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ABSTRACT

Bayesian optimization (BO) has been widely used to optimize expensive and
black-box functions across various domains. Existing BO methods have not ad-
dressed tensor-output functions. To fill this gap, we propose a novel tensor-output
BO method. Specifically, we first introduce a tensor-output Gaussian process
(TOGP) with two classes of tensor-output kernels as a surrogate model of the
tensor-output function, which can effectively capture the structural dependencies
within the tensor. Based on it, we develop an upper confidence bound (UCB) ac-
quisition function to select the queried points. Furthermore, we introduce a more
complex and practical problem setting, named combinatorial bandit Bayesian op-
timization (CBBO), where only a subset of the outputs can be selected to con-
tribute to the objective function. To tackle this, we propose a tensor-output CBBO
method, which extends TOGP to handle partially observed outputs, and accord-
ingly design a novel combinatorial multi-arm bandit-UCB2 (CMAB-UCB2) cri-
terion to sequentially select both the queried points and the optimal output subset.
Theoretical regret bounds for the two methods are established, ensuring their sub-
linear performance. Extensive synthetic and real-world experiments demonstrate
their superiority.

1 INTRODUCTION

Bayesian optimization (BO) is a widely used strategy for optimizing expensive, black-box objective
functions (Frazier, 2018; Wang et al., 2023). Its effectiveness has led to successful applications in
various domains such as hyperparameter tuning, experimental design, and robotics (Snoek et al.,
2012; Shields et al., 2021; Wang et al., 2022). Most existing BO methods focus on scalar outputs
(Bull, 2011; Wu et al., 2017), while some recent studies have extended BO to handle multi-output
scenarios (Chowdhury & Gopalan, 2021; Tu et al., 2022; Maddox et al., 2021; Song et al., 2022).
However, to the best of our knowledge, no prior work has addressed tensor-output BO, where the
system output is a multi-mode tensor. In contrast, tensor-output data have been extensively explored
in other areas, including tensor decomposition (Abed-Meraim et al., 2022), tensor regression (Lock,
2018), and tensor completion (Song et al., 2019), among others.

In current multi-output BO (MOBO) methods, a surrogate model, typically a multi-output Gaussian
process (GP) or multiple scalar-output GPs, is constructed from observed data, and an acquisition
function is used to sequentially select queried points by balancing exploration and exploitation.
A straightforward approach to handling the tensor output is to vectorize them and apply existing
MOBO methods. However, this neglects the intrinsic structural correlations within tensors, particu-
larly the mode-wise dependencies that are critical in many applications. As a result, when optimizing
the acquisition function to identify the global optimum, MOBO methods may become less effective.
As such, it is essential to construct a GP to directly model tensor structures. Existing tensor-output
GP methods are based on full separable structures, where the joint covariance is decomposed into a
Kronecker product of covariance matrices across each output mode and the input. (Kia et al., 2018;
Zhe et al., 2019; Belyaev et al., 2015). While computationally attractive, such separability assumes
that correlations across tensor modes are independent of the input, which is often unrealistic in com-
plex real-world systems such as spatiotemporal processes (Hristopulos, 2023). This mismatch can
lead to inaccurate modeling, numerical instability in posterior inference, and ultimately degraded
BO performance. Therefore, in this paper, we first aim to construct a more flexible and scalable GP
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model that can capture input-dependent correlations within tensor outputs. Then, we aim to design
an acquisition function and the sequential querying policy tailored for tensor-output BO.

Furthermore, we consider a more complex and practical setting in which only a subset of the tensor
outputs can be selected to contribute to the objective function. This naturally transforms the problem
into a combinatorial multi-armed bandit (CMAB) setting. Specifically, each tensor element is treated
as an individual arm, and at each round a subset of arms, referred to as a super-arm, is selected. The
objective value associated with the chosen super-arm is then observed, which we interpret as the
reward. We term this novel problem as combinatorial bandit Bayesian optimization (CBBO).
The goal of CBBO with tensor outputs is to jointly identify the optimal input in the search space and
the corresponding best super-arm over the tensor outputs. Recent studies have explored combining
BO with multi-armed bandits (MAB), often under the name bandit Bayesian optimization (BBO),
to address mixed input spaces with both continuous and categorical variables (Nguyen et al., 2020;
Ru et al., 2020; Huang et al., 2022). In such settings, categorical variables are viewed as tensor
modes, with their categories corresponding to elements along each mode. Selecting one category
per mode corresponds to choosing a single arm along each mode, which can be viewed as a special
case of CBBO. However, existing BBO methods cannot be directly extended to the CBBO setting
for two main reasons. First, they typically model the outputs associated with categorical variables
using independent GPs, thereby failing to capture the rich structural correlations inherent in tensor
outputs. Second, their selection strategies rely on multiple independent MABs (i.e., selecting one
arm per mode independently), whereas CBBO requires joint selection of multiple correlated arms.
Thus, these BBO methods have less potential to be extended to our CBBO framework.

To address the aforementioned challenges, we propose a novel tensor-output Bayesian optimization
framework, named TOBO, together with its extension to the CBBO setting, named TOCBBO. Our
main contributions are summarized as follows:

• We propose a tensor-output Gaussian process (TOGP) with two classes of tensor-output
kernels that explicitly incorporate tensor structure by extending the linear model of core-
gionalization from vector-valued outputs to tensor-valued outputs. The proposed kernels
capture rich dependencies across tensor modes and across the input domain.

• Using the TOGP model as a surrogate, we develop a TOBO framework based on the upper
confidence bound (UCB) acquisition. We establish a sublinear regret bound for TOBO,
which is the first regret analysis for tensor-valued outputs under a Bayesian framework.

• We formulate a novel problem setting, referred to as CBBO. To address this setting, we de-
sign the TOCBBO framework by introducing a CMAB-UCB2 acquisition function, which
integrates the UCB criterion for input selection with the CMAB-UCB criterion for super-
arm selection. We further establish a sublinear regret bound for TOCBBO.

• We demonstrate the efficiency and superiority of our methods through three synthetic ex-
periments and four real-world applications.

Notably, compared to existing TOGP methods (Belyaev et al., 2015; Kia et al., 2018; Zhe et al.,
2019), our model provides a more general kernel construction framework, as their tensor-output
kernels correspond to specific choices of low-rank tensor decompositions, while our LMC-based
formulation allows arbitrary tensor constraints to be incorporated into the coregionalization matrix.
Compared to existing BO methods (Srinivas et al., 2009; Belakaria et al., 2019; Chowdhury &
Gopalan, 2021), our work is the first to establish a BO framework for tensor outputs and further
extend it to the proposed CBBO setting. Moreover, our contributions lie in deriving regret bounds
for both TOBO and TOCBBO based on concentration inequalities tailored to the proposed TOGP
under the Bayesian framework.

2 RELATED WORKS

High-order Gaussian process (HOGP): Existing studies for modeling HOGP rely on separable
kernel structures. In particular, Belyaev et al. (2015) proposes a tensor-variate GP with separable
covariance across tensor modes, Kia et al. (2018) develops a scalable multi-task GP for tensor out-
puts by factorizing the cross-covariance kernel into mode-wise and input components, and Zhe et al.
(2019) introduces a scalable high-order GP framework based on Kronecker kernels. While such for-
mulations simplify computation, they inherently assume that correlations across tensor modes are

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

independent of the input, which limits their ability to capture input-dependent dependencies. Re-
cent studies have studied non-separable kernel functions for multi-output GPs (MOGPs), including
convolution emulator-based kernels (Fricker et al., 2013), linear model of coregionalization-based
kernels (Fricker et al., 2013; Li & Zhou, 2016; Bruinsma et al., 2020), and linear damped harmonic
oscillator-based kernels (Hristopulos, 2023). Another equivalent formulation for MOGP is called
multi-task GPs, where each task corresponds to an element of the outputs (Yu et al., 2018; Chowd-
hury & Gopalan, 2021; Maddox et al., 2021). However, these approaches generally treat outputs as
vectors and cannot exploit the inherent multi-mode structure of tensor data, see Section 1.

Multi-output Bayesian optimization (MOBO): MOBO typically refers to either multi-task BO
or multi-objective BO (Frazier, 2018; Wang et al., 2023). A desirable property of BO algorithms
is to be no-regret, i.e., achieving cumulative regret R(T ) = o(T ) after T rounds (Srinivas et al.,
2009; Chowdhury & Gopalan, 2021). Recent works have proposed various MOBO methods with
theoretically grounded acquisition functions. In particular, Chowdhury & Gopalan (2021); Dai et al.
(2020); Sessa et al. (2023) employed UCB for multi-task BO and obtained O(

√
T ) regret. For multi-

objective BO, Belakaria et al. (2019); Zhang et al. (2025) study multi-objective BO using max-value
entropy search and achieved O(

√
T ) regret, and Daulton et al. (2022a) proposes a trust-region-

based criterion with O(
√
T log T ) regret. In contrast, another class of MOBO methods focuses on

empirical performance without regret guarantees, including improvement-based criteria (Uhrenholt
& Jensen, 2019; Daulton et al., 2020; 2022b), entropy-based search criteria (Hernández-Lobato
et al., 2014; 2016; Tu et al., 2022), and information gain-based approaches (Chowdhury & Gopalan,
2021). While effective in multi-output settings, these methods do not directly leverage the structured
tensor correlations and are thus less suitable for our TOBO framework. Furthermore, hypervolume-
based and entropy search-based multi-objective BO methods cannot be applied to tensor outputs
because their prohibitive computational complexity as the number of objectives grows.

Bandit Bayesian optimization (BBO): BBO combines BO with multi-armed bandit algorithms to
handle optimization problems in mixed input spaces with both continuous and categorical variables.
Nguyen et al. (2020); Huang et al. (2022) considers an optimization problem with one continuous
and one categorical variable, integrating BO with MAB-Thompson sampling withO(

√
Tα+1 log T )

regret. Ru et al. (2020) extends this idea to multiple categorical variables, introducing CoCaBO, by
employing EXP3 (Auer et al., 2002) for categorical selection and achieving O(

√
T log T ) regret.

Although such settings can be regarded as special cases of CBBO, directly extending them is chal-
lenging due to the tensor-output structure and the need to jointly select multiple correlated arms.

Table 1: Comparison of related works and our proposed method
GP

Type Literature Tensor
structure

Separable
(Independent

modes)

Non-separable
(Cross-mode
correlations)

BO (Regret) BBO (Regret) CBBO (Regret)

HOGP
Belyaev et al. (2015)

Kia et al. (2018)
Zhe et al. (2019)

√ √
× × × ×

MOGP
Fricker et al. (2013)
Li & Zhou (2016)
Hristopulos (2023)

× ×
√

× × ×

MTBO Dai et al. (2020)
Sessa et al. (2023) ×

√
×

√
(O(
√
T )) × ×

MTBO Chowdhury & Gopalan (2021) ×
√ √ √

(O(
√
T )) × ×

MOBO Belakaria et al. (2019)
Zhang et al. (2025) × × ×

√
(O(
√
T )) × ×

MOBO Daulton et al. (2022a) × × ×
√

(O(
√
T log T )) × ×

BBO Nguyen et al. (2020)
Huang et al. (2022) ×

√
×

√
(O(
√
Tα+1 log T ))

√
(O(
√
Tα+1 log T )) ×

BBO Ru et al. (2020) ×
√

×
√

(O(
√
T log T ))

√
(O(
√
T log T )) ×

TOBO+TOCBBO Our proposed method
√ √ √ √

(O(
√
T log T ))

√
(O(
√
T log T ))

√
(O(
√
T log T ))

3 TENSOR-OUTPUT BAYESIAN OPTIMIZATION

In this section, we propose a novel tensor-output Bayesian optimization (TOBO) framework for
optimizing systems with tensor-valued outputs. Let f : X → Y denote the black-box, expensive-to-
evaluate function, where the input x = (x1, . . . , xd) is a d-dimensional vector defined on a compact
and convex region X ⊂ Rd, and the output f(x) ∈ Y ⊂ Rt1×...×tm is a tensor with m modes.
Denote fi1,...,im(x) as the (i1, . . . , im)-th entry of the tensor, where il = 1, . . . , tl for l = 1, . . . ,m,
and let T =

∏m
l=1 tl be the total number of elements. To optimize tensor-output systems, an intuitive

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

way is to map the tensor-valued objective into a scalar function. To this end, we introduce a bounded
linear operator Lf ∈ L(Y,R), where L(Y,R) denotes the set of bounded linear operators from Y
to R. The optimization problem is thus

x⋆ = argmax
x∈X

Lf f(x). (1)

To solve this problem, the proposed TOBO aims to sequentially select inputs xi and observe the
corresponding tensor outputs,

yi = f (xi) + εi, ∀i = 1, 2, . . . (2)

where εi ∈ Rt1×···×tm denotes i.i.d. measurement noise with vec(εi) ∼ N (0, τ2IT ), and vec :
Y → RT is the vectorization operator.

