

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 COMBINATORIAL BANDIT BAYESIAN OPTIMIZATION FOR TENSOR OUTPUTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Bayesian optimization (BO) has been widely used to optimize expensive and black-box functions across various domains. Existing BO methods have not addressed tensor-output functions. To fill this gap, we propose a novel tensor-output BO method. Specifically, we first introduce a tensor-output Gaussian process (TOGP) with two classes of tensor-output kernels as a surrogate model of the tensor-output function, which can effectively capture the structural dependencies within the tensor. Based on it, we develop an upper confidence bound (UCB) acquisition function to select the queried points. Furthermore, we introduce a more complex and practical problem setting, named combinatorial bandit Bayesian optimization (CBBO), where only a subset of the outputs can be selected to contribute to the objective function. To tackle this, we propose a tensor-output CBBO method, which extends TOGP to handle partially observed outputs, and accordingly design a novel combinatorial multi-arm bandit-UCB2 (CMAB-UCB2) criterion to sequentially select both the queried points and the optimal output subset. Theoretical regret bounds for the two methods are established, ensuring their sub-linear performance. Extensive synthetic and real-world experiments demonstrate their superiority.

1 INTRODUCTION

Bayesian optimization (BO) is a widely used strategy for optimizing expensive, black-box objective functions (Frazier, 2018; Wang et al., 2023). Its effectiveness has led to successful applications in various domains such as hyperparameter tuning, experimental design, and robotics (Snoek et al., 2012; Shields et al., 2021; Wang et al., 2022). Most existing BO methods focus on scalar outputs (Bull, 2011; Wu et al., 2017), while some recent studies have extended BO to handle multi-output scenarios (Chowdhury & Gopalan, 2021; Tu et al., 2022; Maddox et al., 2021; Song et al., 2022). However, to the best of our knowledge, no prior work has addressed tensor-output BO, where the system output is a multi-mode tensor. In contrast, tensor-output data have been extensively explored in other areas, including tensor decomposition (Abed-Meraim et al., 2022), tensor regression (Lock, 2018), and tensor completion (Song et al., 2019), among others.

In current multi-output BO (MOBO) methods, a surrogate model, typically a multi-output Gaussian process (GP) or multiple scalar-output GPs, is constructed from observed data, and an acquisition function is used to sequentially select queried points by balancing exploration and exploitation. A straightforward approach to handling the tensor output is to vectorize them and apply existing MOBO methods. However, this neglects the intrinsic structural correlations within tensors, particularly the mode-wise dependencies that are critical in many applications. As a result, when optimizing the acquisition function to identify the global optimum, MOBO methods may become less effective. As such, it is essential to construct a GP to directly model tensor structures. Existing tensor-output GP methods are based on full separable structures, where the joint covariance is decomposed into a Kronecker product of covariance matrices across each output mode and the input. (Kia et al., 2018; Zhe et al., 2019; Belyaev et al., 2015). While computationally attractive, such separability assumes that correlations across tensor modes are independent of the input, which is often unrealistic in complex real-world systems such as spatiotemporal processes (Hristopulos, 2023). This mismatch can lead to inaccurate modeling, numerical instability in posterior inference, and ultimately degraded BO performance. Therefore, in this paper, we first aim to construct a more flexible and scalable GP

054 model that can capture input-dependent correlations within tensor outputs. Then, we aim to design
 055 an acquisition function and the sequential querying policy tailored for tensor-output BO.
 056

057 Furthermore, we consider a more complex and practical setting in which only a subset of the tensor
 058 outputs can be selected to contribute to the objective function. This naturally transforms the problem
 059 into a combinatorial multi-armed bandit (CMAB) setting. Specifically, each tensor element is treated
 060 as an individual arm, and at each round a subset of arms, referred to as a super-arm, is selected. The
 061 objective value associated with the chosen super-arm is then observed, which we interpret as the
 062 reward. We term this novel problem as **combinatorial bandit Bayesian optimization** (CBBO).
 063 The goal of CBBO with tensor outputs is to jointly identify the optimal input in the search space and
 064 the corresponding best super-arm over the tensor outputs. Recent studies have explored combining
 065 BO with multi-armed bandits (MAB), often under the name bandit Bayesian optimization (BBO),
 066 to address mixed input spaces with both continuous and categorical variables (Nguyen et al., 2020;
 067 Ru et al., 2020; Huang et al., 2022). In such settings, categorical variables are viewed as tensor
 068 modes, with their categories corresponding to elements along each mode. Selecting one category
 069 per mode corresponds to choosing a single arm along each mode, which can be viewed as a special
 070 case of CBBO. However, existing BBO methods cannot be directly extended to the CBBO setting
 071 for two main reasons. First, they typically model the outputs associated with categorical variables
 072 using independent GPs, thereby failing to capture the rich structural correlations inherent in tensor
 073 outputs. Second, their selection strategies rely on multiple independent MABs (i.e., selecting one
 074 arm per mode independently), whereas CBBO requires joint selection of multiple correlated arms.
 075 Thus, these BBO methods have less potential to be extended to our CBBO framework.
 076

077 To address the aforementioned challenges, we propose a novel tensor-output Bayesian optimization
 078 framework, named TOBO, together with its extension to the CBBO setting, named TOCBBO. **Our**
 079 **main contributions are summarized as follows:**

- 080 • We propose a tensor-output Gaussian process (TOGP) with two classes of tensor-output
 081 kernels that explicitly incorporate tensor structure by extending the linear model of core-
 082 gionalization from vector-valued outputs to tensor-valued outputs. The proposed kernels
 083 capture rich dependencies across tensor modes and across the input domain.
- 084 • Using the TOGP model as a surrogate, we develop a TOBO framework based on the upper
 085 confidence bound (UCB) acquisition. We establish a sublinear regret bound for TOBO,
 086 which is the first regret analysis for tensor-valued outputs under a Bayesian framework.
- 087 • We formulate a novel problem setting, referred to as CBBO. To address this setting, we de-
 088 sign the TOCBBO framework by introducing a CMAB-UCB2 acquisition function, which
 089 integrates the UCB criterion for input selection with the CMAB-UCB criterion for super-
 090 arm selection. We further establish a sublinear regret bound for TOCBBO.
- 091 • We demonstrate the efficiency and superiority of our methods through three synthetic ex-
 092 periments and four real-world applications.

093 Notably, compared to existing TOGP methods (Belyaev et al., 2015; Kia et al., 2018; Zhe et al.,
 094 2019), our model provides a more general kernel construction framework, as their tensor-output
 095 kernels correspond to specific choices of low-rank tensor decompositions, while our LMC-based
 096 formulation allows arbitrary tensor constraints to be incorporated into the coregionalization matrix.
 097 Compared to existing BO methods (Srinivas et al., 2009; Belakaria et al., 2019; Chowdhury &
 098 Gopalan, 2021), our work is the first to establish a BO framework for tensor outputs and further
 099 extend it to the proposed CBBO setting. Moreover, our contributions lie in deriving regret bounds
 under the Bayesian framework.

100 2 RELATED WORKS

101 **High-order Gaussian process (HOGP):** Existing studies for modeling HOGP rely on separable
 102 kernel structures. In particular, Belyaev et al. (2015) proposes a tensor-variate GP with separable
 103 covariance across tensor modes, Kia et al. (2018) develops a scalable multi-task GP for tensor out-
 104 puts by factorizing the cross-covariance kernel into mode-wise and input components, and Zhe et al.
 105 (2019) introduces a scalable high-order GP framework based on Kronecker kernels. While such for-
 106 mulations simplify computation, they inherently assume that correlations across tensor modes are
 107

108 independent of the input, which limits their ability to capture input-dependent dependencies. Recent studies have studied non-separable kernel functions for multi-output GPs (MOGPs), including convolution emulator-based kernels (Fricker et al., 2013), linear model of coregionalization-based kernels (Fricker et al., 2013; Li & Zhou, 2016; Bruinsma et al., 2020), and linear damped harmonic oscillator-based kernels (Hristopulos, 2023). Another equivalent formulation for MOGP is called multi-task GPs, where each task corresponds to an element of the outputs (Yu et al., 2018; Chowdhury & Gopalan, 2021; Maddox et al., 2021). However, these approaches generally treat outputs as vectors and cannot exploit the inherent multi-mode structure of tensor data, see Section 1.

116 **Multi-output Bayesian optimization (MOBO):** MOBO typically refers to either multi-task BO
 117 or multi-objective BO (Frazier, 2018; Wang et al., 2023). A desirable property of BO algorithms
 118 is to be no-regret, i.e., achieving cumulative regret $R(T) = o(T)$ after T rounds (Srinivas et al.,
 119 2009; Chowdhury & Gopalan, 2021). Recent works have proposed various MOBO methods with
 120 theoretically grounded acquisition functions. In particular, Chowdhury & Gopalan (2021); Dai et al.
 121 (2020); Sessa et al. (2023) employed UCB for multi-task BO and obtained $O(\sqrt{T})$ regret. For multi-
 122 objective BO, Belakaria et al. (2019); Zhang et al. (2025) study multi-objective BO using max-value
 123 entropy search and achieved $O(\sqrt{T})$ regret, and Daulton et al. (2022a) proposes a trust-region-
 124 based criterion with $O(\sqrt{T} \log T)$ regret. In contrast, another class of MOBO methods focuses on
 125 empirical performance without regret guarantees, including improvement-based criteria (Uhrenholt
 126 & Jensen, 2019; Daulton et al., 2020; 2022b), entropy-based search criteria (Hernández-Lobato
 127 et al., 2014; 2016; Tu et al., 2022), and information gain-based approaches (Chowdhury & Gopalan,
 128 2021). While effective in multi-output settings, these methods do not directly leverage the structured
 129 tensor correlations and are thus less suitable for our TOBO framework. **Furthermore, hypervolume-
 130 based and entropy search-based multi-objective BO methods cannot be applied to tensor outputs
 131 because their prohibitive computational complexity as the number of objectives grows.**

132 **Bandit Bayesian optimization (BBO):** BBO combines BO with multi-armed bandit algorithms to
 133 handle optimization problems in mixed input spaces with both continuous and categorical variables.
 134 Nguyen et al. (2020); Huang et al. (2022) considers an optimization problem with one continuous
 135 and one categorical variable, integrating BO with MAB-Thompson sampling with $\mathcal{O}(\sqrt{T^{\alpha+1}} \log T)$
 136 regret. Ru et al. (2020) extends this idea to multiple categorical variables, introducing CoCaBO, by
 137 employing EXP3 (Auer et al., 2002) for categorical selection and achieving $\mathcal{O}(\sqrt{T} \log T)$ regret.
 138 Although such settings can be regarded as special cases of CBBO, directly extending them is chal-
 139 lenging due to the tensor-output structure and the need to jointly select multiple correlated arms.

140 Table 1: Comparison of related works and our proposed method

GP							
Type	Literature	Tensor structure	Separable (Independent modes)	Non-separable (Cross-mode correlations)	BO (Regret)	BBO (Regret)	CBBO (Regret)
HOGP	Belyaev et al. (2015)						
	Kia et al. (2018)	✓	✓	✗	✗	✗	✗
	Zhe et al. (2019)						
MOGP	Fricker et al. (2013)						
	Li & Zhou (2016)	✗	✗	✓	✗	✗	✗
	Hristopulos (2023)						
MTBO	Dai et al. (2020)	✗	✓	✗	$\sqrt{(\mathcal{O}(\sqrt{T}))}$	✗	✗
	Sessa et al. (2023)	✗	✓	✗	$\sqrt{(\mathcal{O}(\sqrt{T}))}$	✗	✗
MTBO	Chowdhury & Gopalan (2021)	✗	✓	✓	$\sqrt{(\mathcal{O}(\sqrt{T}))}$	✗	✗
	Belakaria et al. (2019)				$\sqrt{(\mathcal{O}(\sqrt{T}))}$	✗	✗
MOBO	Zhang et al. (2025)	✗	✗	✗	$\sqrt{(\mathcal{O}(\sqrt{T}))}$	✗	✗
	Daulton et al. (2022a)	✗	✗	✗	$\sqrt{(\mathcal{O}(\sqrt{T} \log T))}$	✗	✗
BBO	Nguyen et al. (2020)	✗	✓	✗	$\sqrt{(\mathcal{O}(\sqrt{T^{\alpha+1}} \log T))}$	$\sqrt{(\mathcal{O}(\sqrt{T^{\alpha+1}} \log T))}$	✗
	Huang et al. (2022)	✗	✓	✗	$\sqrt{(\mathcal{O}(\sqrt{T^{\alpha+1}} \log T))}$	$\sqrt{(\mathcal{O}(\sqrt{T^{\alpha+1}} \log T))}$	✗
TOBO+TOCBBBO	Our proposed method	✓	✓	✓	$\sqrt{(\mathcal{O}(\sqrt{T} \log T))}$	$\sqrt{(\mathcal{O}(\sqrt{T} \log T))}$	$\sqrt{(\mathcal{O}(\sqrt{T} \log T))}$

154

3 TENSOR-OUTPUT BAYESIAN OPTIMIZATION

155 In this section, we propose a novel tensor-output Bayesian optimization (TOBO) framework for
 156 optimizing systems with tensor-valued outputs. Let $\mathbf{f} : \mathcal{X} \rightarrow \mathcal{Y}$ denote the black-box, expensive-to-
 157 evaluate function, where the input $\mathbf{x} = (x_1, \dots, x_d)$ is a d -dimensional vector defined on a compact
 158 and convex region $\mathcal{X} \subset \mathbb{R}^d$, and the output $\mathbf{f}(\mathbf{x}) \in \mathcal{Y} \subset \mathbb{R}^{t_1 \times \dots \times t_m}$ is a tensor with m modes.
 159 Denote $f_{i_1, \dots, i_m}(\mathbf{x})$ as the (i_1, \dots, i_m) -th entry of the tensor, where $i_l = 1, \dots, t_l$ for $l = 1, \dots, m$,
 160 and let $T = \prod_{l=1}^m t_l$ be the total number of elements. To optimize tensor-output systems, an intuitive
 161

way is to map the tensor-valued objective into a scalar function. To this end, we introduce a bounded linear operator $L_f \in \mathcal{L}(\mathcal{Y}, \mathbb{R})$, where $\mathcal{L}(\mathcal{Y}, \mathbb{R})$ denotes the set of bounded linear operators from \mathcal{Y} to \mathbb{R} . The optimization problem is thus

$$\mathbf{x}^* = \arg \max_{\mathbf{x} \in \mathcal{X}} L_f \mathbf{f}(\mathbf{x}). \quad (1)$$

To solve this problem, the proposed TOBO aims to sequentially select inputs \mathbf{x}_i and observe the corresponding tensor outputs,

$$\mathbf{y}_i = \mathbf{f}(\mathbf{x}_i) + \boldsymbol{\varepsilon}_i, \quad \forall i = 1, 2, \dots \quad (2)$$

where $\boldsymbol{\varepsilon}_i \in \mathbb{R}^{t_1 \times \dots \times t_m}$ denotes i.i.d. measurement noise with $\text{vec}(\boldsymbol{\varepsilon}_i) \sim \mathcal{N}(0, \tau^2 \mathbf{I}_T)$, and $\text{vec} : \mathcal{Y} \rightarrow \mathbb{R}^T$ is the vectorization operator.

Based on the collected data, we construct a tensor-output Gaussian process (TOGP) with two classes of tensor-output kernels to model \mathbf{f} , as detailed in Subsection 3.1. Then, we develop a UCB-based acquisition strategy to efficiently identify the maximizer \mathbf{x}^* , as presented in Subsection 3.2.

3.1 TENSOR-OUTPUT GAUSSIAN PROCESS

Define the prior of $\mathbf{f} : \mathcal{X} \rightarrow \mathcal{Y}$ as a tensor-output Gaussian process (TOGP):

$$\text{vec}(\mathbf{f}(\mathbf{x})) \sim \mathcal{TOGP}(\boldsymbol{\mu}, \sigma^2 \mathbf{K}(\mathbf{x}, \mathbf{x}')), \quad \forall \mathbf{x}, \mathbf{x}' \in \mathcal{X}, \quad (3)$$

where $\boldsymbol{\mu} \in \mathbb{R}^T$ is the prior mean, $\sigma^2 > 0$ is a variance hyperparameter, and $\mathbf{K}(\mathbf{x}, \mathbf{x}') \in \mathbb{R}^{T \times T}$ is a symmetric and positive semi-definite kernel function. The classes of $\mathbf{K}(\mathbf{x}, \mathbf{x}')$ is discussed later.

Given n observations $\mathbf{X}_n = (\mathbf{x}_1, \dots, \mathbf{x}_n)^\top$ and $\mathbf{Y}_n = (\text{vec}(\mathbf{y}_1)^\top, \dots, \text{vec}(\mathbf{y}_n)^\top)^\top$, the posterior of the vectorized \mathbf{f} at a new input $\mathbf{x} \in \mathcal{X}$ is a T -dimensional Gaussian with mean and covariance,

$$\hat{\boldsymbol{\mu}}_n(\mathbf{x}) = \boldsymbol{\mu} + \mathbf{K}_n^\top(\mathbf{x}) (\mathbf{K}_n + \eta \mathbf{I}_{nT})^{-1} (\mathbf{Y}_n - \mathbf{1}_n \otimes \boldsymbol{\mu}), \quad (4)$$

$$\hat{\mathbf{K}}_n(\mathbf{x}, \mathbf{x}) = \sigma^2 \left[\mathbf{K}(\mathbf{x}, \mathbf{x}) - \mathbf{K}_n^\top(\mathbf{x}) (\mathbf{K}_n + \eta \mathbf{I}_{nT})^{-1} \mathbf{K}_n(\mathbf{x}) \right], \quad (5)$$

where $\mathbf{K}_n(\mathbf{x}) \in \mathbb{R}^{nT \times T}$ is the block column matrix with i -th block $\mathbf{K}(\mathbf{x}_i, \mathbf{x})$, $\mathbf{K}_n \in \mathbb{R}^{nT \times nT}$ is the block matrix with (i, j) -block $\mathbf{K}(\mathbf{x}_i, \mathbf{x}_j)$, $\mathbf{1}_n$ is the n -dimensional vector of ones, and $\eta = \tau^2 / \sigma^2$.

To specify the tensor-output kernel for TOGP, we introduce two classes of kernels. The first class is the non-separable tensor-output kernel. Specifically, any GP can be represented as a convolution of white noise processes (Higdon, 2002). For a tensor-output system \mathbf{f} with GP prior, each element of \mathbf{f} can be expressed as $f_{i_1, \dots, i_m}(\mathbf{x}) = \int_{\mathcal{X}} g_{i_1, \dots, i_m}(\mathbf{z} - \mathbf{x}) w_{i_1, \dots, i_m}(\mathbf{z}) d\mathbf{z}$, where $w_{i_1, \dots, i_m}(\mathbf{z})$ denotes an independent white noise process with zero mean and covariance $k_{i_1, \dots, i_m}(\mathbf{z} - \mathbf{z}')$. Inspired by the linear model of coregionalization (LMC) (Fricker et al., 2013; Li & Zhou, 2016), we consider a degenerate choice $g_{i_1, \dots, i_m}(\mathbf{z} - \mathbf{x}) = \sum_{l=1}^m \sum_{j=1}^{t_l} A_l(i_1, \dots, i_m) \delta(\mathbf{z} - \mathbf{x})$, so that $f_{i_1, \dots, i_m}(\mathbf{x}) = \sum_{l=1}^m \sum_{j=1}^{t_l} A_l(i_1, \dots, i_m) w_{i_1, \dots, i_m}(\mathbf{x})$, where A_{l, i_1, \dots, i_m} denotes the (i_1, \dots, i_m) -th element of the tensor $\mathbf{A}_l \in \mathbb{R}^{t_1 \times \dots \times t_m}$. Expanding the LMC along tensor modes yields $\mathbf{f}(\mathbf{x}) = \sum_{l=1}^m \sum_{j=1}^{t_l} \mathbf{A}_l \mathbf{w}(\mathbf{x})$ with zero mean and the covariance $\text{Cov}(\text{vec}(\mathbf{f}(\mathbf{x})), \text{vec}(\mathbf{f}(\mathbf{x}'))) = \sum_{l=1}^m \sum_{j=1}^{t_l} \text{vec}(\mathbf{A}_l) \text{vec}(\mathbf{A}_l)^\top k_{lj}(\mathbf{x}, \mathbf{x}')$. The non-separable tensor-output kernel is defined as

Definition 1. Define the non-separable tensor-output kernel $\mathbf{K}(\mathbf{x}, \mathbf{x}')$ for any $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$:

$$\mathbf{K}(\mathbf{x}, \mathbf{x}') = \sum_{l=1}^m \sum_{j=1}^{t_l} \text{vec}(\mathbf{A}_l) \text{vec}(\mathbf{A}_l)^\top k_{lj}(\mathbf{x}, \mathbf{x}'), \quad (6)$$

where $\mathbf{A}_l \in \mathbb{R}^{t_1 \times \dots \times t_m}$ is a core tensor and $k_{lj}(\mathbf{x}, \mathbf{x}')$ are base kernels (e.g., Matérn or Gaussian) on \mathcal{X} . This construction induces correlations both across and within tensor modes that vary with the input, thus yielding a non-separable covariance structure.

