regret up to round N is defined as Ry =

22[21 {Hff(w*7 )‘*) - Hff(wnv An)]

Assumption 3. The operator Hy in is H-Lipschitz with respect to f under the ly norm, i.e., for
Ve, T; € X and \;, Aj €A, ‘Hff(iL‘Z‘, Az) — Hff(ﬂ?j, )\])| < HHf((L‘Z, Az) — f(acj, )‘J)H holds.
Assumption ensures that Hy f varies smoothly to changes for partially observed tensor outputs.

Theorem 2. Under Assumption |I| and Assumption 2| denote C, = SUP e x tr(Kn (@25 25)))

NPHCESS
where /\%C)m(a:, A\*) is the largest eigenvalues of K, (z, x; X5, X%). Forany & € (0,1) and n > 0,

= T n2 {0} a o
the TOCBBO method with 3, = / Cy, +2d log( dn”(by/] gl(d MHCV)&) and p,, = 1/2log (%)

holds that, Pr (RN < L(y/Ciyw(K,n)NBN + %2) +2H 2TpN7yN(I~{)> > 1 — 4, where

A (K,n) = maxa, ca Llogdet (I, + n 'E,K,E) is the maximum information gain for
super-arms, and m,, > 0 is a sequence such that -, 1/m = 1.

>

Its detailed proof is provided in [I} Theorem |2 shows that the upper bound on the regret for the
TOCBBO method is sub-linear with a high probability.

5 EXPERIEMENTS

We evaluate the performance of TOBO and TOCBBO using both synthetic and real-case data, and
compare them with several baselines where the tensor output is vectorized and MOGPs are used as
surrogate models. Specifically, we consider three GPs in the literature: (1) SMTGP: the scalable
multi-task GP |Kia et al.| (2018); (2) MLGP: the multi-linear GP Yu et al.| (2018); and (3) MVGP:
the multi-variate GP |Chen et al.| (2020). For each GP, we examine two sequential BO sampling
strategies: (1) the UCB criterion and (2) random sampling. In addition, we replace the UCB acqui-
sition in TOBO and TOCBBO with random sampling to construct an ablation baseline, denoted as
TOGP-RS. Detailed descriptions of all baseline settings are provided in Appendix [K]

5.1 SYNTHETIC EXPERIMENTS

We assume the true f(x) takes the form f(x) = B ®; U; Q3 ... @pm—1 Upp—1 ®., g(x), where
each element of B € R¥1*--Fm is independently sampled from U (0, 1), the ij-th element of U; €
RP*T is defined as licos(ijl/2) + sin(li), and g(z) = (sin(5x),cos(z)) € RF»*Tm. Here
P, = dand = € [0,1]%. We consider three parameter settings for generating f(x): (1) m = 3,
(TlaT27T3) = (27472)’ (P17P27P3) = (37373); (2) m =2, (TlaTQ) = (372)’ (P17P2) = (3?2)’
and Q) m = 3, (T1,T»,T3) = (4,5,2), (P1, P2, P3) = (3,3,3). The observations are collected as

yi = f(x;) + €;, where g; sy N(0,0.1%I). For CBBO tasks, we set k = T'/6.

We generate ngqin = 10d training samples and n = 5d testing samples using a Latin hypercube
design (Santner et al.|[2003)). The training samples are used to estimate hyperparameters, and predic-
tive performance is evaluated on the testing data in terms of NLL, MAE, and ||Cov||, with detailed
definitions provided in Appendix [K| To balance modeling flexibility and computational complexity,
we use the separable tensor-output kernel in (7) in Settings (1) and (2), and employ the non-separable
tensor-output kernel in @ in Setting (3). The results are summarized in Table As shown, our pro-

Table 2: The prediction performance of GPs in the three synthetic settings.
Setting (1) Setting (2) Setting (3)
NLL  MAE [[Cov| NLL MAE [Cov| NLL  MAE ||Cov||

TOGP 503.0 0.1571  2.02 -18.1  0.1052  0.04 -39231 01372 282
sMTGP 749.4 0.1684  1.44 -5.0  0.1566  0.06 -3743.0  0.1501  22.01
MLGP 707937.1 0.9428 67.00 70669 0.8789 5.12  -55800.7 1.1670  0.06
MVGP 111522 0.6746 2220 4654 0.1784  0.10 -2583.1  1.0000 142.72

posed method achieves the lowest NLL and MAE, indicating that TOGP model provides the highest
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prediction accuracy. Among the three baselines, MLGP performs the worst due to its covariance
matrix is singular in this setting, which is more suitable for multi-task learning with varying sample
sizes across tasks. SMTGP outperforms MVGP because sMTGP considers modeling each mode of
the tensor output, and MVGP ignores the tensor structure by vectorizing it into a vector.

Table [3]summarizes the optimization performance of different methods for the BO and CBBO prob-
lems. We set N = 10d and evaluate different methods in terms of MSE,, MAE,, and Acc, as
defined in Appendix [K] It is evident that for each GP, its UCB-based sampling strategy consistently

Table 3: The optimization performance of different methods in the three synthetic settings.

Setting (1) Setting (2) Setting (3)
MSE, MAE, Acc MSE, MAE, Acc MSE, MAE, Acc
TOBO 0.0000 0.0008 - 0.0003 0.0350 - 0.0001  0.0050 -
sMTGP-UCB  0.0001 0.0031 - 0.0003 0.0361 - 0.0048  0.0590 -
MLGP-UCB  0.0433 0.3793 - 0.0512  0.9295 - 0.0342  0.6263 -
BO MVGP-UCB 0.0015 0.0523 - 0.0044  0.0550 - 0.0342  0.6263 -
TOGP-RS 0.0893 0.3145 - 0.0026  0.0351 - 0.0106 0.1526 -
sMTGP-RS  0.0251 0.3242 - 0.0206  0.3684 - 0.0084 0.1223 -
MLGP-RS 0.0433  0.3793 - 0.0435 0.7976 - 0.0075  0.0934 -
MVGP-RS 0.0148 0.2036 - 0.0157 0.2697 - 0.0084 0.1223 -
TOCBBO 0.0023 0.0172 1.00 0.0000 0.0000 1.00 0.0021 0.0145 1.00
sMTGP-UCB 0.1832 0.5614 0.67 0.0000 0.0000 1.00 0.0075 0.2171 0.86
MLGP-UCB 0.0667 0.6527 0.33 0.1826 0.0779 1.00 0.2070 0.7105 0.43
CBBO MVGP-UCB 0.0032 0.0285 1.00 0.0725 0.0312 1.00 0.0151 0.1988 0.71

TOGP-RS 0.0438 0.5319 0.67 0.0908 0.0395 1.00 0.0512 0.8793 0.43
sMTGP-RS 03151 0.5882 0.67 0.1826 0.0779 1.00 0.0117 0.9453 0.29
MLGP-RS 0.1053 0.6909 0.33 0.1826 0.0779 1.00 0.0117 0.9453 0.29
MVGP-RS  0.1313 0.5975 0.33 0.1489 0.0654 0.00 0.0512 0.8793 0.43

outperforms its random sampling strategy. This is intuitive due to UCB’s better theoretical guaran-
tees. Across all the GPs, our proposed TOBO and TOCBBO methods have the smallest MSE,, and
MAE,, indicating our selected super-arm and queried input points, together with the consequent
output are closest to the true optimum. As to the other three GP-based methods, sMTGP-UCB
achieves the second-best performance, followed by MVGP-UCB, while MLGP-UCB performs the
worst. This result is consistent with their modeling abilities shown in Table 2]