Based on the collected data, we construct a tensor-output Gaussian process (TOGP) with two classes
of tensor-output kernels to model f , as detailed in Subsection 3.1. Then, we develop a UCB-based
acquisition strategy to efficiently identify the maximizer x⋆, as presented in Subsection 3.2.

3.1 TENSOR-OUTPUT GAUSSIAN PROCESS

Define the prior of f : X → Y as a tensor-output Gaussian process (TOGP):

vec (f(x)) ∼ T OGP
(
µ, σ2K(x,x′)

)
, ∀x,x′ ∈ X , (3)

where µ ∈ RT is the prior mean, σ2 > 0 is a variance hyperparameter, and K(x,x′) ∈ RT×T is a
symmetric and positive semi-definite kernel function. The classes of K(x,x′) is discussed later.

Given n observations Xn = (x1, . . . ,xn)
⊤ and Yn =

(
vec(y1)

⊤, . . . , vec(yn)
⊤)⊤, the posterior

of the vectorized f at a new input x ∈ X is a T -dimensional Gaussian with mean and covariance,

µ̂n(x) = µ+K⊤
n (x) (Kn + ηInT )

−1
(Yn − 1n ⊗ µ) , (4)

K̂n(x,x) = σ2
[
K(x,x)−K⊤

n (x) (Kn + ηInT )
−1

Kn(x)
]
, (5)

where Kn(x) ∈ RnT×T is the block column matrix with i-th block K(xi,x), Kn ∈ RnT×nT is the
block matrix with (i, j)-block K(xi,xj), 1n is the n-dimensional vector of ones, and η = τ2/σ2.

To specify the tensor-output kernel for TOGP, we introduce two classes of kernels. The first class
is the non-separable tensor-output kernel. Specifically, any GP can be represented as a convolution
of white noise processes (Higdon, 2002). For a tensor-output system f with GP prior, each element
of f can be expressed as fi1,...,im(x) =

∫
X gi1,...,im(z − x)wi1,...,im(z)dz, where wi1,...,im(z)

denotes an independent white noise process with zero mean and covariance ki1,...,im(z − z′). In-
spired by the linear model of coregionalization (LMC) (Fricker et al., 2013; Li & Zhou, 2016),
we consider a degenerate choice gi1,...,im(z − x) =

∑m
l=1

∑tl
j=1 Al(i1, . . . , im)δ(z − x), so that

fi1,...,im(x) =
∑m

l=1

∑tl
j=1 Al(i1, . . . , im)wi1,...,im(x), where Al,i1,...,im denotes the (i1, . . . , im)-

th element of the tensor Al ∈ Rt1×···×tm . Expanding the LMC along tensor modes yields
f(x) =

∑m
l=1

∑tl
j=1 Alw(x) with zero mean and the covariance Cov(vec(f(x)), vec(f(x′))) =∑m

l=1

∑tl
j=1 vec(Al) vec(Al)

⊤ klj(x,x
′). The non-separable tensor-output kernel is defined as

Definition 1. Define the non-separable tensor-output kernel K(x,x′) for any x,x′ ∈ X :

K(x,x′) =

m∑
l=1

tl∑
j=1

vec
(
Al

)
vec
(
Al

)⊤
klj(x,x

′), (6)

where Al ∈ Rt1×···×tm is a core tensor and klj(x,x
′) are base kernels (e.g., Matérn or Gaussian)

on X . This construction induces correlations both across and within tensor modes that vary with
the input, thus yielding a non-separable covariance structure.

Furthermore, if all wi1,...,im(z) share the same covariance k(z, z′) for il ∈ [tl], l = 1, . . . ,m, and
the convolution degenerates to gi1,...,im(z) = Ai1,...,imδ(z − x), then the induced tensor-output
kernel reduces to a separable structure as

4
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Definition 2. Define the separable tensor-output kernel K(x,x′) for any x,x′ ∈ X :

K(x,x′) = vec
(
A
)
vec
(
A
)⊤

k(x,x′). (7)

where A ∈ Rt1×···×tm is a core tensor, and k(·, ·) is a base kernel on X . This structure yields a
separable kernel in which the correlations across tensor modes are independent of the input.

Note that K(x,x′) is designed to capture both the correlation across inputs and the correlation
within the tensor output. For the non-separable tensor-output kernel in (6), the base kernel klj(x,x′)
models the covariance between the inputs x and x′, while the matrix vec(Al) vec(Al)

⊤ describes
the covariance structure among the elements of the output tensor. For the separable tensor output
kernel in (7), k(x,x′) captures the input correlation, and vec(A) vec(A)⊤ specifies the mode-wise
covariance structure within the tensor output.
Proposition 1. The kernel function K in Definitions 1–2 for the TOGP is symmetric and
positive semi-definite on X . Specifically: (1) ∀x,x′ ∈ X , the kernel satisfies symmetry:
K(x,x′) = K(x′,x)⊤; (2) ∀y1, · · · ,yn ∈ Y , the Gram matrix is positive semi-definite:∑n

i,j=1 vec(yi)
⊤K(xi,xj)vec(yj) ≥ 0.

Its proof is given in Appendix E. Proposition 1 thus ensures that two classes of tensor-output kernels
yield valid covariance kernels for TOGP, ensuring that the induced TOGP is well defined.
Remark 1. For the core tensors {Al}ml=1 in (6) and A in (7), there are mT and T parameters to be
estimated, respectively. To reduce the complexity, some low-rank decomposition-based structure can
be applied to core tensors, such as CANDECOMP/PARAFAC (CP) decomposition (Goulart et al.,
2015) and tensor-train (TT) decomposition (Oseledets, 2011). Details are shown in Appendix B.

Denote the hyperparameters as Θ =
{
θ,a, σ2, τ2

}
. For the kernel in (6), θ = {θl,j}m,tl

l,j=1 are the
scale parameters of the base kernels {kl,j}, and a = {alij}m,m,tl

l,i,j are the parameters of {Al}ml=1.
For the kernel in (7), θ = {θ1, . . . , θd} is the scale parameters of k, and a = {aij}m,tl

i,j are the
parameters of A. The hyperparameters Θ are estimated via maximum likelihood. The detailed
estimation, algorithm, and complexity analysis are provided in Appendix C.
Remark 2. The ranks of the core tensors Al in the proposed TOGP model are chosen via cross-
validation for l = 1, · · · ,m. Let Rc = {r1, . . . , rc} be the set of candidate ranks, we fit the TOGP
model and evaluate its predictive accuracy on a held-out validation set using the mean absolute
error (MAE) criterion. The selected rank is given by r⋆ = argminr∈Rc

MAE(r), where MAE(r) =
1

ntest

∑ntest
i=1

∥∥∥ fi−f̂i(r)
fi

∥∥∥. The data-driven selection balances model flexibility and complexity, thereby
mitigating overfitting while preserving expressive capacity.

Remark 3. To improve scalability for large tensor outputs, we adopt a Nyström low-rank approxi-
mation strategy. Specifically, based on data Xn and Yn, consider the spectral decomposition Kn =
UnΛnU

⊤
n , where Λn = diag(λ1, λ2, . . . , λnT ) denotes eigenvalues ordered as λ1 ≥ λ2 ≥ . . . ≥

λnT > 0. We approximate Kn using the leading l (≪ nT ) eigenpairs, that is, Kn ≈ UlΛlU
⊤
l ,

where Ul ∈ RnT×l contains the first l eigenvectors and Λl = diag(λ1, . . . , λl). The rank l is se-

lected by cumulative explained variance: l = minl0

{
l0 ∈ {1, . . . , nT} :

∑l0
i=1 λi/

∑nT
i=1 λi ≥ c

}
.

The Nyström method approximates Kn by selecting nl (≪ nT ) landmark columns and extending
a small eigendecomposition, which yields a computational cost of evaluating (Kn + ηInT )

−1 as
O(nTn2

l + n3
l ) (Williams & Seeger, 2000). Thus, the overall computational complexity for training

TOGP becomes O
(
(nTn2

l + n3
l + n2T 2mh) log n

)
.

3.2 UPPER CONFIDENCE BOUND ACQUISITION STRATEGY

Building on the proposed TOGP as a surrogate for f , we now develop a UCB-based acquisition
strategy. At round n + 1, given past observations Xn and Yn, we update the hyperparameters Θn

as well as the posterior mean (4) and covariance (5) of f . The UCB acquisition function for the
scalarization-based objective in (1) is defined as

αUCB(x | Dn) = Lf µ̂n(x) + βn

∥∥K̂n(x,x)
∥∥1/2, (8)

5
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where βn > 0 is a tuning parameter that balances exploration and exploitation. This criterion en-
courages exploration in directions with greater predictive uncertainty under the tensor-output setting.
The next query is then selected by maximizing (8):

xn+1 = argmax
x∈X

αUCB(x | Dn). (9)

The complete TOBO algorithm and its complexity analysis are given in Appendix D.

We now analyze the theoretical properties of the TOBO method under specific conditions. To this
end, we first introduce the following definition for two commonly used regrets.
Definition 3. At each round n, the TOBO method selects a queried input xn ∈ X . The instantaneous
regret is defined as rn = Lf f(x

⋆) − Lf f(xn), and the cumulative regret up to round N is defined
as RN =

∑N
n=1 [Lf f(x

⋆)− Lf f(xn)].

The regret quantifies the gap from not knowing the objective in advance. A good strategy can achieve
a sub-linear cumulative regret, so that the average regret per round converges to zero as N →∞.
Assumption 1. Assume that the true system f is a TOGP with kernel K as defined in (6)–(7).
Assumption 2. The scalarization operator Lf in (1) is L-Lipschitz with respect to f under the l2
norm, i.e., for any xi,xj ∈ X , |Lf (f(xi))− Lf (f(xj)| ≤ L∥f(xi)− f(xj)∥ holds.

Assumption 1 ensures that the objective function f is a TOGP, which is a basic setting under the
Bayesian framework. Assumption 2 demonstrates that the scalarization-based objective is stable
under small perturbations of the input.
Lemma 1. Let ∂vec(f)/∂xj ∈ RT be the gradient of vec(f) with respect to the j-th coordinate of
x ∈ X . Then, ∂vec(f)/∂xj is a GP with covariance K∇(xj , x

′
j). Under Assumptions 1, given data

Xn and Yn with n ≥ 1, there exist constants a, b > 0 such that

Pr

(
sup
x∈X
∥∂vec(f)/∂xj∥ > L′ + C∇

)
≤ a exp(−L′2/b2), j = 1, · · · , d. (10)

where C∇ = supx∈X

√
tr(K̂∇

n (xj , xj)) and L′ > 0.

Its proof is given in Appendix F. Lemma 1 shows that the derivative of the vectorized TOGP remains
Gaussian, and holds high-probability confidence bounds.

Theorem 1. Under Assumptions 1–2, define Cn = supx∈X tr(K̂n(x,x))/λ
(n)
max(x), where

λ
(n)
max(x) is the largest eigenvalue of K̂n(x,x). Suppose X ⊆ [0, r]d. Then for any

δ ∈ (0, 1), the TOBO method with βn =
√
Cn + 2d log(rdn2

(
b
√
log(da/δ) + C∇

)
/δ)

holds that, Pr
(
RN ≤ L

(√
C1γN (K, η)N βN + π2

6

))
≥ 1 − δ, where γN (K, η) :=

maxXN⊂X
1
2 log det

(
INT + η−1KN

)
denotes the maximum information gain.