Furthermore, if all $w_{i_1, \dots, i_m}(\mathbf{z})$ share the same covariance $k(\mathbf{z}, \mathbf{z}')$ for $i_l \in [t_l]$, $l = 1, \dots, m$, and the convolution degenerates to $g_{i_1, \dots, i_m}(\mathbf{z}) = A_{i_1, \dots, i_m} \delta(\mathbf{z} - \mathbf{x})$, then the induced tensor-output kernel reduces to a separable structure as

216 **Definition 2.** Define the separable tensor-output kernel $\mathbf{K}(\mathbf{x}, \mathbf{x}')$ for any $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$:

$$218 \quad \mathbf{K}(\mathbf{x}, \mathbf{x}') = \text{vec}(\mathbf{A}) \text{vec}(\mathbf{A})^\top k(\mathbf{x}, \mathbf{x}'). \quad (7)$$

219 where $\mathbf{A} \in \mathbb{R}^{t_1 \times \dots \times t_m}$ is a core tensor, and $k(\cdot, \cdot)$ is a base kernel on \mathcal{X} . This structure yields a
220 separable kernel in which the correlations across tensor modes are independent of the input.
221

222 Note that $\mathbf{K}(\mathbf{x}, \mathbf{x}')$ is designed to capture both the correlation across inputs and the correlation
223 within the tensor output. For the non-separable tensor-output kernel in (6), the base kernel $k_{l,j}(\mathbf{x}, \mathbf{x}')$
224 models the covariance between the inputs \mathbf{x} and \mathbf{x}' , while the matrix $\text{vec}(\mathbf{A}_l) \text{vec}(\mathbf{A}_l)^\top$ describes
225 the covariance structure among the elements of the output tensor. For the separable tensor output
226 kernel in (7), $k(\mathbf{x}, \mathbf{x}')$ captures the input correlation, and $\text{vec}(\mathbf{A}) \text{vec}(\mathbf{A})^\top$ specifies the mode-wise
227 covariance structure within the tensor output.

228 **Proposition 1.** The kernel function \mathbf{K} in Definitions 1–2 for the TOGP is symmetric and
229 positive semi-definite on \mathcal{X} . Specifically: (1) $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{X}$, the kernel satisfies symmetry:
230 $\mathbf{K}(\mathbf{x}, \mathbf{x}') = \mathbf{K}(\mathbf{x}', \mathbf{x})^\top$; (2) $\forall \mathbf{y}_1, \dots, \mathbf{y}_n \in \mathcal{Y}$, the Gram matrix is positive semi-definite:
231 $\sum_{i,j=1}^n \text{vec}(\mathbf{y}_i)^\top \mathbf{K}(\mathbf{x}_i, \mathbf{x}_j) \text{vec}(\mathbf{y}_j) \geq 0$.

232 Its proof is given in Appendix E. Proposition 1 thus ensures that two classes of tensor-output kernels
233 yield valid covariance kernels for TOGP, ensuring that the induced TOGP is well defined.
234

235 **Remark 1.** For the core tensors $\{\mathbf{A}_l\}_{l=1}^m$ in (6) and \mathbf{A} in (7), there are mT and T parameters to be
236 estimated, respectively. To reduce the complexity, some low-rank decomposition-based structure can
237 be applied to core tensors, such as CANDECOMP/PARAFAC (CP) decomposition (Goulart et al.,
238 2015) and tensor-train (TT) decomposition (Oseledets, 2011). Details are shown in Appendix B.

239 Denote the hyperparameters as $\Theta = \{\theta, \mathbf{a}, \sigma^2, \tau^2\}$. For the kernel in (6), $\theta = \{\theta_{l,j}\}_{l,j=1}^{m,t_l}$ are the
240 scale parameters of the base kernels $\{k_{l,j}\}$, and $\mathbf{a} = \{a_{l,j}\}_{l,i,j}^{m,m,t_l}$ are the parameters of $\{\mathbf{A}_l\}_{l=1}^m$.
241 For the kernel in (7), $\theta = \{\theta_1, \dots, \theta_d\}$ is the scale parameters of k , and $\mathbf{a} = \{a_{i,j}\}_{i,j}^{m,t_l}$ are the
242 parameters of \mathbf{A} . The hyperparameters Θ are estimated via maximum likelihood. The detailed
243 estimation, algorithm, and complexity analysis are provided in Appendix C.

244 **Remark 2.** The ranks of the core tensors \mathbf{A}_l in the proposed TOGP model are chosen via cross-
245 validation for $l = 1, \dots, m$. Let $\mathbf{R}_c = \{r_1, \dots, r_c\}$ be the set of candidate ranks, we fit the TOGP
246 model and evaluate its predictive accuracy on a held-out validation set using the mean absolute
247 error (MAE) criterion. The selected rank is given by $r^* = \arg \min_{r \in \mathbf{R}_c} \text{MAE}(r)$, where $\text{MAE}(r) =$
248 $\frac{1}{n_{\text{test}}} \sum_{i=1}^{n_{\text{test}}} \left\| \frac{\mathbf{f}_i - \hat{\mathbf{f}}_i(r)}{\mathbf{f}_i} \right\|$. The data-driven selection balances model flexibility and complexity, thereby
249 mitigating overfitting while preserving expressive capacity.

250 **Remark 3.** To improve scalability for large tensor outputs, we adopt a Nyström low-rank approxi-
251 mation strategy. Specifically, based on data \mathbf{X}_n and \mathbf{Y}_n , consider the spectral decomposition $\mathbf{K}_n =$
252 $\mathbf{U}_n \mathbf{\Lambda}_n \mathbf{U}_n^\top$, where $\mathbf{\Lambda}_n = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_{nT})$ denotes eigenvalues ordered as $\lambda_1 \geq \lambda_2 \geq \dots \geq$
253 $\lambda_{nT} > 0$. We approximate \mathbf{K}_n using the leading l ($\ll nT$) eigenpairs, that is, $\mathbf{K}_n \approx \mathbf{U}_l \mathbf{\Lambda}_l \mathbf{U}_l^\top$,
254 where $\mathbf{U}_l \in \mathbb{R}^{nT \times l}$ contains the first l eigenvectors and $\mathbf{\Lambda}_l = \text{diag}(\lambda_1, \dots, \lambda_l)$. The rank l is se-
255 lected by cumulative explained variance: $l = \min_{l_0} \left\{ l_0 \in \{1, \dots, nT\} : \sum_{i=1}^{l_0} \lambda_i / \sum_{i=1}^{nT} \lambda_i \geq c \right\}$.
256 The Nyström method approximates \mathbf{K}_n by selecting n_l ($\ll nT$) landmark columns and extending
257 a small eigendecomposition, which yields a computational cost of evaluating $(\mathbf{K}_n + \eta \mathbf{I}_{nT})^{-1}$ as
258 $\mathcal{O}(nTn_l^2 + n_l^3)$ (Williams & Seeger, 2000). Thus, the overall computational complexity for training
259 TOGP becomes $\mathcal{O}((nTn_l^2 + n_l^3 + n^2T^2m_h) \log n)$.

263 3.2 UPPER CONFIDENCE BOUND ACQUISITION STRATEGY

264 Building on the proposed TOGP as a surrogate for \mathbf{f} , we now develop a UCB-based acquisition
265 strategy. At round $n + 1$, given past observations \mathbf{X}_n and \mathbf{Y}_n , we update the hyperparameters Θ_n
266 as well as the posterior mean (4) and covariance (5) of \mathbf{f} . The UCB acquisition function for the
267 scalarization-based objective in (1) is defined as

$$268 \quad \alpha_{UCB}(\mathbf{x} \mid \mathcal{D}_n) = L_f \hat{\mu}_n(\mathbf{x}) + \beta_n \|\hat{\mathbf{K}}_n(\mathbf{x}, \mathbf{x})\|^{1/2}, \quad (8)$$

270 where $\beta_n > 0$ is a tuning parameter that balances exploration and exploitation. This criterion en-
 271 courages exploration in directions with greater predictive uncertainty under the tensor-output setting.
 272 The next query is then selected by maximizing (8):

$$273 \quad 274 \quad \mathbf{x}_{n+1} = \arg \max_{\mathbf{x} \in \mathcal{X}} \alpha_{UCB}(\mathbf{x} \mid \mathcal{D}_n). \quad (9)$$

275 The complete TOBO algorithm and its complexity analysis are given in Appendix D.

276 We now analyze the theoretical properties of the TOBO method under specific conditions. To this
 277 end, we first introduce the following definition for two commonly used regrets.

278 **Definition 3.** At each round n , the TOBO method selects a queried input $\mathbf{x}_n \in \mathcal{X}$. The instantaneous
 279 regret is defined as $r_n = L_f \mathbf{f}(\mathbf{x}^*) - L_f \mathbf{f}(\mathbf{x}_n)$, and the cumulative regret up to round N is defined
 280 as $R_N = \sum_{n=1}^N [L_f \mathbf{f}(\mathbf{x}^*) - L_f \mathbf{f}(\mathbf{x}_n)]$.

282 The regret quantifies the gap from not knowing the objective in advance. A good strategy can achieve
 283 a sub-linear cumulative regret, so that the average regret per round converges to zero as $N \rightarrow \infty$.

284 **Assumption 1.** Assume that the true system \mathbf{f} is a TOGP with kernel \mathbf{K} as defined in (6)–(7).

285 **Assumption 2.** The scalarization operator L_f in (1) is L -Lipschitz with respect to \mathbf{f} under the l_2
 286 norm, i.e., for any $\mathbf{x}_i, \mathbf{x}_j \in \mathcal{X}$, $|L_f(\mathbf{f}(\mathbf{x}_i)) - L_f(\mathbf{f}(\mathbf{x}_j))| \leq L \|\mathbf{f}(\mathbf{x}_i) - \mathbf{f}(\mathbf{x}_j)\|$ holds.

288 Assumption 1 ensures that the objective function \mathbf{f} is a TOGP, which is a basic setting under the
 289 Bayesian framework. Assumption 2 demonstrates that the scalarization-based objective is stable
 290 under small perturbations of the input.

291 **Lemma 1.** Let $\partial \text{vec}(\mathbf{f}) / \partial x_j \in \mathbb{R}^T$ be the gradient of $\text{vec}(\mathbf{f})$ with respect to the j -th coordinate of
 292 $\mathbf{x} \in \mathcal{X}$. Then, $\partial \text{vec}(\mathbf{f}) / \partial x_j$ is a GP with covariance $\hat{\mathbf{K}}_n^\nabla(x_j, x'_j)$. Under Assumptions 1, given data
 293 \mathbf{X}_n and \mathbf{Y}_n with $n \geq 1$, there exist constants $a, b > 0$ such that

$$294 \quad 295 \quad \Pr \left(\sup_{\mathbf{x} \in \mathcal{X}} \|\partial \text{vec}(\mathbf{f}) / \partial x_j\| > L' + C_\nabla \right) \leq a \exp(-L'^2/b^2), \quad j = 1, \dots, d. \quad (10)$$

296 where $C_\nabla = \sup_{\mathbf{x} \in \mathcal{X}} \sqrt{\text{tr}(\hat{\mathbf{K}}_n^\nabla(x_j, x_j))}$ and $L' > 0$.

298 Its proof is given in Appendix F. Lemma 1 shows that the derivative of the vectorized TOGP remains
 299 Gaussian, and holds high-probability confidence bounds.

301 **Theorem 1.** Under Assumptions 1–2, define $C_n = \sup_{\mathbf{x} \in \mathcal{X}} \text{tr}(\hat{\mathbf{K}}_n(\mathbf{x}, \mathbf{x})) / \lambda_{\max}^{(n)}(\mathbf{x})$, where
 302 $\lambda_{\max}^{(n)}(\mathbf{x})$ is the largest eigenvalue of $\hat{\mathbf{K}}_n(\mathbf{x}, \mathbf{x})$. Suppose $\mathcal{X} \subseteq [0, r]^d$. Then for any
 303 $\delta \in (0, 1)$, the TOBO method with $\beta_n = \sqrt{C_n} + 2d \log(rdn^2(b\sqrt{\log(da/\delta)} + C_\nabla)) / \delta$
 304 holds that, $\Pr \left(R_N \leq L \left(\sqrt{C_1 \gamma_N(\mathbf{K}, \eta) N} \beta_N + \frac{\pi^2}{6} \right) \right) \geq 1 - \delta$, where $\gamma_N(\mathbf{K}, \eta) :=$
 305 $\max_{\mathcal{X}_N \subset \mathcal{X}} \frac{1}{2} \log \det(\mathbf{I}_{NT} + \eta^{-1} \mathbf{K}_N)$ denotes the maximum information gain.

307 Its proof is given in Appendix G. Theorem 1 establishes that the cumulative regret of TOBO is
 308 sub-linear with high probability.

309 **Proposition 2.** If $\mathbf{K}(\mathbf{x}, \mathbf{x}')$ is specified as the separable kernel in Definition 2, then the maximum
 310 information gain satisfies $\gamma_n(\mathbf{K}, \eta) = \mathcal{O}(T \log(n)^{d+1})$ when $k(\mathbf{x}, \mathbf{x}')$ is a Gaussian kernel, and
 311 $\gamma_n(\mathbf{K}, \eta) = \mathcal{O}(T n^{d(d+1)/(2\nu+d(d+1))} \log(n))$ when $k(\mathbf{x}, \mathbf{x}')$ is a Matérn kernel with smoothness
 312 parameter $\nu > 1$. Details of the analysis are provided in Appendix H.

314 4 TENSOR-OUTPUT COMBINATORIAL BANDIT BAYESIAN OPTIMIZATION

317 We now consider a more challenging optimization problem in which only $k < T$ elements of the ten-
 318 sor output can contribute to the objective function. Formally, we define $\tilde{\mathbf{f}}(\mathbf{x}, \boldsymbol{\lambda}) = \mathbf{e}(\boldsymbol{\lambda}) \text{vec}(\mathbf{f}(\mathbf{x})) \in$
 319 $\tilde{\mathcal{Y}}$, where $\boldsymbol{\lambda} = (\lambda_1, \dots, \lambda_T)^\top$ is a binary indicator vector in $\Lambda = \{\boldsymbol{\lambda} \in \{0, 1\}^T : \mathbf{1}_n^\top \boldsymbol{\lambda} = k\}$
 320 and $\mathbf{e}(\boldsymbol{\lambda}) \in \{0, 1\}^{k \times T}$ is a binary selection matrix whose j -th row selects the i_j -th coordinate of
 321 $\text{vec}(\mathbf{f}(\mathbf{x}))$. The goal is to jointly identify the optimal input $\mathbf{x}^* \in \mathcal{X}$ and the optimal subset of k
 322 elements, represented by a binary vector $\boldsymbol{\lambda}^* \in \Lambda$, that maximize

$$323 \quad (x^*, \boldsymbol{\lambda}^*) = \arg \max_{\mathbf{x} \in \mathcal{X}, \boldsymbol{\lambda} \in \Lambda} H_f \tilde{\mathbf{f}}(\mathbf{x}, \boldsymbol{\lambda}), \quad (11)$$

324 where H_f is a bounded linear operator $H_f \in \mathcal{L}(\tilde{\mathcal{Y}}, \mathbb{R})$. By interpreting each tensor element as
 325 an individual arm, the selected subset of k elements corresponds to a super-arm \mathcal{S} , with $j \in \mathcal{S}$ if
 326 $\lambda_j = 1$ and $j \notin \mathcal{S}$ otherwise. At each round $i \in [N]$, the learner selects an input \mathbf{x}_i and a super-arm
 327 $\mathcal{S}_i = \{i_1, \dots, i_k\}$ of size k , equivalently encoded by $\boldsymbol{\lambda}_i \in \Lambda$. The observed output is partial tensor
 328 $\tilde{\mathbf{y}}_i \in \mathbb{R}^k$ indexed by \mathcal{S}_i , while outputs for unselected elements $j \notin \mathcal{S}_i$ remain unobserved.

