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ABSTRACT

Protein structure prediction has reached revolutionary levels of accuracy on single
structures, yet distributional modeling paradigms are needed to capture the con-
formational ensembles and flexibility that underlie biological function. Towards
this goal, we develop EIGENFOLD, a diffusion generative modeling framework
for sampling a distribution of structures from a given protein sequence. We define
a diffusion process that models the structure as a system of harmonic oscillators
and which naturally induces a cascading-resolution generative process along the
eigenmodes of the system. On recent CAMEO targets, EIGENFOLD achieves a
median TMScore of 0.84, while providing a more comprehensive picture of model
uncertainty via the ensemble of sampled structures relative to existing methods.
We then assess EIGENFOLD’s ability to model and predict conformational hetero-
geneity for fold-switching proteins and ligand-induced conformational change.
Code is available at https://github.com/bjing2016/EigenFold.

1 INTRODUCTION

The development of accurate methods for protein structure prediction such as AlphaFold2 (Jumper
et al., 2021) has revolutionized in silico understanding of protein structure and function. However,
while such methods are designed to model static experimental structures from crystallography or
cryo-EM, proteins in vivo adopt dynamic structural ensembles featuring conformational flexibility,
change, and even disorder to effect their biological functions (Teague, 2003; Wright & Dyson, 2015).
These aspects represent the next frontier towards a more complete understanding of protein structure
and function (Lane, 2023). Accordingly, there is increasing need for generative models for protein
structure prediction that can produce a distribution of conformations for a single protein sequence.

Meanwhile, generative modeling in molecular machine learning has undergone a renaissance driven
by the paradigm of diffusion models (Sohl-Dickstein et al., 2015; Song et al., 2021). When applied
to problems such as protein design (Watson et al., 2022), molecular docking (Corso et al., 2022),
and ligand design (Schneuing et al., 2022), such models have displayed impressive distributional
modeling. These capabilities make diffusion models compelling tools for understanding protein
structural ensembles given a fixed sequence, but they have yet to be explored for this purpose.

To bridge this gap, we develop EIGENFOLD, the first diffusion generative modeling framework for
protein structure (and structural ensemble) prediction. To do so, we formulate a novel diffusion
process—harmonic diffusion—that models the molecule as a system of harmonic oscillators. The
structure is projected onto the eigenmodes (or normal modes) of the system during the forward
diffusion, such that the corresponding reverse diffusion can be viewed as a cascading-resolution
generative process—first sampling the rough global structure before refining local details. This
enables EIGENFOLD to accurately sample protein structures with as few as 100 inference steps.

The EIGENFOLD framework can be used in isolation or in conjunction with pretrained embeddings
from existing structure prediction models. In this work, we train EIGENFOLD using edge and node
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Figure 1: Overview of generative structure prediction with EIGENFOLD. Samples from the har-
monic diffusion prior (left) are gradually transformed into complete structures via a cascading-
resolution generative process. One complete trajectory and five final sampled structures for CAMEO
target 7dz2.C are shown here. In each denoising step, the score model predicts update ”forces,”
which are combined with harmonic constraints to update the residue positions. Depending on pro-
tein size, this procedure is repeated 100 to 300 times.

embeddings from OmegaFold (Wu et al., 2022c), in effect transforming the latter into a genera-
tive model. When trained on the PDB and evaluated on CAMEO benchmarks, samples from this
model are comparable with existing methods such as RoseTTAFold (Baek et al., 2021) in terms of
single-structure accuracy. However, unlike existing methods, EIGENFOLD provides a distribution
of structures rather than scalar predicted errors, providing more insights into model uncertainty. In
particular, we show that the variation among the sampled structures is highly indicative of the model
error relative to the ground truth, for many metrics of model accuracy.

We then benchmark EIGENFOLD’s ability to model conformational change and flexibility using
two datasets: one of fold-switching proteins (Chakravarty & Porter, 2022) and one of conforma-
tional changes associated with binding (Saldaño et al., 2022). The analysis yields mixed results, in
which properties of EIGENFOLD sampled structures are moderately correlated with properties of
the ground-truth conformation but do not predict them to high accuracy. While not quite bridging
the gap between single-structure prediction and structural ensemble prediction, these results and
methodology lay the foundation for many possible directions for improvement in future work.

