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Abstract

Sequence labeling remains a significant chal-001
lenge in low-resource, domain-specific scenar-002
ios, particularly for character-dense languages.003
Existing methods primarily focus on enhanc-004
ing model comprehension and improving data005
diversity to boost performance. However, these006
approaches still struggle with inadequate model007
applicability and semantic distribution biases in008
domain-specific contexts. To overcome these009
limitations, we propose a novel framework010
that combines an LLM-based knowledge en-011
hancement workflow with a span-based Knowl-012
edge Fusion for Rich and Efficient Extraction013
(KnowFREE) model. Our workflow employs014
explanation prompts to generate precise con-015
textual interpretations of target entities, effec-016
tively mitigating semantic biases and enrich-017
ing the model’s contextual understanding. The018
KnowFREE model further integrates extension019
label features, enabling efficient nested entity020
extraction without relying on external knowl-021
edge during inference. Experiments on multi-022
ple domain-specific sequence labeling datasets023
demonstrate that our approach achieves state-024
of-the-art performance, effectively addressing025
the challenges posed by low-resource settings.026

1 Introduction027

Sequence labeling is a fine-grained information ex-028

traction (IE) task that includes sub-tasks such as029

named entity recognition (NER), word segmenta-030

tion, and part-of-speech (POS) tagging, playing031

a critical role in various downstream natural lan-032

guage processing (NLP) applications.033

In low-resource scenarios, sequence labeling re-034

mains a persistent challenge, primarily due to the035

scarcity of domain-specific data, which limits the036

model’s capacity to learn accurate label distribu-037

tions. Moreover, character-dense languages such as038

Chinese pose additional difficulties, as the absence039

of explicit word boundaries greatly complicates040

label inference.041
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Figure 1: Distinctions between our method and existing
methods in terms of model and data.

Previous studies predominantly focus on two 042

main directions to enhance sequence labeling in 043

low-resource scenarios: (1) Model-Centric Op- 044

timization. These methods focus on enhancing 045

model’s comprehension to detect implicit word 046

boundaries and contextual signals through feature 047

engineering. For instance, lexical features are in- 048

jected via lexicon matching networks (Zhang and 049

Yang, 2018a; Li et al., 2020; Liu et al., 2021; Wu 050

et al., 2021) or prompt templates (Ma et al., 2022b; 051

Shen et al., 2023; Chen et al., 2021b; Das et al., 052

2023) to strengthen entity boundary or type de- 053

tection. Other methods employ knowledge trans- 054

fer techniques such as Gaussian embeddings (Si 055

et al., 2024; Das et al., 2022), prompt-based metrics 056

(Chen et al., 2023; Lai et al., 2022), and contrastive 057

learning (Huang et al., 2022; Zhang et al., 2024) 058

to distill knowledge into target domains. (2) Data- 059

Centric Augmentation. Meanwhile, data-centric 060

methods concentrate on using data augmentation 061

through altering entity label information (Hu et al., 062

2023; Yang et al., 2018), back translation (Paolini 063

et al., 2021; Yaseen and Langer, 2021), and extract- 064

ing knowledge from the external environment (Cai 065

et al., 2023; Chen et al., 2021a; Yaseen and Langer, 066
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2021) to enrich the dataset. With the advent of large067

language models (LLMs), recent findings leverage068

their generative capabilities to enhance the diver-069

sity of entity and sentence synthesis (Kang et al.,070

2024; Ye et al., 2024).071

However, as illustrated in Figure 1, significant072

limitations remain when applying these solutions073

to specialized domains: (1) Limited Model Ap-074

plicability. Existing model-centric approaches for075

character-dense languages often struggle to effec-076

tively incorporate diverse feature types and label077

structures, limiting the flexibility and expressive-078

ness of feature injection. These methods also079

face difficulties in handling nested entities, further080

reducing their adaptability. Moreover, many ap-081

proaches rely on rigid feature integration pipelines082

and complex input configurations to improve word083

features, leading to increased reliance on supple-084

mentary structures during inference and raising de-085

ployment costs. (2) Variability in Label Distribu-086

tion. Existing data-centric augmentation methods087

frequently suffer from domain distribution biases.088

Inconsistencies in entity type definitions and se-089

mantic contexts across domains lead to mismatches090

in label priors and entity representations, undermin-091

ing the quality of synthesized data and weakening092

zero-shot generalization.093

These challenges, including structural rigidity094

and distributional mismatch, collectively hinder095

the practical effectiveness of current methods. This096

motivates our development of a unified framework097

that addresses both architectural constraints and do-098

main adaptation challenges in a holistic manner. In099

this task, we adopt two key strategies for improving100

low-resource sequence labeling in character-dense101

languages: (i) enhancing the utilization of non-102

entity features through the span-based model and103

(ii) improving the model’s contextual understand-104

ing of target entities.105

To achieve these objectives, we propose a novel106

LLM-based data augmentation framework. Our107

approach begins by designing extraction prompts108

to identify and extract informative non-target en-109

tity features from the input text, thereby max-110

imizing the utilization of non-entity informa-111

tion. To address the issue of limited model112

applicability, we introduce a span-based model113

called Knowledge Fusion for Rich and Efficient114

Extraction (KnowFREE), which supports nested115

entity annotation and integrates extension label fea-116

tures through a local multi-head attention mod-117

ule. Unlike previous methods, KnowFREE cap-118

tures rich contextual representations during training 119

without relying on external knowledge at inference 120

time. To tackle the issue of variability in label dis- 121

tribution, we incorporate explanation prompts in- 122

spired by label explanation techniques (Golde et al., 123

2024; Yang and Katiyar, 2020; Ma et al., 2022a), 124

enabling the generation of precise, context-aware 125

explanations for target entities. This enhances the 126

model’s contextual understanding and mitigates se- 127

mantic distribution biases. By leveraging LLMs 128

for label interpretation synthesis, our framework 129

outperforms other related data augmentation tech- 130

niques in low-resource settings. We evaluate it on 131

multiple Chinese and English domain-specific se- 132

quence labeling datasets, and experimental results 133

demonstrate its effectiveness in overcoming the key 134

limitations of low-resource scenarios. 135

The contributions of our work can be summa- 136

rized as follows: 137

(1) New method. We propose a span-based 138

KnowFREE model that supports nested label anno- 139

tations and integrates multi-label features by a local 140

multi-head attention module, which can be used 141

without relying on external knowledge at inference. 142

(2) New perspective. To the best of our knowl- 143

edge, we are the first to propose an approach that 144

supports the seamless integration of extension la- 145

bel features within the model while eliminating the 146

need for external features during inference. 147

(3) State-of-the-art performance. Experimental 148

results demonstrate that our approach achieves out- 149

standing performance on low-resource sequence 150

labeling tasks. 151

2 Related Work 152

Span-based Sequence Labeling Methods Span- 153

based sequence labeling methods have gained 154

prominence for their ability to address overlapping 155

and nested entities effectively. Early works, such 156

as Dozat and Manning (2017); Yu et al. (2020) in- 157

troduced Biaffine models to capture sentence-wide 158

structures and score span boundaries for accurate 159

information extraction. Based on this, Su et al. 160

(2022) proposed the Global Pointer model, opti- 161

mizing the Biaffine transformation’s weight matrix 162

and bias terms to boost efficiency and precision 163

in span-based NER. In parallel, Shen et al. (2022) 164

introduced a parallel instance query network for 165

simultaneous entity extraction. Then, (Yan et al., 166

2023) proposed a multi-head Biaffine mechanism 167

combined with CNNs to capture local span fea- 168
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tures, achieving improved performance, while (Li169