329 In this section, we propose a novel tensor-output combinatorial bandit Bayesian optimization
 330 (TOCBO) framework to solve the above problem. In Subsection 4.1, we extend the TOGP model
 331 for partially observed outputs. In Subsection 4.2, we develop an efficient CMAB-UCB2 acquisition
 332 strategy that combines UCB for input selection with CMAB-UCB for super-arm selection.
 333

334 4.1 PARTIALLY OBSERVED TENSOR-OUTPUT GAUSSIAN PROCESS

335 From the proposed TOGP in (3), the prior of $\tilde{\mathbf{f}} : \mathcal{X} \times \Lambda \rightarrow \tilde{\mathcal{Y}}$ is a partially observed TOGP (PTOGP):

$$337 \tilde{\mathbf{f}}(\mathbf{x}, \boldsymbol{\lambda}) \sim \mathcal{PTOGP}(\mathbf{e}(\boldsymbol{\lambda})\boldsymbol{\mu}(\mathbf{x}), \tau^2 \mathbf{e}(\boldsymbol{\lambda})\mathbf{K}(\mathbf{x}, \mathbf{x}')\mathbf{e}(\boldsymbol{\lambda}')^\top), \quad \forall \mathbf{x}, \mathbf{x}' \in \mathcal{X}, \boldsymbol{\lambda}, \boldsymbol{\lambda}' \in \Lambda. \quad (12)$$

338 Let $\mathbf{X}_n = (\mathbf{x}_1, \dots, \mathbf{x}_n)^\top$, $\boldsymbol{\Lambda}_n = (\boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_n)^\top$, and $\tilde{\mathbf{Y}}_n = (\tilde{\mathbf{y}}_1, \dots, \tilde{\mathbf{y}}_n)^\top$ be n partially ob-
 339 servations, where $\boldsymbol{\lambda}_i$ corresponds to the selected super-arm \mathcal{S}_i , and $\tilde{\mathbf{y}}_i = \tilde{\mathbf{f}}(\mathbf{x}_i, \boldsymbol{\lambda}_i) + \tilde{\boldsymbol{\varepsilon}}_i$ with
 340 $\tilde{\boldsymbol{\varepsilon}}_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \tau^2 \mathbf{I}_k)$. Then, for a new input \mathbf{x} and a super-arm \mathcal{S} with indicator vector $\boldsymbol{\lambda}$, the posterior
 341 distribution of $\tilde{\mathbf{f}}$ is a k -dimensional Gaussian with mean and covariance
 342

$$344 \tilde{\boldsymbol{\mu}}_n(\mathbf{x}, \boldsymbol{\lambda}) = \mathbf{e}(\boldsymbol{\lambda})\boldsymbol{\mu}(\mathbf{x}) + \sigma^2 \mathbf{e}(\boldsymbol{\lambda})\mathbf{K}_n^\top(\mathbf{x})\mathbf{E}_n^\top \tilde{\boldsymbol{\Sigma}}_n^{-1} \left(\text{vec}(\tilde{\mathbf{Y}}_n) - \mathbf{E}_n(\mathbf{1}_n \otimes \boldsymbol{\mu}) \right), \quad (13)$$

$$345 \tilde{\mathbf{K}}_n(\mathbf{x}, \mathbf{x}'; \boldsymbol{\lambda}, \boldsymbol{\lambda}') = \sigma^2 [\mathbf{e}(\boldsymbol{\lambda})\mathbf{K}(\mathbf{x}, \mathbf{x}')\mathbf{e}(\boldsymbol{\lambda}')^\top - \sigma^2 \mathbf{e}(\boldsymbol{\lambda})\mathbf{K}_n^\top(\mathbf{x})\mathbf{E}_n \tilde{\boldsymbol{\Sigma}}_n^{-1} \mathbf{E}_n^\top \mathbf{K}_n(\mathbf{x}')\mathbf{e}(\boldsymbol{\lambda}')^\top], \quad (14)$$

346 where $\tilde{\boldsymbol{\Sigma}}_n = \sigma^2 \mathbf{E}_n \mathbf{K}_n \mathbf{E}_n^\top + \tau^2 \mathbf{I}_{nk}$, and $\mathbf{E}_n \in \mathbb{R}^{nk \times nT}$ is a $n \times n$ block-diagonal matrix with the
 347 i -block given by $\mathbf{e}(\boldsymbol{\lambda}_i)$. It is easy to verify that the posterior covariance remains positive definite
 348 and symmetric. For hyperparameter estimation, we also employ the maximum likelihood estima-
 349 tion (MLE) framework for training the PTOGP. The detailed estimation, algorithm and complexity
 350 analysis are presented in Appendix C.
 351

352 4.2 CMAB-UCB2 ACQUISITION STRATEGY

353 Building on the PTOGP, we now develop the TOCBO method to sequentially select queried inputs
 354 $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ together with their associated super-arm indicators $\{\boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_N\}$. Directly optimiz-
 355 ing (11) over both \mathbf{x} and $\boldsymbol{\lambda}$ is computationally intractable, since identifying the optimal super-arm of
 356 size k from T arms requires a combinatorial search over $\binom{T}{k}$ possible configurations. When coupled
 357 with the continuous optimization over \mathcal{X} , this joint problem becomes computationally prohibitive.
 358 To overcome this challenge, we propose a CMAB-UCB2 criterion that decomposes the optimization
 359 into two sequential steps.
 360

361 At round $n + 1$, let \mathbf{x}_n^* and $\boldsymbol{\lambda}_n^*$ denote the best input and super-arm identified from the previous
 362 n rounds, that is, $\{\mathbf{x}_n^*, \boldsymbol{\lambda}_n^*\} = \arg \max_{\{\mathbf{x}_i, \boldsymbol{\lambda}_i\}, i=1, \dots, n} H_f \tilde{\mathbf{f}}(\mathbf{x}_i, \boldsymbol{\lambda}_i)$. In the first step, we fix the
 363 super-arm to $\boldsymbol{\lambda}_n^*$ and query the next input by maximizing the UCB acquisition function conditioned
 364 on the fixed super-arm, i.e.,
 365

$$366 \mathbf{x}_{n+1} = \arg \max_{\mathbf{x} \in \mathcal{X}} H_f \tilde{\boldsymbol{\mu}}_n(\mathbf{x}, \boldsymbol{\lambda}_n^*) + \tilde{\beta}_n \|\tilde{\mathbf{K}}_n(\mathbf{x}, \mathbf{x}; \boldsymbol{\lambda}_n^*, \boldsymbol{\lambda}_n^*)\|^{1/2}. \quad (15)$$

367 In the second step, given the chosen input \mathbf{x}_{n+1} , the optimization problem for selecting $\boldsymbol{\lambda}_{n+1}$ re-
 368 duces to a CMAB problem. To this end, we adopt the CMAB-UCB criterion by constructing an
 369 UCB for each super-arm and selecting the one that maximizes the sum of upper confidence value:
 370

$$371 \boldsymbol{\lambda}_{n+1} = \arg \max_{\boldsymbol{\lambda} \in \Lambda} H_f \tilde{\boldsymbol{\mu}}_n(\mathbf{x}_{n+1}, \boldsymbol{\lambda}) + \tilde{\rho}_n \|\tilde{\mathbf{K}}_n(\mathbf{x}_{n+1}, \mathbf{x}_{n+1}; \boldsymbol{\lambda}, \boldsymbol{\lambda})\|^{1/2}. \quad (16)$$

372 Here, $\tilde{\beta}_n$ and $\tilde{\rho}_n$ are tuning parameters controlling the trade-off between exploration and exploita-
 373 tion. The compute TOCBO algorithm and its computational complexity analysis are provided in
 374 Appendix D.
 375

376 We further analyze the regret bound of the TOCBO method under specific conditions. The regret
 377 for CBBO is defined as follows:

378 **Definition 4.** At each round n , the TOCBBO method selects a queried input $\mathbf{x}_n \in \mathcal{X}$ and
 379 a super arm \mathcal{S}_n with indicator $\boldsymbol{\lambda}_n \in \Lambda$. The instantaneous regret is defined as $r_n =$
 380 $H_f \tilde{\mathbf{f}}(\mathbf{x}^*, \boldsymbol{\lambda}^*) - H_f \tilde{\mathbf{f}}(\mathbf{x}_n, \boldsymbol{\lambda}_n)$, and the cumulative regret up to round N is defined as $R_N =$
 381 $\sum_{n=1}^N [H_f \tilde{\mathbf{f}}(\mathbf{x}^*, \boldsymbol{\lambda}^*) - H_f \tilde{\mathbf{f}}(\mathbf{x}_n, \boldsymbol{\lambda}_n)]$.
 382

383 **Assumption 3.** The operator H_f in (11) is H -Lipschitz with respect to $\tilde{\mathbf{f}}$ under the l_2 norm, i.e., for
 384 $\forall \mathbf{x}_i, \mathbf{x}_j \in \mathcal{X}$ and $\boldsymbol{\lambda}_i, \boldsymbol{\lambda}_j \in \Lambda$, $|H_f \tilde{\mathbf{f}}(\mathbf{x}_i, \boldsymbol{\lambda}_i) - H_f \tilde{\mathbf{f}}(\mathbf{x}_j, \boldsymbol{\lambda}_j)| \leq H \|\tilde{\mathbf{f}}(\mathbf{x}_i, \boldsymbol{\lambda}_i) - \tilde{\mathbf{f}}(\mathbf{x}_j, \boldsymbol{\lambda}_j)\|$ holds.
 385

386 Assumption 3 ensures that $H_f \tilde{\mathbf{f}}$ varies smoothly to changes for partially observed tensor outputs.
 387

388 **Theorem 2.** Under Assumption 1 and Assumption 2, denote $\tilde{C}_n = \sup_{\mathbf{x} \in \mathcal{X}} \frac{\text{tr}(\tilde{\mathbf{K}}_n(\mathbf{x}, \mathbf{x}; \boldsymbol{\lambda}_n^*, \boldsymbol{\lambda}_n^*))}{\lambda_{\max}^{(n)}(\mathbf{x}, \boldsymbol{\lambda}_n^*)}$,
 389 where $\lambda_{\max}^{(n)}(\mathbf{x}, \boldsymbol{\lambda}_n^*)$ is the largest eigenvalues of $\tilde{\mathbf{K}}_n(\mathbf{x}, \mathbf{x}; \boldsymbol{\lambda}_n^*, \boldsymbol{\lambda}_n^*)$. For any $\delta \in (0, 1)$ and $\eta > 0$,
 390 the TOCBBO method with $\beta_n = \sqrt{\tilde{C}_n} + 2d \log(\frac{rdn^2(b\sqrt{\log(da/\delta)} + \tilde{C}_n)}{\delta})$ and $\rho_n = \sqrt{2 \log(\frac{NT\pi_n}{\delta})}$
 391 holds that, $\Pr\left(R_N \leq L(\sqrt{C_1\gamma_N(\mathbf{K}, \eta)N}\beta_N + \frac{\pi^2}{6}) + 2H\sqrt{2T\rho_N\tilde{\gamma}_N(\mathbf{K})}\right) \geq 1 - \delta$, where
 392 $\tilde{\gamma}_n(\tilde{\mathbf{K}}, \eta) = \max_{\boldsymbol{\Lambda}_n \subset \Lambda} \frac{1}{2} \log \det(\mathbf{I}_{kn} + \eta^{-1} \mathbf{E}_n \mathbf{K}_n \mathbf{E}_n^\top)$ is the maximum information gain for
 393 super-arms, and $\pi_n > 0$ is a sequence such that $\sum_{l=1}^{\infty} 1/\pi_l = 1$.
 394

395 Its detailed proof is provided in I. Theorem 2 shows that the upper bound on the regret for the
 396 TOCBBO method is sub-linear with a high probability.
 397

400 5 EXPERIEMENTS

401 We evaluate the performance of TOBO and TOCBBO using both synthetic and real-case data, and
 402 compare them with several baselines where the tensor output is vectorized and MOGPs are used as
 403 surrogate models. Specifically, we consider three GPs in the literature: (1) sMTGP: the scalable
 404 multi-task GP Kia et al. (2018); (2) MLGP: the multi-linear GP Yu et al. (2018); and (3) MVGP:
 405 the multi-variate GP Chen et al. (2020). For each GP, we examine two sequential BO sampling
 406 strategies: (1) the UCB criterion and (2) random sampling. In addition, we replace the UCB acqui-
 407 sition in TOBO and TOCBBO with random sampling to construct an ablation baseline, denoted as
 408 TOGP-RS. Detailed descriptions of all baseline settings are provided in Appendix K.
 409

410 5.1 SYNTHETIC EXPERIMENTS

411 We assume the true $\mathbf{f}(\mathbf{x})$ takes the form $\mathbf{f}(\mathbf{x}) = \mathbf{B} \otimes_1 \mathbf{U}_1 \otimes_2 \dots \otimes_{m-1} \mathbf{U}_{m-1} \otimes_m \mathbf{g}(\mathbf{x})$, where
 412 each element of $\mathbf{B} \in \mathbb{R}^{P_1 \times \dots \times P_m}$ is independently sampled from $U(0, 1)$, the ij -th element of $\mathbf{U}_l \in$
 413 $\mathbb{R}^{P_l \times T_l}$ is defined as $li \cos(ijl/2) + \sin(li)$, and $\mathbf{g}(\mathbf{x}) = (\sin(5\mathbf{x}), \cos(\mathbf{x})) \in \mathbb{R}^{P_m \times T_m}$. Here
 414 $P_m = d$ and $\mathbf{x} \in [0, 1]^d$. We consider three parameter settings for generating $\mathbf{f}(\mathbf{x})$: (1) $m = 3$,
 415 $(T_1, T_2, T_3) = (2, 4, 2)$, $(P_1, P_2, P_3) = (3, 3, 3)$; (2) $m = 2$, $(T_1, T_2) = (3, 2)$, $(P_1, P_2) = (3, 2)$;
 416 and (3) $m = 3$, $(T_1, T_2, T_3) = (4, 5, 2)$, $(P_1, P_2, P_3) = (3, 3, 3)$. The observations are collected as
 417 $\mathbf{y}_i = \mathbf{f}(\mathbf{x}_i) + \boldsymbol{\varepsilon}_i$, where $\boldsymbol{\varepsilon}_i \stackrel{\text{i.i.d.}}{\sim} N(0, 0.1^2 \mathbf{I})$. For CBBO tasks, we set $k = T/6$.
 418

419 We generate $n_{\text{train}} = 10d$ training samples and $n_{\text{test}} = 5d$ testing samples using a Latin hypercube
 420 design (Santner et al., 2003). The training samples are used to estimate hyperparameters, and predic-
 421 tive performance is evaluated on the testing data in terms of NLL, MAE, and $\|\text{Cov}\|$, with detailed
 422 definitions provided in Appendix K. To balance modeling flexibility and computational complexity,
 423 we use the separable tensor-output kernel in (7) in Settings (1) and (2), and employ the non-separable
 424 tensor-output kernel in (6) in Setting (3). The results are summarized in Table 2. As shown, our pro-
 425

426 Table 2: The prediction performance of GPs in the three synthetic settings.

	Setting (1)			Setting (2)			Setting (3)		
	NLL	MAE	$\ \text{Cov}\ $	NLL	MAE	$\ \text{Cov}\ $	NLL	MAE	$\ \text{Cov}\ $
TOGP	503.0	0.1571	2.02	-18.1	0.1052	0.04	-3923.1	0.1372	2.82
sMTGP	749.4	0.1684	1.44	-5.0	0.1566	0.06	-3743.0	0.1501	22.01
MLGP	707937.1	0.9428	67.00	7066.9	0.8789	5.12	-55800.7	1.1670	0.06
MVGP	11152.2	0.6746	22.20	46.54	0.1784	0.10	-2583.1	1.0000	142.72

431 posed method achieves the lowest NLL and MAE, indicating that TOGP model provides the highest

prediction accuracy. Among the three baselines, MLGP performs the worst due to its covariance matrix is singular in this setting, which is more suitable for multi-task learning with varying sample sizes across tasks. sMTGP outperforms MVGP because sMTGP considers modeling each mode of the tensor output, and MVGP ignores the tensor structure by vectorizing it into a vector.

Table 3 summarizes the optimization performance of different methods for the BO and CBBO problems. We set $N = 10d$ and evaluate different methods in terms of MSE_x , MAE_y , and Acc , as defined in Appendix K. It is evident that for each GP, its UCB-based sampling strategy consistently

Table 3: The optimization performance of different methods in the three synthetic settings.

	Setting (1)			Setting (2)			Setting (3)		
	MSE_x	MAE_y	Acc	MSE_x	MAE_y	Acc	MSE_x	MAE_y	Acc
BO	TOBO	0.0000	0.0008	-	0.0003	0.0350	-	0.0001	0.0050
	sMTGP-UCB	0.0001	0.0031	-	0.0003	0.0361	-	0.0048	0.0590
	MLGP-UCB	0.0433	0.3793	-	0.0512	0.9295	-	0.0342	0.6263
	MVGP-UCB	0.0015	0.0523	-	0.0044	0.0550	-	0.0342	0.6263
	TOGP-RS	0.0893	0.3145	-	0.0026	0.0351	-	0.0106	0.1526
	sMTGP-RS	0.0251	0.3242	-	0.0206	0.3684	-	0.0084	0.1223
	MLGP-RS	0.0433	0.3793	-	0.0435	0.7976	-	0.0075	0.0934
	MVGP-RS	0.0148	0.2036	-	0.0157	0.2697	-	0.0084	0.1223
CBBO	TOCBBO	0.0023	0.0172	1.00	0.0000	0.0000	1.00	0.0021	0.0145
	sMTGP-UCB	0.1832	0.5614	0.67	0.0000	0.0000	1.00	0.0075	0.2171
	MLGP-UCB	0.0667	0.6527	0.33	0.1826	0.0779	1.00	0.2070	0.7105
	MVGP-UCB	0.0032	0.0285	1.00	0.0725	0.0312	1.00	0.0151	0.1988
	TOGP-RS	0.0438	0.5319	0.67	0.0908	0.0395	1.00	0.0512	0.8793
	sMTGP-RS	0.3151	0.5882	0.67	0.1826	0.0779	1.00	0.0117	0.9453
	MLGP-RS	0.1053	0.6909	0.33	0.1826	0.0779	1.00	0.0117	0.9453
	MVGP-RS	0.1313	0.5975	0.33	0.1489	0.0654	0.00	0.0512	0.8793

outperforms its random sampling strategy. This is intuitive due to UCB’s better theoretical guarantees. Across all the GPs, our proposed TOBO and TOCBBO methods have the smallest MSE_x and MAE_y , indicating our selected super-arm and queried input points, together with the consequent output are closest to the true optimum. As to the other three GP-based methods, sMTGP-UCB achieves the second-best performance, followed by MVGP-UCB, while MLGP-UCB performs the worst. This result is consistent with their modeling abilities shown in Table 2.

Finally, we provide each round’s logarithmic instantaneous regret for different methods for BO and CBBO in Figure 1. We can observe that our TOBO and TOCBBO consistently achieve the lowest

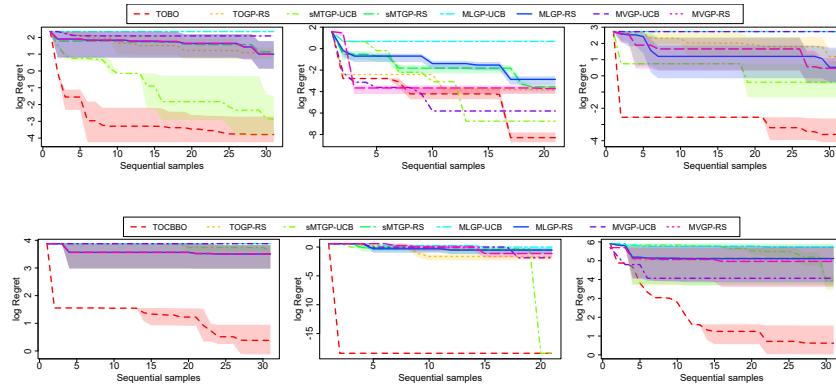


Figure 1: Each round’s logarithmic instantaneous regret of different methods in the Setting (1) (L), (2) (M), and (3) (R) for BO (Top row) and CBBO (Bottom row).

instantaneous regret across all the three settings, highlighting their superiority. Some additional results of synthetic experiments are presented in the Appendix M.

486
487

5.2 CASE STUDIES

488
489
490
491
492
493
494
495
496
497
498

We further apply the proposed TOBO and TOBBO to four real-world datasets: (1) **CHEM** (Shields et al., 2021): input $x \in \mathbb{R}^2$ and output $y \in \mathbb{R}^{4 \times 3 \times 3}$; (2) **MAT** (Wang et al., 2020): input $x \in \mathbb{R}^4$ and output $y \in \mathbb{R}^{5 \times 4 \times 4}$; (3) **PRINT** (Zhai et al., 2023): input $x \in \mathbb{R}^5$ and output $y \in \mathbb{R}^{3 \times 4 \times 3}$; (4) **REEN**: input $x \in \mathbb{R}^6$ and output $y \in \mathbb{R}^{10 \times 2}$. A detailed description of these datasets is provided in Appendix K. Since the renewable energy dataset provides fully observed data, we first evaluate the modeling performance of different GP surrogates by training on 30 samples and testing on 5 samples randomly selected from the input space. The predictive performance of the four GP models on the testing data is reported in Table 4, and TOGP achieves the best predictive accuracy. As to the optimization performance of different methods for BO and CBBO, Figure 2 shows that our proposed TOBO and TOCBBO also consistently perform the best, demonstrating our applicability in complex real-world black-box systems.

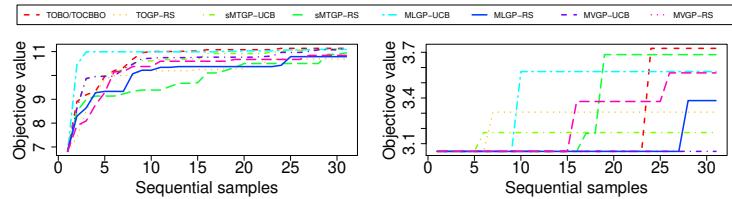
499
500
501
502
503
504505
506

Figure 2: Each round’s optimal objective value in REEN for BO (L) and CBBO (R).

507
508
509
510
511
512
513
514

For the other three datasets, since they only contain partially observed data, we only evaluate their optimization performance under CBBO. Figure 2 shows that TOCBBO can identify the optimal input consistently using fewer rounds than the baselines, further demonstrating its superior effectiveness.