Finally, we provide each round’s logarithmic instantaneous regret for different methods for BO and
CBBO in Figure |l We can observe that our TOBO and TOCBBO consistently achieve the lowest

SMTGP-UCB SMTGP-RS MLGP-UCB —— MLGP-RS = = MVGP-UCB --- MVGP-RS
w
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Figure 1: Each round’s logarithmic instantaneous regret of different methods in the Setting (1) (L),
(2) (M), and (3) (R) for BO (Top row) and CBBO (Bottom row).

instantaneous regret across all the three settings, highlighting their superiority. Some additional
results of synthetic experiments are presented in the Appendix [M]
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5.2 CASE STUDIES

We further apply the proposed TOBO and TOBBO to four real-world datasets: (1) CHEM
2021): input € R? and output y € R**3%3; (2) MAT (Wang et al., [2020): input 2 € R

and output y € R>*4*4; (3) PRINT (Zhai et al},[2023): input € R® and output y € R3*4*3; (4)
REEN: input € R® and output y € R9*2, A detailed description of these datasets is provided
in Appendix [K] Since the renewable energy dataset provides fully observed data, we first evaluate
the modeling performance of different GP surrogates by training on 30 samples and testing on 5
samples randomly selected from the input space. The predictive performance of the four GP models
on the testing data is reported in Tabled] and TOGP achieves the best predictive accuracy. As to the
optimization performance of different methods for BO and CBBO, Figure[2]shows that our proposed
TOBO and TOCBBO also consistently perform the best, demonstrating our applicability in complex
real-world black-box systems.

O~ oN~N [ —=====
h 31 |
> > ) /,. -
.go” g:’;: I————T’J
¥ A g - ) W R A
06 5 10 15 20 25 30 06 5 10 15 20 25 30
Sequential samples Sequential samples

Figure 2: Each round’s optimal objective value in REEN for BO (L) and CBBO (R).

For the otl}er thr;e datasets, since they 10 4: The prediction performance of GPs in the REEN
only contain partially observed data, we

. Lo dataset.
only evaluate their optimization perfor- TOGP _sMTGP _MLGP _ MVGP
mance under CBB_O~ F¥gure 2 Sh_OWS NLL 15.6664 333198 882722 48.7167
that TOCBBO can identify the optimal MAE  0.0883  0.0993  0.0929  0.1054

inputconsistently using fewer rounds ICovl 04918 03555 04318 03711

than the baselines, further demonstrating its superior effectiveness.
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Figure 3: Each round’s optimal objective value in CHEM (L), MAT (M), and PRINT (R).

6 CONCLUSION AND DISCUSSION

In this work, we propose two BO methods for tensor-output systems: TOBO employs two classes of
kernels-based TOGP as a surrogate model and selects query points using a UCB acquisition func-
tion. TOCBBO extends TOGP to the partially observed setting and adopts a CMAB-UCB?2 criterion
to sequentially select both the query input and the super-arm. We establish theoretical regret bounds
for both methods and demonstrate their effectiveness through extensive synthetic and real-world ex-
periments. Future work could consider integrating the proposed tensor-output kernels with sparse
techniques, such as sparse GPs (Snelson & Ghahramanil, [2005)) and scalable LMC
[2020), to improve the computational efficiency of TOGP. The design of new acquisition functions
can also be explored within this framework. For example, one may combine the TOGP model
with EI or PI with theoretical guarantees [2018), and further extend them to the TOCBBO
framework. In addition, improvement-based acquisition functions (Uhrenholt & Jensen| [2019) and
information-theoretic criteria may also be considered into our framework, provided
that the computational challenges associated with tensor outputs can be effectively addressed. Fi-
nally, it is worth to explore more meaningful tensor structures to our proposed framework, such as
spatiotemporal system.

10
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study does not involve human subjects, sensitive
personal information, or applications with immediate potential for harm. The datasets used are pub-
licly available or synthetically generated, and all experiments comply with community standards of
fairness, transparency, and research integrity. We are not aware of any conflicts of interest, sponsor-
ship issues, or ethical risks associated with this research. The use of large language models (LLMs)
was restricted solely to polishing the writing, as described in Appendix [A] and did not contribute to
scientific content or results.

REPRODICIBILITY STATEMENT

We have made extensive efforts to ensure reproducibility. All theoretical results are stated under ex-
plicit assumptions, with complete proofs provided in the appendix. Algorithmic procedures, includ-
ing TOBO and TOCBBO, are fully described in the main paper, with pseudocode and computational
complexity analysis included in Appendix [D] Experimental settings, dataset details, and evaluation
metrics are reported in Section [5] and Appendix [K| Synthetic datasets are specified in detail, and
real-world datasets are publicly available with references provided. Source code and instructions for
reproducing all experiments are included in the supplementary materials.
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A USE OF LLMSs

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.

B THE DETAILS OF THE TENSOR DECOMPOSITION IN REMARK [T

As discussed in Remark |1} directly estimating the entries of the core tensors {A;}}, or A re-
quires m7" parameters for the non-separable tensor-output kernel and 7" parameters for the separable
tensor-output kernel, which becomes intractable for large-scale or high-order tensors. To reduce this
complexity, we impose low-rank tensor structures. In particular, we adopt different decompositions
depending on the tensor order.

Low-order tensors (m < 3): When the tensor order is small, we employ the CP decomposition:

R
A = Z @y © Q20 0ay., fornon-separable tensor-output kernel, 17
r=1
R
A= Z a, °ay20---0a.y, forseparable tensor-output kernel, (18)
r=1
where a5, a.; € R forr =1,...,Randi=1,...,mforr =1,...,Randi =1,...,m. The

number of free parameters is Z;Zl Z;ll R;t; for the non-separable tensor-output kernel in (@) and

R Z;Zl t; for the separable tensor-output kernel in , which grows only linearly in each mode size
t;. Thus, CP provides a very compact representation when m < 3. However, CP decomposition
is often ill-posed for higher-order tensors, since the set of tensors of fixed CP rank is not closed,
implying that a best low-rank approximation may not exist (De Silva & Lim| 2008). In addition, the
factor matrices can easily become ill-conditioned as m increases, leading to numerical instability
(Chi & Kolda, 2012).

High-order tensors (m > 3): When the tensor order is large, we employ the TT decomposition:

A; = Gj1(t1)Gia(ta) - - - Gy (tm)  for non-separable tensor-output kernel, (19)
A = Gq(t1)Ga(ta2) - - Gy (ty,) for separable tensor-output kernel, (20)

14
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where each Gy;(t;) is ar; j—1 x t; x 1 ; three-mode tensor and the TT-ranks satisfy r; o = 77, = 1
for! =1,...,m. Similarly, G;(¢;) isar;_1 x t; X T three-mode tensor that satisfies ro = r,, =
1. The total number of free parameters is 27;1 > j—1T1,j—1t;71,; for the non-separable tensor-
output kernel in (@) and Zgnzl r;_1t;r; for the separable tensor-output kernel in 1| It scales
linearly with the tensor order m, instead of exponentially as in the full tensor. This makes TT
decomposition highly suitable for high-order tensors (m > 3), as it balances modeling flexibility
with computational scalability and avoids the instability of CP.