et al., 2022) combined bilinear classifiers with di-170

lated convolutions post-CLN to refine span-level171

relation classification. For few-shot NER, (Wang172

et al., 2022) introduced SpanProto, which inte-173

grates prototype-based classification with a con-174

trastive loss to effectively separate non-target spans175

from prototype clusters, demonstrating strong per-176

formance in low-resource scenarios.177

Sequence Labeling via LLMs178

Recent advances in LLMs (OpenAI, 2023;179

DeepSeek-AI et al., 2025; Touvron et al., 2023)180

have introduced new paradigms for sequence label-181

ing. Generative methods based on in-context learn-182

ing (ICL) allow LLMs to perform labeling tasks183

directly without task-specific fine-tuning (Jiang184

et al., 2024). In zero-shot settings, InstructUIE185

(Wang et al., 2023) adopts a single-turn instruc-186

tion framework across diverse IE tasks, Univer-187

salNER (Mayhew et al., 2024) demonstrates im-188

proved performance by querying one entity type at189

a time, and GoLLIE (Sainz et al., 2024) enhances190

generalization via structured code-style prompt-191

ing. LLMs have also shown promise in handling192

cross-domain and nested entity recognition (Nandi193

and Agrawal, 2024; Kim et al., 2024). In parallel,194

LLM-based data augmentation strategies synthe-195

size high-quality training data by injecting domain-196

specific features (Ye et al., 2024; Heng et al., 2024),197

while others combine lightweight span detectors198

with LLM validation to improve span selection in199

specialized domains (Chen et al., 2024).200

3 Method201

In this section, we will introduce the knowledge en-202

hancement workflow in § 3.1 and the specific struc-203

ture of our sequence labeling KnowFREE model in204

§ 3.2. The overall framework is shown in Figure 2.205

3.1 Workflow of Knowledge Enhancement206

In the knowledge enhancement workflow, we lever-207

age LLMs to annotate potential entity information208

in the source sample and provide additional de-209

scriptions of entities. This enhances the utilization210

of non-entity features and improves the model’s211

comprehension of the context in which the target212

entity appears. Our workflow consists of two main213

pipelines, which we describe in detail below.214

Label Extension Annotation. In low-resource215

scenarios, non-entity segments in the sentence may216

contain additional non-target entity features, while217

data samples with flat-only entities may potentially 218

contain nested entity information around the target 219

entities. Leveraging these potential feature infor- 220

mation can enhance the model’s capacity to com- 221

prehend the fine-grained semantics and the abil- 222

ity to distinguish entity boundaries in character- 223

dense languages. To achieve this, we utilize the 224

LLM’s general knowledge to generate extension 225

entity tags, word segmentation tags, and part-of- 226

speech (POS) tags for the source samples. 227

Formally, we can denote the source samples as 228

S = {s1, s2, . . . , sn}, and the LLM as L, where n 229

is the number of samples. We then constructed a 230

prompt for each type of tag extraction, denoted as 231

Pent, Pseg, and Ppos, correspondingly. The exten- 232

sion tags set can be computed as: 233

Ê(k) =
n⋃

i=1

Ê
(k)
i , Ê

(k)
i = L(si,Pk), (1) 234

where Ê
(k)
i represents the extension set using 235

prompt Pk extracted from sentence si. 236

We assume that accurate and diverse extension 237

tags can significantly improve the model’s com- 238

prehension of context and its capacity for entity 239

detection. Then, there are several issues that need 240

to be solved in the results of extraction. (1) The 241

uncertainty generation by LLMs leads to the pres- 242

ence of tags in the extension entity set in various 243

textual formats yet denotes the same label category. 244

Directly introducing these labels will significantly 245

disrupt the model’s assessment of the entity type. 246

(2) Word segmentation usually produces bound- 247

ary labels with low information entropy. However, 248

POS tagging based on LLMs sometimes has miss- 249

ing annotations. Notably, POS tagging labels inher- 250

ently include implicit word boundary information. 251

Therefore, combining the outputs of these two pro- 252

cesses is expected to yield better results. 253

To address the first issue, we use LLM to gener- 254

ate synonymous label mapping, and combine entity 255

clustering algorithm to achieve synonymous label 256

merging. Let denote the extension entity set as 257

Êent = {(ei, ti) | ei ∈ E , ti ∈ T }, where E is 258

the set of entities and T is the set of entity types. 259

We compute the synonymous tag set by using the 260

synonymous tag merge prompt Pmerge: 261

Ts = L(T ,Pmerge), (2) 262

Ts = {T̃i : {Ti1, Ti2, . . . , Tir} | i ∈ [1,m]}, (3) 263

where T̃i is the standard label, Tij is the synony- 264

mous label, and m, r is the number of standard 265
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[Resale] DEERMA Vacuum Cleaner, Household

Mini Super Quiet Handheld Strong Mite Control

Carpet Mini &hellip

LabelsTarget Entities

Brand德尔玛 (DEERMA)

Item吸尘器 (Cleaner)
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Action[Resale]

Product
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……

Enriched Explanation

We can see that it contains three 
entities: First, DEERMA a 
brand, you know there are many 
well-known brands in our 
country, DEERMA is one of 
them. Second, the vacuum 
cleaner is a household tool … …

Extension Entities & Labels

Enriched Explanations

Figure 2: The workflow of our knowledge enhancement framework. Pipeline 1 generates extension entities to
improve the KnowFREE performance. Pipeline 2 synthesizes additional training samples and entities, leveraging a
frozen KnowFREE to annotate target entities.