Its proof is given in Appendix G. Theorem 1 establishes that the cumulative regret of TOBO is
sub-linear with high probability.
Proposition 2. If K(x,x′) is specified as the separable kernel in Definition 2, then the maximum
information gain satisfies γn(K, η) = O

(
T log(n)d+1

)
when k(x,x′) is a Gaussian kernel, and

γn(K, η) = O(Tnd(d+1)/(2ν+d(d+1)) log(n)) when k(x,x′) is a Matérn kernel with smoothness
parameter ν > 1. Details of the analysis are provided in Appendix H.

4 TENSOR-OUTPUT COMBINATORIAL BANDIT BAYESIAN OPTIMIZATION

We now consider a more challenging optimization problem in which only k < T elements of the ten-
sor output can contribute to the objective function. Formally, we define f̃(x,λ) = e(λ)vec(f(x)) ∈
Ỹ , where λ = (λ1, . . . , λT )

⊤ is a binary indicator vector in Λ = {λ ∈ {0, 1}T : 1⊤
nλ = k}

and e(λ) ∈ {0, 1}k×T is a binary selection matrix whose j-th row selects the ij-th coordinate of
vec(f(x)). The goal is to jointly identify the optimal input x⋆ ∈ X and the optimal subset of k
elements, represented by a binary vector λ⋆ ∈ Λ, that maximize

(x⋆,λ⋆) = arg max
x∈X ,λ∈Λ

Hf f̃(x,λ), (11)
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where Hf is a bounded linear operator Hf ∈ L(Ỹ,R). By interpreting each tensor element as
an individual arm, the selected subset of k elements corresponds to a super-arm S, with j ∈ S if
λj = 1 and j /∈ S otherwise. At each round i ∈ [N ], the learner selects an input xi and a super-arm
Si = {i1, . . . , ik} of size k, equivalently encoded by λi ∈ Λ. The observed output is partial tensor
ỹi ∈ Rk indexed by Si, while outputs for unselected elements j /∈ Si remain unobserved.

In this section, we propose a novel tensor-output combinatorial bandit Bayesian optimization
(TOCBBO) framework to solve the above problem. In Subsection 4.1, we extend the TOGP model
for partially observed outputs. In Subsection 4.2, we develop an efficient CMAB-UCB2 acquisition
strategy that combines UCB for input selection with CMAB-UCB for super-arm selection.

4.1 PARTIALLY OBSERVED TENSOR-OUTPUT GAUSSIAN PROCESS

From the proposed TOGP in (3), the prior of f̃ : X×Λ→ Ỹ is a partially observed TOGP (PTOGP):

f̃(x,λ) ∼ PT OGP
(
e(λ)µ(x), τ2e(λ)K(x,x′)e(λ′)⊤

)
, ∀x,x′ ∈ X , λ,λ′ ∈ Λ. (12)

Let Xn = (x1, . . . ,xn)
⊤, Λn = (λ1, . . . ,λn)

⊤, and Ỹn = (ỹ1, . . . , ỹn)
⊤ be n partially ob-

servations, where λi corresponds to the selected super-arm Si, and ỹi = f̃(xi,λi) + ε̃i with
ε̃i

i.i.d.∼ N (µ, τ2Ik). Then, for a new input x and a super-arm S with indicator vector λ, the posterior
distribution of f̃ is a k-dimensional Gaussian with mean and covariance

µ̃n(x,λ) = e(λ)µ(x) + σ2e(λ)K⊤
n (x)E

⊤
n Σ̃

−1
n

(
vec(Ỹn)−En(1n ⊗ µ)

)
, (13)

K̃n(x,x
′;λ,λ′) = σ2

[
e(λ)K(x,x′)e(λ′)⊤ − σ2e(λ)K⊤

n (x)EnΣ̃
−1
n E⊤

nKn(x
′)e(λ′)⊤

]
, (14)

where Σ̃n = σ2EnKnE
⊤
n + τ2Ink, and En ∈ Rnk×nT is a n × n block-diagonal matrix with the

i-block given by e
(
λi). It is easy to verify that the posterior covariance remains positive definite

and symmetric. For hyperparameter estimation, we also employ the maximum likelihood estima-
tion (MLE) framework for training the PTOGP. The detailed estimation, algorithm and complexity
analysis are presented in Appendix C.

4.2 CMAB-UCB2 ACQUISITION STRATEGY

Building on the PTOGP, we now develop the TOCBBO method to sequentially select queried inputs
{x1, . . . ,xN} together with their associated super-arm indicators {λ1, . . . ,λN}. Directly optimiz-
ing (11) over both x and λ is computationally intractable, since identifying the optimal super-arm of
size k from T arms requires a combinatorial search over

(
T
k

)
possible configurations. When coupled

with the continuous optimization over X , this joint problem becomes computationally prohibitive.
To overcome this challenge, we propose a CMAB-UCB2 criterion that decomposes the optimization
into two sequential steps.

At round n + 1, let x⋆
n and λ⋆

n denote the best input and super-arm identified from the previous
n rounds, that is, {x⋆

n,λ
⋆
n} = argmax{xi,λi}, i=1,...,n Hf f̃(xi,λi). In the first step, we fix the

super-arm to λ⋆
n and query the next input by maximizing the UCB acquisition function conditioned

on the fixed super-arm, i.e.,

xn+1 = argmax
x∈X

Hf µ̃n(x,λ
⋆
n) + β̃n∥K̃n(x,x;λ

⋆
n,λ

⋆
n)∥1/2. (15)

In the second step, given the chosen input xn+1, the optimization problem for selecting λn+1 re-
duces to a CMAB problem. To this end, we adopt the CMAB-UCB criterion by constructing an
UCB for each super-arm and selecting the one that maximizes the sum of upper confidence value:

λn+1 = argmax
λ∈Λ

Hf µ̃n(xn+1,λ) + ρ̃n∥K̃n(xn+1,xn+1;λ,λ)∥1/2. (16)

Here, β̃n and ρ̃n are tuning parameters controlling the trade-off between exploration and exploita-
tion. The compute TOCBBO algorithm and its computational complexity analysis are provided in
Appendix D.

We further analyze the regret bound of the TOCBBO method under specific conditions. The regret
for CBBO is defined as follows:

7
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Definition 4. At each round n, the TOCBBO method selects a queried input xn ∈ X and
a super arm Sn with indicator λn ∈ Λ. The instantaneous regret is defined as rn =
Hf f̃(x

⋆,λ⋆) − Hf f̃(xn,λn), and the cumulative regret up to round N is defined as RN =∑N
n=1

[
Hf f̃(x

⋆,λ⋆)−Hf f̃(xn,λn)
]
.

Assumption 3. The operator Hf in (11) is H-Lipschitz with respect to f̃ under the l2 norm, i.e., for
∀xi,xj ∈ X and λi,λj ∈ Λ, |Hf f̃(xi,λi)−Hf f̃(xj ,λj)| ≤ H∥f̃(xi,λi)− f̃(xj ,λj)∥ holds.

Assumption 3 ensures that Hf f̃ varies smoothly to changes for partially observed tensor outputs.

Theorem 2. Under Assumption 1 and Assumption 2, denote C̃n = supx∈X
tr(K̃n(x,x;λ

⋆
n,λ

⋆
n)))

λ
(n)
max(x,λ⋆

n)
,

where λ
(n)
max(x,λ⋆

n) is the largest eigenvalues of K̃n(x,x;λ
⋆
n,λ

⋆
n). For any δ ∈ (0, 1) and η > 0,

the TOCBBO method with βn =
√
C̃n+2d log(

rdn2(b
√

log(da/δ)+C̃∇)

l δ) and ρn =
√
2 log

(
NTπn

δ

)
holds that, Pr

(
RN ≤ L(

√
C1γN (K, η)NβN + π2

6 ) + 2H
√
2TρN γ̃N

(
K̃)

)
≥ 1 − δ, where

γ̃n(K̃, η) = maxΛn⊂Λ
1
2 log det

(
Ikn + η−1EnKnE

⊤
n

)
is the maximum information gain for

super-arms, and πn > 0 is a sequence such that
∑∞

l=1 1/πl = 1.

Its detailed proof is provided in I. Theorem 2 shows that the upper bound on the regret for the
TOCBBO method is sub-linear with a high probability.

5 EXPERIEMENTS

We evaluate the performance of TOBO and TOCBBO using both synthetic and real-case data, and
compare them with several baselines where the tensor output is vectorized and MOGPs are used as
surrogate models. Specifically, we consider three GPs in the literature: (1) sMTGP: the scalable
multi-task GP Kia et al. (2018); (2) MLGP: the multi-linear GP Yu et al. (2018); and (3) MVGP:
the multi-variate GP Chen et al. (2020). For each GP, we examine two sequential BO sampling
strategies: (1) the UCB criterion and (2) random sampling. In addition, we replace the UCB acqui-
sition in TOBO and TOCBBO with random sampling to construct an ablation baseline, denoted as
TOGP-RS. Detailed descriptions of all baseline settings are provided in Appendix K.

5.1 SYNTHETIC EXPERIMENTS

We assume the true f(x) takes the form f(x) = B ⊗1 U1 ⊗2 . . . ⊗m−1 Um−1 ⊗m g(x), where
each element of B ∈ RP1×...Pm is independently sampled from U(0, 1), the ij-th element of Ul ∈
RPl×Tl is defined as li cos(ijl/2) + sin(li), and g(x) = (sin(5x), cos(x)) ∈ RPm×Tm . Here
Pm = d and x ∈ [0, 1]d. We consider three parameter settings for generating f(x): (1) m = 3,
(T1, T2, T3) = (2, 4, 2), (P1, P2, P3) = (3, 3, 3); (2) m = 2, (T1, T2) = (3, 2), (P1, P2) = (3, 2);
and (3) m = 3, (T1, T2, T3) = (4, 5, 2), (P1, P2, P3) = (3, 3, 3). The observations are collected as
yi = f(xi) + εi, where εi

i.i.d.∼ N(0, 0.12I). For CBBO tasks, we set k = T/6.

We generate ntrain = 10d training samples and ntest = 5d testing samples using a Latin hypercube
design (Santner et al., 2003). The training samples are used to estimate hyperparameters, and predic-
tive performance is evaluated on the testing data in terms of NLL, MAE, and ∥Cov∥, with detailed
definitions provided in Appendix K. To balance modeling flexibility and computational complexity,
we use the separable tensor-output kernel in (7) in Settings (1) and (2), and employ the non-separable
tensor-output kernel in (6) in Setting (3). The results are summarized in Table 2. As shown, our pro-

Table 2: The prediction performance of GPs in the three synthetic settings.
Setting (1) Setting (2) Setting (3)

NLL MAE ∥Cov∥ NLL MAE ∥Cov∥ NLL MAE ∥Cov∥
TOGP 503.0 0.1571 2.02 -18.1 0.1052 0.04 -3923.1 0.1372 2.82

sMTGP 749.4 0.1684 1.44 -5.0 0.1566 0.06 -3743.0 0.1501 22.01
MLGP 707937.1 0.9428 67.00 7066.9 0.8789 5.12 -55800.7 1.1670 0.06
MVGP 11152.2 0.6746 22.20 46.54 0.1784 0.10 -2583.1 1.0000 142.72

posed method achieves the lowest NLL and MAE, indicating that TOGP model provides the highest
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prediction accuracy. Among the three baselines, MLGP performs the worst due to its covariance
matrix is singular in this setting, which is more suitable for multi-task learning with varying sample
sizes across tasks. sMTGP outperforms MVGP because sMTGP considers modeling each mode of
the tensor output, and MVGP ignores the tensor structure by vectorizing it into a vector.