Therefore, in our framework we adopt CP decomposition-based for low-order cores and TT
decomposition-based for high-order cores, ensuring both efficiency and robustness across different
tensor settings.

C THE ESTIMATION OF HYPERPARAMETERS FOR THE TOGP AND PTOGP

In this appendix, we provide the details of hyperparameter estimation for both TOGP and PTOGP.
Without loss of generality, we assume a zero prior mean g = 0 in (3) and (I2).

C.1 PARAMETER ESTIMATION FOR TRAINING TOGP

T

Given the training data X,, = (x1,...,%,) and Y, = (vec(y) ,...mec(yn)T)T, the log

marginal likelihood of TOGP is given by:
1 1
log L(©) = — log [Zn| - Y,/ £V, 1)

where 3,, = 0?K,, + 721,,7. Then, can be optimized by applying gradient-based optimization
methods, such as L-BFGS algorithm.

The gradients of the log-likelihood function in with respect to the hyperparameters 72, o2, 6,
and a is given by

Olog L 1 B 1 B B

5ng = 5t (2, 'Ka) = SV 3K 2N, (22)
OdlogL 1 _ 1 L

80-2 = 51]1‘ (Enl) - 5 nTznlznley (23)
dlogL 72 K -2 OK

=t (3, ") - Y, 5 ey, 24

89l2] 2 r ( n 89”]> 2 n n aelij n vy ( )

logl 1 K, 2 K,
OlogL 1. <2n1728 ) B LYnngla sy, 05)
aalij 2 8alij 2 8alij

where 0;;; represents the scale parameters of k;;, the kernel function associated with the /-th mode.

The matrices gg_ﬁ and ggfﬁ are the partial derivatives of the kernel matrix with respect to the
ij iJ

corresponding kernel parameters.

The detailed algorithm for training TOGP is given as follows:

Algorithm 1 Parameter estimation for training TOGP

Input: Training data X,, and Y,,, initial hyperparameters ©g = {02, 72, 6o, a0};
Initialize: o2 « 08, 72— 702, 0 <« 0ya<+ ag;
1: while 72, 02, 0, w not converge do

2: Update 72 based on |i
3: Update o2 based on (23));
4 Update 6 based on (24);
5: Update a based on (25).
6: end while

Remark 4. For the non-separable tensor-output kernel in Deﬁnition the total number of hy-

m

perparameters to be estimated in TOGP is m, = 2+ T + >, >." | Rit; when m < 3 and

15



Under review as a conference paper at ICLR 2026

mp =2+T+ Z;’;l Z;ﬂzl r1,5—1t;71,; when m > 3. For the separable tensor-output kernel in Def-
inition the total number of hyperparameters to be estimated in TOGP ismy, = 2+T+R> " t;

whenm < 3and mj, = 2+ T + Y. rj_1t;r; when m > 3. The computational complexity

j=1
of computing the gradient of log L(®) with respect to all my, parameters is O(n>T3 + n?T?my,).
When using the L-BFGS algorithm to optimize the likelihood function results, the number of itera-
tions typically scales as O (log(n)) (Bottou, |2010). Therefore, the overall computational complexity

for training the TOGP takes O (n*T® log(n) + n®*T?my, log(n)) computational complexity.

C.2 PARAMETER ESTIMATION FOR TRAINING PTOGP

Given the partially observed training data X,, = (x1,...,2,), A, = (A1,...,A,) ", and Y, =
(§1,---,Tn) ", the log marginal likelihood of PTOGP is given by:

. 1 - 1 o .
log L(®) = -5 log |2, | — 5vec(Yn)TZ;1vec(Yn), (26)

where 3,, = 0’E,K,E + 721,,%. Then, can also be optimized by applying gradient-based
optimization methods.

The gradients of the log-likelihood function in (26)) with respect to the hyperparameters o2, 72, 0,
and a is given by

L 1 /- 1~ Ta -

% = St (zglEnKnEI) - iY;LTEfEnKnETTLE;lY;“ 27)
oL 1oe Te e -

=5t (2;1) —éYnnglxlen, (28)
oL 2 [~ 0K T 0K - -

=t ('E,—2E' |- ~Y, S 'E,—2E' 'Y, 29

00u; 2 r( T "> 2 O 0y T 29
L 2 - K 2 7. K L

9 =T E;lEna "E —T—YnnglEna "E¥Y,, (30)
Balij 2 (%mj 2 8ah—j

The detailed algorithm for training PTOGP is given as follows:

Algorithm 2 Parameter estimation for training PTOGP

Input: Training data X,,, A,, and Y,,, initial hyperparameters @ = {02, 72,60, a0 };
Initialize: 02 « 03, 72 < 73, 0 < 6y a + ay;
1: while 62, 72, 6, a not converge do

2: Update 72 based on (27));
3: Update o2 based on (28));
4: Update 6 based on (29));
5:  Update a based on (30).
6: end while

Remark 5. For the non-separable tensor-output kernel in Definition |} the total number of hy-
perparameters to be estimated in PTOGP is mp, = 2+ T + Z;zl Zi:l Ryt; when m < 3 and
mp, = 2+T+ Z?;l Z;nzl r1,5-1t;71,; when m > 3. For the separable tensor-output kernel in Defi-
nition the total number of hyperparameters to be estimated in PTOGP ismy, = 2+T+R> " | t;
whenm < 3and my, =2+ 7T + Z;n:l rj_1t;r; when m > 3. The computational complexity of
computing the gradient of L(®) with respect to all my, parameters is O(k3T3 + n2kTmy,). When
using the L-BFGS algorithm to optimize the likelihood function results, the number of iterations
typically scales as O (log(n)) Bottou| (2010). Therefore, the overall computational complexity for
training the PTOGP takes O (n*k?log(n) 4+ n?kT'my, log(n)) computational complexity.
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D THE PROPOSED ALGORITHMS AND COMPUTATIONAL COMPLEXITY
ANALYSIS

D.1 UCB-BASED TOBO ALGORITHM

The detailed procedure of the proposed TOBO method is given in Algorithm 3]

Algorithm 3 UCB-based TOBO

Input: Total rounds N, initial dataset Dy = &, initial hyperparameters ®g;
1: forroundn =1,...,N do

2: Update the posterior mean () and covariance (3) of f given ©,,_1;
Select the next input &, + arg maxgcx aycp(® | Dn-1);
Evaluate the black-box system and observe output y,,;

Update dataset D,, — D,,—1 U {@n,yn};

Update hyperparameters ©,, by maximizing with L-BFGS;

7: end for

8: Identify i* = arg max;e(n] Lsf(;);

9: Output: Optimal input x;~ and corresponding output y;«.

A A

Remark 6. When using the TOBO method to select x*, the computational complexity of updating
TOGP is O ((n — 1)3T3) at round n. Then, the computational complexity of querying the next point

is O ((n — 1)2T?log(n)) by using the L-BFGS method. After updating the design dataset, the com-
putational complexity of updating the hyperparameters © is O (n®T?log(n) + n*T?mj, log(n)).
Thus, the computational complexity of TOBO at round n is O (n*T®log(n) + n®*T?my, log(n)).
Suppose that there are N points needed to query, the total computational complexity of Algorithm 3]

is O (ZTJLI [n3T3log(n) + n*T?my, log(n)]).