label and its corresponding synonymous labels,266

respectively. This method is determined by the267

LLM’s literal interpretation of the label, which may268

not accurately align the semantic spatial distribu-269

tion of entities in the target domain, and therefore270

is not completely reliable. We further compute the271

vector representation of each entity-label pair by272

using a sentence embedding model M, and the273

vector set of Tk can be represented as:274

Vk = {vi | (ei, ti) ∈ Êent, ti ∈ Tk}, (4)275

where vi refers to M(xi), xi is the concatenation276

of ei and ti with the template of “[ei] is [ti]”. The277

center point and mean radius of the vector set for278

Tk can be calculated as:279

ck =
1

|Vk|
∑

vi∈Vk

vi, (5)280

rk =
1

p

p∑
j=1

∥vj − ck∥, (6)281

where p denotes the Top-p samples that exhibit the282

greatest distance from ck. For each standard label283

T̃i, we identify the synonymous label vector set284

Vi,max that contains the largest number of samples285

and has the largest radius, designating it as the286

reference vector set. We then evaluate whether287

each remaining synonymous label vector set Vi,j288

satisfies the condition ∥cj−cmax∥ ≤ ϵ·rmax. If the289

condition is met, Tj is merged into T̃i; otherwise,290

Tj is treated as an independent standard label.291

To address the second issue, we first compute the292

word segmentation set Êseg using Pseg. Then, we293

combine Êseg, Ppos, and the original source sample294

as input to the LLM to generate part-of-speech tags295

without omissions. This approach ensures compre-296

hensive POS tagging for all words in the sample297

while enhancing the diversity of word segmentation298

features.299

Finally, we merge all the extension entities with 300

standardized labels into the original data to obtain 301

the fusion samples. We use our KnowFREE model 302

to first train an annotation model on the fusion 303

samples, which can be used for entity annotation 304

in the next pipeline. 305

Enriched Explanation Synthesis. Injecting ex- 306

tension entity features has been proven to enhance 307

model performance in many cases, its impact re- 308

mains constrained in the following situations: (1) 309

The datasets with short sentence contains a high 310

proportion of target entities, leading to a relatively 311

low amount of non-entity information in the sam- 312

ple. This results in a diminished validity of the 313

external features introduced. (2) As the quantity of 314

samples diminishes, their scarcity will emerge as 315

the principal factor limiting performance enhance- 316

ment. Enhancing the exploitation of non-entity 317

features in the sample yields marginal performance 318

enhancement. Both instances highlight the neces- 319

sity of expanding the sample size. Nonetheless, 320

the divergence in semantic distribution indicates 321

that incorporating samples from outside the source 322

domain, along with directly employing LLM to 323

generate new sentences from existing entities, may 324

introduce potential noise that could significantly 325

affect model performance. 326

To tackle the aforementioned challenges, we em- 327

ploy LLM to generate entity explanations within 328

the current samples, which aims to leverage the 329

knowledge embedded within the LLM and the con- 330

nections between samples and entities to produce 331

the precise meaning of target entities within their 332

context. This approach can mitigate noise caused 333

by semantic distribution shifts in synthetic samples. 334

Specifically, we define two types of explanation 335

prompts: the Entity Explanation Prompt Pexp and 336

the Extension Description Prompt Pext for sam- 337

ples with and without target entities, respectively. 338

The function of Pexp takes the source sample and 339
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Figure 3: The architecture of the KnowFREE model. The span logits corresponding to the extension entity labels
are ignored during inference.

its corresponding target entity as input, aiming to340

generate a detailed explanation of the entity’s con-341

textual meaning. Meanwhile, Pext focuses on ex-342

tracting and explaining key phrases from the text,343

with only the source sample as input. Addition-344

ally, to enrich the semantic representation of the345

source data, both prompts instruct the LLM to act346

the role of a domain expert, providing accessible347

and detailed explanations of the target entities to348

a hypothetical audience. This strategy encourages349

the LLM to generate comprehensive, contextually350

relevant, and easy-to-understand explanations, en-351

hancing the overall semantic clarity of the dataset.352

Next, we generate enriched explanations using353

the explanation prompts and proceed with annotat-354

ing the entities in these synthetic texts through a355

two-branch pipeline: one for target entity annota-356

tion and the other for extension entity extraction.357

The frozen KnowFREE model, trained in the previ-358

ous pipeline, is used to annotate the target entities.359

For extracting extension entities, we apply the same360

method as in the previous pipeline. Finally, all enti-361

ties are integrated into the enriched explanations to362

produce synthetic samples. As shown in Figure 2,363

we can combine fusion samples and synthetic sam-364

ples and retrain on the KnowFREE model to en-365

hance its performance in the low-resource scenario.366

3.2 Structure of KnowFREE Model367

To support the fusion of multi-label knowledge, the368

KnowFREE model is built upon a Biaffine archi-369

tecture, as illustrated in Figure 3. Unlike previous370

methods that rely on external feature injection, our371

approach eliminates the need for additional injec-372

tion modules at the input stage.373

Formally, let denote X, X̂ as inputs of the fusion374

sample and the synthetic sample, respectively. The375

target entity spans of each sample is represented as376

[si, ei, li], where si, ei are the start and end indices377

of the entity span, and li is the label type. The378

extension entity span is represented as [sj , ej , l̃j ], 379

where l̃j is the extension label type. We adopt a pre- 380

trained encoder to compute the hidden states H ∈ 381

RL×D for each input, where L is the length of the 382

input sequence, D is the dimension of hidden states. 383

We then compute the encoding of the entity’s start 384

and end positions: 385

Hs = σ(HWs), He = σ(HWe), (7) 386

where Ws,We ∈ RD×D′
are learnable weight 387

matrics, D′ is the feature hidden size, and σ is the 388

activation function. The Biaffine matrix of spans is 389

computed by a multi-head Biaffine decoder FMHB 390

(Yu et al., 2020): 391

HB = FMHB(Hs, He), (8) 392

where HB ∈ RL×L×D̃, D̃ is the hidden size of 393

the Biaffine matrix. To improve the interactivity 394

between multi-label features and span neighbor- 395

hoods, we introduce a local multi-head attention 396

layer to generate a mask for local multi-head atten- 397

tion. Each token is restricted to attend only within a 398

local window of size ω through a masking scheme: 399

M [i, j] =

{
0 if |i− j| ≤ w,

−∞ otherwise.
(9) 400

where M ∈ RL×L. For input features HB, the 401

attention computation follows the standard multi- 402

head paradigm with K heads, but incorporates the 403

local mask M : 404

A(Q,K, V,M) = Softmax
(
QKT
√
dk

+M
)
V , (10) 405

The outputs Hattn from all heads are concatenated 406

and processed with layer normalization. We main- 407

tain training stability through residual connections: 408

HG = LayerNorm(HB +Hattn). (11) 409
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We then use the fully connected layer to map the410