Table 3 summarizes the optimization performance of different methods for the BO and CBBO prob-
lems. We set N = 10d and evaluate different methods in terms of MSEx, MAEy , and Acc, as
defined in Appendix K. It is evident that for each GP, its UCB-based sampling strategy consistently

Table 3: The optimization performance of different methods in the three synthetic settings.
Setting (1) Setting (2) Setting (3)

MSEx MAEy Acc MSEx MAEy Acc MSEx MAEy Acc

BO

TOBO 0.0000 0.0008 - 0.0003 0.0350 - 0.0001 0.0050 -
sMTGP-UCB 0.0001 0.0031 - 0.0003 0.0361 - 0.0048 0.0590 -
MLGP-UCB 0.0433 0.3793 - 0.0512 0.9295 - 0.0342 0.6263 -
MVGP-UCB 0.0015 0.0523 - 0.0044 0.0550 - 0.0342 0.6263 -

TOGP-RS 0.0893 0.3145 - 0.0026 0.0351 - 0.0106 0.1526 -
sMTGP-RS 0.0251 0.3242 - 0.0206 0.3684 - 0.0084 0.1223 -
MLGP-RS 0.0433 0.3793 - 0.0435 0.7976 - 0.0075 0.0934 -
MVGP-RS 0.0148 0.2036 - 0.0157 0.2697 - 0.0084 0.1223 -

CBBO

TOCBBO 0.0023 0.0172 1.00 0.0000 0.0000 1.00 0.0021 0.0145 1.00
sMTGP-UCB 0.1832 0.5614 0.67 0.0000 0.0000 1.00 0.0075 0.2171 0.86
MLGP-UCB 0.0667 0.6527 0.33 0.1826 0.0779 1.00 0.2070 0.7105 0.43
MVGP-UCB 0.0032 0.0285 1.00 0.0725 0.0312 1.00 0.0151 0.1988 0.71

TOGP-RS 0.0438 0.5319 0.67 0.0908 0.0395 1.00 0.0512 0.8793 0.43
sMTGP-RS 0.3151 0.5882 0.67 0.1826 0.0779 1.00 0.0117 0.9453 0.29
MLGP-RS 0.1053 0.6909 0.33 0.1826 0.0779 1.00 0.0117 0.9453 0.29
MVGP-RS 0.1313 0.5975 0.33 0.1489 0.0654 0.00 0.0512 0.8793 0.43

outperforms its random sampling strategy. This is intuitive due to UCB’s better theoretical guaran-
tees. Across all the GPs, our proposed TOBO and TOCBBO methods have the smallest MSEx and
MAEy , indicating our selected super-arm and queried input points, together with the consequent
output are closest to the true optimum. As to the other three GP-based methods, sMTGP-UCB
achieves the second-best performance, followed by MVGP-UCB, while MLGP-UCB performs the
worst. This result is consistent with their modeling abilities shown in Table 2.

Finally, we provide each round’s logarithmic instantaneous regret for different methods for BO and
CBBO in Figure 1. We can observe that our TOBO and TOCBBO consistently achieve the lowest
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Figure 1: Each round’s logarithmic instantaneous regret of different methods in the Setting (1) (L),
(2) (M), and (3) (R) for BO (Top row) and CBBO (Bottom row).

instantaneous regret across all the three settings, highlighting their superiority. Some additional
results of synthetic experiments are presented in the Appendix M.
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5.2 CASE STUDIES

We further apply the proposed TOBO and TOBBO to four real-world datasets: (1) CHEM (Shields
et al., 2021): input x ∈ R2 and output y ∈ R4×3×3; (2) MAT (Wang et al., 2020): input x ∈ R4

and output y ∈ R5×4×4; (3) PRINT (Zhai et al., 2023): input x ∈ R5 and output y ∈ R3×4×3; (4)
REEN: input x ∈ R6 and output y ∈ R10×2. A detailed description of these datasets is provided
in Appendix K. Since the renewable energy dataset provides fully observed data, we first evaluate
the modeling performance of different GP surrogates by training on 30 samples and testing on 5
samples randomly selected from the input space. The predictive performance of the four GP models
on the testing data is reported in Table 4, and TOGP achieves the best predictive accuracy. As to the
optimization performance of different methods for BO and CBBO, Figure 2 shows that our proposed
TOBO and TOCBBO also consistently perform the best, demonstrating our applicability in complex
real-world black-box systems.
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Figure 2: Each round’s optimal objective value in REEN for BO (L) and CBBO (R).

Table 4: The prediction performance of GPs in the REEN
dataset.

TOGP sMTGP MLGP MVGP

NLL 15.6664 33.3198 88.2722 48.7167
MAE 0.0883 0.0993 0.0929 0.1054
∥Cov∥ 0.4918 0.3555 0.4318 0.3711

For the other three datasets, since they
only contain partially observed data, we
only evaluate their optimization perfor-
mance under CBBO. Figure 2 shows
that TOCBBO can identify the optimal
inputconsistently using fewer rounds
than the baselines, further demonstrating its superior effectiveness.
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Figure 3: Each round’s optimal objective value in CHEM (L), MAT (M), and PRINT (R).

6 CONCLUSION AND DISCUSSION

In this work, we propose two BO methods for tensor-output systems: TOBO employs two classes of
kernels-based TOGP as a surrogate model and selects query points using a UCB acquisition func-
tion. TOCBBO extends TOGP to the partially observed setting and adopts a CMAB-UCB2 criterion
to sequentially select both the query input and the super-arm. We establish theoretical regret bounds
for both methods and demonstrate their effectiveness through extensive synthetic and real-world ex-
periments. Future work could consider integrating the proposed tensor-output kernels with sparse
techniques, such as sparse GPs (Snelson & Ghahramani, 2005) and scalable LMC (Bruinsma et al.,
2020), to improve the computational efficiency of TOGP. The design of new acquisition functions
can also be explored within this framework. For example, one may combine the TOGP model
with EI or PI with theoretical guarantees (Frazier, 2018), and further extend them to the TOCBBO
framework. In addition, improvement-based acquisition functions (Uhrenholt & Jensen, 2019) and
information-theoretic criteria (Tu et al., 2022) may also be considered into our framework, provided
that the computational challenges associated with tensor outputs can be effectively addressed. Fi-
nally, it is worth to explore more meaningful tensor structures to our proposed framework, such as
spatiotemporal system.
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A USE OF LLMS

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.

B THE DETAILS OF THE TENSOR DECOMPOSITION IN REMARK 1

As discussed in Remark 1, directly estimating the entries of the core tensors {Al}ml=1 or A re-
quires mT parameters for the non-separable tensor-output kernel and T parameters for the separable
tensor-output kernel, which becomes intractable for large-scale or high-order tensors. To reduce this
complexity, we impose low-rank tensor structures. In particular, we adopt different decompositions
depending on the tensor order.

Low-order tensors (m ≤ 3): When the tensor order is small, we employ the CP decomposition:

Al =

Rl∑
r=1

alr1 ◦ alr2 ◦ · · · ◦ alrm for non-separable tensor-output kernel, (17)

A =

R∑
r=1

ar1 ◦ ar2 ◦ · · · ◦ arm for separable tensor-output kernel, (18)

where alri,ari ∈ Rtl for r = 1, . . . , R and i = 1, . . . ,m for r = 1, . . . , R and i = 1, . . . ,m. The
number of free parameters is

∑m
l=1

∑m
i=1 Rlti for the non-separable tensor-output kernel in (6) and

R
∑m

i=1 ti for the separable tensor-output kernel in (7), which grows only linearly in each mode size
ti. Thus, CP provides a very compact representation when m ≤ 3. However, CP decomposition
is often ill-posed for higher-order tensors, since the set of tensors of fixed CP rank is not closed,
implying that a best low-rank approximation may not exist (De Silva & Lim, 2008). In addition, the
factor matrices can easily become ill-conditioned as m increases, leading to numerical instability
(Chi & Kolda, 2012).

High-order tensors (m > 3): When the tensor order is large, we employ the TT decomposition:

Al = Gl1(t1)Gl2(t2) · · ·Glm(tm) for non-separable tensor-output kernel, (19)
A = G1(t1)G2(t2) · · ·Gm(tm) for separable tensor-output kernel, (20)
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where each Glj(tj) is a rl,j−1×tj×rl,j three-mode tensor and the TT-ranks satisfy rl,0 = rl,m = 1
for l = 1, . . . ,m. Similarly, Gj(tj) is a rj−1 × tj × rj three-mode tensor that satisfies r0 = rm =
1. The total number of free parameters is

∑m
l=1

∑m
j=1 rl,j−1tjrl,j for the non-separable tensor-

output kernel in (6) and
∑m

j=1 rj−1tjrj for the separable tensor-output kernel in (7). It scales
linearly with the tensor order m, instead of exponentially as in the full tensor. This makes TT
decomposition highly suitable for high-order tensors (m > 3), as it balances modeling flexibility
with computational scalability and avoids the instability of CP.

Therefore, in our framework we adopt CP decomposition-based for low-order cores and TT
decomposition-based for high-order cores, ensuring both efficiency and robustness across different
tensor settings.

C THE ESTIMATION OF HYPERPARAMETERS FOR THE TOGP AND PTOGP

In this appendix, we provide the details of hyperparameter estimation for both TOGP and PTOGP.
Without loss of generality, we assume a zero prior mean µ = 0 in (3) and (12).

C.1 PARAMETER ESTIMATION FOR TRAINING TOGP

Given the training data Xn = (x1, . . . ,xn) and Yn =
(
vec(y1)

⊤, . . . , vec(yn)
⊤)⊤, the log

marginal likelihood of TOGP is given by:

logL(Θ) = −1

2
log |Σn| −

1

2
Y ⊤
n Σ−1

n Yn, (21)

where Σn = σ2Kn + τ2InT . Then, (21) can be optimized by applying gradient-based optimization
methods, such as L-BFGS algorithm.

The gradients of the log-likelihood function in (21) with respect to the hyperparameters τ2, σ2, θ,
and a is given by

∂ logL

∂τ2
=

1

2
tr
(
Σ−1

n Kn

)
− 1

2
Y ⊤
n Σ−1

n KnΣ
−1
n Yn, (22)

∂ logL

∂σ2
=

1

2
tr
(
Σ−1

n

)
− 1

2
Y ⊤
n Σ−1

n Σ−1
n Yn, (23)

∂ logL

∂θlij
=

τ2

2
tr

(
Σ−1

n

∂Kn

∂θlij

)
− τ2

2
Y ⊤
n Σ−1

n

∂Kn

∂θlij
Σ−1

n Yn, (24)

∂ logL

∂alij
=

1

2
tr

(
Σ−1

n τ2
∂Kn

∂alij

)
− τ2

2
Y ⊤
n Σ−1

n

∂Kn

∂alij
Σ−1

n Yn, (25)

where θlij represents the scale parameters of klj , the kernel function associated with the l-th mode.
The matrices ∂Kn

∂θlij
and ∂Kn

∂alij
are the partial derivatives of the kernel matrix with respect to the

corresponding kernel parameters.

The detailed algorithm for training TOGP is given as follows:

Algorithm 1 Parameter estimation for training TOGP
Input: Training data Xn and Yn, initial hyperparameters Θ0 = {σ2

0 , τ
2
0 ,θ0,a0};

Initialize: σ2 ← σ2
0 , τ2 ← τ20 , θ ← θ0 a← a0;

1: while τ2, σ2, θ, ω not converge do
2: Update τ2 based on (22);
3: Update σ2 based on (23);
4: Update θ based on (24);
5: Update a based on (25).
6: end while

Remark 4. For the non-separable tensor-output kernel in Definition 1, the total number of hy-
perparameters to be estimated in TOGP is mh = 2 + T +

∑m
l=1

∑m
i=1 Rlti when m ≤ 3 and
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mh = 2+T +
∑m

l=1

∑m
j=1 rl,j−1tjrl,j when m > 3. For the separable tensor-output kernel in Def-

inition 2, the total number of hyperparameters to be estimated in TOGP is mh = 2+T +R
∑m

i=1 ti
when m ≤ 3 and mh = 2 + T +

∑m
j=1 rj−1tjrj when m > 3. The computational complexity

of computing the gradient of logL(Θ) with respect to all mh parameters is O(n3T 3 + n2T 2mh).
When using the L-BFGS algorithm to optimize the likelihood function results, the number of itera-
tions typically scales asO (log(n)) (Bottou, 2010). Therefore, the overall computational complexity
for training the TOGP takes O

(
n3T 3 log(n) + n2T 2mh log(n)

)
computational complexity.