D.2 CMAB-UCB2-BASED TOCBBO ALGORITHM

The detailed algorithm of TOCBBO is provided in Algorithm 4]

Algorithm 4 CMAB-UCB2-based TOCBBO

Input: Total rounds /V, initial dataset Dy = &, initial hyperparameters @;
1: forroundn =1,..., N do
2: Update the posterior mean and covariance (14);

Select the next input x,, using (15);

Select the super-arm A,, using ;

Evaluate f under (z,, A,) and observe g,;

Update dataset D,, < Dyp_1 U {(€n, An), Fn };

Update hyperparameters @,, by maximizing log L(®) with L-BFGS;
8: Update incumbent solution {x}, A} } = arg max;—1, ., Hyf(z;, A;);
9: end for ~

10: Identify i* = arg max;e(n) Hy f (2, Ai);

11: Output: Optimal input x;~, optimal super-arm A;~, and output y;-.

AN A

Remark 7. When using the proposed TOCBBO method to jointly select x* and N*, the compu-
tational complexity of updating the PTOGP at round n is O ((n — 1)3k3). Then, based on the
proposed CMAB-UCB?2 criterion, the computational complexity of querying the next input by us-
ing L-BFGS method is O ((n — 1)2k2) and selecting the next super-arm by using greedy Top-k
method is O(kT?), respectively. After updating the current design dataset, the computational
complexity of updating hyperparameters © is O(n3k®log(n) + n?kTmy, log(n)). Therefore, at
round n, the computational complexity of TOCBBO method is O(n3k3log(n) + n?kTmy log(n) +
kT3). Assuming a total of N rounds, the overall computational complexity of Algorithm 4| is

o (ZN [n3k3log(n) + n?kTmy, log(n) + kTﬂ)

n=1
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E THE PROOF OF PROPOSITION
Proof. We prove symmetry and positive semi-definite for the two kernel classes in Definitions

Non-separable kernel (Definition[I): Denote a, := vec(A,) € R” (resp. a := vec(A) € RT).
The tensor-output kernel is

m  ty

K(z,z') = ZZ aca) kej(x, '), z,x € X, (31)
=1 j=1

where each kg is a scalar positive semi-definite kernel.
For any x, ' € X, we have

K(z,2')" = Z (agaZ)T koj(z,x")
£,5

= Z asa) kej(x,x')

4,3

= Z asa) kei(x', x)
4,5
=K(z', ), (32)

This shows that the full tensor-output kernel K is symmetric.

Let {x;}" ; C X and {y;}7_; C R” be arbitrary. Then, we have

n

>y K@i,y =YYy (aay )y, ke (i, 2;)

id=1 05 i

= Zzsem kej (i, @;5) s¢5.5, (33)

tj g

where sg;; = a/y; € R. For each fixed (¢, ), the matrix [k¢;(z;, z;)] ._, is positive semi-

n
1,7
definite, s0 >, ; Sej,i kej (i, ;) s¢j,; > 0. Summing over (£, j) preserves nonnegativity, hence the
Gram matrix induced by K is positive semi-definite.

Separable kernel (Definition[2): The kernel is

K(z,z')=aa' k(z,z'), z,x € X, (34)

where k is a scalar positive semi-definite kernel. Since (aaT)T =aa' and k(z,x') = k(z', z),
we have K(z,2')" = K(a/, ). For arbitrary {x;}7; and {y;}-;, Y7, y/ K(zi, z;)y; =
D (aTy;) k(z;, ;) (aTy;) > 0, because the Gram matrix [k(x;, ;)] is positive semi-definite.
Therefore, both kernel classes are symmetric and generate positive semi-definite Gram matrices

for any finite set of inputs, i.e., they are valid tensor-output kernels on X'. Then completing the
proof. O

F THE PROOF OF LEMMA [I]

Proof. First, for a tensor-output system vec(f()) follows a TOGP defined in (3), denote the deriva-
tive field of vec(f(x)) to the j-coordinate element of x as g;(x) := Ovec(f(x))/0x;, where
vec(f(x)) € RT and j € {1,...,d}. According to the derivative property of GP (Santner et al.,
2003), we have g;(z) € RT is a multivariate-output GP with mean £ (z;) = % () and

covariance K,VL(xj,x;-) = Cov(g;(x),g;(x)) = %Z%UQK(QE,;C’).

18
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Atround n + 1, the observed data is denoted as X,, and Y;,, then we have the posterior distribution
of g;(x) is a T-dimensional Gaussian with mean and covariance

(@)

e /

K, (xj,x]-) = 2z, (35)

. K, (z, )

\% AN n\4,

K, (zj,7}) = W (36)
It is easy to verify that KY (z;, ;) is positive semi-definite for every .
For any fixed € &, given X,, and Y,, the random vector

g;(x) — fiy (z;) ~ N0, K (z,; j)). (37)

Applying the Gaussian Lipschitz concentration (Proposition 2.5.2 and Theorem 5.2.2 in |Pa-
paspiliopoulos| (2020)) to the norm || - ||z yields, for all ¢ > 0,

N ~ t2
Pr(”%j(“’)‘ﬂf(”d‘j)“ > tT(KyY(ﬂfjaxj)) + L‘) < eXP<—2>\g?a)x(Ij)>7 (38)

where )\ggx(:p; 4) is the largest eigenvalue of KY (x, x; 7).

Let Dy = {x1,...,xn} C X be any finite discretization. Using with

t(@) = y/27\5k(x;) los(M/6)
and applying the union bound, we obtain with probability at least 1 — 4,

g (@) — Y (z)|| < /6K (a7,2;)) + \/2 Aie(z5) log(M/8), Y& € Dy (39)
Let Cy = supgey \/t{KY (2;,7;)) and Ay := supge x A7) (x;), then implies that, with

probability at least 1 — 6,
lgj @)l < [l ()] + Cv + V2Av log(M/6), V€ Dy (40)

Assume the kernel is sufficiently smooth so that g;(-) has almost surely Lipschitz sample paths.
Then there exist absolute constants a,b > 0 (depending on the Lipschitz modulus and a covering-
number bound of X) such that for any L' > 0,

/ (L)?
Pr(sup llg;(x)]| > L +C’v> < aexp< 5 ) (41)
TeEX b

This follows by combining the net bound {@0) with a standard chaining argument to pass from a
finite net to the full domain; the Gaussian tail is preserved with a possible adjustment of absolute
constants into a, b. Then completing the proof. O

G THE PROOF OF THEOREM [I]

Proof. The proof consists of two main parts. We first establish a concentration inequality for
vec(f(z)) for any € X, and then use this result to derive an upper bound for the regret.

Part 1. Concentration inequality. We begin by proving a concentration inequality for vec(f(x))
evaluated on a discrete set of points in the domain X'. We then extend the result to neighborhoods
of these discrete points, and ultimately to the entire space X'.