2 BACKGROUND AND RELATED WORK

Protein structure prediction. The problem of predicting an experimental-level protein structure
from sequence is widely considered to have been solved by AlphaFold2 (Jumper et al., 2021) in
CASP 14. Since then, alternative models such as RoseTTAFold (Baek et al., 2021), ESMFold
(Lin et al., 2022), and OmegaFold (Wu et al., 2022c) have replicated or approached similar lev-
els of performance. All are developed and trained as deterministic maps from input (sequence or
MSA) to output (structure), making them suboptimal for modeling structural ensembles (Lane, 2023;
Chakravarty & Porter, 2022; Saldaño et al., 2022). MSA subsampling and clustering (i.e., varying
the input) in conjunction with AlphaFold2 has recently been shown to reveal alternate conformations
(Wayment-Steele et al., 2022; Stein & Mchaourab, 2022; Del Alamo et al., 2022), but the generality
and reliability of these techniques remains unclear.

Diffusion models learn an iterative, stochastic generative process that transforms samples from a
simple prior to the data distribution. This generative process is trained to be the reverse of a forward
diffusion transforming the data to the prior (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2021). To obtain the generative process from the forward process, it is necessary and sufficient to
learn a score model to approximate ∇x log pt(x) for all values of diffusion time t; we refer to Song
et al. (2021) for a more comprehensive methodological overview.
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The flexible formulation and strong performance of diffusion models have made them increasingly
popular in generative machine learning. While such models have traditionally used isotropic Gaus-
sian noise as the forward process, applications for molecule structure have increasingly featured
non-isotropic or non-Euclidean processes that exploit the reduced degrees of freedom and chemi-
cal priors in molecular structure (Jing et al., 2022; Ingraham et al., 2022). Our work proceeds in a
similar spirit and seeks to define a suitable diffusion process for protein structure prediction.

As generative models, diffusion models have been natural choices for inverse (design) problems.
However, they have also been applied productively to forward problems such as ligand-protein dock-
ing (Corso et al., 2022) and molecular simulation (Wu et al., 2022a). In particular, diffusion models
operating over internal coordinates hold state-of-the-art performance on small-molecule conformer
generation (Jing et al., 2022). Generative protein structure prediction can be regarded as the macro-
molecular analogue of conformer generation; however, the significantly larger molecular graphs in
protein structure call for different considerations and formulations.

Protein structure diffusion. Several works have fruitfully applied diffusion modeling to the broadly
defined task of protein structure design. Early works formulated variations of isotropic Euclidean
diffusion of residue coordinates (Anand & Achim, 2022; Trippe et al., 2022) or backbone dihedral
angles (Wu et al., 2022b). Later works demonstrated impressive experimental results (Watson et al.,
2022) and programmability (Ingraham et al., 2022). On the other hand, there have been significantly
fewer diffusion models developed for forward problems involving protein structures (i.e., where the
protein sequence is known) (Qiao et al., 2022; Nakata et al., 2022). Both of these address the task
of flexible protein-ligand docking, but have been limited by a dependence on contact maps and by
protein size, respectively.

3 METHOD

3.1 HARMONIC DIFFUSION

Consider a structure graph G = (V, E) embedded in 3D space with coordinates x ∈ R3n, where
n = |V|. When G represents a protein with a specific sequence, the generative protein structure
prediction problem can be framed as learning G-dependent probability distributions pG(x). We
now consider diffusion modeling of pG(x) under a forward diffusion process dx = − 1

2Hx dt+ dw
where H is symmetric positive semi-definite.

Naively, one may choose H to be proportional to the identity (diffusing to an isotropic Gaussian), as
is universally done for images and previously done for molecular conformer generation (Xu et al.,
2021). However, such a diffusion does not take into account the chemical graph structure and quickly
disassembles the molecule into highly implausible states. Instead, we observe that a choice of H
corresponds to a choice of an arbitrary Gaussian stationary distribution of the diffusion:

lim
t→∞

p(xt) ∝ exp

(
−1

2
xTHx

)
(1)

We can re-interpret this distribution as the Boltzmann distribution p(x) ∝ e−E(x) of an arbi-
trary quadratic potential E(x) = 1

2x
THx. Similarly, we may re-interpret the forward diffu-

sion as the Brownian motion of a particle under the same time-independent quadratic potential:
dx = − 1

2∇xE(x) dt+dw. In the physics literature, such motion is known as overdamped Langevin
or Brownian dynamics (Erban, 2014) and is known to converge to the Boltzmann distribution of the
potential, consistent with the formulation here.