C.2 PARAMETER ESTIMATION FOR TRAINING PTOGP

Given the partially observed training data Xn = (x1, . . . ,xn), Λn = (λ1, . . . ,λn)
⊤, and Ỹn =

(ỹ1, . . . , ỹn)
⊤, the log marginal likelihood of PTOGP is given by:

log L̃(Θ) = −1

2
log |Σ̃n| −

1

2
vec(Ỹn)

⊤Σ̃−1
n vec(Ỹn), (26)

where Σ̃n = σ2EnKnE
⊤
n + τ2Ink. Then, (26) can also be optimized by applying gradient-based

optimization methods.

The gradients of the log-likelihood function in (26) with respect to the hyperparameters σ2, τ2, θ,
and a is given by

∂L̃

∂τ2
=

1

2
tr
(
Σ̃−1

n EnKnE
⊤
n

)
− 1

2
Ỹn

⊤
Σ̃−1

n EnKnE
⊤
n Σ̃

−1
n Ỹn, (27)

∂L̃

∂σ2
=

1

2
tr
(
Σ̃−1

n

)
− 1

2
Ỹn

⊤
Σ̃−1

n Σ̃−1
n Ỹn, (28)

∂L̃

∂θlij
=

τ2

2
tr

(
Σ̃−1

n En
∂Kn

∂θlij
E⊤

n

)
− τ2

2
Ỹn

⊤
Σ̃−1

n En
∂Kn

∂θlij
E⊤

n Σ̃
−1
n Ỹn, (29)

∂L̃

∂alij
=

τ2

2
tr

(
Σ̃−1

n En
∂Kn

∂alij
E⊤

n

)
− τ2

2
Ỹn

⊤
Σ̃−1

n En
∂Kn

∂alij
E⊤

n Σ̃
−1
n Ỹn, (30)

The detailed algorithm for training PTOGP is given as follows:

Algorithm 2 Parameter estimation for training PTOGP

Input: Training data Xn, Λn and Ỹn, initial hyperparameters Θ0 = {σ2
0 , τ

2
0 ,θ0,a0};

Initialize: σ2 ← σ2
0 , τ2 ← τ20 , θ ← θ0 a← a0;

1: while σ2, τ2, θ, a not converge do
2: Update τ2 based on (27);
3: Update σ2 based on (28);
4: Update θ based on (29);
5: Update a based on (30).
6: end while

Remark 5. For the non-separable tensor-output kernel in Definition 1, the total number of hy-
perparameters to be estimated in PTOGP is mh = 2 + T +

∑m
l=1

∑m
i=1 Rlti when m ≤ 3 and

mh = 2+T+
∑m

l=1

∑m
j=1 rl,j−1tjrl,j when m > 3. For the separable tensor-output kernel in Defi-

nition 2, the total number of hyperparameters to be estimated in PTOGP is mh = 2+T+R
∑m

i=1 ti
when m ≤ 3 and mh = 2 + T +

∑m
j=1 rj−1tjrj when m > 3. The computational complexity of

computing the gradient of L̃(Θ) with respect to all mh parameters is O(k3T 3 + n2kTmh). When
using the L-BFGS algorithm to optimize the likelihood function results, the number of iterations
typically scales as O (log(n)) Bottou (2010). Therefore, the overall computational complexity for
training the PTOGP takes O

(
n3k3 log(n) + n2kTmh log(n)

)
computational complexity.
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D THE PROPOSED ALGORITHMS AND COMPUTATIONAL COMPLEXITY
ANALYSIS

D.1 UCB-BASED TOBO ALGORITHM

The detailed procedure of the proposed TOBO method is given in Algorithm 3.

Algorithm 3 UCB-based TOBO
Input: Total rounds N , initial dataset D0 = ∅, initial hyperparameters Θ0;
1: for round n = 1, . . . , N do
2: Update the posterior mean (4) and covariance (5) of f given Θn−1;
3: Select the next input xn ← argmaxx∈X αUCB(x | Dn−1);
4: Evaluate the black-box system and observe output yn;
5: Update dataset Dn ← Dn−1 ∪ {xn,yn};
6: Update hyperparameters Θn by maximizing (21) with L-BFGS;
7: end for
8: Identify i⋆ = argmaxi∈[N ] Lf f(xi);
9: Output: Optimal input xi⋆ and corresponding output yi⋆ .

Remark 6. When using the TOBO method to select x⋆, the computational complexity of updating
TOGP isO

(
(n− 1)3T 3

)
at round n. Then, the computational complexity of querying the next point

isO
(
(n− 1)2T 2 log(n)

)
by using the L-BFGS method. After updating the design dataset, the com-

putational complexity of updating the hyperparameters Θ is O
(
n3T 3 log(n) + n2T 2mh log(n)

)
.

Thus, the computational complexity of TOBO at round n is O
(
n3T 3 log(n) + n2T 2mh log(n)

)
.

Suppose that there are N points needed to query, the total computational complexity of Algorithm 3
is O

(∑N
n=1

[
n3T 3 log(n) + n2T 2mh log(n)

])
.

D.2 CMAB-UCB2-BASED TOCBBO ALGORITHM

The detailed algorithm of TOCBBO is provided in Algorithm 4.

Algorithm 4 CMAB-UCB2-based TOCBBO

Input: Total rounds N , initial dataset D̃0 = ∅, initial hyperparameters Θ0;
1: for round n = 1, . . . , N do
2: Update the posterior mean (13) and covariance (14);
3: Select the next input xn using (15);
4: Select the super-arm λn using (16);
5: Evaluate f under (xn,λn) and observe ỹn;
6: Update dataset D̃n ← D̃n−1 ∪ {(xn,λn), ỹn};
7: Update hyperparameters Θn by maximizing log L̃(Θ) with L-BFGS;
8: Update incumbent solution {x⋆

n,λ
⋆
n} = argmaxi=1,...,n Hf f̃(xi,λi);

9: end for
10: Identify i⋆ = argmaxi∈[N ] Hf f̃(xi,λi);
11: Output: Optimal input xi⋆ , optimal super-arm λi⋆ , and output ỹi⋆ .

Remark 7. When using the proposed TOCBBO method to jointly select x⋆ and λ⋆, the compu-
tational complexity of updating the PTOGP at round n is O

(
(n− 1)3k3

)
. Then, based on the

proposed CMAB-UCB2 criterion, the computational complexity of querying the next input by us-
ing L-BFGS method is O

(
(n− 1)2k2

)
and selecting the next super-arm by using greedy Top-k

method is O(kT 3), respectively. After updating the current design dataset, the computational
complexity of updating hyperparameters Θ is O(n3k3 log(n) + n2kTmh log(n)). Therefore, at
round n, the computational complexity of TOCBBO method is O(n3k3 log(n) + n2kTmh log(n) +
kT 3). Assuming a total of N rounds, the overall computational complexity of Algorithm 4 is

O
(∑N

n=1

[
n3k3 log(n) + n2kTmh log(n) + kT 3

])
.
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E THE PROOF OF PROPOSITION 1

Proof. We prove symmetry and positive semi-definite for the two kernel classes in Definitions 1–2.

Non-separable kernel (Definition 1): Denote aℓ := vec(Aℓ) ∈ RT (resp. a := vec(A) ∈ RT ).
The tensor-output kernel is

K(x,x′) =

m∑
ℓ=1

tℓ∑
j=1

aℓa
⊤
ℓ kℓj(x,x

′) , x,x′ ∈ X , (31)

where each kℓj is a scalar positive semi-definite kernel.

For any x,x′ ∈ X , we have

K(x,x′)⊤ =
∑
ℓ,j

(
aℓa

⊤
ℓ

)⊤
kℓj(x,x

′)

=
∑
ℓ,j

aℓa
⊤
ℓ kℓj(x,x

′)

=
∑
ℓ,j

aℓa
⊤
ℓ kℓj(x

′,x)

= K(x′,x), (32)

This shows that the full tensor-output kernel K is symmetric.

Let {xi}ni=1 ⊂ X and {yi}ni=1 ⊂ RT be arbitrary. Then, we have

n∑
i,j=1

y⊤
i K(xi,xj)yj =

∑
ℓ,j

∑
i,j

y⊤
i

(
aℓa

⊤
ℓ

)
yj kℓj(xi,xj)

=
∑
ℓ,j

∑
i,j

sℓj,i kℓj(xi,xj) sℓj,j , (33)

where sℓj,i := a⊤
ℓ yi ∈ R. For each fixed (ℓ, j), the matrix

[
kℓj(xi,xj)

]n
i,j=1

is positive semi-
definite, so

∑
i,j sℓj,i kℓj(xi,xj) sℓj,j ≥ 0. Summing over (ℓ, j) preserves nonnegativity, hence the

Gram matrix induced by K is positive semi-definite.

Separable kernel (Definition 2): The kernel is

K(x,x′) = aa⊤ k(x,x′) , x,x′ ∈ X , (34)

where k is a scalar positive semi-definite kernel. Since
(
aa⊤)⊤ = aa⊤ and k(x,x′) = k(x′,x),

we have K(x,x′)⊤ = K(x′,x). For arbitrary {xi}ni=1 and {yi}ni=1,
∑n

i,j=1 y
⊤
i K(xi,xj)yj =∑

i,j

(
a⊤yi

)
k(xi,xj)

(
a⊤yj

)
≥ 0, because the Gram matrix

[
k(xi,xj)

]
is positive semi-definite.

Therefore, both kernel classes are symmetric and generate positive semi-definite Gram matrices
for any finite set of inputs, i.e., they are valid tensor-output kernels on X . Then completing the
proof.

F THE PROOF OF LEMMA 1

Proof. First, for a tensor-output system vec(f(x)) follows a TOGP defined in (3), denote the deriva-
tive field of vec(f(x)) to the j-coordinate element of x as gj(x) := ∂vec(f(x))/∂xj , where
vec
(
f(x)

)
∈ RT and j ∈ {1, . . . , d}. According to the derivative property of GP (Santner et al.,

2003), we have gj(x) ∈ R⊤ is a multivariate-output GP with mean µ̂∇
n (xj) := ∂

∂xj
µn(x) and

covariance K̂∇
n (xj , x

′
j) := Cov(gj(x),gj(x

′)) = ∂2

∂xj ∂x′
j
σ2K(x,x′).
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At round n+ 1, the observed data is denoted as Xn and Yn, then we have the posterior distribution
of gj(x) is a T -dimensional Gaussian with mean and covariance

K̂∇
n (xj , x

′
j) =

∂µ̂n(x)

∂xj
(35)

K̂∇
n (xj , x

′
j) =

∂2K̂n(x,x)

∂xj ∂x′
j

. (36)

It is easy to verify that K̂∇
n (xj , x

′
j) is positive semi-definite for every x.

For any fixed x ∈ X , given Xn and Yn, the random vector

gj(x)− µ̂∇
n (xj) ∼ N

(
0, K̂∇

n (x,x; j)
)
. (37)

Applying the Gaussian Lipschitz concentration (Proposition 2.5.2 and Theorem 5.2.2 in Pa-
paspiliopoulos (2020)) to the norm ∥ · ∥2 yields, for all t > 0,

Pr

(∥∥gj(x)− µ̂∇
n (xj)

∥∥ ≥ √
tr
(
K̂∇

n (xj , xj)
)
+ t

)
≤ exp

(
− t2

2λ
(n)
max(xj)

)
, (38)

where λ
(n)
max(x; j) is the largest eigenvalue of K̂∇

n (x,x; j).