Table 4: The prediction performance of GPs in the REEN dataset.

	TOGP	sMTGP	MLGP	MVGP
NLL	15.6664	33.3198	88.2722	48.7167
MAE	0.0883	0.0993	0.0929	0.1054
$\ \text{Cov}\ $	0.4918	0.3555	0.4318	0.3711

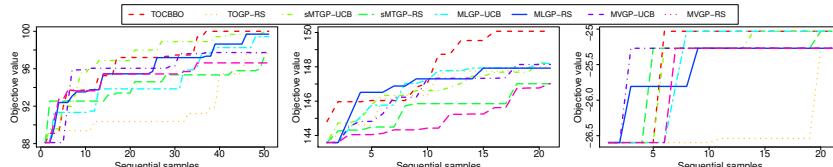
515
516
517
518
519
520521
522
523

Figure 3: Each round’s optimal objective value in CHEM (L), MAT (M), and PRINT (R).

524
525

6 CONCLUSION AND DISCUSSION

526
527
528
529
530
531
532
533
534
535
536
537
538
539

In this work, we propose two BO methods for tensor-output systems: TOBO employs two classes of kernels-based TOGP as a surrogate model and selects query points using a UCB acquisition function. TOCBBO extends TOGP to the partially observed setting and adopts a CMAB-UCB2 criterion to sequentially select both the query input and the super-arm. We establish theoretical regret bounds for both methods and demonstrate their effectiveness through extensive synthetic and real-world experiments. Future work could consider integrating the proposed tensor-output kernels with sparse techniques, such as sparse GPs (Snelson & Ghahramani, 2005) and scalable LMC (Bruinsma et al., 2020), to improve the computational efficiency of TOGP. **The design of new acquisition functions can also be explored within this framework. For example, one may combine the TOGP model with EI or PI with theoretical guarantees (Frazier, 2018), and further extend them to the TOCBBO framework. In addition, improvement-based acquisition functions (Uhrenholt & Jensen, 2019) and information-theoretic criteria (Tu et al., 2022) may also be considered into our framework, provided that the computational challenges associated with tensor outputs can be effectively addressed. Finally, it is worth to explore more meaningful tensor structures to our proposed framework, such as spatiotemporal system.**

540

ETHICS STATEMENT

541

542 This work adheres to the ICLR Code of Ethics. Our study does not involve human subjects, sensitive
 543 personal information, or applications with immediate potential for harm. The datasets used are pub-
 544 licly available or synthetically generated, and all experiments comply with community standards of
 545 fairness, transparency, and research integrity. We are not aware of any conflicts of interest, sponsor-
 546 ship issues, or ethical risks associated with this research. The use of large language models (LLMs)
 547 was restricted solely to polishing the writing, as described in Appendix A, and did not contribute to
 548 scientific content or results.

548

549

REPRODUCIBILITY STATEMENT

550

551 We have made extensive efforts to ensure reproducibility. All theoretical results are stated under ex-
 552 plicit assumptions, with complete proofs provided in the appendix. Algorithmic procedures, includ-
 553 ing TOBO and TOCBBO, are fully described in the main paper, with pseudocode and computational
 554 complexity analysis included in Appendix D. Experimental settings, dataset details, and evaluation
 555 metrics are reported in Section 5 and Appendix K. Synthetic datasets are specified in detail, and
 556 real-world datasets are publicly available with references provided. Source code and instructions for
 557 reproducing all experiments are included in the supplementary materials.

558

559

REFERENCES

560

561 Karim Abed-Meraim, Nguyen Linh Trung, Adel Hafiane, et al. A contemporary and comprehensive
 562 survey on streaming tensor decomposition. *IEEE Transactions on Knowledge and Data Engi-*
 563 *neering*, 35(11):10897–10921, 2022.

563

564 Guglielmo Maria Accabi, Francesco Trovo, Alessandro Nuara, Nicola Gatti, and Marcello Restelli.
 565 When gaussian processes meet combinatorial bandits: Gcb. In *14th European Workshop on Re-*
 566 *inforcement Learning*, pp. 1–11, 2018.

567

568 Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multi-
 569 armed bandit problem. *SIAM journal on computing*, 32(1):48–77, 2002.

569

570 Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. Max-value entropy search for multi-
 571 objective bayesian optimization. *Advances in neural information processing systems*, 32, 2019.

572

573 Mikhail Belyaev, Evgeny Burnaev, and Yermek Kapshev. Gaussian process regression for struc-
 574 tured data sets. In *International Symposium on Statistical Learning and Data Sciences*, pp. 106–
 575 115. Springer, 2015.

575

576 Léon Bottou. Large-scale machine learning with stochastic gradient descent. *Proc. of COMPSTAT*,
 577 01 2010.

578

579 Wessel Bruinsma, Eric Perim, William Tebbutt, Scott Hosking, Arno Solin, and Richard Turner.
 580 Scalable exact inference in multi-output gaussian processes. In *International Conference on Ma-*
 581 *chine Learning*, pp. 1190–1201. PMLR, 2020.

581

582 Adam D Bull. Convergence rates of efficient global optimization algorithms. *Journal of Machine*
 583 *Learning Research*, 12(10), 2011.

584

585 Zexun Chen, Bo Wang, and Alexander N Gorban. Multivariate gaussian and student-t process
 586 regression for multi-output prediction. *Neural Computing and Applications*, 32:3005–3028, 2020.

586

587 Eric C Chi and Tamara G Kolda. On tensors, sparsity, and nonnegative factorizations. *SIAM Journal*
 588 *on Matrix Analysis and Applications*, 33(4):1272–1299, 2012.

589

590 Sayak Ray Chowdhury and Aditya Gopalan. No-regret algorithms for multi-task bayesian optimiza-
 591 tion. In *International Conference on Artificial Intelligence and Statistics*, pp. 1873–1881. PMLR,
 592 2021.

592

593

594 Tinkle Chugh. Scalarizing functions in bayesian multiobjective optimization. In *2020 IEEE*
 595 *Congress on Evolutionary Computation (CEC)*, pp. 1–8. IEEE, 2020.

594 Sihui Dai, Jialin Song, and Yisong Yue. Multi-task bayesian optimization via gaussian process upper
 595 confidence bound. In *ICML 2020 workshop on real world experiment design and active learning*,
 596 volume 60, pp. 61, 2020.

597

598 Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. Differentiable expected hypervolume
 599 improvement for parallel multi-objective bayesian optimization. *Advances in Neural Information
 600 Processing Systems*, 33:9851–9864, 2020.

601 Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. Multi-objective bayesian
 602 optimization over high-dimensional search spaces. In *Uncertainty in Artificial Intelligence*, pp.
 603 507–517. PMLR, 2022a.

604 Samuel Daulton, Xingchen Wan, David Eriksson, Maximilian Balandat, Michael A Osborne, and
 605 Eytan Bakshy. Bayesian optimization over discrete and mixed spaces via probabilistic repara-
 606 terization. *Advances in Neural Information Processing Systems*, 35:12760–12774, 2022b.

607

608 Vin De Silva and Lek-Heng Lim. Tensor rank and the ill-posedness of the best low-rank approxi-
 609 mation problem. *SIAM Journal on Matrix Analysis and Applications*, 30(3):1084–1127, 2008.

610 Peter I Frazier. A tutorial on bayesian optimization. *arXiv preprint arXiv:1807.02811*, 2018.

611

612 Thomas E Fricker, Jeremy E Oakley, and Nathan M Urban. Multivariate gaussian process emulators
 613 with nonseparable covariance structures. *Technometrics*, 55(1):47–56, 2013.

614

615 José Henrique de M Goulart, Maxime Boizard, Rémy Boyer, Gérard Favier, and Pierre Comon.
 616 Tensor cp decomposition with structured factor matrices: Algorithms and performance. *IEEE
 617 Journal of Selected Topics in Signal Processing*, 10(4):757–769, 2015.

618

619 Daniel Hernández-Lobato, Jose Hernandez-Lobato, Amar Shah, and Ryan Adams. Predictive en-
 620 tropy search for multi-objective bayesian optimization. In *International conference on machine
 621 learning*, pp. 1492–1501. PMLR, 2016.

622

623 José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive entropy
 624 search for efficient global optimization of black-box functions. *Advances in neural information
 625 processing systems*, 27, 2014.

626

627 Dave Higdon. Space and space-time modeling using process convolutions. In *Quantitative methods
 628 for current environmental issues*, pp. 37–56. Springer, 2002.

629

630 Dionissios T Hristopulos. Non-separable covariance kernels for spatiotemporal gaussian processes
 631 based on a hybrid spectral method and the harmonic oscillator. *IEEE Transactions on Information
 632 Theory*, 70(2):1268–1283, 2023.

633

634 Congfang Huang, Jaesung Lee, Yang Zhang, Shiyu Zhou, and Jiong Tang. Mixed-input bayesian
 635 optimization method for structural damage diagnosis. *IEEE Transactions on Reliability*, 72(2):
 636 678–691, 2022.

637

638 Seyed Mostafa Kia, Christian F Beckmann, and Andre F Marquand. Scalable multi-task gaussian
 639 process tensor regression for normative modeling of structured variation in neuroimaging data.
 640 *arXiv preprint arXiv:1808.00036*, 2018.

641

642 Yongxiang Li and Qiang Zhou. Pairwise meta-modeling of multivariate output computer models
 643 using nonseparable covariance function. *Technometrics*, 58(4):483–494, 2016.

644

645 Eric F Lock. Tensor-on-tensor regression. *Journal of Computational and Graphical Statistics*, 27
 646 (3):638–647, 2018.

647

648 Wesley J Maddox, Maximilian Balandat, Andrew G Wilson, and Eytan Bakshy. Bayesian opti-
 649 mization with high-dimensional outputs. *Advances in neural information processing systems*, 34:
 650 19274–19287, 2021.

651

652 Dang Nguyen, Sunil Gupta, Santu Rana, Alistair Shilton, and Svetha Venkatesh. Bayesian opti-
 653 mization for categorical and category-specific continuous inputs. In *Proceedings of the AAAI
 654 Conference on Artificial Intelligence*, volume 34, pp. 5256–5263, 2020.

648 Ivan V Oseledets. Tensor-train decomposition. *SIAM Journal on Scientific Computing*, 33(5):2295–
 649 2317, 2011.

650

651 Omiros Papaspiliopoulos. High-dimensional probability: An introduction with applications in data
 652 science, 2020.

653 Binxin Ru, Ahsan Alvi, Vu Nguyen, Michael A Osborne, and Stephen Roberts. Bayesian optimi-
 654 sation over multiple continuous and categorical inputs. In *International Conference on Machine
 655 Learning*, pp. 8276–8285. PMLR, 2020.

656

657 Thomas J Santner, Brian J Williams, William I Notz, and Brian J Williams. *The design and analysis
 658 of computer experiments*, volume 1. Springer, 2003.

659

660 Pier Giuseppe Sessa, Pierre Laforgue, Nicolò Cesa-Bianchi, and Andreas Krause. Multitask learn-
 661 ing with no regret: from improved confidence bounds to active learning. *Advances in Neural
 662 Information Processing Systems*, 36:6770–6781, 2023.

663

664 Benjamin J Shields, Jason Stevens, Jun Li, Marvin Parasram, Farhan Damani, Jesus I Martinez
 665 Alvarado, Jacob M Janey, Ryan P Adams, and Abigail G Doyle. Bayesian reaction optimization
 666 as a tool for chemical synthesis. *Nature*, 590(7844):89–96, 2021.

667

668 Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. *Advances
 669 in neural information processing systems*, 18, 2005.

670

671 Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
 672 learning algorithms. *Advances in neural information processing systems*, 25, 2012.

673

674 Lei Song, Ke Xue, Xiaobin Huang, and Chao Qian. Monte carlo tree search based variable selection
 675 for high frazier2018tutorialdimensional bayesian optimization. *Advances in Neural Information
 676 Processing Systems*, 35:28488–28501, 2022.

677

678 Qingquan Song, Hancheng Ge, James Caverlee, and Xia Hu. Tensor completion algorithms in
 679 big data analytics. *ACM Transactions on Knowledge Discovery from Data (TKDD)*, 13(1):1–48,
 680 2019.

681

682 Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian pro-
 683 cess optimization in the bandit setting: No regret and experimental design. *arXiv preprint
 684 arXiv:0912.3995*, 2009.

685

686 Ben Tu, Axel Gandy, Nikolas Kantas, and Behrang Shafei. Joint entropy search for multi-objective
 687 bayesian optimization. *Advances in Neural Information Processing Systems*, 35:9922–9938,
 688 2022.

689

690 Anders Kirk Uhrenholt and Bjørn Sand Jensen. Efficient bayesian optimization for target vector
 691 estimation. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pp.
 692 2661–2670. PMLR, 2019.

693

694 Boqian Wang, Jiacheng Cai, Chuangui Liu, Jian Yang, and Xianting Ding. Harnessing a novel
 695 machine-learning-assisted evolutionary algorithm to co-optimize three characteristics of an elec-
 696 trospun oil sorbent. *ACS Applied Materials & Interfaces*, 12(38):42842–42849, 2020.

697

698 Xilu Wang, Yaochu Jin, Sebastian Schmitt, and Markus Olhofer. Recent advances in bayesian
 699 optimization. *ACM Computing Surveys*, 55(13s):1–36, 2023.

700

701 Yan Wang, Meng Wang, Areej AlBahar, and Xiaowei Yue. Nested bayesian optimization for com-
 702 puter experiments. *IEEE/ASME Transactions on Mechatronics*, 28(1):440–449, 2022.

703

704 Christopher Williams and Matthias Seeger. Using the nyström method to speed up kernel machines.
 705 *Advances in neural information processing systems*, 13, 2000.

706

707 Jian Wu, Matthias Poloczek, Andrew G Wilson, and Peter Frazier. Bayesian optimization with
 708 gradients. *Advances in neural information processing systems*, 30, 2017.

709

710 Rose Yu, Guangyu Li, and Yan Liu. Tensor regression meets gaussian processes. In *International
 711 conference on artificial intelligence and statistics*, pp. 482–490. PMLR, 2018.

702 Cuihong Zhai, Jianjun Wang, Yiliu Paul Tu, Gang Chang, Xiaolei Ren, and Chunfeng Ding. Robust
 703 optimization of 3d printing process parameters considering process stability and production
 704 efficiency. *Additive Manufacturing*, 71:103588, 2023.

705 Yunchuan Zhang, Sangwoo Park, and Osvaldo Simeone. Multi-fidelity bayesian optimization with
 706 across-task transferable max-value entropy search. *IEEE Transactions on Signal Processing*,
 707 2025.

708 Shandian Zhe, Wei Xing, and Robert M Kirby. Scalable high-order gaussian process regression.
 709 In *The 22nd International Conference on Artificial Intelligence and Statistics*, pp. 2611–2620.
 710 PMLR, 2019.

714 A USE OF LLMS

715 Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
 716 Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
 717 clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
 718 grammar checking, and enhancing the overall flow of the text.

719 It is important to note that the LLM was not involved in the ideation, research methodology, or
 720 experimental design. All research concepts, ideas, and analyses were developed and conducted by
 721 the authors. The contributions of the LLM were solely focused on improving the linguistic quality
 722 of the paper, with no involvement in the scientific content or data analysis.

723 The authors take full responsibility for the content of the manuscript, including any text generated
 724 or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
 725 and does not contribute to plagiarism or scientific misconduct.

728 B THE DETAILS OF THE TENSOR DECOMPOSITION IN REMARK 1

729 As discussed in Remark 1, directly estimating the entries of the core tensors $\{\mathbf{A}_l\}_{l=1}^m$ or \mathbf{A} re-
 730 quires mT parameters for the non-separable tensor-output kernel and T parameters for the separable
 731 tensor-output kernel, which becomes intractable for large-scale or high-order tensors. To reduce this
 732 complexity, we impose low-rank tensor structures. In particular, we adopt different decompositions
 733 depending on the tensor order.

734 **Low-order tensors ($m \leq 3$):** When the tensor order is small, we employ the CP decomposition:

$$735 \mathbf{A}_l = \sum_{r=1}^{R_l} \mathbf{a}_{lr1} \circ \mathbf{a}_{lr2} \circ \cdots \circ \mathbf{a}_{lrm} \quad \text{for non-separable tensor-output kernel,} \quad (17)$$

$$736 \mathbf{A} = \sum_{r=1}^R \mathbf{a}_{r1} \circ \mathbf{a}_{r2} \circ \cdots \circ \mathbf{a}_{rm} \quad \text{for separable tensor-output kernel,} \quad (18)$$

737 where $\mathbf{a}_{lri}, \mathbf{a}_{ri} \in \mathbb{R}^{t_i}$ for $r = 1, \dots, R$ and $i = 1, \dots, m$ for $r = 1, \dots, R$ and $i = 1, \dots, m$. The
 738 number of free parameters is $\sum_{l=1}^m \sum_{i=1}^m R_l t_i$ for the non-separable tensor-output kernel in (6) and
 739 $R \sum_{i=1}^m t_i$ for the separable tensor-output kernel in (7), which grows only linearly in each mode size
 740 t_i . Thus, CP provides a very compact representation when $m \leq 3$. However, CP decomposition
 741 is often ill-posed for higher-order tensors, since the set of tensors of fixed CP rank is not closed,
 742 implying that a best low-rank approximation may not exist (De Silva & Lim, 2008). In addition, the
 743 factor matrices can easily become ill-conditioned as m increases, leading to numerical instability
 744 (Chi & Kolda, 2012).

745 **High-order tensors ($m > 3$):** When the tensor order is large, we employ the TT decomposition:

$$746 \mathbf{A}_l = \mathbf{G}_{l1}(t_1) \mathbf{G}_{l2}(t_2) \cdots \mathbf{G}_{lm}(t_m) \quad \text{for non-separable tensor-output kernel,} \quad (19)$$

$$747 \mathbf{A} = \mathbf{G}_1(t_1) \mathbf{G}_2(t_2) \cdots \mathbf{G}_m(t_m) \quad \text{for separable tensor-output kernel,} \quad (20)$$

756 where each $\mathbf{G}_{lj}(t_j)$ is a $r_{l,j-1} \times t_j \times r_{l,j}$ three-mode tensor and the TT-ranks satisfy $r_{l,0} = r_{l,m} = 1$
 757 for $l = 1, \dots, m$. Similarly, $\mathbf{G}_j(t_j)$ is a $r_{j-1} \times t_j \times r_j$ three-mode tensor that satisfies $r_0 = r_m =$
 758 1. The total number of free parameters is $\sum_{l=1}^m \sum_{j=1}^m r_{l,j-1} t_j r_{l,j}$ for the non-separable tensor-
 759 output kernel in (6) and $\sum_{j=1}^m r_{j-1} t_j r_j$ for the separable tensor-output kernel in (7). It scales
 760 linearly with the tensor order m , instead of exponentially as in the full tensor. This makes TT
 761 decomposition highly suitable for high-order tensors ($m > 3$), as it balances modeling flexibility
 762 with computational scalability and avoids the instability of CP.

763 Therefore, in our framework we adopt CP decomposition-based for low-order cores and TT
 764 decomposition-based for high-order cores, ensuring both efficiency and robustness across different
 765 tensor settings.

767 C THE ESTIMATION OF HYPERPARAMETERS FOR THE TOGP AND PTOGP

770 In this appendix, we provide the details of hyperparameter estimation for both TOGP and PTOGP.
 771 Without loss of generality, we assume a zero prior mean $\mu = 0$ in (3) and (12).