This Brownian dynamics perspective on forward diffusions provides clear guidance on how to
choose the drift term H: we choose it so that undesired, chemically implausible structures have
high energy E(x). Conceptually, this accomplishes two main objectives: (1) samples from the prior
distribution are automatically consistent with the encoded chemical constraints; and (2) the forward
(and later, reverse) diffusions maintain these constraints such that highly implausible structures are
never reached. In harmonic diffusion, we choose E(x) as the sum of quadratic or harmonic con-
straints for each edge in E , meaning:

E(x) =
α

2

∑
(i,j)∈E

||xi − xj ||2 (2)
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Figure 2: Eigenmode projections of the backbone structure of PDB ID 1a3n.A onto progressively
smaller numbers of modes. Due to symmetry, each mode is 3-fold degenerate. The full structure is
described with 140 unique modes since the protein length is 141 (the last set of modes corresponds
to translations). For ease of comparison, the structure is projected without perturbation; in the actual
forward diffusion, noise is also injected into the remaining modes.

Here, xi,xj ∈ R3 are the coordinates of the ith and jth nodes and α > 0 is interpreted as the
strength of the edge. This potential is quadratic in the coordinates x and therefore can be written
in the form 1

2x
THx, where H depends on the graph. Intuitively, this potential and the consequent

drift term Hx constrain adjacent nodes to be nearby in 3D space, resolving the most noticeable
shortcoming (i.e., molecular disassembly) of previous isotropic diffusions.

For protein structures, one option is to define V to be the heavy atoms, E the set of bonds between
them, and construct H based on a harmonic potential defined using those bonds. However, in this
work, we focus on sampling residue-level protein structures, in which V is the set of residues and
E the edges connecting neighboring residues. That is, a protein with m residues is represented by a
line graph G of length m, in which x represents the coordinates of the alpha carbons. To construct
the harmonic potential H, we set α = 3/3.82 Å

−2
to enforce a RMS distance of 3.8 Å between

adjacent alpha carbons (Chakraborty et al., 2013).

3.2 EIGENMODE PROJECTIONS

The harmonic potential describes a forward SDE which can be used to train a score model and
reversed via the Euler-Maruyama approach as described in Song et al. (2021). However, the resulting
reverse SDE is very stiff and requires a large number of reverse diffusion steps. To understand and
solve this issue, we now study the behavior of this forward diffusion in more detail and propose an
effective diffusion projection scheme.

Let H be decomposed as H = PΛPT for orthogonal P and Λ = diag(λ1, . . . λ3n) all nonnega-
tive. Drawing an analogy with normal mode analysis in mechanics, we call eigenvectors of H (i.e.
columns of P) the normal modes or eigenmodes of the system, λi the strength of the modes, and
y ≡ PTx the coordinates along these modes. The diffusion kernel pt|0 and stationary distribution
p∞ then both become uncorrelated (albeit nonspherical) Gaussians along the normal mode coordi-
nates y. The KL divergence between the perturbation kernel and the stationary distribution can then
be decomposed as the sum of divergences in the coordinates along each mode:

DKL(pt|0||p∞) =

3n∑
i=1

[
e−λit

(
Ei −

1

2

)
− 1

2
log

(
1− e−λit

)]
(3)

where Ei ≡ λi(y0)
2
i /2 is the initial energy in the ith mode.