We first prove a basic concentration inequality for a general T-dimensional Gaussian distribution,
ie., Z ~ N(u,K). If we define U = Z — p and set another T-dimensional standard Gaussian
distribution V' ~ N(0,I7), we can obtain

d
U=K"V, |[U||l=|K"*V].
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Define the function f(U) £ ||K'/2V||. For any U, U’, we have
1f(U) = fU)] < [KVAU = U] < 1KY [lop |U = Ul = v Amax(K) U = U],

where \pax (K) is the maximum eigenvalue of K. Therefore f is a Lipschitz function with constant
L= )\max(K)~

According to Proposition 2.5.2 and Theorem 5.2.2 in |Papaspiliopoulos| (2020), we have the follow-
ing concentration inequality for a Lipschitz function of a standard Gaussian distribution:

t2
Pr (f(U) > E[f(U)] +t) < exp ( - ﬁ)
Substituting f and L, we obtain
t2
Pr(|Z — p|| > E[|Z — pl]] +t) < exp ( _ %7())

Since

E[|Z - pl] < VE[IZ - pl?] = Vir(K),
we get the final result for a general Gaussian distribution:

Pr(||Z — pl > V() + t) < exp( - ﬁ) 42)
Define the discrete set Dy = {1, ...,z } C X. According to the above concentration inequality,

we have

Pr(||vec(f(:c)) — [ ()| > \/tr(f(n(w, x)) + z) < exp( — ﬁi(w)), Vo € Dy,

where )\gﬁx(m) is the maximum eigenvalue of K,, (, z).

By setting z = 2/\51712,((:1:) log %, we obtain
P Ivee(€(@)) — fn(@)] < 6u\/Nikta) ) 2 1-5, v € Dy 3)
where

From Lemma 1, we obtain that
[vee(f(x)) — vee(f(z'))|| < (L' + CV)|j@ — o'y
holds with probability at least 1 — a exp(—L"?/b?) forall z, 2’ € X.
Then, at round n, we set the size of D) as (7,)%, i.e., M (n) = (7,,). For & € Dyy(n), we have
& — [l < 22,

where [x],, is the closest point in Dy (,,) to x.

Using the above equations, if we set L' = b4/log %, we obtain
rd
[vec(£(@)) — vee(f([]n)) | < (by/log % + C7 )|z — [alully < (by/log % + 7 )=

Tn
with probability at least 1 — § forall x € X.

Choosing 7,, = rdn?(by/log % + CV), we have
— n2

Pr(Hvec(f(w)) — vee(f([z]ar))]| < L) >1-46, Vxed.

Combining the above results, we obtain

Pr([vec(f(@") = ("] | < Buy/ Mi((@*)) + ) = 14,

where [z*],, is the closest point in Dy, to *, and

2 v
8, = @+2d10g(rdn (b\/logéda/5)+C ))
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Part 2. Regret bound. According to the Lipschitz property of h, we have
rn = @) = h(x,) < Lijvec(f(x")) — vec(f(zn))], (44)
where L > 0 is the Lipschitz constant.

Since

frn1(@n) + B\ M (@) 2 i1 ([27]0) + B\ M) ([2%]1) = vec(E(z¥)) — &,

we have
ra < L(28\/ M (@) + 2 ). (45)
We first consider the first term:

42N () < 4B (0 A () < 4B83mCalog (1+ 7 Al (=)

< AB3nCslog|Ir + 17 K1 (20, )|,
where C5 is a constant.

Define C; = 4nC5. Then

N N
D 4B () < CINBR Y log|Ir + 7 Kooy (T, @) | < C1N SR,
n=1

n=1

where the last inequality holds by the definition of vy .

. 2
Since Y 1 < =, we have the final result:

n=1 n2
N
> 1 < L(VCrwN By + % ). (46)
n=1

Then completing the proof. O

H THE PROOF OF PROPOSITION 2]
Proof. We start from the definition of the (maximum) information gain:

1 _ n n n
T (K, n) = max 51ogdet(I,LT+n '0’K,), K= [K(mi,z;)], . _ e R @7)

i,j=
Under the separable kernel in Definition[2] we have

K(z,z') = (vec(A)vec(A) ") k(z,z') = Bk(z,z'), (48)
where B := vec(A)vec(A)T € RT*T. Then, the Gram matrix factorizes as a Kronecker product

K,=Kx®B, Ky :=[k(z;z;)]’;_, € R"". (49)

Let {a;}7, be the eigenvalues of Kx and {3; J-T:l be the eigenvalues of B. By the spectral

property of the Kronecker product, the eigenvalues of Kx @ B are {o;8; : i = 1,...,n, j =
1,...,T}. Therefore, we have

n T
log det(InT + 710 (Kx ® B)) = Z Zlog(l + cay ﬁj), c:=ntol (50)

i=1 j=1

For each fixed i, the function u — log(1 + ¢ a; u) is non-decreasing for u > 0, hence

T
Zlog(lJrcaZﬂj): Z 10g(1+caiﬁj) < T~log(1+caiﬂmax), (51)

j=1 jia;>0

21



Under review as a conference paper at ICLR 2026

where Smax := max; f;. Summing over i = 1, ..., n and multiplying by 1/2 gives
T g
(K, ) < §Zlog(1 + e Bmax M) = T-va(kE, ), (52)
i=1

where k¥ := Bax k is simply a rescaled version of k. Since rescaling by a positive constant does
not change the asymptotic order of the information gain, we obtain the general comparison bound

’}/n(K,’f]) S T- ’Y’n(kvn) .

In our specific setting, the tightest bound is 7, (K, n) = O(T,,(k,n)). Finally, we substitute known
results for the scalar kernel k: (i) If k is the Gaussian (squared exponential) kernel in d dimensions,

then
7n(ka 77) = O((log n)d+1)7
which gives
Y (K,n) = O(T(logn)™*1).
(ii) If k is a Matérn kernel with smoothness parameter v > 1, then
d(d+1)

Yn(k,n) = O(n”*‘“‘”“ log n)

which gives
d(d+1)
(K, n) = O(Tn2v+d<d+1> log n)

Then completing the proof. O

I THE PROOF OF THEOREM 2]
Denote h(z,\) = H; f(z, \), then we have
B(@®, A7) = (@ An) = [B@", A) = h(@a, )] + B, A) = h(@a, An)|
=T1in + Ton.

For the first item, according to the Cauchy-Schwarz inequality, we have

Hff($7 A) - Hfﬂn(w7 A) < HH_f(:E, A) = fn(z, N (53)
Similar to the proof of Theorem|[I] we provide the following lemma.
Lemma 2. Under Assumption suppose the noise vectors {vec(ei) }i>1 are independently and

identically distributed in NN(O,CT 1;). Then, for any § € (0,1), with probability at least 1 — 0,
I F (@A) = fon (2, N) |2 < Bul|Kn(x, 23 X, N)||*/? holds uniformly over all x € X and X € A and

i > 1, where B, =/ C‘n + 2dlog(rdn (by logl(da/(;HCV) J), C'n = SUPgcy tr(K;(,(f’T;Ai’?m)), and
maz (T,

Cy = supgex \/tr(KY (2;, ).
From Lemma[2]and (53)), we have
Hyf(2,X) = Hyfin (@A) < H|[f (@A) = fin (@, N)]| < HBo Ko (@, 252,02,
Then, we have
i = h(Z*, X*) — Iy, X*)
< Hy(fin (2", X)) + H B[ Kn1 (2%, 27)|1/2 = Hp(f(0, A7)
< 2HBp 1| Kn—1(n, s X, A% V2
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And then we obtain

N
Ry = Z Tin < 2Hﬁ~nfl ||I~<n71(mn7 Tp; A, A*)Hl/g
n=1
<2H < Cryn (K. )N B + ”6> :

For the second item, followed in|Accabi et al.|(2018)), we have
Top = B(w*, %) — iL(acn, An)
< VT [ Kt (@, ) [ /2.