772 C.1 PARAMETER ESTIMATION FOR TRAINING TOGP

774 Given the training data $\mathbf{X}_n = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ and $\mathbf{Y}_n = (vec(\mathbf{y}_1)^\top, \dots, vec(\mathbf{y}_n)^\top)^\top$, the log
 775 marginal likelihood of TOGP is given by:

$$777 \log L(\Theta) = -\frac{1}{2} \log |\Sigma_n| - \frac{1}{2} \mathbf{Y}_n^\top \Sigma_n^{-1} \mathbf{Y}_n, \quad (21)$$

779 where $\Sigma_n = \sigma^2 \mathbf{K}_n + \tau^2 \mathbf{I}_{nT}$. Then, (21) can be optimized by applying gradient-based optimization
 780 methods, such as L-BFGS algorithm.

782 The gradients of the log-likelihood function in (21) with respect to the hyperparameters τ^2 , σ^2 , θ ,
 783 and \mathbf{a} is given by

$$784 \frac{\partial \log L}{\partial \tau^2} = \frac{1}{2} \text{tr}(\Sigma_n^{-1} \mathbf{K}_n) - \frac{1}{2} \mathbf{Y}_n^\top \Sigma_n^{-1} \mathbf{K}_n \Sigma_n^{-1} \mathbf{Y}_n, \quad (22)$$

$$786 \frac{\partial \log L}{\partial \sigma^2} = \frac{1}{2} \text{tr}(\Sigma_n^{-1}) - \frac{1}{2} \mathbf{Y}_n^\top \Sigma_n^{-1} \Sigma_n^{-1} \mathbf{Y}_n, \quad (23)$$

$$788 \frac{\partial \log L}{\partial \theta_{lij}} = \frac{\tau^2}{2} \text{tr}\left(\Sigma_n^{-1} \frac{\partial \mathbf{K}_n}{\partial \theta_{lij}}\right) - \frac{\tau^2}{2} \mathbf{Y}_n^\top \Sigma_n^{-1} \frac{\partial \mathbf{K}_n}{\partial \theta_{lij}} \Sigma_n^{-1} \mathbf{Y}_n, \quad (24)$$

$$791 \frac{\partial \log L}{\partial a_{lij}} = \frac{1}{2} \text{tr}\left(\Sigma_n^{-1} \tau^2 \frac{\partial \mathbf{K}_n}{\partial a_{lij}}\right) - \frac{\tau^2}{2} \mathbf{Y}_n^\top \Sigma_n^{-1} \frac{\partial \mathbf{K}_n}{\partial a_{lij}} \Sigma_n^{-1} \mathbf{Y}_n, \quad (25)$$

793 where θ_{lij} represents the scale parameters of k_{lj} , the kernel function associated with the l -th mode.
 794 The matrices $\frac{\partial \mathbf{K}_n}{\partial \theta_{lij}}$ and $\frac{\partial \mathbf{K}_n}{\partial a_{lij}}$ are the partial derivatives of the kernel matrix with respect to the
 795 corresponding kernel parameters.

797 The detailed algorithm for training TOGP is given as follows:

799 **Algorithm 1** Parameter estimation for training TOGP

800 **Input:** Training data \mathbf{X}_n and \mathbf{Y}_n , initial hyperparameters $\Theta_0 = \{\sigma_0^2, \tau_0^2, \theta_0, \mathbf{a}_0\}$;

801 **Initialize:** $\sigma^2 \leftarrow \sigma_0^2, \tau^2 \leftarrow \tau_0^2, \theta \leftarrow \theta_0, \mathbf{a} \leftarrow \mathbf{a}_0$;

802 1: **while** $\tau^2, \sigma^2, \theta, \mathbf{a}$ not converge **do**

803 2: Update τ^2 based on (22);

804 3: Update σ^2 based on (23);

805 4: Update θ based on (24);

806 5: Update \mathbf{a} based on (25).

807 6: **end while**

808 **Remark 4.** For the non-separable tensor-output kernel in Definition 1, the total number of hy-
 809 perparameters to be estimated in TOGP is $m_h = 2 + T + \sum_{l=1}^m \sum_{i=1}^m R_l t_i$ when $m \leq 3$ and

810 $m_h = 2 + T + \sum_{l=1}^m \sum_{j=1}^m r_{l,j-1} t_j r_{l,j}$ when $m > 3$. For the separable tensor-output kernel in Definition 2, the total number of hyperparameters to be estimated in TOGP is $m_h = 2 + T + R \sum_{i=1}^m t_i$ when $m \leq 3$ and $m_h = 2 + T + \sum_{j=1}^m r_{j-1} t_j r_j$ when $m > 3$. The computational complexity of computing the gradient of $\log L(\Theta)$ with respect to all m_h parameters is $\mathcal{O}(n^3 T^3 + n^2 T^2 m_h)$. When using the L-BFGS algorithm to optimize the likelihood function results, the number of iterations typically scales as $\mathcal{O}(\log(n))$ (Bottou, 2010). Therefore, the overall computational complexity for training the TOGP takes $\mathcal{O}(n^3 T^3 \log(n) + n^2 T^2 m_h \log(n))$ computational complexity.

818 C.2 PARAMETER ESTIMATION FOR TRAINING PTOGP

821 Given the partially observed training data $\mathbf{X}_n = (\mathbf{x}_1, \dots, \mathbf{x}_n)$, $\Lambda_n = (\lambda_1, \dots, \lambda_n)^\top$, and $\tilde{\mathbf{Y}}_n =$
 822 $(\tilde{\mathbf{y}}_1, \dots, \tilde{\mathbf{y}}_n)^\top$, the log marginal likelihood of PTOGP is given by:

$$824 \log \tilde{L}(\Theta) = -\frac{1}{2} \log |\tilde{\Sigma}_n| - \frac{1}{2} \text{vec}(\tilde{\mathbf{Y}}_n)^\top \tilde{\Sigma}_n^{-1} \text{vec}(\tilde{\mathbf{Y}}_n), \quad (26)$$

826 where $\tilde{\Sigma}_n = \sigma^2 \mathbf{E}_n \mathbf{K}_n \mathbf{E}_n^\top + \tau^2 \mathbf{I}_{nk}$. Then, (26) can also be optimized by applying gradient-based
 827 optimization methods.

829 The gradients of the log-likelihood function in (26) with respect to the hyperparameters σ^2 , τ^2 , θ ,
 830 and \mathbf{a} is given by

$$832 \frac{\partial \tilde{L}}{\partial \tau^2} = \frac{1}{2} \text{tr} \left(\tilde{\Sigma}_n^{-1} \mathbf{E}_n \mathbf{K}_n \mathbf{E}_n^\top \right) - \frac{1}{2} \tilde{\mathbf{Y}}_n^\top \tilde{\Sigma}_n^{-1} \mathbf{E}_n \mathbf{K}_n \mathbf{E}_n^\top \tilde{\Sigma}_n^{-1} \tilde{\mathbf{Y}}_n, \quad (27)$$

$$834 \frac{\partial \tilde{L}}{\partial \sigma^2} = \frac{1}{2} \text{tr} \left(\tilde{\Sigma}_n^{-1} \right) - \frac{1}{2} \tilde{\mathbf{Y}}_n^\top \tilde{\Sigma}_n^{-1} \tilde{\Sigma}_n^{-1} \tilde{\mathbf{Y}}_n, \quad (28)$$

$$837 \frac{\partial \tilde{L}}{\partial \theta_{lij}} = \frac{\tau^2}{2} \text{tr} \left(\tilde{\Sigma}_n^{-1} \mathbf{E}_n \frac{\partial \mathbf{K}_n}{\partial \theta_{lij}} \mathbf{E}_n^\top \right) - \frac{\tau^2}{2} \tilde{\mathbf{Y}}_n^\top \tilde{\Sigma}_n^{-1} \mathbf{E}_n \frac{\partial \mathbf{K}_n}{\partial \theta_{lij}} \mathbf{E}_n^\top \tilde{\Sigma}_n^{-1} \tilde{\mathbf{Y}}_n, \quad (29)$$

$$839 \frac{\partial \tilde{L}}{\partial a_{lij}} = \frac{\tau^2}{2} \text{tr} \left(\tilde{\Sigma}_n^{-1} \mathbf{E}_n \frac{\partial \mathbf{K}_n}{\partial a_{lij}} \mathbf{E}_n^\top \right) - \frac{\tau^2}{2} \tilde{\mathbf{Y}}_n^\top \tilde{\Sigma}_n^{-1} \mathbf{E}_n \frac{\partial \mathbf{K}_n}{\partial a_{lij}} \mathbf{E}_n^\top \tilde{\Sigma}_n^{-1} \tilde{\mathbf{Y}}_n, \quad (30)$$

842 The detailed algorithm for training PTOGP is given as follows:

844 Algorithm 2 Parameter estimation for training PTOGP

846 **Input:** Training data \mathbf{X}_n , Λ_n and $\tilde{\mathbf{Y}}_n$, initial hyperparameters $\Theta_0 = \{\sigma_0^2, \tau_0^2, \theta_0, \mathbf{a}_0\}$;

847 **Initialize:** $\sigma^2 \leftarrow \sigma_0^2$, $\tau^2 \leftarrow \tau_0^2$, $\theta \leftarrow \theta_0$, $\mathbf{a} \leftarrow \mathbf{a}_0$;

848 1: **while** σ^2 , τ^2 , θ , \mathbf{a} not converge **do**

849 2: Update τ^2 based on (27);

850 3: Update σ^2 based on (28);

851 4: Update θ based on (29);

852 5: Update \mathbf{a} based on (30).

853 6: **end while**

855 **Remark 5.** For the non-separable tensor-output kernel in Definition 1, the total number of hyperparameters to be estimated in PTOGP is $m_h = 2 + T + \sum_{l=1}^m \sum_{i=1}^m R_l t_i$ when $m \leq 3$ and $m_h = 2 + T + \sum_{l=1}^m \sum_{j=1}^m r_{l,j-1} t_j r_{l,j}$ when $m > 3$. For the separable tensor-output kernel in Definition 2, the total number of hyperparameters to be estimated in PTOGP is $m_h = 2 + T + R \sum_{i=1}^m t_i$ when $m \leq 3$ and $m_h = 2 + T + \sum_{j=1}^m r_{j-1} t_j r_j$ when $m > 3$. The computational complexity of computing the gradient of $\tilde{L}(\Theta)$ with respect to all m_h parameters is $\mathcal{O}(k^3 T^3 + n^2 k T m_h)$. When using the L-BFGS algorithm to optimize the likelihood function results, the number of iterations typically scales as $\mathcal{O}(\log(n))$ (Bottou, 2010). Therefore, the overall computational complexity for training the PTOGP takes $\mathcal{O}(n^3 k^3 \log(n) + n^2 k T m_h \log(n))$ computational complexity.

864 **D THE PROPOSED ALGORITHMS AND COMPUTATIONAL COMPLEXITY**
 865 **ANALYSIS**
 866

867 **D.1 UCB-BASED TOBO ALGORITHM**
 868

869 The detailed procedure of the proposed TOBO method is given in Algorithm 3.

871 **Algorithm 3** UCB-based TOBO

872 **Input:** Total rounds N , initial dataset $\mathcal{D}_0 = \emptyset$, initial hyperparameters Θ_0 ;
 873 1: **for** round $n = 1, \dots, N$ **do**
 874 2: Update the posterior mean (4) and covariance (5) of \mathbf{f} given Θ_{n-1} ;
 875 3: Select the next input $\mathbf{x}_n \leftarrow \arg \max_{\mathbf{x} \in \mathcal{X}} \alpha_{UCB}(\mathbf{x} | \mathcal{D}_{n-1})$;
 876 4: Evaluate the black-box system and observe output \mathbf{y}_n ;
 877 5: Update dataset $\mathcal{D}_n \leftarrow \mathcal{D}_{n-1} \cup \{\mathbf{x}_n, \mathbf{y}_n\}$;
 878 6: Update hyperparameters Θ_n by maximizing (21) with L-BFGS;
 879 7: **end for**
 880 8: Identify $i^* = \arg \max_{i \in [N]} L_f \mathbf{f}(\mathbf{x}_i)$;
 881 9: **Output:** Optimal input \mathbf{x}_{i^*} and corresponding output \mathbf{y}_{i^*} .

883 **Remark 6.** When using the TOBO method to select \mathbf{x}^* , the computational complexity of updating
 884 TOGP is $\mathcal{O}((n-1)^3 T^3)$ at round n . Then, the computational complexity of querying the next point
 885 is $\mathcal{O}((n-1)^2 T^2 \log(n))$ by using the L-BFGS method. After updating the design dataset, the com-
 886 putational complexity of updating the hyperparameters Θ is $\mathcal{O}(n^3 T^3 \log(n) + n^2 T^2 m_h \log(n))$.
 887 Thus, the computational complexity of TOBO at round n is $\mathcal{O}(n^3 T^3 \log(n) + n^2 T^2 m_h \log(n))$.
 888 Suppose that there are N points needed to query, the total computational complexity of Algorithm 3
 889 is $\mathcal{O}\left(\sum_{n=1}^N [n^3 T^3 \log(n) + n^2 T^2 m_h \log(n)]\right)$.

891 **D.2 CMAB-UCB2-BASED TOCBBO ALGORITHM**
 892

893 The detailed algorithm of TOCBBO is provided in Algorithm 4.

895 **Algorithm 4** CMAB-UCB2-based TOCBBO

897 **Input:** Total rounds N , initial dataset $\tilde{\mathcal{D}}_0 = \emptyset$, initial hyperparameters Θ_0 ;
 898 1: **for** round $n = 1, \dots, N$ **do**
 899 2: Update the posterior mean (13) and covariance (14);
 900 3: Select the next input \mathbf{x}_n using (15);
 901 4: Select the super-arm λ_n using (16);
 902 5: Evaluate \mathbf{f} under $(\mathbf{x}_n, \lambda_n)$ and observe $\tilde{\mathbf{y}}_n$;
 903 6: Update dataset $\tilde{\mathcal{D}}_n \leftarrow \tilde{\mathcal{D}}_{n-1} \cup \{(\mathbf{x}_n, \lambda_n), \tilde{\mathbf{y}}_n\}$;
 904 7: Update hyperparameters Θ_n by maximizing $\log \tilde{L}(\Theta)$ with L-BFGS;
 905 8: Update incumbent solution $\{\mathbf{x}_n^*, \lambda_n^*\} = \arg \max_{i=1, \dots, n} H_f \tilde{\mathbf{f}}(\mathbf{x}_i, \lambda_i)$;
 906 9: **end for**
 907 10: Identify $i^* = \arg \max_{i \in [N]} H_f \tilde{\mathbf{f}}(\mathbf{x}_i, \lambda_i)$;
 908 11: **Output:** Optimal input \mathbf{x}_{i^*} , optimal super-arm λ_{i^*} , and output $\tilde{\mathbf{y}}_{i^*}$.

909 **Remark 7.** When using the proposed TOCBBO method to jointly select \mathbf{x}^* and λ^* , the compu-
 910 tational complexity of updating the PTOGP at round n is $\mathcal{O}((n-1)^3 k^3)$. Then, based on the
 911 proposed CMAB-UCB2 criterion, the computational complexity of querying the next input by us-
 912 ing L-BFGS method is $\mathcal{O}((n-1)^2 k^2)$ and selecting the next super-arm by using greedy Top- k
 913 method is $\mathcal{O}(kT^3)$, respectively. After updating the current design dataset, the computational
 914 complexity of updating hyperparameters Θ is $\mathcal{O}(n^3 k^3 \log(n) + n^2 k T m_h \log(n))$. Therefore, at
 915 round n , the computational complexity of TOCBBO method is $\mathcal{O}(n^3 k^3 \log(n) + n^2 k T m_h \log(n) +$
 916 $kT^3)$. Assuming a total of N rounds, the overall computational complexity of Algorithm 4 is
 917 $\mathcal{O}\left(\sum_{n=1}^N [n^3 k^3 \log(n) + n^2 k T m_h \log(n) + kT^3]\right)$.

918 E THE PROOF OF PROPOSITION 1
919920 *Proof.* We prove symmetry and positive semi-definite for the two kernel classes in Definitions 1–2.
921922 **Non-separable kernel (Definition 1):** Denote $\mathbf{a}_\ell := \text{vec}(\mathbf{A}_\ell) \in \mathbb{R}^T$ (resp. $\mathbf{a} := \text{vec}(\mathbf{A}) \in \mathbb{R}^T$).
923 The tensor-output kernel is
924

925
$$\mathbf{K}(\mathbf{x}, \mathbf{x}') = \sum_{\ell=1}^m \sum_{j=1}^{t_\ell} \mathbf{a}_\ell \mathbf{a}_\ell^\top k_{\ell j}(\mathbf{x}, \mathbf{x}'), \quad \mathbf{x}, \mathbf{x}' \in \mathcal{X}, \quad (31)$$

926
927

928 where each $k_{\ell j}$ is a scalar positive semi-definite kernel.
929930 For any $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$, we have

931
$$\begin{aligned} \mathbf{K}(\mathbf{x}, \mathbf{x}')^\top &= \sum_{\ell, j} (\mathbf{a}_\ell \mathbf{a}_\ell^\top)^\top k_{\ell j}(\mathbf{x}, \mathbf{x}') \\ &= \sum_{\ell, j} \mathbf{a}_\ell \mathbf{a}_\ell^\top k_{\ell j}(\mathbf{x}, \mathbf{x}') \\ &= \sum_{\ell, j} \mathbf{a}_\ell \mathbf{a}_\ell^\top k_{\ell j}(\mathbf{x}', \mathbf{x}) \\ &= \mathbf{K}(\mathbf{x}', \mathbf{x}), \end{aligned} \quad (32)$$

932
933
934
935
936
937
938
939

940 This shows that the full tensor-output kernel \mathbf{K} is symmetric.
941942 Let $\{\mathbf{x}_i\}_{i=1}^n \subset \mathcal{X}$ and $\{\mathbf{y}_i\}_{i=1}^n \subset \mathbb{R}^T$ be arbitrary. Then, we have

943
$$\begin{aligned} \sum_{i, j=1}^n \mathbf{y}_i^\top \mathbf{K}(\mathbf{x}_i, \mathbf{x}_j) \mathbf{y}_j &= \sum_{\ell, j} \sum_{i, j} \mathbf{y}_i^\top (\mathbf{a}_\ell \mathbf{a}_\ell^\top) \mathbf{y}_j k_{\ell j}(\mathbf{x}_i, \mathbf{x}_j) \\ &= \sum_{\ell, j} \sum_{i, j} s_{\ell j, i} k_{\ell j}(\mathbf{x}_i, \mathbf{x}_j) s_{\ell j, j}, \end{aligned} \quad (33)$$

944
945
946
947
948

949 where $s_{\ell j, i} := \mathbf{a}_\ell^\top \mathbf{y}_i \in \mathbb{R}$. For each fixed (ℓ, j) , the matrix $[k_{\ell j}(\mathbf{x}_i, \mathbf{x}_j)]_{i, j=1}^n$ is positive semi-
950 definite, so $\sum_{i, j} s_{\ell j, i} k_{\ell j}(\mathbf{x}_i, \mathbf{x}_j) s_{\ell j, j} \geq 0$. Summing over (ℓ, j) preserves nonnegativity, hence the
951 Gram matrix induced by \mathbf{K} is positive semi-definite.
952953 **Separable kernel (Definition 2):** The kernel is
954

955
$$\mathbf{K}(\mathbf{x}, \mathbf{x}') = \mathbf{a} \mathbf{a}^\top k(\mathbf{x}, \mathbf{x}'), \quad \mathbf{x}, \mathbf{x}' \in \mathcal{X}, \quad (34)$$

956

957 where k is a scalar positive semi-definite kernel. Since $(\mathbf{a} \mathbf{a}^\top)^\top = \mathbf{a} \mathbf{a}^\top$ and $k(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}', \mathbf{x})$,
958 we have $\mathbf{K}(\mathbf{x}, \mathbf{x}')^\top = \mathbf{K}(\mathbf{x}', \mathbf{x})$. For arbitrary $\{\mathbf{x}_i\}_{i=1}^n$ and $\{\mathbf{y}_i\}_{i=1}^n$, $\sum_{i, j=1}^n \mathbf{y}_i^\top \mathbf{K}(\mathbf{x}_i, \mathbf{x}_j) \mathbf{y}_j =$
959 $\sum_{i, j} (\mathbf{a}^\top \mathbf{y}_i) k(\mathbf{x}_i, \mathbf{x}_j) (\mathbf{a}^\top \mathbf{y}_j) \geq 0$, because the Gram matrix $[k(\mathbf{x}_i, \mathbf{x}_j)]$ is positive semi-definite.
960961 Therefore, both kernel classes are symmetric and generate positive semi-definite Gram matrices
962 for any finite set of inputs, i.e., they are valid tensor-output kernels on \mathcal{X} . Then completing the
963 proof. \square
964965 F THE PROOF OF LEMMA 1
966967 *Proof.* First, for a tensor-output system $\text{vec}(\mathbf{f}(\mathbf{x}))$ follows a TOGP defined in (3), denote the derivative
968 field of $\text{vec}(\mathbf{f}(\mathbf{x}))$ to the j -coordinate element of \mathbf{x} as $\mathbf{g}_j(\mathbf{x}) := \partial \text{vec}(\mathbf{f}(\mathbf{x})) / \partial x_j$, where
969 $\text{vec}(\mathbf{f}(\mathbf{x})) \in \mathbb{R}^T$ and $j \in \{1, \dots, d\}$. According to the derivative property of GP (Santner et al.,
970 2003), we have $\mathbf{g}_j(\mathbf{x}) \in \mathbb{R}^T$ is a multivariate-output GP with mean $\hat{\mu}_n^\nabla(x_j) := \frac{\partial}{\partial x_j} \mu_n(\mathbf{x})$ and
971 covariance $\hat{\mathbf{K}}_n^\nabla(x_j, x'_j) := \text{Cov}(\mathbf{g}_j(\mathbf{x}), \mathbf{g}_j(\mathbf{x}')) = \frac{\partial^2}{\partial x_j \partial x'_j} \sigma^2 \mathbf{K}(\mathbf{x}, \mathbf{x}')$.
972

At round $n + 1$, the observed data is denoted as \mathbf{X}_n and \mathbf{Y}_n , then we have the posterior distribution of $\mathbf{g}_j(\mathbf{x})$ is a T -dimensional Gaussian with mean and covariance

$$\hat{\mathbf{K}}_n^\nabla(x_j, x'_j) = \frac{\partial \hat{\mu}_n(\mathbf{x})}{\partial x_j} \quad (35)$$

$$\hat{\mathbf{K}}_n^\nabla(x_j, x'_j) = \frac{\partial^2 \hat{\mathbf{K}}_n(\mathbf{x}, \mathbf{x})}{\partial x_j \partial x'_j}. \quad (36)$$

It is easy to verify that $\hat{\mathbf{K}}_n^\nabla(x_j, x'_j)$ is positive semi-definite for every \mathbf{x} .