sum of HG and HB into the number of entity tags:411

P = σ∗(WO(HB +HG) + b), (12)412

where WO ∈ RD̃×(Ntgt+Next) is the learnable413

weight matrix, σ∗ is the activation function, and414

b ∈ R(Ntgt+Next) is the bias. Ntgt, Next are the num-415

ber of target entity label and extension entity label,416

respectively. The binary cross entropy is employed417

to compute the loss. To prevent the model from418

overly concentrating on features of extension enti-419

ties, the loss function is defined as:420

L = −(
∑

0≤i,
j<Ntgt

yi,j logPi,j + α
∑

Ntgt≤i,
j<Next

yi,j logPi,j), (13)421

where y refers to the ground truth labels, α is the422

weight parameter. Similarly, we control the influ-423

ence of the quantity and noise in synthetic samples424

with another weight parameter. The final loss is a425

weighted sum of the original and synthetic losses:426

Lfinal = L+ βLsyn. (14)427

During inference, the weights associated with the428

extension entity labels are masked, ensuring that429

the model exclusively predicts the target entities.430

This design simplifies the overall architecture while431

enhancing model efficiency.432

4 Experiment433

4.1 Experiment Setup434

Training: To comprehensively evaluate the effec-435

tiveness of our data augmentation strategy on dif-436

ferent LLMs, and to fairly compare previous re-437

lated methods. We use ChatGLM3-6B, GLM4-438

9B-Chat, Qwen2.5-14B-Instruct, Llama3.1-70B-439

Instruct, GPT-4o and Deepseek-V3 (GLM et al.,440

2024; Yang et al., 2024b,a; Dubey et al., 2024; Ope-441

nAI, 2023; DeepSeek-AI et al., 2025) as LLMs for442

label extension annotation and enriched explana-443

tion synthesis. We choose BERT (Devlin et al.,444

2019) as the backbone encoder of the KnowFREE.445

More detail settings are presented in Appendix H.446

Evaluation: To assess the performance of our447

method in low-resource scenarios, we conducted448

experiments on a variety of datasets. These in-449

clude Chinese flat NER datasets (Weibo (Peng and450

Dredze, 2015), Youku (Jie et al., 2019), Taobao451

(Jie et al., 2019), and Resume (Zhang and Yang,452

2018b)); English flat NER datasets (CoNLL’03453

(Sang and De Meulder, 2003) and MIT-Movie454

(Liu et al., 2013)); a Chinese nested NER dataset 455

(CMeEE-v2 (Zhang et al., 2022)); word segmen- 456

tation datasets (PKU and MSR (Emerson, 2005)); 457

and a POS tagging dataset (UD (Nivre et al., 2016)). 458

To evaluate our method under data scarcity and 459

explore the limits of performance gains from sam- 460

ple synthesis, we conducted both many-shot and 461

few-shot experiments. In the many-shot setting, 462

we simulated low-resource conditions by randomly 463

sampling subsets of 250, 500, and 1000 training 464

instances. In the few-shot setting, we adopted the 465

standard “n-way k-shot” paradigm, using a greedy 466

sampling strategy to ensure each target label ap- 467

peared at least k times. To ensure consistency, each 468

larger subset included all samples from the smaller 469

ones. Dataset statistics are provided in Appendix G. 470

We then discuss the effectiveness of each module 471

in the analysis section. Additionally, we report the 472

results on the full datasets in Appendix B, conduct 473

further ablation studies on the number of heads in 474

local attention in Appendix D, and provide visual- 475

izations of the logit scores for the extension labels 476

in Appendix F. 477

Baselines: To ensure a fair comparison, we 478

evaluate our method against both model-centric 479

and data-centric baselines. On the model-centric 480

side, we compare with general baselines such as 481

BERT-CRF (Devlin et al., 2019) and BiaffineNER 482

(Yu et al., 2020), as well as models specifically 483

designed for Chinese sequence labeling, includ- 484

ing FLAT (Li et al., 2020), MECT (Wu et al., 485

2021), and LEBERT (Liu et al., 2021). We also 486

include comparisons with state-of-the-art nested 487

NER methods such as W2NER (Li et al., 2022), 488

CNN Nested NER (Yan et al., 2023), and DiFiNet 489

(Cai et al., 2024). From the data-centric perspec- 490

tive, we compare with the transfer learning ap- 491

proach PCBERT (Lai et al., 2022), and LLM- 492

enhanced methods including LLM-DA (Ye et al., 493

2024), ProgGen (Heng et al., 2024), and MELM 494

(Zhou et al., 2022). In addition, Appendix A pro- 495

vides results comparing vanilla LLMs and LoRA 496

fine-tuned models on sequence labeling tasks. 497

4.2 Main Results 498

Many-shot Results. As shown in Table 1, our 499

method consistently achieves higher average per- 500

formance across all datasets. We observe that larger 501

backbone LLMs generally bring greater perfor- 502

mance improvements to our approach. Although 503

the scaling law is not strictly linear, even the small- 504

est model, ChatGLM3-6B, delivers strong results. 505
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Weibo Youku Taobao Resume CMeEE-v2 PKU MSR UDModel
250 500 1000 250 500 1000 250 500 1000 250 500 1000 250 500 1000 250 500 1000 250 500 1000 250 500 1000

BERT-CRF (Devlin et al., 2019) 56.57 60.91 66.52 68.02 70.57 74.92 68.78 71.88 74.74 90.19 92.35 93.43 - - - 93.49 94.31 95.02 90.60 91.73 92.93 87.11 89.87 91.98
FLAT (Li et al., 2020) 57.75 59.47 65.72 72.31 76.01 78.73 69.84 71.72 76.21 91.35 93.04 93.61 - - - 78.28 80.10 80.22 77.72 78.27 78.44 77.76 78.39 80.11
MECT (Wu et al., 2021) 58.55 60.77 66.13 72.82 75.85 79.16 70.54 73.87 76.48 91.52 93.63 93.90 - - - 87.28 87.54 87.58 87.48 87.53 87.71 87.12 87.30 87.61
LEBERT (Liu et al., 2021) 61.23 64.03 67.63 72.39 75.00 77.88 71.12 74.46 77.44 93.08 94.16 95.05 - - - 93.42 94.09 94.97 90.64 91.95 93.27 88.93 91.85 93.43
PCBERT (Lai et al., 2022) 70.73 70.78 72.81 77.67 81.96 83.66 73.32 75.41 79.21 93.63 94.31 95.18 - - - 93.47 94.07 94.54 90.01 92.18 93.10 89.81 91.70 93.67

BiaffineNER (Yu et al., 2020) 58.74 66.41 69.70 77.28 80.21 81.68 74.62 76.98 79.46 93.30 94.61 95.49 61.26 65.56 68.40 93.20 94.39 94.94 91.60 92.63 93.64 88.84 90.74 92.68
W2NER (Li et al., 2022) 54.57 63.21 71.09 79.20 81.40 83.28 74.68 76.80 79.71 94.39 95.82 96.35 61.10 65.67 68.72 93.90 94.64 95.41 91.61 92.76 93.82 90.12 92.91 94.86
CNN Nested NER (Yan et al., 2023) 64.81 67.75 69.96 79.28 81.58 83.94 75.39 77.86 80.06 93.10 94.54 95.39 62.32 66.43 69.06 94.00 94.59 95.47 91.72 92.86 93.67 90.21 92.48 94.70
DiFiNet (Cai et al., 2024) 67.35 69.02 72.19 79.81 81.32 83.29 75.40 77.05 79.61 93.81 94.75 95.93 63.55 66.26 67.28 93.81 94.76 95.26 91.46 92.45 93.24 90.94 92.82 94.62