And we obtain that

N N
Ron =Y 1an < 2VTpn Y [Kni (@, n)|
n=1 n=1
< 25N (K).

Then we have the cumulative regret over IV rounds is bounded by

Tn S T1in + Ton
<2H ( C1yn (K, n)N By + 6) +2H\/2TpnAn (K).

J THE PROOF OF PROPOSITION
Proof. Based on the definition of the (maximum) information gain, we have
1
(K, n) = max B log det (Im + cKn), c:=n"to?, (54)

where the Gram matrix takes the form
K,=EKET, K=B®Kx,
with Kx = [k(z;, z;)]7,_, € R"*", B = vec(A)vec(A)T € RT*T,

By Sylvester’s identity, we have

det(Ix + cE,KE]) = det(I,7 + cK'/*E] E, K'/?). (55)

Since E,, selects rows, 0 < E;{En < 1I,,7, hence
log det (L + ¢cE,KE, ) = logdet(L,r + cK'/?E, E,K'/?) (56)
< logdet (InT + CK). (57)

Under Definition , K = BoK x with eigenvalues {a;};-, of Kx and {;}7_, of B; thus Be K x
has eigenvalues {c;(; }. Therefore

n T
logdet(I,r + c(B®Kx)) = ZZlog(l +caif).

i=1 j=1

Set fmax 1= max; (;. Since u — log(1 + coy;u) is non-decreasing on u > 0,

T
Zlog(l + calﬂj) = Z 1og(1 + calﬂj) <T log(l + calﬂmax). (58)
j=1 £,;>0
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Summing over ¢ and combining with (7)),
r n
(K, 0) < 5D log(L+ ¢ fumaxcri) = T -7 (k¥ 1), (59)
i=1

where k! := Buax k is a rescaled scalar kernel.

Since positive rescaling does not change the asymptotic order of information gain, hence

T(K,n) < Tylk,n).
Thus, the tight bound of PTOGP is v, (K, 1) = O(T,(k,n)).

Using standard bounds for scalar kernels % in d dimensions, we have

Yu(k,n) = O((logn)**')  (Gaussian), Vo (kym) = (’)(n2vd+(3<+dl+)1> log n) (Matérn, v > 1).

(60)

And then we obtain
Y0 (K,n) = O(r(logn)*) or ~,(K,n) = O(rn?uﬁ(ﬁil) log n), (61)
respectively. Completing the proof. O

K DETAILED SETTINGS OF THE EXPERIMENTS

K.1 DETAILED SETTINGS OF SYNTHETIC EXPERIMENTS
The setting of simulations are as follows:

¢ Compute resources: All experiments were run on a Windows 10 Pro (Build 19045) desk-
top with an Intel Core 19-7900X CPU (3.10 GHz) and 32 GB RAM.

* Kernel setting: We use the Matérn kernel function with the smoothing parameter v = 5/2
as the input kernel for different GPs.

» Data setting: For the GP prediction, we generate ns,.;, = 10d training samples for es-
timating hyperparameters and n..s; = Hd testing samples for predicting. In the BO and
CBBO framework, we generate ng = 5d initial design points based on Latin Hypercube
Sampling (LHS), and N = 10d sequential design points.

* Criteria: To compare the GPs prediction performance of different methods, we use the
following criteria:

(1) Negative Log-Likelihood (NLL): It measures how well a probabilistic model fits the
observed data. For given data X,, and Y,,, the NLL is defined as NLL = % log(TQKn +

O'QInT) + %Y,;F(T2Kn + O'QInT)ilyrfw
(2) Mean Absolute Error (MAE): MAE = — Sottest

Nitest =1

|yqz—$'1:H
Yi :

(3) Covariance Operator Norm (|| Cov|)): || Knp|| = supj—y [|Ku|l-

For the BO framework, we use the the mean squared error of inputs (MSE,) and the
mean absolute error of outputs MAE, to compare the optimization performance of dif-
ferent methods. Here MSE, = ||z* — x/||?, and MAE,, = || f f_fN || over N rounds. For
the CBBO framework, we add the Acc criterion to compare the match between the optimal
super arm and the super arm chosen over N rounds, that is, Acc = Ix«—x, /k, where L is a

indictor function.

K.2 DETAILED SETTINGS OF CASE STUDIES

The detailed datasets of case studies are as follows:

Chemistry reaction (CHEM): Reaction optimization is fundamental to synthetic chemistry, from
improving yields in industrial processes to selecting reaction conditions for drug candidate synthesis.

24



Under review as a conference paper at ICLR 2026

According to [Shields et al.| (2021, we aim to evaluate the reaction parameters (x1: concentration,
To: temperature) to improve the experimental yields (y : 4 x 3 x 3) of palladium-catalysed direct
arylation reaction under varying bases (Mode 1), ligands (Mode 2), and solvents (Mode 3).

PS/PAN material (MAT): Electrospun polystyrene/polyacrylonitrile (PS/PAN) materials are com-
monly used as potential oil sorbents for marine oil spill remediation. From Wang et al.| (2020), we
aim to optimize the fabrication parameters of PS/PAN materials, including spinneret speed (x1),
collector distance (z2), applied voltage (z3), and fiber diameter (z4), to improve their oil absorption
capacity (y : 5 X 4 x 4) under varying PS content (Mode 1), mass fraction (Mode 2), and SiO,
content (Mode 3).

3D printing (PRINT): Material extrusion-based three-dimensional printed products have been
widely used in aerospace, automotive, and other fields. Following (2023), we focus
on selecting appropriate process parameters (x1: layer thickness, zo: platform temperature, x3:
nozzle temperature, x4: infill density, and x5: printing speed) to reduce variations in part quality
(y : 3 x 4 x 3) caused by different printer nozzles (Mode 1) and printing geometries (Mode 2). The
quality (Mode 3) is evaluated in terms of compression deformation, compressive strength, and the
printing cost.

Renewable energy (REEN): Climate change affects the availability and reliability of renewable
energy sources such as wind, solar, and hydropower. We employ the operational energy dataset
from the Copernicus Climate Change Service (https://cds.climate.copernicus.eu/
datasets/sis—energy-derived-reanalysis?tab=overview) to explore the cli-
mate conditions that are most beneficial to renewable energy generation in various European nations.
The climate-related variables, used as input features, include air temperature (1), precipitation (zs),
surface incoming solar radiation (z3), wind speed at 10 meters (x4) and 100 meters (z5), and mean
sea level pressure (xg). The energy-related indicators (y : 10 x 2) collected from ten European
countries (Mode 1), used as outputs, include the capacity factor ratio of solar photovoltaic power
generation and wind power generation onshore (Mode 2).

L THE COMPARISON OF COMPUTATIONAL COMPLEXITY FOR BASELINES

To provide a clearer comparison, we summarize the computational complexity of GP training,
BO, and CBBO for the baseline methods sMTGP, MLGP, and MVGP, together with our proposed
method, in the table below. Here my,, mj1, mpo, and my; forl = 1,--- , m denote the numbers of

Table 5: The computational complexity of different methods for GP training, BO, and CBBO.