Let DM = {x1, . . . ,xM} ⊂ X be any finite discretization. Using (38) with

t(x) =

√
2λ

(n)
max(xj) log(M/δ),

and applying the union bound, we obtain with probability at least 1− δ,∥∥gj(x)− µ̂∇
n (xj)

∥∥ ≤ √
tr
(
K̂∇

n (xj , xj)
)
+

√
2λ

(n)
max(xj) log(M/δ), ∀x ∈ DM . (39)

Let C∇ := supx∈X

√
tr
(
K̂∇

n (xj , xj)
)

and Λ∇ := supx∈X λ
(n)
max(xj), then (39) implies that, with

probability at least 1− δ,

∥gj(x)∥ ≤
∥∥µ̂∇

n (xj)
∥∥ + C∇ +

√
2Λ∇ log(M/δ), ∀x ∈ DM . (40)

Assume the kernel is sufficiently smooth so that gj(·) has almost surely Lipschitz sample paths.
Then there exist absolute constants a, b > 0 (depending on the Lipschitz modulus and a covering-
number bound of X ) such that for any L′ > 0,

Pr

(
sup
x∈X
∥gj(x)∥ > L′ + C∇

)
≤ a exp

(
− (L′)2

b2

)
. (41)

This follows by combining the net bound (40) with a standard chaining argument to pass from a
finite net to the full domain; the Gaussian tail is preserved with a possible adjustment of absolute
constants into a, b. Then completing the proof.

G THE PROOF OF THEOREM 1

Proof. The proof consists of two main parts. We first establish a concentration inequality for
vec(f(x)) for any x ∈ X , and then use this result to derive an upper bound for the regret.

Part 1. Concentration inequality. We begin by proving a concentration inequality for vec(f(x))
evaluated on a discrete set of points in the domain X . We then extend the result to neighborhoods
of these discrete points, and ultimately to the entire space X .

We first prove a basic concentration inequality for a general T -dimensional Gaussian distribution,
i.e., Z ∼ N (µ,K). If we define U = Z − µ and set another T -dimensional standard Gaussian
distribution V ∼ N (0, IT ), we can obtain

U
d
= K1/2V , ∥U∥ = ∥K1/2V ∥.
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Define the function f(U) ≜ ∥K1/2V ∥. For any U ,U ′, we have

|f(U)− f(U ′)| ≤ ∥K1/2(U −U ′)∥ ≤ ∥K1/2∥op ∥U −U ′∥ =
√

λmax(K) ∥U −U ′∥,
where λmax(K) is the maximum eigenvalue of K. Therefore f is a Lipschitz function with constant
L =

√
λmax(K).

According to Proposition 2.5.2 and Theorem 5.2.2 in Papaspiliopoulos (2020), we have the follow-
ing concentration inequality for a Lipschitz function of a standard Gaussian distribution:

Pr
(
f(U) ≥ E[f(U)] + t

)
≤ exp

(
− t2

2L2

)
.

Substituting f and L, we obtain

Pr
(
∥Z − µ∥ ≥ E[∥Z − µ∥] + t

)
≤ exp

(
− t2

2λmax(K)

)
.

Since
E[∥Z − µ∥] ≤

√
E[∥Z − µ∥2] =

√
tr(K),

we get the final result for a general Gaussian distribution:

Pr
(
∥Z − µ∥ ≥

√
tr(K) + t

)
≤ exp

(
− t2

2λmax(K)

)
. (42)

Define the discrete setDM = {x1, . . . ,xM} ⊂ X . According to the above concentration inequality,
we have

Pr

(
∥vec(f(x))− µ̂n(x)∥ >

√
tr(K̂n(x,x)) + z

)
≤ exp

(
− z2

2λ
(n)
max(x)

)
, ∀x ∈ DM ,

where λ
(n)
max(x) is the maximum eigenvalue of K̂n(x,x).

By setting z =

√
2λ

(n)
max(x) log

M
δ , we obtain

Pr

(
∥vec(f(x))− µ̂n(x)∥ ≤ βn

√
λ
(n)
max(x)

)
≥ 1− δ, ∀x ∈ DM , (43)

where

βn =

√
sup
x∈X

tr(K̂n(x,x))

λ
(n)
max(x)

+

√
2 log

M

δ
=
√

Cn +

√
2 log

M

δ
.

From Lemma 1, we obtain that
∥vec(f(x))− vec(f(x′))∥ ≤ (L′ + C∇)∥x− x′∥1

holds with probability at least 1− a exp(−L′2/b2) for all x,x′ ∈ X .

Then, at round n, we set the size of DM(n) as (τn)d, i.e., M(n) = (τn)
d. For x ∈ DM(n), we have

∥x− [x]n∥1 ≤ rd
τn
,

where [x]n is the closest point in DM(n) to x.

Using the above equations, if we set L′ = b
√
log da

δ , we obtain

∥vec(f(x))− vec(f([x]n))∥ ≤
(
b
√

log da
δ + C∇

)
∥x− [x]n∥1 ≤

(
b
√

log da
δ + C∇

)rd
τn

with probability at least 1− δ for all x ∈ X .

Choosing τn = rdn2(b
√
log da

δ + C∇), we have

Pr
(
∥vec(f(x))− vec(f([x]M ))∥ ≤ 1

n2

)
≥ 1− δ, ∀x ∈ X .

Combining the above results, we obtain

Pr
(
∥vec(f(x⋆))− µ̂([x⋆]n)∥ ≤ βn

√
λ
(n)
max([x⋆]n) +

1
n2

)
≥ 1− δ,

where [x⋆]n is the closest point in DM(n) to x⋆, and

βn =
√
Cn + 2d log

(
rdn2(b

√
log(da/δ)+C∇)

δ

)
.
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Part 2. Regret bound. According to the Lipschitz property of h, we have

rn = h(x⋆)− h(xn) ≤ L∥vec(f(x⋆))− vec(f(xn))∥, (44)

where L > 0 is the Lipschitz constant.

Since

µ̂n−1(xn) + βn

√
λ
(n−1)
max (xn) ≥ µ̂n−1([x

⋆]n) + βn

√
λ
(n−1)
max ([x⋆]n) ≥ vec(f(x⋆))− 1

n2 ,

we have

rn ≤ L
(
2βn

√
λ
(n−1)
max (xn) +

1
n2

)
. (45)

We first consider the first term:

4β2
nλ

(n−1)
max (xn) ≤ 4β2

Nη
(
η−1λ(n−1)

max (xn)
)
≤ 4β2

NηC2 log
(
1 + η−1λ(n−1)

max (xn)
)

≤ 4β2
NηC2 log

∣∣IT + η−1K̂n−1(xn,xn)
∣∣,

where C2 is a constant.

Define C1 = 4ηC2. Then
N∑

n=1

4β2
nλ

(n−1)
max (xn) ≤ C1Nβ2

N

N∑
n=1

log
∣∣IT + η−1K̂n−1(xn,xn)

∣∣ ≤ C1Nβ2
NγN ,

where the last inequality holds by the definition of γN .

Since
∑N

n=1
1
n2 ≤ π2

6 , we have the final result:

N∑
n=1

rn ≤ L
(√

C1γNN βN + π2

6

)
. (46)

Then completing the proof.

H THE PROOF OF PROPOSITION 2

Proof. We start from the definition of the (maximum) information gain:

γn(K, η) = max
Xn

1

2
log det

(
InT + η−1σ2 Kn

)
, Kn :=

[
K(xi,xj)

]n
i,j=1

∈ RnT×nT . (47)

Under the separable kernel in Definition 2, we have

K(x,x′) =
(
vec(A)vec(A)⊤

)
k(x,x′) =: B k(x,x′), (48)

where B := vec(A)vec(A)⊤ ∈ RT×T . Then, the Gram matrix factorizes as a Kronecker product

Kn = KX ⊗B, KX := [k(xi,xj)]
n
i,j=1 ∈ Rn×n. (49)

Let {αi}ni=1 be the eigenvalues of KX and {βj}Tj=1 be the eigenvalues of B. By the spectral
property of the Kronecker product, the eigenvalues of KX ⊗ B are {αiβj : i = 1, . . . , n, j =
1, . . . , T}. Therefore, we have

log det
(
InT + η−1σ2(KX ⊗B)

)
=

n∑
i=1

T∑
j=1

log
(
1 + c αi βj

)
, c := η−1σ2. (50)

For each fixed i, the function u 7→ log(1 + c αi u) is non-decreasing for u ≥ 0, hence

T∑
j=1

log
(
1 + c αi βj

)
=

∑
j:αj>0

log
(
1 + c αi βj

)
≤ T · log

(
1 + c αi βmax

)
, (51)
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where βmax := maxj βj . Summing over i = 1, . . . , n and multiplying by 1/2 gives

γn(K, η) ≤ T

2

n∑
i=1

log
(
1 + c βmax λi

)
= T · γn

(
k♯, η

)
, (52)

where k♯ := βmax k is simply a rescaled version of k. Since rescaling by a positive constant does
not change the asymptotic order of the information gain, we obtain the general comparison bound

γn(K, η) ≤ T · γn(k, η) .

In our specific setting, the tightest bound is γn(K, η) = O(Tγn(k, η)). Finally, we substitute known
results for the scalar kernel k: (i) If k is the Gaussian (squared exponential) kernel in d dimensions,
then

γn(k, η) = O
(
(log n)d+1

)
,

which gives
γn(K, η) = O

(
T (log n)d+1

)
.

(ii) If k is a Matérn kernel with smoothness parameter ν > 1, then

γn(k, η) = O
(
n

d(d+1)
2ν+d(d+1) log n

)
,

which gives

γn(K, η) = O
(
T n

d(d+1)
2ν+d(d+1) log n

)
.

Then completing the proof.

I THE PROOF OF THEOREM 2

Denote h̃(x,λ) = Hf f̃(x,λ), then we have

h̃(x⋆,λ⋆)− h̃(xn,λn) =
[
h̃(x⋆,λ⋆)− h̃(xn,λ

⋆)
]
+
[
h̃(xn,λ

⋆)− h̃(xn,λn)
]

= r1n + r2n.

For the first item, according to the Cauchy-Schwarz inequality, we have

Hf f̃(x,λ)−Hf µ̃n(x,λ) ≤ H∥f̃(x,λ)− µ̃n(x,λ)∥. (53)

Similar to the proof of Theorem 1, we provide the following lemma.

Lemma 2. Under Assumption 1–3, suppose the noise vectors
{
vec(εi)

}
i≥1

are independently and
identically distributed in N(0, σ2Ik). Then, for any δ ∈ (0, 1], with probability at least 1 − δ,
∥f̃(x,λ)− µ̃n(x,λ)∥2 ≤ β̃n∥K̃n(x,x;λ,λ)∥1/2 holds uniformly over all x ∈ X and λ ∈ Λ and

i ≥ 1, where βn =
√
C̃n +2d log(

rdn2(b
√

log(da/δ)+C̃∇)

l δ), C̃n = supx∈X
tr(K̃n(x,x;λ

⋆
n,λ

⋆
n)))

λ
(n)
max(x,λ⋆

n)
, and

C̃∇ = supx∈X

√
tr(K̃∇

n (xj , xj)).

From Lemma 2 and (53), we have

Hf f̃(x,λ)−Hf µ̃n(x,λ) ≤ H∥f̃(x,λ)− µ̃n(x,λ)∥ ≤ Hβ̃n∥K̃n(x,x;λ,λ)∥1/2.

Then, we have

r1n = h̃(x⋆,λ⋆)− h̃(xn,λ
⋆)

≤ Hf (µ̃n(x
⋆,λ⋆)) +Hβ̃n∥K̃n−1(x

⋆,x⋆)∥1/2 −Hf (f̃(xn,λ
⋆))

≤ 2Hβ̃n−1∥K̃n−1(xn,xn;λ
⋆,λ⋆)∥1/2.
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And then we obtain

R1N :=

N∑
n=1

r1n ⩽ 2Hβ̃n−1∥K̃n−1(xn,xn;λ
⋆,λ⋆)∥1/2

≤ 2H

(√
C1γN (K̃, η)N β̃N + π2

6

)
.

For the second item, followed in Accabi et al. (2018), we have

r2n = h̃(x⋆,λ⋆)− h̃(xn,λn)

≤ 2
√
T ρ̃n−1∥K̃n−1(xn,xn)∥1/2.