For any fixed $\mathbf{x} \in \mathcal{X}$, given \mathbf{X}_n and \mathbf{Y}_n , the random vector

$$\mathbf{g}_j(\mathbf{x}) - \hat{\mu}_n^\nabla(x_j) \sim \mathcal{N}(\mathbf{0}, \hat{\mathbf{K}}_n^\nabla(\mathbf{x}, \mathbf{x}; j)). \quad (37)$$

Applying the Gaussian Lipschitz concentration (Proposition 2.5.2 and Theorem 5.2.2 in Pasupiliopoulos (2020)) to the norm $\|\cdot\|_2$ yields, for all $t > 0$,

$$\Pr\left(\|\mathbf{g}_j(\mathbf{x}) - \hat{\mu}_n^\nabla(x_j)\| \geq \sqrt{\text{tr}(\hat{\mathbf{K}}_n^\nabla(x_j, x_j))} + t\right) \leq \exp\left(-\frac{t^2}{2 \lambda_{\max}^{(n)}(x_j)}\right), \quad (38)$$

where $\lambda_{\max}^{(n)}(\mathbf{x}; j)$ is the largest eigenvalue of $\hat{\mathbf{K}}_n^\nabla(\mathbf{x}, \mathbf{x}; j)$.

Let $\mathcal{D}_M = \{\mathbf{x}_1, \dots, \mathbf{x}_M\} \subset \mathcal{X}$ be any finite discretization. Using (38) with

$$t(\mathbf{x}) = \sqrt{2 \lambda_{\max}^{(n)}(x_j) \log(M/\delta)},$$

and applying the union bound, we obtain with probability at least $1 - \delta$,

$$\|\mathbf{g}_j(\mathbf{x}) - \hat{\mu}_n^\nabla(x_j)\| \leq \sqrt{\text{tr}(\hat{\mathbf{K}}_n^\nabla(x_j, x_j))} + \sqrt{2 \lambda_{\max}^{(n)}(x_j) \log(M/\delta)}, \quad \forall \mathbf{x} \in \mathcal{D}_M. \quad (39)$$

Let $C_\nabla := \sup_{\mathbf{x} \in \mathcal{X}} \sqrt{\text{tr}(\hat{\mathbf{K}}_n^\nabla(x_j, x_j))}$ and $\Lambda_\nabla := \sup_{\mathbf{x} \in \mathcal{X}} \lambda_{\max}^{(n)}(x_j)$, then (39) implies that, with probability at least $1 - \delta$,

$$\|\mathbf{g}_j(\mathbf{x})\| \leq \|\hat{\mu}_n^\nabla(x_j)\| + C_\nabla + \sqrt{2 \Lambda_\nabla \log(M/\delta)}, \quad \forall \mathbf{x} \in \mathcal{D}_M. \quad (40)$$

Assume the kernel is sufficiently smooth so that $\mathbf{g}_j(\cdot)$ has almost surely Lipschitz sample paths. Then there exist absolute constants $a, b > 0$ (depending on the Lipschitz modulus and a covering-number bound of \mathcal{X}) such that for any $L' > 0$,

$$\Pr\left(\sup_{\mathbf{x} \in \mathcal{X}} \|\mathbf{g}_j(\mathbf{x})\| > L' + C_\nabla\right) \leq a \exp\left(-\frac{(L')^2}{b^2}\right). \quad (41)$$

This follows by combining the net bound (40) with a standard chaining argument to pass from a finite net to the full domain; the Gaussian tail is preserved with a possible adjustment of absolute constants into a, b . Then completing the proof. \square

G THE PROOF OF THEOREM 1

Proof. The proof consists of two main parts. We first establish a concentration inequality for $\text{vec}(\mathbf{f}(\mathbf{x}))$ for any $\mathbf{x} \in \mathcal{X}$, and then use this result to derive an upper bound for the regret.

Part 1. Concentration inequality. We begin by proving a concentration inequality for $\text{vec}(\mathbf{f}(\mathbf{x}))$ evaluated on a discrete set of points in the domain \mathcal{X} . We then extend the result to neighborhoods of these discrete points, and ultimately to the entire space \mathcal{X} .

We first prove a basic concentration inequality for a general T -dimensional Gaussian distribution, i.e., $\mathbf{Z} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{K})$. If we define $\mathbf{U} = \mathbf{Z} - \boldsymbol{\mu}$ and set another T -dimensional standard Gaussian distribution $\mathbf{V} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_T)$, we can obtain

$$\mathbf{U} \stackrel{d}{=} \mathbf{K}^{1/2} \mathbf{V}, \quad \|\mathbf{U}\| = \|\mathbf{K}^{1/2} \mathbf{V}\|.$$

1026 Define the function $f(\mathbf{U}) \triangleq \|\mathbf{K}^{1/2}\mathbf{V}\|$. For any \mathbf{U}, \mathbf{U}' , we have
 1027 $|f(\mathbf{U}) - f(\mathbf{U}')| \leq \|\mathbf{K}^{1/2}(\mathbf{U} - \mathbf{U}')\| \leq \|\mathbf{K}^{1/2}\|_{op} \|\mathbf{U} - \mathbf{U}'\| = \sqrt{\lambda_{\max}(\mathbf{K})} \|\mathbf{U} - \mathbf{U}'\|$,
 1028 where $\lambda_{\max}(\mathbf{K})$ is the maximum eigenvalue of \mathbf{K} . Therefore f is a Lipschitz function with constant
 1029 $L = \sqrt{\lambda_{\max}(\mathbf{K})}$.

1030 According to Proposition 2.5.2 and Theorem 5.2.2 in Papaspiliopoulos (2020), we have the following
 1031 concentration inequality for a Lipschitz function of a standard Gaussian distribution:
 1032

$$1033 \Pr(f(\mathbf{U}) \geq \mathbb{E}[f(\mathbf{U})] + t) \leq \exp\left(-\frac{t^2}{2L^2}\right).$$

1034 Substituting f and L , we obtain
 1035

$$1036 \Pr(\|\mathbf{Z} - \boldsymbol{\mu}\| \geq \mathbb{E}[\|\mathbf{Z} - \boldsymbol{\mu}\|] + t) \leq \exp\left(-\frac{t^2}{2\lambda_{\max}(\mathbf{K})}\right).$$

1037 Since
 1038

$$1039 \mathbb{E}[\|\mathbf{Z} - \boldsymbol{\mu}\|] \leq \sqrt{\mathbb{E}[\|\mathbf{Z} - \boldsymbol{\mu}\|^2]} = \sqrt{\text{tr}(\mathbf{K})},$$

1040 we get the final result for a general Gaussian distribution:
 1041

$$1042 \Pr(\|\mathbf{Z} - \boldsymbol{\mu}\| \geq \sqrt{\text{tr}(\mathbf{K})} + t) \leq \exp\left(-\frac{t^2}{2\lambda_{\max}(\mathbf{K})}\right). \quad (42)$$

1043 Define the discrete set $\mathcal{D}_M = \{\mathbf{x}_1, \dots, \mathbf{x}_M\} \subset \mathcal{X}$. According to the above concentration inequality,
 1044 we have
 1045

$$1046 \Pr\left(\|\text{vec}(\mathbf{f}(\mathbf{x})) - \hat{\boldsymbol{\mu}}_n(\mathbf{x})\| > \sqrt{\text{tr}(\hat{\mathbf{K}}_n(\mathbf{x}, \mathbf{x}))} + z\right) \leq \exp\left(-\frac{z^2}{2\lambda_{\max}^{(n)}(\mathbf{x})}\right), \quad \forall \mathbf{x} \in \mathcal{D}_M,$$

1047 where $\lambda_{\max}^{(n)}(\mathbf{x})$ is the maximum eigenvalue of $\hat{\mathbf{K}}_n(\mathbf{x}, \mathbf{x})$.
 1048

1049 By setting $z = \sqrt{2\lambda_{\max}^{(n)}(\mathbf{x}) \log \frac{M}{\delta}}$, we obtain
 1050

$$1051 \Pr\left(\|\text{vec}(\mathbf{f}(\mathbf{x})) - \hat{\boldsymbol{\mu}}_n(\mathbf{x})\| \leq \beta_n \sqrt{\lambda_{\max}^{(n)}(\mathbf{x})}\right) \geq 1 - \delta, \quad \forall \mathbf{x} \in \mathcal{D}_M, \quad (43)$$

1052 where
 1053

$$1054 \beta_n = \sqrt{\sup_{\mathbf{x} \in \mathcal{X}} \frac{\text{tr}(\hat{\mathbf{K}}_n(\mathbf{x}, \mathbf{x}))}{\lambda_{\max}^{(n)}(\mathbf{x})}} + \sqrt{2 \log \frac{M}{\delta}} = \sqrt{C_n} + \sqrt{2 \log \frac{M}{\delta}}.$$

1055 From Lemma 1, we obtain that
 1056

$$1057 \|\text{vec}(\mathbf{f}(\mathbf{x})) - \text{vec}(\mathbf{f}(\mathbf{x}'))\| \leq (L' + C^\nabla) \|\mathbf{x} - \mathbf{x}'\|_1$$

1058 holds with probability at least $1 - a \exp(-L'^2/b^2)$ for all $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$.
 1059

1060 Then, at round n , we set the size of $\mathcal{D}_{M(n)}$ as $(\tau_n)^d$, i.e., $M(n) = (\tau_n)^d$. For $\mathbf{x} \in \mathcal{D}_{M(n)}$, we have
 1061

$$1062 \|\mathbf{x} - [\mathbf{x}]_n\|_1 \leq \frac{rd}{\tau_n},$$

1063 where $[\mathbf{x}]_n$ is the closest point in $\mathcal{D}_{M(n)}$ to \mathbf{x} .
 1064

1065 Using the above equations, if we set $L' = b\sqrt{\log \frac{da}{\delta}}$, we obtain
 1066

$$1067 \|\text{vec}(\mathbf{f}(\mathbf{x})) - \text{vec}(\mathbf{f}([\mathbf{x}]_n))\| \leq \left(b\sqrt{\log \frac{da}{\delta}} + C^\nabla\right) \|\mathbf{x} - [\mathbf{x}]_n\|_1 \leq \left(b\sqrt{\log \frac{da}{\delta}} + C^\nabla\right) \frac{rd}{\tau_n}$$

1068 with probability at least $1 - \delta$ for all $\mathbf{x} \in \mathcal{X}$.
 1069

1070 Choosing $\tau_n = rdn^2(b\sqrt{\log \frac{da}{\delta}} + C^\nabla)$, we have
 1071

$$1072 \Pr\left(\|\text{vec}(\mathbf{f}(\mathbf{x})) - \text{vec}(\mathbf{f}([\mathbf{x}]_M))\| \leq \frac{1}{n^2}\right) \geq 1 - \delta, \quad \forall \mathbf{x} \in \mathcal{X}.$$

1073 Combining the above results, we obtain
 1074

$$1075 \Pr\left(\|\text{vec}(\mathbf{f}(\mathbf{x}^*)) - \hat{\boldsymbol{\mu}}([\mathbf{x}^*]_n)\| \leq \beta_n \sqrt{\lambda_{\max}^{(n)}([\mathbf{x}^*]_n) + \frac{1}{n^2}}\right) \geq 1 - \delta,$$

1076 where $[\mathbf{x}^*]_n$ is the closest point in $\mathcal{D}_{M(n)}$ to \mathbf{x}^* , and
 1077

$$1078 \beta_n = \sqrt{C_n} + 2d \log\left(\frac{rdn^2(b\sqrt{\log(da/\delta)} + C^\nabla)}{\delta}\right).$$

1080 **Part 2. Regret bound.** According to the Lipschitz property of h , we have
 1081

$$1082 \quad r_n = h(\mathbf{x}^*) - h(\mathbf{x}_n) \leq L \|\text{vec}(\mathbf{f}(\mathbf{x}^*)) - \text{vec}(\mathbf{f}(\mathbf{x}_n))\|, \quad (44)$$

1083 where $L > 0$ is the Lipschitz constant.
 1084

1085 Since

$$1086 \quad \hat{\mu}_{n-1}(\mathbf{x}_n) + \beta_n \sqrt{\lambda_{\max}^{(n-1)}(\mathbf{x}_n)} \geq \hat{\mu}_{n-1}([\mathbf{x}^*]_n) + \beta_n \sqrt{\lambda_{\max}^{(n-1)}([\mathbf{x}^*]_n)} \geq \text{vec}(\mathbf{f}(\mathbf{x}^*)) - \frac{1}{n^2},$$

1088 we have

$$1089 \quad r_n \leq L \left(2\beta_n \sqrt{\lambda_{\max}^{(n-1)}(\mathbf{x}_n)} + \frac{1}{n^2} \right). \quad (45)$$

1091 We first consider the first term:

$$1092 \quad 4\beta_n^2 \lambda_{\max}^{(n-1)}(\mathbf{x}_n) \leq 4\beta_N^2 \eta (\eta^{-1} \lambda_{\max}^{(n-1)}(\mathbf{x}_n)) \leq 4\beta_N^2 \eta C_2 \log(1 + \eta^{-1} \lambda_{\max}^{(n-1)}(\mathbf{x}_n)) \\ 1093 \quad \leq 4\beta_N^2 \eta C_2 \log |\mathbf{I}_T + \eta^{-1} \hat{\mathbf{K}}_{n-1}(\mathbf{x}_n, \mathbf{x}_n)|,$$

1095 where C_2 is a constant.
 1096

1097 Define $C_1 = 4\eta C_2$. Then

$$1098 \quad \sum_{n=1}^N 4\beta_n^2 \lambda_{\max}^{(n-1)}(\mathbf{x}_n) \leq C_1 N \beta_N^2 \sum_{n=1}^N \log |\mathbf{I}_T + \eta^{-1} \hat{\mathbf{K}}_{n-1}(\mathbf{x}_n, \mathbf{x}_n)| \leq C_1 N \beta_N^2 \gamma_N,$$

1101 where the last inequality holds by the definition of γ_N .
 1102

1103 Since $\sum_{n=1}^N \frac{1}{n^2} \leq \frac{\pi^2}{6}$, we have the final result:
 1104

$$1105 \quad \sum_{n=1}^N r_n \leq L \left(\sqrt{C_1 \gamma_N N} \beta_N + \frac{\pi^2}{6} \right). \quad (46)$$

1107 Then completing the proof. \square
 1108

1109 H THE PROOF OF PROPOSITION 2

1112 *Proof.* We start from the definition of the (maximum) information gain:

$$1113 \quad \gamma_n(\mathbf{K}, \eta) = \max_{\mathbf{X}_n} \frac{1}{2} \log \det(\mathbf{I}_{nT} + \eta^{-1} \sigma^2 \mathbf{K}_n), \quad \mathbf{K}_n := [\mathbf{K}(\mathbf{x}_i, \mathbf{x}_j)]_{i,j=1}^n \in \mathbb{R}^{nT \times nT}. \quad (47)$$

1116 Under the separable kernel in Definition 2, we have
 1117

$$1118 \quad \mathbf{K}(\mathbf{x}, \mathbf{x}') = (\text{vec}(\mathbf{A}) \text{vec}(\mathbf{A})^\top) k(\mathbf{x}, \mathbf{x}') =: \mathbf{B} k(\mathbf{x}, \mathbf{x}'), \quad (48)$$

1119 where $\mathbf{B} := \text{vec}(\mathbf{A}) \text{vec}(\mathbf{A})^\top \in \mathbb{R}^{T \times T}$. Then, the Gram matrix factorizes as a Kronecker product
 1120

$$1121 \quad \mathbf{K}_n = \mathbf{K}_X \otimes \mathbf{B}, \quad \mathbf{K}_X := [k(\mathbf{x}_i, \mathbf{x}_j)]_{i,j=1}^n \in \mathbb{R}^{n \times n}. \quad (49)$$

1123 Let $\{\alpha_i\}_{i=1}^n$ be the eigenvalues of \mathbf{K}_X and $\{\beta_j\}_{j=1}^T$ be the eigenvalues of \mathbf{B} . By the spectral
 1124 property of the Kronecker product, the eigenvalues of $\mathbf{K}_X \otimes \mathbf{B}$ are $\{\alpha_i \beta_j : i = 1, \dots, n, j = 1, \dots, T\}$. Therefore, we have
 1125

$$1126 \quad \log \det(\mathbf{I}_{nT} + \eta^{-1} \sigma^2 (\mathbf{K}_X \otimes \mathbf{B})) = \sum_{i=1}^n \sum_{j=1}^T \log(1 + c \alpha_i \beta_j), \quad c := \eta^{-1} \sigma^2. \quad (50)$$

1130 For each fixed i , the function $u \mapsto \log(1 + c \alpha_i u)$ is non-decreasing for $u \geq 0$, hence
 1131

$$1132 \quad \sum_{j=1}^T \log(1 + c \alpha_i \beta_j) = \sum_{j: \alpha_j > 0} \log(1 + c \alpha_i \beta_j) \leq T \cdot \log(1 + c \alpha_i \beta_{\max}), \quad (51)$$