KnowFREE-F (ChatGLM3-6B) 66.76 71.59 72.99 79.30 82.13 84.50 76.31 78.55 80.53 94.03 95.04 96.14 63.64 67.47 69.52 94.07 94.94 95.51 91.73 92.91 93.92 90.99 92.71 95.00
KnowFREE-F (GLM4-9B-Chat) 66.40 73.08 72.59 79.40 82.16 84.37 76.02 78.21 80.48 94.05 95.43 96.25 63.98 67.41 69.38 94.57 95.01 95.49 91.83 92.73 93.91 90.58 92.72 94.98
KnowFREE-F (Qwen-14B) 68.07 73.39 73.41 80.30 82.10 84.20 76.38 78.00 80.50 94.21 95.32 96.40 63.23 67.25 69.19 94.36 94.94 95.51 91.76 92.93 93.89 90.53 93.03 94.97
KnowFREE-F (Llama3.1-70B-Instruct) 67.72 73.08 72.59 80.18 82.17 84.37 76.24 78.32 80.51 94.11 95.24 96.18 63.92 67.47 69.18 94.28 94.98 95.51 91.77 92.89 93.91 90.76 92.69 94.96
KnowFREE-F (GPT-4o) 68.18 73.51 74.06 80.30 82.18 84.62 76.47 78.18 80.64 94.55 95.50 96.37 63.66 67.59 69.76 94.59 95.09 95.62 91.97 92.96 93.98 91.01 93.13 95.05
KnowFREE-F (Deepseek-V3) 68.12 73.42 74.12 80.28 82.13 84.39 76.29 78.19 80.50 94.50 95.49 96.42 63.79 67.51 69.73 94.52 95.04 95.61 91.79 92.97 93.88 91.10 93.30 95.12

KnowFREE-FS (ChatGLM3-6B) 74.78 77.18 76.78 80.29 83.09 84.45 76.49 77.94 79.54 94.71 95.40 96.18 66.80 68.67 69.29 94.54 95.09 95.50 92.11 93.01 93.67 92.09 93.65 94.77
KnowFREE-FS (GLM4-9B-Chat) 73.90 76.86 76.57 81.86 83.17 84.48 76.47 77.89 79.36 94.95 95.45 96.21 68.12 68.45 68.85 94.73 95.05 95.47 92.18 92.96 93.50 91.23 93.02 93.42
KnowFREE-FS (Qwen-14B) 73.09 73.96 74.09 81.39 82.82 83.71 76.48 77.83 79.19 94.55 95.33 96.06 66.58 67.61 68.53 94.59 95.04 95.48 92.47 93.14 93.59 92.73 93.88 94.36
KnowFREE-FS (Llama3.1-70B-Instruct) 74.18 76.91 76.68 81.69 83.09 84.36 76.48 77.91 79.69 94.86 95.46 96.21 68.12 68.45 68.85 94.62 95.02 95.47 92.16 93.02 93.66 92.68 93.76 94.23
KnowFREE-FS (GPT-4o) 74.25 77.12 77.16 81.98 83.16 84.48 76.47 78.12 80.02 94.59 95.49 96.31 68.31 68.73 69.78 94.72 95.10 95.51 92.62 93.16 93.96 93.72 93.98 95.33
KnowFREE-FS (Deepseek-V3) 74.77 77.19 77.18 81.72 83.24 84.97 76.52 78.21 80.56 94.97 95.51 96.46 68.51 68.40 69.12 94.93 95.02 95.49 92.83 93.17 93.42 93.18 93.81 95.35

Table 1: The overall results on many-shot sequence labeling tasks. KnowFREE-F denotes the variant using only the
label extension annotation pipeline, while KnowFREE-FS incorporates the enriched explanation synthesis pipeline.
The bold values indicate the best performance, and the underlined values represent the second-best.

Under the 250-sample setting, our method sur-506

passes the strongest baseline by an average of507

1.95%, especially with a 4.05% gain on the Weibo508

dataset. In low-resource settings, KnowFREE-FS509

outperforms KnowFREE-F. However, as the num-510

ber of training samples increases, especially be-511

yond 500, the performance of KnowFREE-FS be-512

comes comparable to or slightly lower than that513

of KnowFREE-F. This indicates that enriched data514

synthesis is more effective when training data is515

limited. When more data is available, the noise516

introduced by synthetic samples may outweigh the517

benefits. Further analysis of noise effects is pro-518

vided in Appendix F and E. Even when data syn-519

thesis becomes less effective in higher-resource520

scenarios, KnowFREE-F maintains strong perfor-521

mance. With 1000 training samples, it still out-522

performs the strongest baseline by an average of523

0.95% across all NER datasets, demonstrating the524

robustness and effectiveness of the label extension525

annotation strategy.526

Few-shot Results. To assess the effectiveness527

of our method in few-shot settings, we compared it528

with state-of-the-art nested NER models and sev-529

eral LLM-based data augmentation strategies, in-530

cluding LLM-DA, ProgGen, and MELM, on both531

Chinese and English NER datasets. For fair com-532

parison, all synthesized samples were annotated533

using the KnowFREE model trained solely on the534

original data, and the resulting data were used535

to retrain KnowFREE. As shown in Table 2, our536

method consistently outperforms the baselines un-537

der few-shot settings. On the Weibo dataset with538

k=5, while other methods yield zero performance,539

our approach achieves the performance of 35.58%.540

Moreover, for k ≤ 15, LLM-based augmentation541

Size
Ours LLM-DA ProgGen MELM C.N.-NER DiFiNet

Weibo

k=5 35.58 (2.33) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
k=10 48.53 (1.57) 0.95 (0.23) 0.48 (0.19) 0.03 (0.04) 0.95 (0.21) 0.98 (0.18)
k=15 60.61 (2.58) 17.28 (1.93) 12.36 (1.22) 2.98 (0.58) 20.68 (1.88) 27.43 (2.30)
k=20 68.62 (2.04) 39.49 (2.41) 34.16 (2.09) 16.71 (1.67) 31.10 (2.01) 32.71 (2.31)

Youku

k=5 38.76 (2.30) 12.03 (2.24) 13.76 (1.32) 9.98 (2.01) 24.70 (2.55) 23.83 (2.52)
k=10 68.95 (3.85) 33.10 (2.34) 33.52 (2.01) 16.17 (1.30) 46.39 (2.48) 46.62 (2.43)
k=15 71.76 (3.33) 59.72 (3.94) 56.55 (1.56) 50.18 (1.67) 60.41 (1.88) 60.61 (1.91)
k=20 72.83 (2.29) 64.58 (2.53) 61.80 (1.60) 52.38 (1.59) 67.38 (1.92) 68.38 (1.58)