And we obtain that

R2N :=

N∑
n=1

r2n ⩽ 2
√
T ρ̃N

N∑
n=1

∥Kλ,n−1(xn,xn)∥1/2

≤ 2ρ̃N γ̃n(K̃).

Then we have the cumulative regret over N rounds is bounded by

rn ≤ r1n + r2n

≤ 2H

(√
C1γN (K̃, η)N β̃N + π2

6

)
+ 2H

√
2TρN γ̃N

(
K̃).

J THE PROOF OF PROPOSITION 2

Proof. Based on the definition of the (maximum) information gain, we have

γn(K, η) = max
Xn

1

2
log det

(
Im + cKn

)
, c := η−1σ2, (54)

where the Gram matrix takes the form

Kn = EKE⊤, K = B⊗KX ,

with KX = [k(xi,xj)]
n
i,j=1 ∈ Rn×n, B = vec(A)vec(A)⊤ ∈ RT×T .

By Sylvester’s identity, we have

det
(
Ink + cEnKE⊤

n

)
= det

(
InT + cK1/2E⊤

nEnK
1/2
)
. (55)

Since En selects rows, 0 ⪯ E⊤
n En ⪯ InT , hence

log det
(
Ink + cEnKE⊤

n

)
= log det

(
InT + cK1/2E⊤

nEnK
1/2
)

(56)

≤ log det
(
InT + cK

)
. (57)

Under Definition 2, K = B⊗KX with eigenvalues {αi}ni=1 of KX and {βj}Tj=1 of B; thus B⊗KX

has eigenvalues {αiβj}. Therefore

log det
(
InT + c(B⊗KX)

)
=

n∑
i=1

T∑
j=1

log
(
1 + c αiβj

)
.

Set βmax := maxj βj . Since u 7→ log(1 + cαiu) is non-decreasing on u ≥ 0,

T∑
j=1

log
(
1 + c αiβj

)
=
∑
βj>0

log
(
1 + c αiβj

)
≤ T log

(
1 + c αiβmax

)
. (58)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Summing over i and combining with (57),

γn(K, η) ≤ r

2

n∑
i=1

log
(
1 + c βmaxαi

)
= T · γn(k♯, η), (59)

where k♯ := βmax k is a rescaled scalar kernel.

Since positive rescaling does not change the asymptotic order of information gain, hence

γn(K, η) ≤ T γn(k, η).

Thus, the tight bound of PTOGP is γn(K, η) = O(Tγn(k, η)).
Using standard bounds for scalar kernels k in d dimensions, we have

γn(k, η) = O
(
(log n)d+1

)
(Gaussian), γn(k, η) = O

(
n

d(d+1)
2ν+d(d+1) log n

)
(Matérn, ν > 1).

(60)

And then we obtain

γn(K, η) = O
(
r(log n)d+1

)
or γn(K, η) = O

(
r n

d(d+1)
2ν+d(d+1) log n

)
, (61)

respectively. Completing the proof.

K DETAILED SETTINGS OF THE EXPERIMENTS

K.1 DETAILED SETTINGS OF SYNTHETIC EXPERIMENTS

The setting of simulations are as follows:

• Compute resources: All experiments were run on a Windows 10 Pro (Build 19045) desk-
top with an Intel Core i9-7900X CPU (3.10 GHz) and 32 GB RAM.

• Kernel setting: We use the Matérn kernel function with the smoothing parameter ν = 5/2
as the input kernel for different GPs.

• Data setting: For the GP prediction, we generate ntrain = 10d training samples for es-
timating hyperparameters and ntest = 5d testing samples for predicting. In the BO and
CBBO framework, we generate n0 = 5d initial design points based on Latin Hypercube
Sampling (LHS), and N = 10d sequential design points.

• Criteria: To compare the GPs prediction performance of different methods, we use the
following criteria:
(1) Negative Log-Likelihood (NLL): It measures how well a probabilistic model fits the
observed data. For given data Xn and Yn, the NLL is defined as NLL = 1

2 log(τ
2Kn +

σ2InT ) +
1
2Y

⊤
n (τ2Kn + σ2InT )

−1Yn.

(2) Mean Absolute Error (MAE): MAE = 1
ntest

∑ntest

i=1 ∥
yi−ŷi

yi
∥.

(3) Covariance Operator Norm (∥Cov∥): ∥K̂n∥ = sup∥v∥=1 ∥K̂n∥.
For the BO framework, we use the the mean squared error of inputs (MSEx) and the
mean absolute error of outputs MAEy to compare the optimization performance of dif-
ferent methods. Here MSEx = ∥x⋆ − x⋆

N∥2, and MAEy = ∥ f
⋆−f⋆N
f⋆ ∥ over N rounds. For

the CBBO framework, we add the Acc criterion to compare the match between the optimal
super arm and the super arm chosen over N rounds, that is, Acc = Iλ⋆=λN

/k, where I is a
indictor function.

K.2 DETAILED SETTINGS OF CASE STUDIES

The detailed datasets of case studies are as follows:

Chemistry reaction (CHEM): Reaction optimization is fundamental to synthetic chemistry, from
improving yields in industrial processes to selecting reaction conditions for drug candidate synthesis.
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According to Shields et al. (2021), we aim to evaluate the reaction parameters (x1: concentration,
x2: temperature) to improve the experimental yields (y : 4 × 3 × 3) of palladium-catalysed direct
arylation reaction under varying bases (Mode 1), ligands (Mode 2), and solvents (Mode 3).

PS/PAN material (MAT): Electrospun polystyrene/polyacrylonitrile (PS/PAN) materials are com-
monly used as potential oil sorbents for marine oil spill remediation. From Wang et al. (2020), we
aim to optimize the fabrication parameters of PS/PAN materials, including spinneret speed (x1),
collector distance (x2), applied voltage (x3), and fiber diameter (x4), to improve their oil absorption
capacity (y : 5 × 4 × 4) under varying PS content (Mode 1), mass fraction (Mode 2), and SiO2

content (Mode 3).

3D printing (PRINT): Material extrusion-based three-dimensional printed products have been
widely used in aerospace, automotive, and other fields. Following Zhai et al. (2023), we focus
on selecting appropriate process parameters (x1: layer thickness, x2: platform temperature, x3:
nozzle temperature, x4: infill density, and x5: printing speed) to reduce variations in part quality
(y : 3× 4× 3) caused by different printer nozzles (Mode 1) and printing geometries (Mode 2). The
quality (Mode 3) is evaluated in terms of compression deformation, compressive strength, and the
printing cost.

Renewable energy (REEN): Climate change affects the availability and reliability of renewable
energy sources such as wind, solar, and hydropower. We employ the operational energy dataset
from the Copernicus Climate Change Service (https://cds.climate.copernicus.eu/
datasets/sis-energy-derived-reanalysis?tab=overview) to explore the cli-
mate conditions that are most beneficial to renewable energy generation in various European nations.
The climate-related variables, used as input features, include air temperature (x1), precipitation (x2),
surface incoming solar radiation (x3), wind speed at 10 meters (x4) and 100 meters (x5), and mean
sea level pressure (x6). The energy-related indicators (y : 10 × 2) collected from ten European
countries (Mode 1), used as outputs, include the capacity factor ratio of solar photovoltaic power
generation and wind power generation onshore (Mode 2).

L THE COMPARISON OF COMPUTATIONAL COMPLEXITY FOR BASELINES

To provide a clearer comparison, we summarize the computational complexity of GP training,
BO, and CBBO for the baseline methods sMTGP, MLGP, and MVGP, together with our proposed
method, in the table below. Here mh, mh1, mh2, and mhl for l = 1, · · · ,m denote the numbers of

Table 5: The computational complexity of different methods for GP training, BO, and CBBO.
Task Method Computational complexity

GP Training

TOGP O
(
(n3T 3 + n2T 2mh) log n

)
sMTGP O

(
(n3 +

∑m
l=1 t

3
l + n2mh +

∑m
l=1 t

2
lmhl) log n

)
MLGP O

(
(n3 +

∑m
l=1 t

3
l + n2mh +

∑m
l=1 t

2
lmhl) log n

)
MVGP O

(
(n3 + T 3 + n2mh1 + T 2mh2) log n

)
BO (Round n)

TOGP O
(
(n3T 3 + n2T 2mh) log n

)
sMTGP O

(
(n3 +

∑m
l=1 t

3
l + n2mh +

∑m
l=1 t

2
lmhl) log n

)
MLGP O

(
(n3 +

∑m
l=1 t

3
l + n2mh +

∑m
l=1 t

2
lmhl) log n

)
MVGP O

(
(n3 + T 3 + n2mh1 + T 2mh2) log n

)
CBBO (Round n)

TOGP O
(
(n3k3 + n2kTmh) log n+ kT 3

)
sMTGP O

(
(n3 + k3 + n2mh + k

∑m
l=1 tlmhl) log n+ k

∑m
l=1 t

3
l

)
MLGP O

(
(n3 + k3 + n2mh + k

∑m
l=1 tlmhl) log n+ k

∑m
l=1 t

3
l

)
MVGP O

(
(n3 + T 3 + n2mh1 + kTmh2) log n+ kT 3

)
hyperparameters for the corresponding methods.

Furthermore, we report the empirical computational time for GP training across all methods under
the three experimental settings. The results are summarized below.

We further report the empirical running time of BO and CBBO under all baseline methods. The
results are summarized in the table below.
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Table 6: The runtime (s) of different methods for GP training in the three synthetic settings.
TOGP sMTGP MLGP MVGP

Setting (1) 266.04 27.26 30.57 6.50
Setting (2) 69.85 16.08 21.99 1.31
Setting (3) 900.13 851.34 891.73 769.50

Table 7: The runtime (s) of different methods for BO and CBBO in the three synthetic settings.

Setting (1) Setting (2) Setting (3)

Method/Task BO CBBO BO CBBO BO CBBO

TOBO/TOCBBO 6968.25 8017.08 1588.53 2348.16 6035.61 11699.09
sMTGP-UCB 1516.31 953.82 117.78 179.11 5291.26 9436.90
MLGP-UCB 1545.41 981.86 133.93 185.49 5452.90 9696.60
MVGP-UCB 340.44 437.29 14.86 20.76 3006.97 3199.47

TOGP-RS 6176.84 7990.44 1573.36 2338.97 5786.02 11501.01
sMTGP-RS 1503.24 939.27 106.93 164.95 5273.84 9421.08
MLGP-RS 1530.32 971.25 109.14 180.70 5252.32 9431.96
MVGP-RS 334.79 386.86 7.70 6.70 2997.75 3116.23

Finally, we provide the prediction and optimization performance of TOGP based on the Nystrm̈
low-rank approximation (SVD-TOGP) in Remark 3 under the three synthetic settings. The results
are summarized below.

Setting (1) Setting (2) Setting (3)
Task Criterion SVD-TOGP TOGP SVD-TOG TOGP SVD-TOGP TOGP

GP Training

NLL 557.09 503.00 -18.39 -18.10 -3778.74 -3923.10
MAE 0.1756 0.1571 0.1099 0.1052 0.1436 0.1372
∥Cov∥ 3.9627 2.0200 0.6261 0.0400 0.0881 2.8200

Time (s) 21.80 266.04 10.83 69.85 436.17 900.13

BO

MSEx 0.0001 0.0000 0.0003 0.0003 0.0002 0.0001
MAEy 0.0041 0.0008 0.0356 0.0350 0.0051 0.0050

Ins Regret 0.0040 0.0001 0.0002 0.0002 0.0402 0.0302
Time (s) 831.02 6968.25 162.78 1588.53 3604.66 6035.61

CBBO

MSEx 0.0024 0.0023 0.0000 0.0000 0.0035 0.0021
MAEy 0.0180 0.0172 0.0000 0.0000 0.0246 0.0145

Acc 1 1 1 1 1 1
Ins Regret 1.0944 0.9807 0.0000 0.0000 1.8571 1.4406
Time (s) 655.83 8017.08 134.22 2348.16 4446.12 11699.09

M ADDITIONAL RESULTS OF SYNTHETIC EXPERIMENTS

In the BO setting, we additionally include a single-objective GP-UCB baseline, which directly as-
sumes that Lf f follows a GP and uses the UCB acquisition function to select query points sequen-
tially. The optimization results under the three settings in our numerical experiments are summarized
below.