1134 where $\beta_{\max} := \max_j \beta_j$. Summing over $i = 1, \dots, n$ and multiplying by $1/2$ gives
 1135

$$1136 \quad \gamma_n(\mathbf{K}, \eta) \leq \frac{T}{2} \sum_{i=1}^n \log(1 + c \beta_{\max} \lambda_i) = T \cdot \gamma_n(k^\sharp, \eta), \quad (52)$$

1138

1139 where $k^\sharp := \beta_{\max} k$ is simply a rescaled version of k . Since rescaling by a positive constant does
 1140 not change the asymptotic order of the information gain, we obtain the general comparison bound
 1141

$$1142 \quad \gamma_n(\mathbf{K}, \eta) \leq T \cdot \gamma_n(k, \eta).$$

1143

1144 In our specific setting, the tightest bound is $\gamma_n(\mathbf{K}, \eta) = \mathcal{O}(T \gamma_n(k, \eta))$. Finally, we substitute known
 1145 results for the scalar kernel k : (i) If k is the Gaussian (squared exponential) kernel in d dimensions, then
 1146

$$1147 \quad \gamma_n(k, \eta) = \mathcal{O}((\log n)^{d+1}),$$

1148 which gives

$$1149 \quad \gamma_n(\mathbf{K}, \eta) = \mathcal{O}(T(\log n)^{d+1}).$$

1150 (ii) If k is a Matérn kernel with smoothness parameter $\nu > 1$, then

$$1151 \quad \gamma_n(k, \eta) = \mathcal{O}\left(n^{\frac{d(d+1)}{2\nu+d(d+1)}} \log n\right),$$

1153

1154 which gives

$$1155 \quad \gamma_n(\mathbf{K}, \eta) = \mathcal{O}\left(T n^{\frac{d(d+1)}{2\nu+d(d+1)}} \log n\right).$$

1156

1157 Then completing the proof. □

1158

1159 I THE PROOF OF THEOREM 2

1160

1161 Denote $\tilde{h}(\mathbf{x}, \boldsymbol{\lambda}) = H_f \tilde{\mathbf{f}}(\mathbf{x}, \boldsymbol{\lambda})$, then we have

1162

$$1163 \quad \tilde{h}(\mathbf{x}^*, \boldsymbol{\lambda}^*) - \tilde{h}(\mathbf{x}_n, \boldsymbol{\lambda}_n) = \left[\tilde{h}(\mathbf{x}^*, \boldsymbol{\lambda}^*) - \tilde{h}(\mathbf{x}_n, \boldsymbol{\lambda}^*) \right] + \left[\tilde{h}(\mathbf{x}_n, \boldsymbol{\lambda}^*) - \tilde{h}(\mathbf{x}_n, \boldsymbol{\lambda}_n) \right]$$

1164

$$1165 \quad = r_{1n} + r_{2n}.$$

1166

1167 For the first item, according to the Cauchy-Schwarz inequality, we have

1168

$$1169 \quad H_f \tilde{\mathbf{f}}(\mathbf{x}, \boldsymbol{\lambda}) - H_f \tilde{\boldsymbol{\mu}}_n(\mathbf{x}, \boldsymbol{\lambda}) \leq H \|\tilde{\mathbf{f}}(\mathbf{x}, \boldsymbol{\lambda}) - \tilde{\boldsymbol{\mu}}_n(\mathbf{x}, \boldsymbol{\lambda})\|. \quad (53)$$

1170

1171 Similar to the proof of Theorem 1, we provide the following lemma.

1172 **Lemma 2.** *Under Assumption 1–3, suppose the noise vectors $\{\text{vec}(\boldsymbol{\varepsilon}_i)\}_{i \geq 1}$ are independently and
 1173 identically distributed in $N(0, \sigma^2 \mathbf{I}_k)$. Then, for any $\delta \in (0, 1]$, with probability at least $1 - \delta$,
 1174 $\|\tilde{\mathbf{f}}(\mathbf{x}, \boldsymbol{\lambda}) - \tilde{\boldsymbol{\mu}}_n(\mathbf{x}, \boldsymbol{\lambda})\|_2 \leq \tilde{\beta}_n \|\tilde{\mathbf{K}}_n(\mathbf{x}, \mathbf{x}; \boldsymbol{\lambda}, \boldsymbol{\lambda})\|^{1/2}$ holds uniformly over all $\mathbf{x} \in \mathcal{X}$ and $\boldsymbol{\lambda} \in \Lambda$ and
 1175 $i \geq 1$, where $\beta_n = \sqrt{\tilde{C}_n} + 2d \log\left(\frac{rdn^2(b\sqrt{\log(da/\delta)} + \tilde{C}_\nabla)}{l}\delta\right)$, $\tilde{C}_n = \sup_{\mathbf{x} \in \mathcal{X}} \frac{\text{tr}(\tilde{\mathbf{K}}_n(\mathbf{x}, \mathbf{x}; \boldsymbol{\lambda}_n^*, \boldsymbol{\lambda}_n^*))}{\lambda_{\max}^{(n)}(\mathbf{x}, \boldsymbol{\lambda}_n^*)}$, and
 1176 $\tilde{C}_\nabla = \sup_{\mathbf{x} \in \mathcal{X}} \sqrt{\text{tr}(\tilde{\mathbf{K}}_n^\nabla(\mathbf{x}_j, \mathbf{x}_j))}$.*

1177

1178 From Lemma 2 and (53), we have

1179

$$1181 \quad H_f \tilde{\mathbf{f}}(\mathbf{x}, \boldsymbol{\lambda}) - H_f \tilde{\boldsymbol{\mu}}_n(\mathbf{x}, \boldsymbol{\lambda}) \leq H \|\tilde{\mathbf{f}}(\mathbf{x}, \boldsymbol{\lambda}) - \tilde{\boldsymbol{\mu}}_n(\mathbf{x}, \boldsymbol{\lambda})\| \leq H \tilde{\beta}_n \|\tilde{\mathbf{K}}_n(\mathbf{x}, \mathbf{x}; \boldsymbol{\lambda}, \boldsymbol{\lambda})\|^{1/2}.$$

1182

1183 Then, we have

1184

$$1185 \quad r_{1n} = \tilde{h}(\mathbf{x}^*, \boldsymbol{\lambda}^*) - \tilde{h}(\mathbf{x}_n, \boldsymbol{\lambda}^*)$$

1186

$$1187 \quad \leq H_f(\tilde{\boldsymbol{\mu}}_n(\mathbf{x}^*, \boldsymbol{\lambda}^*)) + H \tilde{\beta}_n \|\tilde{\mathbf{K}}_{n-1}(\mathbf{x}^*, \mathbf{x}^*)\|^{1/2} - H_f(\tilde{\mathbf{f}}(\mathbf{x}_n, \boldsymbol{\lambda}^*))$$

1188

$$\leq 2H \tilde{\beta}_{n-1} \|\tilde{\mathbf{K}}_{n-1}(\mathbf{x}_n, \mathbf{x}_n; \boldsymbol{\lambda}^*, \boldsymbol{\lambda}^*)\|^{1/2}.$$

1188 And then we obtain
 1189

$$\begin{aligned} 1190 \quad R_{1N} &:= \sum_{n=1}^N r_{1n} \leq 2H\tilde{\beta}_{n-1}\|\tilde{\mathbf{K}}_{n-1}(\mathbf{x}_n, \mathbf{x}_n; \boldsymbol{\lambda}^*, \boldsymbol{\lambda}^*)\|^{1/2} \\ 1191 \\ 1192 \\ 1193 \quad &\leq 2H\left(\sqrt{C_1\gamma_N(\tilde{\mathbf{K}}, \eta)N}\tilde{\beta}_N + \frac{\pi^2}{6}\right). \\ 1194 \end{aligned}$$

1195 For the second item, followed in Accabi et al. (2018), we have
 1196

$$\begin{aligned} 1197 \quad r_{2n} &= \tilde{h}(\mathbf{x}^*, \boldsymbol{\lambda}^*) - \tilde{h}(\mathbf{x}_n, \boldsymbol{\lambda}_n) \\ 1198 \\ 1199 \quad &\leq 2\sqrt{T}\tilde{\rho}_{n-1}\|\tilde{\mathbf{K}}_{n-1}(\mathbf{x}_n, \mathbf{x}_n)\|^{1/2}. \\ 1200 \end{aligned}$$

1200 And we obtain that
 1201

$$\begin{aligned} 1202 \quad R_{2N} &:= \sum_{n=1}^N r_{2n} \leq 2\sqrt{T}\tilde{\rho}_N \sum_{n=1}^N \|\mathbf{K}_{\boldsymbol{\lambda}, n-1}(\mathbf{x}_n, \mathbf{x}_n)\|^{1/2} \\ 1203 \\ 1204 \\ 1205 \quad &\leq 2\tilde{\rho}_N\tilde{\gamma}_N(\tilde{\mathbf{K}}). \\ 1206 \end{aligned}$$

1207 Then we have the cumulative regret over N rounds is bounded by
 1208

$$\begin{aligned} 1209 \quad r_n &\leq r_{1n} + r_{2n} \\ 1210 \\ 1211 \quad &\leq 2H\left(\sqrt{C_1\gamma_N(\tilde{\mathbf{K}}, \eta)N}\tilde{\beta}_N + \frac{\pi^2}{6}\right) + 2H\sqrt{2T\tilde{\rho}_N\tilde{\gamma}_N(\tilde{\mathbf{K}})}. \\ 1212 \end{aligned}$$

1213 J THE PROOF OF PROPOSITION 2

1214

1215 *Proof.* Based on the definition of the (maximum) information gain, we have

$$1216 \quad \gamma_n(\mathbf{K}, \eta) = \max_{\mathbf{X}_n} \frac{1}{2} \log \det(\mathbf{I}_m + c\mathbf{K}_n), \quad c := \eta^{-1}\sigma^2, \quad (54)$$

1217 where the Gram matrix takes the form
 1218

$$1219 \quad \mathbf{K}_n = \mathbf{E}\mathbf{K}\mathbf{E}^\top, \quad \mathbf{K} = \mathbf{B} \otimes \mathbf{K}_X,$$

1220 with $\mathbf{K}_X = [k(\mathbf{x}_i, \mathbf{x}_j)]_{i,j=1}^n \in \mathbb{R}^{n \times n}$, $\mathbf{B} = \text{vec}(\mathbf{A})\text{vec}(\mathbf{A})^\top \in \mathbb{R}^{T \times T}$.
 1221

1222 By Sylvester's identity, we have
 1223

$$1224 \quad \det(\mathbf{I}_{nk} + c\mathbf{E}_n\mathbf{K}\mathbf{E}_n^\top) = \det(\mathbf{I}_{nT} + c\mathbf{K}^{1/2}\mathbf{E}_n^\top\mathbf{E}_n\mathbf{K}^{1/2}). \quad (55)$$

1225 Since \mathbf{E}_n selects rows, $0 \preceq \mathbf{E}_n^\top\mathbf{E}_n \preceq \mathbf{I}_{nT}$, hence
 1226

$$1227 \quad \log \det(\mathbf{I}_{nk} + c\mathbf{E}_n\mathbf{K}\mathbf{E}_n^\top) = \log \det(\mathbf{I}_{nT} + c\mathbf{K}^{1/2}\mathbf{E}_n^\top\mathbf{E}_n\mathbf{K}^{1/2}) \quad (56)$$

$$1228 \quad \leq \log \det(\mathbf{I}_{nT} + c\mathbf{K}). \quad (57)$$

1229 Under Definition 2, $\mathbf{K} = \mathbf{B} \otimes \mathbf{K}_X$ with eigenvalues $\{\alpha_i\}_{i=1}^n$ of \mathbf{K}_X and $\{\beta_j\}_{j=1}^T$ of \mathbf{B} ; thus $\mathbf{B} \otimes \mathbf{K}_X$
 1230 has eigenvalues $\{\alpha_i\beta_j\}$. Therefore
 1231

$$1232 \quad \log \det(\mathbf{I}_{nT} + c(\mathbf{B} \otimes \mathbf{K}_X)) = \sum_{i=1}^n \sum_{j=1}^T \log(1 + c\alpha_i\beta_j).$$

1233 Set $\beta_{\max} := \max_j \beta_j$. Since $u \mapsto \log(1 + c\alpha_i u)$ is non-decreasing on $u \geq 0$,
 1234

$$1235 \quad \sum_{j=1}^T \log(1 + c\alpha_i\beta_j) = \sum_{\beta_j > 0} \log(1 + c\alpha_i\beta_j) \leq T \log(1 + c\alpha_i\beta_{\max}). \quad (58)$$

1242 Summing over i and combining with (57),
 1243

$$1244 \quad \gamma_n(\mathbf{K}, \eta) \leq \frac{r}{2} \sum_{i=1}^n \log(1 + c \beta_{\max} \alpha_i) = T \cdot \gamma_n(k^\sharp, \eta), \quad (59)$$

1245 where $k^\sharp := \beta_{\max} k$ is a rescaled scalar kernel.
 1246

1247 Since positive rescaling does not change the asymptotic order of information gain, hence
 1248

$$1249 \quad \gamma_n(\mathbf{K}, \eta) \leq T \gamma_n(k, \eta).$$

1250 Thus, the tight bound of PTOGP is $\gamma_n(\mathbf{K}, \eta) = \mathcal{O}(T \gamma_n(k, \eta))$.
 1251

1252 Using standard bounds for scalar kernels k in d dimensions, we have
 1253

$$1254 \quad \gamma_n(k, \eta) = \mathcal{O}((\log n)^{d+1}) \quad (\text{Gaussian}), \quad \gamma_n(k, \eta) = \mathcal{O}\left(n^{\frac{d(d+1)}{2\nu+d(d+1)}} \log n\right) \quad (\text{Matérn}, \nu > 1). \quad (60)$$

1255 And then we obtain
 1256

$$1257 \quad \gamma_n(\mathbf{K}, \eta) = \mathcal{O}(r(\log n)^{d+1}) \quad \text{or} \quad \gamma_n(\mathbf{K}, \eta) = \mathcal{O}\left(r n^{\frac{d(d+1)}{2\nu+d(d+1)}} \log n\right), \quad (61)$$

1258 respectively. Completing the proof. \square
 1259

1260 K DETAILED SETTINGS OF THE EXPERIMENTS

1261 K.1 DETAILED SETTINGS OF SYNTHETIC EXPERIMENTS

1262 The setting of simulations are as follows:
 1263

- 1264 • **Compute resources:** All experiments were run on a Windows 10 Pro (Build 19045) desk-
 1265 top with an Intel Core i9-7900X CPU (3.10 GHz) and 32 GB RAM.
 1266
- 1267 • **Kernel setting:** We use the Matérn kernel function with the smoothing parameter $\nu = 5/2$
 1268 as the input kernel for different GPs.
 1269
- 1270 • **Data setting:** For the GP prediction, we generate $n_{train} = 10d$ training samples for es-
 1271 timating hyperparameters and $n_{test} = 5d$ testing samples for predicting. In the BO and
 1272 CBBO framework, we generate $n_0 = 5d$ initial design points based on Latin Hypercube
 1273 Sampling (LHS), and $N = 10d$ sequential design points.
 1274
- 1275 • **Criteria:** To compare the GPs prediction performance of different methods, we use the
 1276 following criteria:
 1277

1278 (1) Negative Log-Likelihood (NLL): It measures how well a probabilistic model fits the
 1279 observed data. For given data \mathbf{X}_n and \mathbf{Y}_n , the NLL is defined as $\text{NLL} = \frac{1}{2} \log(\tau^2 \mathbf{K}_n +$
 1280 $\sigma^2 \mathbf{I}_{nT}) + \frac{1}{2} \mathbf{Y}_n^\top (\tau^2 \mathbf{K}_n + \sigma^2 \mathbf{I}_{nT})^{-1} \mathbf{Y}_n$.
 1281

1282 (2) Mean Absolute Error (MAE): $\text{MAE} = \frac{1}{n_{test}} \sum_{i=1}^{n_{test}} \|\frac{\mathbf{y}_i - \hat{\mathbf{y}}_i}{\mathbf{y}_i}\|$.
 1283

1284 (3) Covariance Operator Norm ($\|Cov\|$): $\|\hat{\mathbf{K}}_n\| = \sup_{\|\mathbf{v}\|=1} \|\hat{\mathbf{K}}_n \mathbf{v}\|$.
 1285

1286 For the BO framework, we use the the mean squared error of inputs (MSE_x) and the
 1287 mean absolute error of outputs MAE_y to compare the optimization performance of dif-
 1288 ferent methods. Here $\text{MSE}_x = \|\mathbf{x}^* - \mathbf{x}_N^*\|^2$, and $\text{MAE}_y = \|\frac{\mathbf{f}^* - \mathbf{f}_N^*}{\mathbf{f}^*}\|$ over N rounds. For
 1289 the CBBO framework, we add the Acc criterion to compare the match between the optimal
 1290 super arm and the super arm chosen over N rounds, that is, $\text{Acc} = \mathbb{I}_{\mathbf{x}^* = \mathbf{x}_N} / k$, where \mathbb{I} is a
 1291 indicator function.
 1292

1293 K.2 DETAILED SETTINGS OF CASE STUDIES

1294 The detailed datasets of case studies are as follows:
 1295

1296 **Chemistry reaction (CHEM):** Reaction optimization is fundamental to synthetic chemistry, from
 1297 improving yields in industrial processes to selecting reaction conditions for drug candidate synthesis.
 1298

1296 According to Shields et al. (2021), we aim to evaluate the reaction parameters (x_1 : concentration,
 1297 x_2 : temperature) to improve the experimental yields ($y : 4 \times 3 \times 3$) of palladium-catalysed direct
 1298 arylation reaction under varying bases (Mode 1), ligands (Mode 2), and solvents (Mode 3).

1299 **PS/PAN material (MAT):** Electrospun polystyrene/polyacrylonitrile (PS/PAN) materials are com-
 1300 monly used as potential oil sorbents for marine oil spill remediation. From Wang et al. (2020), we
 1301 aim to optimize the fabrication parameters of PS/PAN materials, including spinneret speed (x_1),
 1302 collector distance (x_2), applied voltage (x_3), and fiber diameter (x_4), to improve their oil absorption
 1303 capacity ($y : 5 \times 4 \times 4$) under varying PS content (Mode 1), mass fraction (Mode 2), and SiO_2
 1304 content (Mode 3).

1305 **3D printing (PRINT):** Material extrusion-based three-dimensional printed products have been
 1306 widely used in aerospace, automotive, and other fields. Following Zhai et al. (2023), we focus
 1307 on selecting appropriate process parameters (x_1 : layer thickness, x_2 : platform temperature, x_3 :
 1308 nozzle temperature, x_4 : infill density, and x_5 : printing speed) to reduce variations in part quality
 1309 ($y : 3 \times 4 \times 3$) caused by different printer nozzles (Mode 1) and printing geometries (Mode 2). The
 1310 quality (Mode 3) is evaluated in terms of compression deformation, compressive strength, and the
 1311 printing cost.

1312 **Renewable energy (REEN):** Climate change affects the availability and reliability of renewable
 1313 energy sources such as wind, solar, and hydropower. We employ the operational energy dataset
 1314 from the Copernicus Climate Change Service ([https://cds.climate.copernicus.eu/](https://cds.climate.copernicus.eu/datasets/sis-energy-derived-reanalysis?tab=overview)
 1315 datasets/sis-energy-derived-reanalysis?tab=overview) to explore the cli-
 1316 mate conditions that are most beneficial to renewable energy generation in various European nations.
 1317 The climate-related variables, used as input features, include air temperature (x_1), precipitation (x_2),
 1318 surface incoming solar radiation (x_3), wind speed at 10 meters (x_4) and 100 meters (x_5), and mean
 1319 sea level pressure (x_6). The energy-related indicators ($y : 10 \times 2$) collected from ten European
 1320 countries (Mode 1), used as outputs, include the capacity factor ratio of solar photovoltaic power
 1321 generation and wind power generation onshore (Mode 2).