The above expression fully describes the convergence of the forward diffusion towards the stationary
distribution. In particular, the divergence along each mode decays with rate constant λi, which can
vary by many orders of magnitude for different modes. Thus, the diffusion kernel will quickly con-
verge to the stationary distribution along strong (i.e., large λi) modes, but will take much longer to
converge along weak modes. This is analogous to the Born-Oppenheimer approximation in physics,
where certain degrees of freedom equilibrate so rapidly that they are effectively stationary on time-
scales relevant to other degrees of freedom. Indeed, we can characterize which degrees of freedom
are “active” at any given diffusion time, starting with 3n at t = 0 and reaching zero when we
have converged to the joint stationary distribution. Nevertheless, regardless of the number of active
modes, the stiffnes λmax/λmin of the SDE remains very large, necessitating small step sizes for the
entire duration of the sampled trajectory.
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We now propose that, in both the forward and reverse diffusions, the structure is projected down
to only the modes that are still active at the given point in the diffusion (Figure 2). That is, we set
(yt)i = 0 for all modes i such that λit > τ for some threshold τ , thereby projecting the structure
onto the subspace spanned by the remaining modes for which λit ≤ τ . By construction, this
reduces the stiffness λmax/λmin of the SDE. At inference time, we start by sampling (yT )i ∼ p∞
from the stationary distribution only for the k weakest (smallest eigenvalue) modes, where k is a
hyperparameter. Then, during the reverse diffusion, we successively sample (yt)j ∼ p∞ from
the stationary distribution of the jth eigenmode just as it is about to become active, i.e., at tj =
τ/λj . Similar to cascaded diffusion modeling of images (Ho et al., 2022), this process induces a
cascading-resolution generative process of the molecular structure, with the global structure being
determined before local details (Figure 1). Altogether, this procedure enables the sampling of large
macromolecular structures with 100 or fewer Euler solver steps—significantly fewer than the 5000
steps required by Xu et al. (2021) for much smaller molecules.

3.3 SCORE MODEL ARCHITECTURE

Next, we develop a score model architecture sθ(x, t) suitable for learning ∇x log p(xt). We con-
struct graph neural networks with tensor-product message-passing layers in e3nn (Thomas et al.,
2018; Geiger & Smidt, 2022). The message-passing graph is constructed as a complete graph of size
m, such that message-passing occurs between all pairs of residues. In addition to the residue coor-
dinates, the score network is provided with node and edge features obtained by running OmegaFold
on the input sequence and extracting the node and pair embeddings from the Geoformer stack. In
this sense, our score model can be viewed as substituting for the deterministic structure module
which usually operates on the Geoformer outputs. The score model is SE(3)-equivariant; since the
stationary density (Equation 2) is SE(3)-invariant, this ensures that the final model density will also
be SE(3)-invariant (Xu et al., 2021).

3.4 RANKING SAMPLED STRUCTURES

The trained EIGENFOLD score model can sample multiple structures for a given protein sequence;
however, it is often desirable to identify a single best structure prediction. For this purpose, we
compute approximate lower bounds to model log-likelihoods for all sampled structures and select the
one with the highest lower bound—i.e., the one most likely to have been sampled by EIGENFOLD.
Specifically, let t1, . . . , tK = T be a discretization of the forward and reverse SDEs. Then for any
structure x (sampled or otherwise), we can compute a lower bound to the model log-likelihood as
follows (Sohl-Dickstein et al., 2015):

log p(x0) ≥ Ext1...tK
∼q log

[
p∞(xt)

K∏
k=1

p(xtk−1
| xtk)

q(xtk | xtk−1
)

]
(4)

Thus, by sampling a forward trajectory xt1 . . .xtK starting from any given x0, we obtain a Monte-
Carlo estimate of the evidence lower-bound (ELBO) for that structure. Notably, this insight removes
the need to train a separate model to rank samples, as previously done by Corso et al. (2022).

4 EXPERIMENTS

We train EIGENFOLD on all structures deposited in the PDB on or before Apr 30, 2020 and validate
on structures deposited between May 1, 2020 and Nov 30, 2020. To reduce training time, we train
(and validate) only on structures with residue lengths between 20 and 256, for a total of 230,520
(14,128) training (validation) structures. To assess single-structure prediction accuracy, we make
predictions for all CAMEO targets released between Aug 1, 2022 and Oct 31, 2022. After excluding
targets with 750 or more residues for which OmegaFold embeddings could not be generated, the final
test set consists of 183 CAMEO targets.

To assess the ability of EIGENFOLD to model conformational diversity, we collect and filter two
datasets from previous works. First, we collect 77 pairs of PDB IDs corresponding to fold-switching
proteins from Chakravarty & Porter (2022). Second, we collect 90 pairs of apo/holo PDB IDs cor-
responding to ligand-induced conformational change from Saldaño et al. (2022). For each dataset,
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Table 1: Single-structure prediction accuracy of EIGENFOLD and baseline methods on CAMEO
targets under 750 residues from Aug 1–Oct 31, 2022. All metrics are reported as mean / median.