Taobao

k=5 62.96 (2.34) 13.95 (2.32) 22.74 (2.62) 8.97 (0.88) 22.40 (1.61) 23.82 (1.56)
k=10 64.64 (3.58) 54.05 (2.92) 50.75 (1.66) 32.41 (1.37) 53.33 (2.01) 53.75 (2.03)
k=15 69.26 (2.65) 59.69 (2.58) 59.77 (1.51) 55.32 (1.57) 60.45 (1.83) 61.01 (1.54)
k=20 68.93 (2.36) 61.79 (1.51) 61.77 (1.63) 43.13 (1.62) 63.36 (1.86) 64.08 (1.53)

Resume

k=5 65.28 (0.97) 30.44 (0.66) 27.63 (0.34) 20.67 (1.26) 25.50 (1.22) 29.97 (1.17)
k=10 78.89 (0.53) 45.40 (0.58) 50.39 (0.82) 42.34 (1.28) 49.78 (1.53) 50.19 (1.49)
k=15 85.43 (1.17) 58.77 (1.15) 60.32 (1.26) 53.18 (1.18) 56.04 (1.31) 56.92 (1.16)
k=20 85.56 (1.11) 75.13 (1.36) 82.96 (1.28) 69.15 (1.21) 67.51 (1.17) 68.83 (1.19)

CMeEE-v2

k=5 49.68 (1.89) 35.03 (1.65) 39.18 (1.52) 12.78 (1.01) 6.49 (0.56) 5.62 (0.47)
k=10 60.46 (1.67) 48.91 (1.61) 44.80 (1.59) 32.76 (1.65) 47.40 (1.56) 47.25 (1.50)
k=15 62.46 (1.51) 48.97 (1.54) 49.32 (1.61) 38.79 (1.53) 48.90 (1.65) 48.72 (1.59)
k=20 63.83 (1.68) 57.18 (1.63) 57.76 (1.51) 50.12 (1.67) 56.38 (1.58) 56.22 (1.55)

CoNLL’03

k=5 64.18 (1.62) 57.84 (1.93) 57.11 (2.56) 30.00 (2.13) 27.75 (1.61) 26.86 (1.36)
k=10 75.83 (1.52) 69.07 (2.44) 69.10 (2.39) 63.48 (2.18) 62.93 (1.94) 59.17 (1.88)
k=15 78.68 (1.39) 78.18 (2.22) 78.32 (2.19) 76.16 (2.03) 75.93 (1.86) 75.85 (1.89)
k=20 83.24 (1.21) 81.94 (2.17) 82.09 (1.55) 79.41 (2.21) 77.92 (1.58) 77.74 (1.81)

MIT-Movie

k=5 57.34 (1.88) 53.97 (2.07) 52.82 (2.44) 38.49 (2.23) 36.81 (1.26) 37.62 (1.33)
k=10 64.08 (1.66) 63.03 (2.35) 63.41 (2.14) 50.56 (2.29) 49.08 (1.60) 49.43 (1.58)
k=15 67.03 (1.68) 65.77 (1.46) 65.93 (1.17) 58.32 (1.87) 58.03 (1.69) 58.54 (1.51)
k=20 69.28 (1.63) 69.12 (1.08) 69.19 (1.59) 62.02 (1.91) 60.81 (1.60) 61.07 (1.64)

Table 2: Results of few-shot sequence labeling tasks.
Our default method is KnowFREE-FS (ChatGLM3-6B).
C.N.-NER refers to the abbreviation of CNN Nested
NER. Values in parentheses indicate standard deviation.
bold numbers highlight the best performance.

strategies often perform worse than CNN Nested 542

NER and DiFiNet, indicating limited domain adapt- 543

ability and the adverse effects of noise introduced 544

by data synthesis. The performance gains are 545

more pronounced on Chinese datasets compared to 546

English ones, demonstrating the method’s robust- 547

ness across languages and its particular strength 548
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in character-dense languages. Further analysis of549

performance trends of LLM-based methods under550

varying data sizes is provided in Appendix E.551

4.3 Analysis552

Method Weibo Youku Taobao Resume CMeEE-v2 PKU MSR UD

Default 72.99 84.50 80.53 96.14 69.52 95.51 93.92 95.00
w/o L.E.A. 72.32 84.26 79.93 96.02 69.49 93.75 93.67 94.88
w/o local attn & L.E.A. 69.87 81.65 79.01 95.49 68.42 94.93 93.64 92.66
w/o local attn w cnn 72.21 84.28 80.26 95.94 69.31 95.50 93.72 94.76
w/o S.L. 72.26 84.19 79.80 95.74 69.18 94.86 93.87 94.85
w/o entity 72.25 84.37 80.14 95.86 69.08 95.51 93.91 94.97
w/o pos 72.39 84.45 80.48 96.14 69.26 95.51 93.93 95.01

Table 3: Results of F1 scores in ablation studies, all
results are trained on datasets with 1000. The backbone
LLM is ChatGLM3-6B.

Ablation Studies: To evaluate the contribution553

of each component in our approach, we conducted554

ablation studies by selectively removing modules555

and analyzing their impact on model performance,556

as shown in Table 3. “w/o L.E.A.” removes the557

Label Extension Annotation module and uses the558

vanilla KnowFree model. Although this leads to a559

performance drop, it still outperforms nested NER560

baselines across several datasets. “w/o local attn &561

L.E.A.” disables both the local attention and L.E.A.562

modules, resulting in a significant average perfor-563

mance drop of 1.56%, highlighting their combined564

effectiveness. In “w/o local attn w CNN,” the lo-565

cal attention module is replaced by the masked566

CNN module from CNN Nested NER. While this567

improves performance over CNN Nested NER, it568

underperforms compared to our attention-based569

model, confirming the advantage of local multi-570

head attention for capturing neighborhood interac-571

tions. “w/o S.L.” removes the synonymous label572

merging strategy and causes a 0.42% drop in perfor-573

mance, indicating that failing to unify semantically574

equivalent labels introduces confusion and weak-575

ens model predictions. In “w/o entity” and “w/o576

pos,” we exclude extension entity features and POS577

features, respectively. Removing entity features578

leads to a larger performance drop, showing their579

stronger impact on entity recognition. Interestingly,580

removing POS features improves results on MSR581

and UD, possibly due to noise introduced by im-582

perfect or overly correlated POS tags.583

Impact of Enriched Explanation Synthesis584

in K-Shot Sampling: To further evaluate the im-585

pact of enriched explanation synthesis on model586

performance in low-resource scenarios, we con-587

ducted experiments following the “n-way k-shot”588

paradigm. The sampled data was then augmented589

with ChatGLM3-6B. We compared the model’s per-590
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Figure 4: Performance comparison with and without
enriched explanation synthesis under k-shot sampling.