Task Method Computational complexity
TOGP O((n3T3 + n*T?*my,) logn)
GP Training SMTGP O((n® + Z;Zl 3 +nmy, + 21’11 t?mp) logn
MLGP O((n*+ X3, 8 +nmy + > 2 timp) logn
MVGP O((n® + T2 + n®mp1 + T?my2) logn)
TOGP O((n3T3 + n*T?*my,) log n)
BO (Round n) sMTGP (’)((n3 + 2121 2‘? +n?my, + 2221 t?mp) logn
MLGP (’)((n3 + Zl";l 3 4+ n?my, + 2111 t?mp;) logn
MVGP (9((n3 + T3 + n?mp1 + T?myps) log 'rL)
TOGP O((n®k® + n?kTmy,)logn + KT?)
CBBO (Round n) SMTGP O((n® + k> +nPmy, + k31" tympy) logn + k307 8]
MLGP (’)((n3 + k2 4+ nPmy, + k 21’11 timp) logn + k 21”;1 t}
MVGP O((n® + T2 + n?mp1 + kTmypz) logn + kT3)

hyperparameters for the corresponding methods.

Furthermore, we report the empirical computational time for GP training across all methods under
the three experimental settings. The results are summarized below.

We further report the empirical running time of BO and CBBO under all baseline methods. The
results are summarized in the table below.
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Table 6: The runtime (s) of different methods for GP training in the three synthetic settings.
TOGP sMTGP MLGP MVGP
Setting (1) 266.04 27.26 30.57 6.50

Setting (2)  69.85 16.08 21.99 1.31
Setting (3) 900.13  851.34  891.73  769.50

Table 7: The runtime (s) of different methods for BO and CBBO in the three synthetic settings.
Setting (1) Setting (2) Setting (3)
Method/Task BO CBBO BO CBBO BO CBBO

TOBO/TOCBBO  6968.25 8017.08 1588.53 2348.16 6035.61 11699.09
sMTGP-UCB 1516.31  953.82 117.78 179.11  5291.26  9436.90
MLGP-UCB 154541  981.86 133.93 18549 545290  9696.60
MVGP-UCB 340.44  437.29 14.86 20.76 300697  3199.47

TOGP-RS 6176.84 7990.44 1573.36 2338.97 5786.02 11501.01
sMTGP-RS 1503.24  939.27 106.93 16495 5273.84 9421.08
MLGP-RS 1530.32  971.25 109.14 180.70  5252.32  9431.96
MVGP-RS 334.79  386.86 7.70 6.70 2997.75  3116.23

Finally, we provide the prediction and optimization performance of TOGP based on the Nystri
low-rank approximation (SVD-TOGP) in Remark [3|under the three synthetic settings. The results
are summarized below.

Setting (1) Setting (2) Setting (3)

Task Criterion SVD-TOGP TOGP SVD-TOG TOGP SVD-TOGP TOGP
NLL 557.09 503.00 -18.39 -18.10 -3778.74 -3923.10

GP Training MAE 0.1756 0.1571 0.1099 0.1052 0.1436 0.1372

[|Covl] 3.9627 2.0200 0.6261 0.0400 0.0881 2.8200

Time (s) 21.80 266.04 10.83 69.85 436.17 900.13

MSE, 0.0001 0.0000 0.0003 0.0003 0.0002 0.0001

BO MAE, 0.0041 0.0008 0.0356 0.0350 0.0051 0.0050

Ins Regret 0.0040 0.0001 0.0002 0.0002 0.0402 0.0302

Time (s) 831.02 6968.25 162.78 1588.53 3604.66 6035.61

MSE, 0.0024 0.0023 0.0000 0.0000 0.0035 0.0021

CBBO MAE, 0.0180 0.0172 0.0000 0.0000 0.0246 0.0145

Acc 1 1 1 1 1 1
Ins Regret 1.0944 0.9807 0.0000 0.0000 1.8571 1.4406

Time (s) 655.83 8017.08 134.22 2348.16 4446.12 11699.09

M ADDITIONAL RESULTS OF SYNTHETIC EXPERIMENTS

In the BO setting, we additionally include a single-objective GP-UCB baseline, which directly as-
sumes that L (f follows a GP and uses the UCB acquisition function to select query points sequen-
tially. The optimization results under the three settings in our numerical experiments are summarized
below.

We include an independent GP-UCB baseline (Ind GP-UCB), which assumes that each tensor el-
ement follows its own GP model and applies the proposed CMAB-UCB2 acquisition function to
sequentially select both query points and super-arms. The optimization results under the three syn-
thetic settings are summarized below.
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Table 8: The additional optimization performance of different methods in three synthetic settings.

log Regret
15 20 25 3.0 35 40

log Regret

1

4

3

2

0

Setting (1) Setting (2) Setting (3)
k MSE, MAE, Acc MSE, MAE, Acc MSE, MAE, Acc
TOCBBO 0.0054 0.0509 1.00 0.0001 0.0036 1.00 0.0021 0.0312 1.00
SMTGP-UCB  0.0057 0.0942 1.00 0.0548 0.3336 1.00 0.0340 0.8616 0.71
MLGP-UCB  0.0677 09775 0.33 0.0434 0.6961 0.50 0.3549 0.8205 0.29
T/3 MVGP-UCB  0.0325 0.7530 0.33 0.0019 0.0191 1.00 0.0405 0.3647 0.71
TOGP-RS 0.0208 1.3279 0.83 0.0206 0.4347 0.50 0.0709 1.5521 0.57
SMTGP-RS  0.0203 1.2625 0.50 0.1201 0.4443 0.50 0.0254 1.0703  0.50
MLGP-RS 0.0619 1.0296 0.67 0.1191 0.5081 1.00 0.1816 1.1735 0.64
MVGP-RS 0.0634 09733 0.67 0.0469 0.4444 050 0.0574 1.3837 043
TOCBBO 0.0006 0.0125 1.00 0.0010 0.0076 1.00 0.0103 0.1163 0.96
SMTGP-UCB 0.0066 0.0585 1.00 0.0012 0.0177 1.00 0.0122 1.9890 0.89
MLGP-UCB  0.0323 3.6747 0.82 0.2229 14532 0.75 0.0423 4.0294 0.81
27/3 MVGP-UCB  0.0047 0.4765 1.00 0.0022 0.0309 1.00 0.0324 1.4985 0.93
TOGP-RS 0.0128 4.6512 0.82 0.0202 1.1872 1.00 0.0218 10.4919 0.70
SMTGP-RS  0.0128 4.6512 0.82 0.2229 14532 0.75 0.0110 6.0795 0.70
MLGP-RS 0.0323 3.6747 0.82 0.2229 1.4532 0.75 0.0423 4.0294 0.81
MVGP-RS 0.0128 4.6512 0.82 0.0439 0.8309 1.00 0.0423 4.0294 0.81
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Figure 4: Each round’s logarithmic instantaneous regret of different methods in the Setting (1) (Left),
(2) (Middle), and (3) (Right) when k& = T'/3 (Top row) and k& = 27T'/3 (Bottom row).

Table 9: Summary across CHEM, MAT, and PRINT datasets with 10 repetitions.