RMSDCα ↓ TMScore ↑ GDT-TS ↑ lDDTCα ↑
ALPHAFOLD2 3.30 / 1.64 0.87 / 0.95 0.86 / 0.91 0.90 / 0.93
ESMFOLD 3.99 / 2.03 0.85 / 0.93 0.83 / 0.88 0.87 / 0.90
OMEGAFOLD 5.26 / 2.62 0.80 / 0.89 0.77 / 0.84 0.83 / 0.89
ROSETTAFOLD 5.72 / 3.17 0.77 / 0.84 0.71 / 0.75 0.79 / 0.82

EIGENFOLD 7.37 / 3.50 0.75 / 0.84 0.71 / 0.79 0.78 / 0.85

Figure 3: Left: Scatterplot of normalized ELBO (i.e., divided by (3n − 1) where n is the protein
length) v.s. global lDDT. Center: Histogram of per-target Pearson correlations between the normal-
ized ELBO and lDDT. Right: Scatterplot of predicted lDDT (average lDDT between sampled pairs)
and true lDDT for all residues in the CAMEO test set.

we sample structures using the SEQRES entries of the PDB IDs with the shorter sequence or desig-
nated as ”Apo,” respectively. Both sets are filtered to remove pairs where the two sequences differ
significantly in length or where the sequence used for sampling is 750 residues or longer.

4.1 SINGLE STRUCTURE PREDICTION

For each of the CAMEO test targets, we sample five structures from EIGENFOLD and compute the
approximate ELBO for each. The top-ranked structure is considered the final prediction and is com-
pared to the ground truth via standard metrics. Table 1 compares the quality of these predictions
relative to established methods RoseTTAFold, OmegaFold, ESMFold, and AlphaFold2. EIGEN-
FOLD samples are comparable in quality to those from RoseTTAFold, but fall short of the best
results from AlphaFold2 and ESMFold. The approximate structural ELBO is well-correlated with
absolute structural accuracy and thus serves as a good measure of model confidence (Figure 3 (left,
center)). In particular, the positive per-target correlations (i.e., correlating only within the five sam-
ples for each target) on most targets justifies the use of the approximate ELBO as a means of ranking
samples within a target.

Next, we find that the variability of the sampled ensemble is highly informative about the model
error and can be interpreted as revealing model uncertainty. To measure this variability, we define,
for any global measure of structural deviation f , an f -variation:

fvar = Ey1,y2∼EIGENFOLD [f(y1,y2)] (5)

where the expectation is approximated with the five samples. For example, if f = TM, then TMvar
measures the diversity of the sampled ensemble in terms of the average pairwise TMScore. We
compare this quantity with fexp, the average f of the sampled structures relative to the ground truth.
As illustrated in Table 2, these measures are highly correlated across the CAMEO targets; thus, when
the ground truth structure is unknown, the fvar computed from sampled structures can be interpreted
as a well-calibrated prediction of fexp relative to the ground-truth.
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Table 2: Pearson correlations between fvar and
fexp for various metrics f of structural deviation.
For residue-level or pairwise metrics, we compute
a global correlation as well as a correlation for
each target, reported as mean / median.

Global Per-Target

Protein-level metrics
TM 0.88 –
GDT-TS 0.90 –
RMSDCα 0.85 –
lDDTCα 0.86 –

Residue-level metrics
lDDTCα 0.88 0.73 / 0.81
Aligned position error 0.80 0.68 / 0.75

Pairwise metrics
Distance error 0.75 0.69 / 0.72

Figure 4: Predicted (left) and actual (right)
pairwise distance errors for two CAMEO tar-
gets. Domains and inter-domain uncertainty
are visibly and correctly predicted.

The correlation between fvar and fexp also holds for residue-level and pairwise accuracy metrics. In
particular, we compute an expected lDDT for any given residue between pairs of sampled structures,
and find that this is well-correlated with the lDDT for that residue between sampled structures and
the ground truth (Figure 3 (right) and Table 2). In this manner, we have access to a well-calibrated
pLDDT for each residue, similar to the outputs of the confidence heads of existing structure pre-
diction methods. Unlike existing methods, however, we can easily apply this framework to predict
arbitrary error metrics without a bespoke confidence head. For example, in Table 2, we illustrate that
the aligned residue position error (i.e., error in residue position after RMSD alignment) and absolute
pairwise distance error can be similarly predicted. Furthermore, the residue-level and pairwise met-
rics have high per-target correlations, indicating that they can be used to interpret the relative model
confidence in different parts of the protein and their spatial relationships (Figure 4).