formance with and without enriched explanation 591

synthesis, as shown in Figure 4. Here, “w Synthetic” 592

indicates the performance with enriched explana- 593

tion synthesis, while “w/o Synthetic” reflects the 594

performance without it. The results demonstrate 595

that “w Synthetic” achieves a substantial perfor- 596

mance boost over “w/o Synthetic” from the out- 597

set. Notably, when k is less than 15, enriched 598

explanation synthesis consistently delivers rapid 599

performance improvements across all datasets. As 600

k increases, the performance gap narrows, but “w 601

Synthetic” continues to outperform “w/o Synthetic” 602

across all settings. These findings highlight that 603

in resource-scarce scenarios, synthesizing enriched 604

data is more effective than directly injecting fea- 605

tures into raw samples. These findings highlight 606

the critical role of enriched explanation synthesis in 607

enhancing model performance, particularly when 608

labeled data is limited. 609

5 Conclusion 610

In this paper, we propose a novel framework that 611

integrates an LLM-based knowledge enhancement 612

workflow with a span-based sequence labeling 613

model. Our approach improves model performance 614

by generating contextual interpretations of target 615

entities and annotating extension labels. Addition- 616

ally, our KnowFREE model effectively incorpo- 617

rates extension label features to enhance extraction 618

capabilities. Extensive experiments on Chinese 619

few-shot sequence labeling datasets demonstrate 620

that our method achieves state-of-the-art perfor- 621

mance, showcasing its effectiveness and efficiency. 622
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Limitations623

While enriched explanation synthesis significantly624

improves model performance in low-resource sce-625

narios (e.g., with fewer than 500 original samples),626

its effectiveness diminishes as the size of the origi-627

nal dataset increases. Specifically, when the num-628

ber of original samples exceeds this threshold, dis-629

tributional discrepancies between synthetic sam-630

ples and target domain semantics can lead to the631

synthetic data having a negative impact that out-632

weighs its benefits. In future work, we plan to633

explore adaptive alignment mechanisms to better634

align synthetic and original data across different635

data scales.636

Ethics Statement637

Our data augmentation method utilizes LLMs to638

generate data independently of the existing train-639

ing set. However, the generated data may reflect640

social biases inherent in the pre-training corpus.641

To mitigate the risk of propagating biased informa-642

tion into sequence labeling models, we recommend643

conducting manual reviews before integrating the644

synthesized data into practical applications.645
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A Sequence Labeling with LLMs 1167

Model Weibo Youku Taobao Resume CMeEE UD PKU MSR

ChatGLM3-6B 3.28 9.84 9.21 13.71 2.41 1.15 3.76 6.69
Llama3-8B-Instruct 15.06 13.89 9.67 41.45 11.27 14.06 23.88 28.84
GLM4-9B-Chat 12.43 31.69 14.90 47.12 16.28 26.38 26.18 31.12
Qwen2.5-14B-Instruct 31.06 51.00 5.89 51.67 22.38 10.06 2.33 3.02
Llama3.1-70B-Instruct 34.69 49.54 13.77 66.60 40.86 37.82 3.96 7.44
Deepseek-V3 33.33 10.91 15.91 60.88 42.20 38.66 5.96 2.45

Table 4: Results on sequence labeling tasks with vanilla
LLMs on zero-shot learning.

To evaluate the performance of directly using 1168

LLMs for sequence labeling tasks in low-resource 1169

scenarios, we present the results of vanilla LLMs 1170

in Table 4 and the performance of LoRA-finetuned 1171

models trained on sampled datasets in Table 5. 1172

During zero-shot inference, LLMs extract entities 1173

based on the input text and target labels. As shown 1174

in Table 4, vanilla LLMs exhibit significantly poor 1175

performance on all datasets, likely due to their lim- 1176

ited understanding of target label definitions. More- 1177

over, models with different parameter scales show 1178

varying performance across datasets, and no clear 1179

positive correlation is observed between model size 1180

and performance. This may be improved through 1181

more advanced designs of the sequence labeling 1182

prompts used in our setting. Therefore, for domain- 1183

specific sequence labeling tasks, incorporating few- 1184

shot examples into the prompt or fine-tuning the 1185

model with LoRA could be a more effective and 1186

practical approach. 1187
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Model Weibo Youku Taobao Resume
250 500 1000 250 500 1000 250 500 1000 250 500 1000

ChatGLM3-6B (LoRA) 12.29 20.44 28.22 34.52 38.62 39.29 29.91 30.02 30.03 39.92 40.76 39.98
GLM4-9B-Chat (LoRA) 49.20 54.54 60.30 73.79 74.56 74.84 58.84 63.63 69.20 83.31 86.24 88.27
Llama3-8B-Instruct (LoRA) 10.09 17.08 44.24 49.59 60.97 64.33 23.84 34.65 42.98 65.36 70.82 74.86
Qwen2.5-14B-Instruct (LoRA) 50.93 56.87 56.30 72.89 75.10 78.83 61.58 59.43 66.98 84.45 88.12 88.65

Model CMeEE-v2 PKU MSR UD
250 500 1000 250 500 1000 250 500 1000 250 500 1000

ChatGLM3-6B (LoRA) 12.75 13.30 13.55 20.62 26.27 29.21 23.53 26.04 29.38 32.20 37.57 37.81
GLM4-9B-Chat (LoRA) 50.67 54.50 56.22 71.41 73.68 75.02 75.70 78.64 80.94 72.32 77.50 79.69
Llama3-8B-Instruct (LoRA) 23.27 41.52 44.41 62.50 64.53 68.88 66.17 68.52 69.72 32.16 35.51 44.85
Qwen2.5-14B-Instruct (LoRA) 53.59 53.80 59.31 71.94 72.71 75.91 77.83 79.89 80.07 74.40 77.04 80.70

Table 5: Performance of LLM fine-tuning with LoRA on sequence labeling tasks.