Method CHEM MAT PRINT
TOBO 100 (0.00) _ 150.07 (0.00) -25.03 (0.00)
SMTGP-UCB  99.91 (0.10)  147.97 (2.24) -25.03 (0.00)
MLGP-UCB  99.29 (0.75) 147.90 (2.32) -25.13 (0.11)
MVGP-UCB  96.32 (4.89) 147.20 (3.44) -25.27 (0.32)
TOGP-RS  93.84(1.56) 147.83(2.32) -25.27(0.23)
SMTGP-RS  96.63 (3.74) 14622 (4.30) -25.03 (0.13)
MLGP-RS  99.41(0.76) 148.28 (1.64) -25.27 (0.23)
MVGP-RS  96.32(3.72) 14720 (2.80) -25.27 (0.33)
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Table 10: The results of Single GP-UCB in three synthetic settings.

Criterion  Single GP-UCB  TOBO

MSE, 0.0004 0.0000

Setting (1)  Ins Regret 0.0459 0.0001
Time 457.34 6968.25

MSE, 0.4761 0.0003

Setting (2) Ins Regret 0.2093 0.0002
Time 187.30 1588.53

MSE, 0.0084 0.0001

Setting (3) Ins Regret 0.1964 0.0302
Time 415.61 6035.61

Table 11: The results of the Ind GP-UCB in three synthetic settings.

Criterion  Ind GP-UCB TOBO
MSE,, 0.2121 0.0023
MAE, 0.6739 0.0172
Setting (1) Acc 0.67 1
Ins Regret 36.301 0.9807
Time (s) 328.56 8017.08
MSE., 0.0731 0.0000
MAE, 0.0486 0.0000
Setting (2) Acc 1 1
Ins Regret 0.1561 0.0000
Time (s) 110.77 2348.16
MAE, 0.0139 0.0021
. Acc 0.86 1
Setting 3)  y o Regret 542714 1.4406
Time (s) 3296.72 11699.09
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For non-separable multi-output GPs (Fricker et al,[2013)), we additionally provide the results under
the three synthetic settings below.

Table 12: The results of the non-separable MOGP in three synthetic settings.
Task Criterion Setting (1) Setting (2) Setting (3)

NLL 507.19 -39.33 -3094.10

GP MAE 0.1923 0.1493 0.1591
[|Cov|| 6.7398 0.5618 20.5800

Time (s) 453.11 151.31 1397.68

MSE, 0.0014 0.0005 0.0244

BO MAE, 0.0536 0.0503 0.6277
Ins Regret 1.0284 0.0030 6.6283

Time (s) 9109.08 2101.45 7881.31

MSE, 0.0073 0.0683 0.0091

MAE, 0.0643 0.0390 0.1257

CBBO Acc 1 1 0.86

Ins Regret 1.7389 0.1551 51.4646

Time (s) 10462.18 3107.82 14175.50

As shown, TOBO achieves consistently better optimization accuracy than Single GP-UCB, Ind
GP-UCB, and non-separable MOGP-UCB across all settings. Although the runtime of TOBO is
higher, we further introduce an efficient variant named SVD-TOBO, which employs a low-rank
eigen-decomposition to approximate the TOGP covariance in Remark [3] and significantly reduces
runtime.

To evaluate the sensitivity of our method with respect to different choices of L and H ¢, we consider
three types of operators defined as follows (Chughl 2020).

* Sum operator (used in the main manuscript):

Lif(@) =) firin(@), HiE @A) =) firoin (@),

Lif(x) = Zepwil ,,,,, im =L gPlir i (%) Hff'(ac,)\) _ Zepwil,___,im71€pfi1___,_,im (z,\)
where p = 2 and w;, .. ;. ~ U(0,1).

The results under Setting (1) in our numerical experiments are summarized below. It can be seen
that our method is robust across different choices of Ly and Hy, and both TOBO and TOCBBO
consistently achieve strong optimization performance.

N READ-WORLD APPLICATION: SEMICONDUCTOR MANUFACTURING
PROCESS

A motivating example arises from semiconductor manufacturing, where each wafer consists of nu-
merous dies (chips) arranged in a two-dimensional grid. During the Chip Probing (CP) phase, a
critical stage for functional quality control, each die is evaluated based on multiple quality variables
such as voltage, current, leakage, and power consumption. These variables are spatially correlated
across neighboring dies due to physical effects such as process variation and mechanical stress,
forming a naturally structured tensor output. To ensure high yield and reliability, manufacturers aim
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Table 13: The results of different operators in three synthetic settings.

Criterion  Sum operator Weighted sum operator Exponential weighted operator

MSE,, 0.0000 0.0000 0.0000

BO MAE, 0.0008 0.0083 0.0072

Ins Regret 0.0001 0.0044 0.0533

MSE,, 0.0023 0.0037 0.0025

CBBO MAE, 0.0172 0.0329 0.0548
Acc 1 1 1

Ins Regret 0.1964 0.0107 0.4972

to adjust process control parameters (inputs) so that all quality variables across the wafer remain
within target specifications. This leads to an optimization problem where the output is a three-mode
tensor: the first two modes index the die positions on the wafer, and the third mode captures multi-
ple quality variables. Such a scenario cannot be effectively modeled by scalar- or vector-output BO
approaches, as they would lose essential structural information.

In practice, each wafer may contain hundreds of dies. However, resource and time constraints
often make it infeasible to measure all quality variables across all die positions on every wafer.
Manufacturers instead selectively measure a subset of output entries, such as centrally located dies,
those more prone to failure, or historically most informative regions. Similarly, only a subset of
quality variables may be measured if certain tests are time-consuming or costly. This results in a
partially observed tensor, where only part of the full output is available at each iteration.

We incorporate this example into the revised paper and conduct a corresponding case study. The
input is * = (1, 22, ¥3) representing process parameters, and the output f(z) € R>*5*3 denotes
die-wise quality variables on the wafer. A black-box semiconductor simulator is employed as the
true system. We generate 5 observations as the initial design and then sequentially select 20 queried
points based on different BO methods. Tables [T4] and [T5] compare the performance of TOBO and
TOCBBO against several baselines. Our methods significantly outperform the alternatives in terms
of input accuracy (MAE,), regret, and final objective value, demonstrating their superiority.

TOBO sMTGP-UCB MLGP-UCB MVGP-UCB
MAE, 0.0651 (0.0016) 0.1997 (0.0020)  0.1579 (0.0059)  0.2669 (0.0046)
Regret 0.1702 (0.0007)  0.2400 (0.0014)  0.1956 (0.0088) 0.3818 (0.0029)
Objective  0.8298 (0.0009) 0.7600 (0.0031) 0.8044 (0.0079) 0.6182 (0.0033)

Table 14: Performance comparison of TOBO with baseline methods in terms of MAE,, regret, and
objective (mean and standard deviation).

TOCBBO SMTGP-UCB __ MLGP-UCB MVGP-UCB
MAE, 0.1453 (0.0466) 0.4313 (0.0592) 0.5702 (0.0747) 0.6758 (0.0844)
Regret  0.1431 (0.0388) 0.2483 (0.0522) 0.4338 (0.0918)  0.3461 (0.0709)
Objective  0.6085 (0.0436)  0.5290 (0.0500) 0.4282 (0.1147)  0.4794 (0.0912)

Table 15: Performance comparison of TOCBBO with baseline methods in terms of MAE,, regret,
and objective (mean and standard deviation).

These results show that the proposed methods can effectively optimize under partially observed
tensor data, highlighting their practical relevance for semiconductor manufacturing.
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