L THE COMPARISON OF COMPUTATIONAL COMPLEXITY FOR BASELINES

1325 To provide a clearer comparison, we summarize the computational complexity of GP training,
 1326 BO, and CBBO for the baseline methods sMTGP, MLGP, and MVGP, together with our proposed
 1327 method, in the table below. Here m_h , m_{h1} , m_{h2} , and m_{hl} for $l = 1, \dots, m$ denote the numbers of

1329 **Table 5: The computational complexity of different methods for GP training, BO, and CBBO.**

Task	Method	Computational complexity
GP Training	TOGP	$\mathcal{O}((n^3T^3 + n^2T^2m_h)\log n)$
	sMTGP	$\mathcal{O}((n^3 + \sum_{l=1}^m t_l^3 + n^2m_h + \sum_{l=1}^m t_l^2m_{hl})\log n)$
	MLGP	$\mathcal{O}((n^3 + \sum_{l=1}^m t_l^3 + n^2m_h + \sum_{l=1}^m t_l^2m_{hl})\log n)$
	MVGP	$\mathcal{O}((n^3 + T^3 + n^2m_{h1} + T^2m_{h2})\log n)$
BO (Round n)	TOGP	$\mathcal{O}((n^3T^3 + n^2T^2m_h)\log n)$
	sMTGP	$\mathcal{O}((n^3 + \sum_{l=1}^m t_l^3 + n^2m_h + \sum_{l=1}^m t_l^2m_{hl})\log n)$
	MLGP	$\mathcal{O}((n^3 + \sum_{l=1}^m t_l^3 + n^2m_h + \sum_{l=1}^m t_l^2m_{hl})\log n)$
	MVGP	$\mathcal{O}((n^3 + T^3 + n^2m_{h1} + T^2m_{h2})\log n)$
CBBO (Round n)	TOGP	$\mathcal{O}((n^3k^3 + n^2kTm_h)\log n + kT^3)$
	sMTGP	$\mathcal{O}((n^3 + k^3 + n^2m_h + k \sum_{l=1}^m t_l m_{hl})\log n + k \sum_{l=1}^m t_l^3)$
	MLGP	$\mathcal{O}((n^3 + k^3 + n^2m_h + k \sum_{l=1}^m t_l m_{hl})\log n + k \sum_{l=1}^m t_l^3)$
	MVGP	$\mathcal{O}((n^3 + T^3 + n^2m_{h1} + kTm_{h2})\log n + kT^3)$

1345 hyperparameters for the corresponding methods.

1346 Furthermore, we report the empirical computational time for GP training across all methods under
 1347 the three experimental settings. The results are summarized below.

1348 We further report the empirical running time of BO and CBBO under all baseline methods. The
 1349 results are summarized in the table below.

1350

1351 Table 6: The runtime (s) of different methods for GP training in the three synthetic settings.

	TOGP	sMTGP	MLGP	MVGP
Setting (1)	266.04	27.26	30.57	6.50
Setting (2)	69.85	16.08	21.99	1.31
Setting (3)	900.13	851.34	891.73	769.50

1352

1353

1354 Table 7: The runtime (s) of different methods for BO and CBBO in the three synthetic settings.

Method/Task	Setting (1)		Setting (2)		Setting (3)	
	BO	CBBO	BO	CBBO	BO	CBBO
TOBO/TOCBBO	6968.25	8017.08	1588.53	2348.16	6035.61	11699.09
sMTGP-UCB	1516.31	953.82	117.78	179.11	5291.26	9436.90
MLGP-UCB	1545.41	981.86	133.93	185.49	5452.90	9696.60
MVGP-UCB	340.44	437.29	14.86	20.76	3006.97	3199.47
TOGP-RS	6176.84	7990.44	1573.36	2338.97	5786.02	11501.01
sMTGP-RS	1503.24	939.27	106.93	164.95	5273.84	9421.08
MLGP-RS	1530.32	971.25	109.14	180.70	5252.32	9431.96
MVGP-RS	334.79	386.86	7.70	6.70	2997.75	3116.23

1355

1356

1357 Finally, we provide the prediction and optimization performance of TOGP based on the Nyström 1358 low-rank approximation (SVD-TOGP) in Remark 3 under the three synthetic settings. The results 1359 are summarized below.

Task	Criterion	Setting (1)		Setting (2)		Setting (3)	
		SVD-TOGP	TOGP	SVD-TOG	TOGP	SVD-TOGP	TOGP
GP Training	NLL	557.09	503.00	-18.39	-18.10	-3778.74	-3923.10
	MAE	0.1756	0.1571	0.1099	0.1052	0.1436	0.1372
	$\ Cov\ $	3.9627	2.0200	0.6261	0.0400	0.0881	2.8200
	Time (s)	21.80	266.04	10.83	69.85	436.17	900.13
BO	MSE _x	0.0001	0.0000	0.0003	0.0003	0.0002	0.0001
	MAE _y	0.0041	0.0008	0.0356	0.0350	0.0051	0.0050
	Ins Regret	0.0040	0.0001	0.0002	0.0002	0.0402	0.0302
	Time (s)	831.02	6968.25	162.78	1588.53	3604.66	6035.61
CBBO	MSE _x	0.0024	0.0023	0.0000	0.0000	0.0035	0.0021
	MAE _y	0.0180	0.0172	0.0000	0.0000	0.0246	0.0145
	Acc	1	1	1	1	1	1
	Ins Regret	1.0944	0.9807	0.0000	0.0000	1.8571	1.4406
	Time (s)	655.83	8017.08	134.22	2348.16	4446.12	11699.09

1392

1393

1394

1395 M ADDITIONAL RESULTS OF SYNTHETIC EXPERIMENTS

1396

1397 In the BO setting, we additionally include a single-objective GP-UCB baseline, which directly 1398 assumes that $L_f f$ follows a GP and uses the UCB acquisition function to select query points 1399 sequentially. The optimization results under the three settings in our numerical experiments are 1400 summarized below.

1401

1402

1403

We include an independent GP-UCB baseline (Ind GP-UCB), which assumes that each tensor element follows its own GP model and applies the proposed CMAB-UCB2 acquisition function to sequentially select both query points and super-arms. The optimization results under the three synthetic settings are summarized below.

Table 8: The additional optimization performance of different methods in three synthetic settings.

k	Setting (1)			Setting (2)			Setting (3)			
	MSE _x	MAE _y	Acc	MSE _x	MAE _y	Acc	MSE _x	MAE _y	Acc	
T/3	TOCBBBO	0.0054	0.0509	1.00	0.0001	0.0036	1.00	0.0021	0.0312	1.00
	SMTGP-UCB	0.0057	0.0942	1.00	0.0548	0.3336	1.00	0.0340	0.8616	0.71
	MLGP-UCB	0.0677	0.9775	0.33	0.0434	0.6961	0.50	0.3549	0.8205	0.29
	MVGP-UCB	0.0325	0.7530	0.33	0.0019	0.0191	1.00	0.0405	0.3647	0.71
	TOGP-RS	0.0208	1.3279	0.83	0.0206	0.4347	0.50	0.0709	1.5521	0.57
	SMTGP-RS	0.0203	1.2625	0.50	0.1201	0.4443	0.50	0.0254	1.0703	0.50
	MLGP-RS	0.0619	1.0296	0.67	0.1191	0.5081	1.00	0.1816	1.1735	0.64
	MVGP-RS	0.0634	0.9733	0.67	0.0469	0.4444	0.50	0.0574	1.3837	0.43
2T/3	TOCBBBO	0.0006	0.0125	1.00	0.0010	0.0076	1.00	0.0103	0.1163	0.96
	SMTGP-UCB	0.0066	0.0585	1.00	0.0012	0.0177	1.00	0.0122	1.9890	0.89
	MLGP-UCB	0.0323	3.6747	0.82	0.2229	1.4532	0.75	0.0423	4.0294	0.81
	MVGP-UCB	0.0047	0.4765	1.00	0.0022	0.0309	1.00	0.0324	1.4985	0.93
	TOGP-RS	0.0128	4.6512	0.82	0.0202	1.1872	1.00	0.0218	10.4919	0.70
	SMTGP-RS	0.0128	4.6512	0.82	0.2229	1.4532	0.75	0.0110	6.0795	0.70
	MLGP-RS	0.0323	3.6747	0.82	0.2229	1.4532	0.75	0.0423	4.0294	0.81
	MVGP-RS	0.0128	4.6512	0.82	0.0439	0.8309	1.00	0.0423	4.0294	0.81

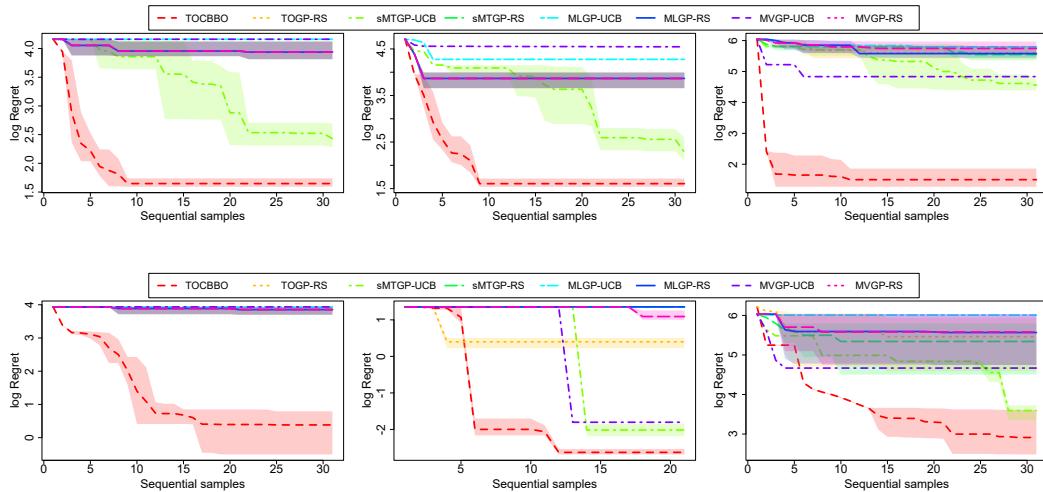
Figure 4: Each round's logarithmic instantaneous regret of different methods in the Setting (1) (Left), (2) (Middle), and (3) (Right) when $k = T/3$ (Top row) and $k = 2T/3$ (Bottom row).

Table 9: Summary across CHEM, MAT, and PRINT datasets with 10 repetitions.

Method	CHEM	MAT	PRINT
TOBO	100 (0.00)	150.07 (0.00)	-25.03 (0.00)
sMTGP-UCB	99.91 (0.10)	147.97 (2.24)	-25.03 (0.00)
MLGP-UCB	99.29 (0.75)	147.90 (2.32)	-25.13 (0.11)
MVGP-UCB	96.32 (4.89)	147.20 (3.44)	-25.27 (0.32)
TOGP-RS	93.84 (1.56)	147.83 (2.32)	-25.27 (0.23)
sMTGP-RS	96.63 (3.74)	146.22 (4.30)	-25.03 (0.13)
MLGP-RS	99.41 (0.76)	148.28 (1.64)	-25.27 (0.23)
MVGP-RS	96.32 (3.72)	147.20 (2.80)	-25.27 (0.33)

1458
1459
1460
1461
1462
1463
1464

1465 Table 10: The results of Single GP-UCB in three synthetic settings.

	Criterion	Single GP-UCB	TOBO
Setting (1)	MSE_x	0.0004	0.0000
	Ins Regret	0.0459	0.0001
	Time	457.34	6968.25
Setting (2)	MSE_x	0.4761	0.0003
	Ins Regret	0.2093	0.0002
	Time	187.30	1588.53
Setting (3)	MSE_x	0.0084	0.0001
	Ins Regret	0.1964	0.0302
	Time	415.61	6035.61

1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490

1491 Table 11: The results of the Ind GP-UCB in three synthetic settings.

	Criterion	Ind GP-UCB	TOBO
Setting (1)	MSE_x	0.2121	0.0023
	MAE_y	0.6739	0.0172
	Acc	0.67	1
	Ins Regret	36.301	0.9807
	Time (s)	328.56	8017.08
Setting (2)	MSE_x	0.0731	0.0000
	MAE_y	0.0486	0.0000
	Acc	1	1
	Ins Regret	0.1561	0.0000
	Time (s)	110.77	2348.16
Setting (3)	MAE_y	0.0139	0.0021
	Acc	0.86	1
	Ins Regret	54.2714	1.4406
	Time (s)	3296.72	11699.09

1506
1507
1508
1509
1510
1511

1512 For non-separable multi-output GPs (Fricker et al., 2013), we additionally provide the results under
 1513 the three synthetic settings below.
 1514

1515 **Table 12:** The results of the non-separable MOGP in three synthetic settings.

Task	Criterion	Setting (1)	Setting (2)	Setting (3)
GP	NLL	507.19	-39.33	-3094.10
	MAE	0.1923	0.1493	0.1591
	$\ \text{Cov}\ $	6.7398	0.5618	20.5800
	Time (s)	453.11	151.31	1397.68
BO	MSE_x	0.0014	0.0005	0.0244
	MAE_y	0.0536	0.0503	0.6277
	Ins Regret	1.0284	0.0030	6.6283
	Time (s)	9109.08	2101.45	7881.31
CBBO	MSE_x	0.0073	0.0683	0.0091
	MAE_y	0.0643	0.0390	0.1257
	Acc	1	1	0.86
	Ins Regret	1.7389	0.1551	51.4646
	Time (s)	10462.18	3107.82	14175.50

1532 As shown, TOBO achieves consistently better optimization accuracy than Single GP-UCB, Ind
 1533 GP-UCB, and non-separable MOGP-UCB across all settings. Although the runtime of TOBO is
 1534 higher, we further introduce an efficient variant named SVD-TOBO, which employs a low-rank
 1535 eigen-decomposition to approximate the TOGP covariance in Remark 3 and significantly reduces
 1536 runtime.
 1537

1538 To evaluate the sensitivity of our method with respect to different choices of L_f and H_f , we consider
 1539 three types of operators defined as follows (Chugh, 2020).

1540 • **Sum operator (used in the main manuscript):**

$$1542 L_f \mathbf{f}(\mathbf{x}) = \sum f_{i_1, \dots, i_m}(\mathbf{x}), \quad H_f \tilde{\mathbf{f}}(\mathbf{x}, \boldsymbol{\lambda}) = \sum \tilde{f}_{i_1, \dots, i_m}(\mathbf{x}, \boldsymbol{\lambda}).$$

1544 • **Weighted sum operator:**

$$1546 L_f \mathbf{f}(\mathbf{x}) = \sum w_{i_1, \dots, i_m} f_{i_1, \dots, i_m}(\mathbf{x}), \quad H_f \tilde{\mathbf{f}}(\mathbf{x}, \boldsymbol{\lambda}) = \sum w_{i_1, \dots, i_m} \tilde{f}_{i_1, \dots, i_m}(\mathbf{x}, \boldsymbol{\lambda}),$$

1547 where $w_{i_1, \dots, i_m} \sim U(0, 1)$.

1549 • **Exponential weighted operator:**

$$1550 L_f \mathbf{f}(\mathbf{x}) = \sum e^{p w_{i_1, \dots, i_m} - 1} e^{p f_{i_1, \dots, i_m}(\mathbf{x})}, \quad H_f \tilde{\mathbf{f}}(\mathbf{x}, \boldsymbol{\lambda}) = \sum e^{p w_{i_1, \dots, i_m} - 1} e^{p \tilde{f}_{i_1, \dots, i_m}(\mathbf{x}, \boldsymbol{\lambda})},$$

1552 where $p = 2$ and $w_{i_1, \dots, i_m} \sim U(0, 1)$.

1554 The results under Setting (1) in our numerical experiments are summarized below. It can be seen
 1555 that our method is robust across different choices of L_f and H_f , and both TOBO and TOCBBO
 1556 consistently achieve strong optimization performance.

1557 **N READ-WORLD APPLICATION: SEMICONDUCTOR MANUFACTURING
 1559 PROCESS**

1561 A motivating example arises from semiconductor manufacturing, where each wafer consists of nu-
 1562 merous dies (chips) arranged in a two-dimensional grid. During the Chip Probing (CP) phase, a
 1563 critical stage for functional quality control, each die is evaluated based on multiple quality variables
 1564 such as voltage, current, leakage, and power consumption. These variables are spatially correlated
 1565 across neighboring dies due to physical effects such as process variation and mechanical stress,
 1566 forming a naturally structured tensor output. To ensure high yield and reliability, manufacturers aim

1566

1567

Table 13: The results of different operators in three synthetic settings.

	Criterion	Sum operator	Weighted sum operator	Exponential weighted operator
BO	MSE_x	0.0000	0.0000	0.0000
	MAE_y	0.0008	0.0083	0.0072
	Ins Regret	0.0001	0.0044	0.0533
CBBO	MSE_x	0.0023	0.0037	0.0025
	MAE_y	0.0172	0.0329	0.0548
	Acc	1	1	1
	Ins Regret	0.1964	0.0107	0.4972

1577

1578

to adjust process control parameters (inputs) so that all quality variables across the wafer remain within target specifications. This leads to an optimization problem where the output is a three-mode tensor: the first two modes index the die positions on the wafer, and the third mode captures multiple quality variables. Such a scenario cannot be effectively modeled by scalar- or vector-output BO approaches, as they would lose essential structural information.

1583

1584

In practice, each wafer may contain hundreds of dies. However, resource and time constraints often make it infeasible to measure all quality variables across all die positions on every wafer. Manufacturers instead selectively measure a subset of output entries, such as centrally located dies, those more prone to failure, or historically most informative regions. Similarly, only a subset of quality variables may be measured if certain tests are time-consuming or costly. This results in a partially observed tensor, where only part of the full output is available at each iteration.

1589

1590

We incorporate this example into the revised paper and conduct a corresponding case study. The input is $\mathbf{x} = (x_1, x_2, x_3)$ representing process parameters, and the output $\mathbf{f}(\mathbf{x}) \in \mathbb{R}^{5 \times 5 \times 3}$ denotes die-wise quality variables on the wafer. A black-box semiconductor simulator is employed as the true system. We generate 5 observations as the initial design and then sequentially select 20 queried points based on different BO methods. Tables 14 and 15 compare the performance of TOBO and TOCBBO against several baselines. Our methods significantly outperform the alternatives in terms of input accuracy (MAE_x), regret, and final objective value, demonstrating their superiority.

1596

1597

	TOBO	sMTGP-UCB	MLGP-UCB	MVGP-UCB
MAE_x	0.0651 (0.0016)	0.1997 (0.0020)	0.1579 (0.0059)	0.2669 (0.0046)
Regret	0.1702 (0.0007)	0.2400 (0.0014)	0.1956 (0.0088)	0.3818 (0.0029)
Objective	0.8298 (0.0009)	0.7600 (0.0031)	0.8044 (0.0079)	0.6182 (0.0033)

1601

1602

Table 14: Performance comparison of TOBO with baseline methods in terms of MAE_x , regret, and objective (mean and standard deviation).

1603

1604

	TOCBBO	sMTGP-UCB	MLGP-UCB	MVGP-UCB
MAE_x	0.1453 (0.0466)	0.4313 (0.0592)	0.5702 (0.0747)	0.6758 (0.0844)
Regret	0.1431 (0.0388)	0.2483 (0.0522)	0.4338 (0.0918)	0.3461 (0.0709)
Objective	0.6085 (0.0436)	0.5290 (0.0500)	0.4282 (0.1147)	0.4794 (0.0912)

1609

1610

Table 15: Performance comparison of TOCBBO with baseline methods in terms of MAE_x , regret, and objective (mean and standard deviation).

1612

1613

These results show that the proposed methods can effectively optimize under partially observed tensor data, highlighting their practical relevance for semiconductor manufacturing.

1614

1615

1616

1617

1618

1619