4.2 CONFORMATIONAL DIVERSITY

To assess how well EIGENFOLD can model protein conformational diversity, we sample five struc-
tures for each of the fold-switching and apo/holo pairs, and investigate the following questions:

1. How well do the predicted structures model both conformations on a global level?

2. Is the level of sample diversity predictive of the magnitude of the conformational change?

3. Is the residue-level variation among samples predictive of true residue flexibility?

To answer the first question, we define an ensemble TM-score as follows:

TMens(x1,x2, {yi}) =
1

2

[
max

i
TM(yi,x1) + max

i
TM(yi,x2)

]
(6)

where x1,x2 are the two ground truth structures and {yi} are the EIGENFOLD samples. This mea-
sures how well the sampled structures cover both ground-truth conformational states. Figure 5 (left)
illustrates that EIGENFOLD samples generally are a poor model of the two ground truth conforma-
tions, in the sense that they offer no improvement over a hypothetical baseline that always predicts
a single conformation. Furthermore, the samples—even if different from each other—are gener-
ally very similar in terms of their deviation from the two ground truth structures, and tend to either
heavily favor a single structure or model both structures relatively poorly.

Next, to address the second and third questions, for each pair we compute the TMvar (average pair-
wise TMScore) using the five sampled structures as a measure of sample diversity, and compare
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Figure 5: Left: Coverage of the two ground truth conformations (TMens) plotted against the TM-
score between the two conformations (i.e., the most dissimilar pairs are on the left). The gray
line indicates a hypothetical baseline which always perfectly predicts one of the two conformations.
Right: Scatterplot of the TM-score between the two true conformations versus the average TM-score
between sampled conformations.

Table 3: Pearson correlations between sample diversity and ground-truth diversity, measured in
terms of TMScore (protein-level metric) or residue flexibility (i.e., absolute deviation after RMSD
alignment). For the latter, we report global correlations and mean/median per-target correlations.

Fold-switch Apo/Holo

TM 0.36 0.12
Residue flexibility (global) 0.23 0.13
Residue flexibility (per-target) 0.28 / 0.26 0.41 / 0.40

with the TMScore between the two ground truth conformations (TMconf1/conf2). As shown in Fig-
ure 5 (right) and Table 3, TMvar and TMconf1/conf2 are moderately correlated. At the residue-level,
we examine whether the flexibility of a residue within the sampled structures (i.e., average posi-
tional difference post-RMSD alignment) is predictive of the true flexibility of that residue under the
conformational change. Table 3 shows that both the global and per-target correlations are also posi-
tive but moderate. Altogether, while the conformational diversity and residue-level flexibility within
sampled EIGENFOLD structures are somewhat informative of underlying conformational changes,
the magnitude or residue-level localization of such changes are not modelled to high accuracy.

5 CONCLUSION

In this work, we developed EIGENFOLD, the first diffusion generative model for predicting protein
structures from a fixed protein sequence. In doing so, we built the first bridges between the rapidly
advancing fields of diffusion modeling for molecules and modern structure prediction frameworks.
Our model matches the performance of established methods on CAMEO targets and reveals model
uncertainty via an ensemble of structural predictions, enabling customizeable ways to estimate and
understand prediction error. We anticipate that these capabilities will prove important in downstream
applications in which the relevant error could otherwise not be estimated using existing methods.

Although a generative modeling paradigm opens the door towards modeling conformational di-
versity and change, we find that EIGENFOLD is currently unable to model these aspects of pro-
tein structure with high accuracy. Instead, it appears that the distribution of predicted structures
is largely reflective of model uncertainty rather than underlying (i.e., aleatoric) uncertainty arising
from flexibility. There may be several reasons for this gap: the model may not be accurate enough to
resolve conformational changes of small magnitude; the training set consists largely of crystal struc-
tures that show little conformational flexibility; and the use of OmegaFold embeddings—without
fine-tuning—may inject a bias towards the single-structure output of OmegaFold. Improving these
aspects, with more tailored training settings or more expressive end-to-end score network architec-
tures, could serve as promising directions of future work.
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