We include an independent GP-UCB baseline (Ind GP-UCB), which assumes that each tensor el-
ement follows its own GP model and applies the proposed CMAB-UCB2 acquisition function to
sequentially select both query points and super-arms. The optimization results under the three syn-
thetic settings are summarized below.
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Table 8: The additional optimization performance of different methods in three synthetic settings.
Setting (1) Setting (2) Setting (3)

k MSEx MAEy Acc MSEx MAEy Acc MSEx MAEy Acc

T/3

TOCBBO 0.0054 0.0509 1.00 0.0001 0.0036 1.00 0.0021 0.0312 1.00
SMTGP-UCB 0.0057 0.0942 1.00 0.0548 0.3336 1.00 0.0340 0.8616 0.71
MLGP-UCB 0.0677 0.9775 0.33 0.0434 0.6961 0.50 0.3549 0.8205 0.29
MVGP-UCB 0.0325 0.7530 0.33 0.0019 0.0191 1.00 0.0405 0.3647 0.71

TOGP-RS 0.0208 1.3279 0.83 0.0206 0.4347 0.50 0.0709 1.5521 0.57
SMTGP-RS 0.0203 1.2625 0.50 0.1201 0.4443 0.50 0.0254 1.0703 0.50
MLGP-RS 0.0619 1.0296 0.67 0.1191 0.5081 1.00 0.1816 1.1735 0.64
MVGP-RS 0.0634 0.9733 0.67 0.0469 0.4444 0.50 0.0574 1.3837 0.43

2T/3

TOCBBO 0.0006 0.0125 1.00 0.0010 0.0076 1.00 0.0103 0.1163 0.96
SMTGP-UCB 0.0066 0.0585 1.00 0.0012 0.0177 1.00 0.0122 1.9890 0.89
MLGP-UCB 0.0323 3.6747 0.82 0.2229 1.4532 0.75 0.0423 4.0294 0.81
MVGP-UCB 0.0047 0.4765 1.00 0.0022 0.0309 1.00 0.0324 1.4985 0.93

TOGP-RS 0.0128 4.6512 0.82 0.0202 1.1872 1.00 0.0218 10.4919 0.70
SMTGP-RS 0.0128 4.6512 0.82 0.2229 1.4532 0.75 0.0110 6.0795 0.70
MLGP-RS 0.0323 3.6747 0.82 0.2229 1.4532 0.75 0.0423 4.0294 0.81
MVGP-RS 0.0128 4.6512 0.82 0.0439 0.8309 1.00 0.0423 4.0294 0.81
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Figure 4: Each round’s logarithmic instantaneous regret of different methods in the Setting (1) (Left),
(2) (Middle), and (3) (Right) when k = T/3 (Top row) and k = 2T/3 (Bottom row).

Table 9: Summary across CHEM, MAT, and PRINT datasets with 10 repetitions.
Method CHEM MAT PRINT
TOBO 100 (0.00) 150.07 (0.00) -25.03 (0.00)

sMTGP-UCB 99.91 (0.10) 147.97 (2.24) -25.03 (0.00)
MLGP-UCB 99.29 (0.75) 147.90 (2.32) -25.13 (0.11)
MVGP-UCB 96.32 (4.89) 147.20 (3.44) -25.27 (0.32)

TOGP-RS 93.84 (1.56) 147.83 (2.32) -25.27 (0.23)
sMTGP-RS 96.63 (3.74) 146.22 (4.30) -25.03 (0.13)
MLGP-RS 99.41 (0.76) 148.28 (1.64) -25.27 (0.23)
MVGP-RS 96.32 (3.72) 147.20 (2.80) -25.27 (0.33)
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Table 10: The results of Single GP-UCB in three synthetic settings.
Criterion Single GP-UCB TOBO

Setting (1)
MSEx 0.0004 0.0000

Ins Regret 0.0459 0.0001
Time 457.34 6968.25

Setting (2)
MSEx 0.4761 0.0003

Ins Regret 0.2093 0.0002
Time 187.30 1588.53

Setting (3)
MSEx 0.0084 0.0001

Ins Regret 0.1964 0.0302
Time 415.61 6035.61

Table 11: The results of the Ind GP-UCB in three synthetic settings.
Criterion Ind GP-UCB TOBO

Setting (1)

MSEx 0.2121 0.0023
MAEy 0.6739 0.0172

Acc 0.67 1
Ins Regret 36.301 0.9807
Time (s) 328.56 8017.08

Setting (2)

MSEx 0.0731 0.0000
MAEy 0.0486 0.0000

Acc 1 1
Ins Regret 0.1561 0.0000
Time (s) 110.77 2348.16

Setting (3)

MAEy 0.0139 0.0021
Acc 0.86 1

Ins Regret 54.2714 1.4406
Time (s) 3296.72 11699.09
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For non-separable multi-output GPs (Fricker et al., 2013), we additionally provide the results under
the three synthetic settings below.

Table 12: The results of the non-separable MOGP in three synthetic settings.
Task Criterion Setting (1) Setting (2) Setting (3)

GP

NLL 507.19 -39.33 -3094.10
MAE 0.1923 0.1493 0.1591
∥Cov∥ 6.7398 0.5618 20.5800

Time (s) 453.11 151.31 1397.68

BO

MSEx 0.0014 0.0005 0.0244
MAEy 0.0536 0.0503 0.6277

Ins Regret 1.0284 0.0030 6.6283
Time (s) 9109.08 2101.45 7881.31

CBBO

MSEx 0.0073 0.0683 0.0091
MAEy 0.0643 0.0390 0.1257

Acc 1 1 0.86
Ins Regret 1.7389 0.1551 51.4646
Time (s) 10462.18 3107.82 14175.50

As shown, TOBO achieves consistently better optimization accuracy than Single GP-UCB, Ind
GP-UCB, and non-separable MOGP-UCB across all settings. Although the runtime of TOBO is
higher, we further introduce an efficient variant named SVD-TOBO, which employs a low-rank
eigen-decomposition to approximate the TOGP covariance in Remark 3 and significantly reduces
runtime.

To evaluate the sensitivity of our method with respect to different choices of Lf and Hf , we consider
three types of operators defined as follows (Chugh, 2020).

• Sum operator (used in the main manuscript):

Lf f(x) =
∑

fi1,...,im(x), Hf f̃(x,λ) =
∑

f̃i1,...,im(x,λ).

• Weighted sum operator:

Lf f(x) =
∑

wi1,...,imfi1,...,im(x), Hf f̃(x,λ) =
∑

wi1,...,im f̃i1,...,im(x,λ),

where wi1,...,im ∼ U(0, 1).
• Exponential weighted operator:

Lf f(x) =
∑

epwi1,...,im−1epfi1,...,im (x), Hf f̃(x,λ) =
∑

epwi1,...,im−1epf̃i1,...,im (x,λ),

where p = 2 and wi1,...,im ∼ U(0, 1).

The results under Setting (1) in our numerical experiments are summarized below. It can be seen
that our method is robust across different choices of Lf and Hf , and both TOBO and TOCBBO
consistently achieve strong optimization performance.

N READ-WORLD APPLICATION: SEMICONDUCTOR MANUFACTURING
PROCESS

A motivating example arises from semiconductor manufacturing, where each wafer consists of nu-
merous dies (chips) arranged in a two-dimensional grid. During the Chip Probing (CP) phase, a
critical stage for functional quality control, each die is evaluated based on multiple quality variables
such as voltage, current, leakage, and power consumption. These variables are spatially correlated
across neighboring dies due to physical effects such as process variation and mechanical stress,
forming a naturally structured tensor output. To ensure high yield and reliability, manufacturers aim
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Table 13: The results of different operators in three synthetic settings.
Criterion Sum operator Weighted sum operator Exponential weighted operator

BO
MSEx 0.0000 0.0000 0.0000
MAEy 0.0008 0.0083 0.0072

Ins Regret 0.0001 0.0044 0.0533

CBBO

MSEx 0.0023 0.0037 0.0025
MAEy 0.0172 0.0329 0.0548

Acc 1 1 1
Ins Regret 0.1964 0.0107 0.4972

to adjust process control parameters (inputs) so that all quality variables across the wafer remain
within target specifications. This leads to an optimization problem where the output is a three-mode
tensor: the first two modes index the die positions on the wafer, and the third mode captures multi-
ple quality variables. Such a scenario cannot be effectively modeled by scalar- or vector-output BO
approaches, as they would lose essential structural information.

In practice, each wafer may contain hundreds of dies. However, resource and time constraints
often make it infeasible to measure all quality variables across all die positions on every wafer.
Manufacturers instead selectively measure a subset of output entries, such as centrally located dies,
those more prone to failure, or historically most informative regions. Similarly, only a subset of
quality variables may be measured if certain tests are time-consuming or costly. This results in a
partially observed tensor, where only part of the full output is available at each iteration.

We incorporate this example into the revised paper and conduct a corresponding case study. The
input is x = (x1, x2, x3) representing process parameters, and the output f(x) ∈ R5×5×3 denotes
die-wise quality variables on the wafer. A black-box semiconductor simulator is employed as the
true system. We generate 5 observations as the initial design and then sequentially select 20 queried
points based on different BO methods. Tables 14 and 15 compare the performance of TOBO and
TOCBBO against several baselines. Our methods significantly outperform the alternatives in terms
of input accuracy (MAEx), regret, and final objective value, demonstrating their superiority.

TOBO sMTGP-UCB MLGP-UCB MVGP-UCB
MAEx 0.0651 (0.0016) 0.1997 (0.0020) 0.1579 (0.0059) 0.2669 (0.0046)
Regret 0.1702 (0.0007) 0.2400 (0.0014) 0.1956 (0.0088) 0.3818 (0.0029)
Objective 0.8298 (0.0009) 0.7600 (0.0031) 0.8044 (0.0079) 0.6182 (0.0033)

Table 14: Performance comparison of TOBO with baseline methods in terms of MAEx, regret, and
objective (mean and standard deviation).

TOCBBO sMTGP-UCB MLGP-UCB MVGP-UCB
MAEx 0.1453 (0.0466) 0.4313 (0.0592) 0.5702 (0.0747) 0.6758 (0.0844)
Regret 0.1431 (0.0388) 0.2483 (0.0522) 0.4338 (0.0918) 0.3461 (0.0709)
Objective 0.6085 (0.0436) 0.5290 (0.0500) 0.4282 (0.1147) 0.4794 (0.0912)

Table 15: Performance comparison of TOCBBO with baseline methods in terms of MAEx, regret,
and objective (mean and standard deviation).

These results show that the proposed methods can effectively optimize under partially observed
tensor data, highlighting their practical relevance for semiconductor manufacturing.

30


	Introduction
	Related works
	Tensor-output Bayesian optimization
	Tensor-output Gaussian process
	Upper Confidence Bound Acquisition Strategy

	Tensor-output combinatorial bandit Bayesian optimization
	Partially observed tensor-output Gaussian process
	CMAB-UCB2 Acquisition Strategy

	Experiements
	Synthetic experiments
	Case studies

	Conclusion and discussion
	Use of LLMs
	The details of the tensor decomposition in Remark 1
	The estimation of hyperparameters for the TOGP and PTOGP
	Parameter estimation for training TOGP
	Parameter estimation for training PTOGP

	The proposed algorithms and computational complexity analysis
	UCB-based TOBO algorithm
	CMAB-UCB2-based TOCBBO algorithm

	The proof of Proposition 1
	The proof of Lemma 1
	The proof of Theorem 1
	The proof of Proposition 2
	The proof of Theorem 2
	The proof of Proposition 2
	Detailed settings of the experiments
	Detailed settings of synthetic experiments
	Detailed settings of case studies

	The comparison of computational complexity for baselines
	Additional results of Synthetic Experiments
	Read-world Application: Semiconductor manufacturing process