In the experiments with LoRA fine-tuning, all1188

LLMs show performance improvements compared1189

to zero-shot inference. Compared to other LLMs,1190

ChatGLM3-6B still underperforms in LoRA fine-1191

tuning, likely due to its weaker ability to align with1192

the target domain of sequence labeling. As a re-1193

sult, the synthesized data produced by ChatGLM3-1194

6B contains a considerable amount of irrele-1195

vant information. With the 250-sample setting,1196

Qwen2.5-14B-Instruct demonstrates outperforms1197

other LLMs on most datasets, suggesting that1198

models with larger parameters tend to show en-1199

hanced initial performance in low-resource con-1200

texts. Nonetheless, with the sample size increases,1201

the performance improvements of Qwen2.5-14B-1202

Instruct on datasets such as Weibo, Taobao, and1203

MSR fell short compared to GLM4-9B-Chat. This1204

could be due to variations in model performance1205

when applied to different domain-specific data dis-1206

tributions. It is important to highlight that the per-1207

formance of LLMs on most datasets was still below1208

that of conventional sequence labeling baselines,1209

including the the relatively simple BERT-CRF. The1210

findings from the main results indicate that the1211

knowledge contained in LLMs can significantly1212

improve sequence labeling performance. However,1213

they lack the necessary expertise and alignment1214

capabilities for handling domain-specific datasets.1215

Due to biases in domain data distribution, LLMs1216

struggle to identify target entities in particular fields1217

as efficiently as conventional sequence labeling1218

techniques.1219

Considering the trade-offs between cost and per-1220

formance, the data augmentation approach leverag-1221

ing LLMs proposed in this study offers a more prac-1222

tical and efficient solution. This method bridges1223

the gap between LLMs’ general knowledge and1224

the specialized requirements of domain-specific1225

sequence labeling tasks. 1226

B Results on Full Datasets 1227

To evaluate the effectiveness of Label Extension 1228

Annotation at the full data scale, we conducted ad- 1229

ditional experiments comparing our method with 1230

W2NER, CNN Nested NER, and DiFiNet. The re- 1231

sults are shown in Table 6. While performance 1232

improvements become less pronounced on cer- 1233

tain datasets (e.g., Weibo, Youku, and Resume) 1234

compared to the 1000-sample setting, KnowFREE 1235

and KnowFREE-F (Deepseek-V3) still outperform 1236

all baseline methods on the full datasets, demon- 1237

strating their robustness even under high-resource 1238

conditions. Although the impact of label exten- 1239

sion annotation diminishes as the dataset size in- 1240

creases, it consistently offers improvements over 1241

the vanilla KnowFREE, confirming its continued 1242

utility. As for enriched explanation synthesis, one 1243

of our main motivations was to investigate its per- 1244

formance boundary in low-resource settings. Our 1245

analysis shows that its benefits significantly de- 1246

crease as the sample size grows, with little gain 1247

beyond the 500-sample mark. Thus, we can reason- 1248

ably conclude that enriched explanation synthesis 1249

provides limited added value in full-data scenarios. 1250

C Visual Analysis of Enriched 1251

Explanation Synthesis 1252

In this section, we use the BERT-based embed- 1253

ding model, text2vec (Ming, 2022), to generate 1254

sentence embeddings for the original training and 1255

test samples, as well as the enriched explanation 1256

samples from the Weibo, Youku, Taobao, Resume, 1257

and CMeEE-v2 datasets. These embeddings are 1258

projected into a two-dimensional space using the 1259

t-SNE algorithm, with the results shown in Fig- 1260
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Model Weibo Youku Taobao Resume CMeEE PKU MSR UD CoNLL’03 MIT-Movie

W2NER 72.59 83.62 88.27 96.88 72.97 95.51 97.72 95.00 91.71 74.62
CNN Nested NER 72.31 83.79 88.86 96.67 73.83 93.75 97.69 94.88 91.16 74.86
DiFiNet 73.33 83.69 88.19 96.59 72.29 94.86 97.28 94.85 90.72 74.49

KnowFREE 73.87 84.52 88.97 96.82 73.92 96.59 97.72 95.93 92.28 75.32
KnowFREE-F (Deepseek-V3) 74.15 84.57 89.12 96.93 73.95 96.67 97.76 96.02 92.27 75.38

Table 6: Results of sequence labeling datasets on full datasets. The bold values indicate the best performance.
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Figure 5: t-SNE visualization of the training, test and enriched explanation samples under different sampling sizes.
The synthetic enriched explanation samples are generated by ChatGLM3-6B, and they are represented by the
“Synthetic” in the legend.

ure 5. At 250, the sparse distribution of training1261

samples in datasets such as Weibo, Youku, Taobao,1262

and Resume fails to fully cover the semantic space1263

of the test sets, the limitation is observed across1264

all datasets. However, the synthesized samples ef-1265

fectively bridge these gaps in the semantic space,1266

leading to significant performance improvements1267

in low-resource scenarios. As K increases, the1268

training samples begin to provide more compre-1269

hensive coverage of the semantic space for most1270

datasets. At 1000, however, semantic distribution1271

discrepancies are noticeable between some training1272

and synthesized samples in datasets like Youku,1273

Taobao, and CMeEE-v2, potentially introducing1274

noise that may adversely affect model performance.1275

On the Weibo dataset, certain regions of the test1276

set’s semantic space remain underrepresented by1277

the original training samples, even at 1000. This1278

explains why models trained with synthesized sam-1279

ples continue to exhibit notable performance ad-1280

vantages over those trained without synthesized1281

samples at this sample size.1282

These observations further underscore the ef-1283

fectiveness of the enriched explanation synthesis 1284

method in improving model performance under 1285

low-resource conditions. However, they also high- 1286

light that as the sample size increases, the potential 1287

adverse effects of synthesized samples, such as 1288

semantic noise, become more pronounced. 1289

D Impact of the Number of Heads in 1290

Local Attention 1291

To analyze the impact of different numbers of atten- 1292

tion heads on model performance, we conducted ex- 1293

periments on four flat NER datasets: Weibo, Youku, 1294

Taobao, and Resume, using a sampling size of 1000. 1295

The model was trained on the sampled data with 1296

extension labels extracted by GLM4-9B-Chat, and 1297

the results are presented in Figure 7. 1298

The results suggest that the number of attention 1299

heads has a relatively moderate influence on model 1300

performance. Notably, increasing the number of 1301

heads from 8 to 10 yields the most substantial im- 1302

provement. Moreover, how feature vectors are dis- 1303

tributed across heads proves to be a critical fac- 1304

tor. To maintain compatibility as the number of 1305
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Figure 6: Performance comparison between different data synthesis strategies under k-shot sampling.
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Figure 7: Performance variation with different numbers
of heads in the local attention module.

heads increases, we adjusted the feature size to en-1306

sure it remains divisible by the number of heads.1307

However, this adjustment did not result in further1308

performance gains and significantly increased com-1309

putational overhead. Therefore, we adopt ten at-1310

tention heads in this study as a trade-off between1311

performance and efficiency.1312

E Comparison of different data synthesis1313

strategies1314

To evaluate the effectiveness of the enriched expla-1315

nation synthesis strategy, we reproduced and com-1316

pared two LLM-based data synthesis methods de-1317

signed for sequence labeling tasks: LLM-DA and1318

ProgGen. These methods were used to synthesize1319

data from k-shot samples of the original datasets.1320

For consistency, all synthesized samples were an-1321

notated using the KnowFREE model trained on the1322

original data without synthesized samples. We con-1323

ducted experiments on the Weibo, Youku, Taobao,1324

and Resume datasets, all results are presented in1325

Figure 6. The results show that the performance1326

gains from all data synthesis strategies decrease1327

as the number of samples increases. Notably, in 1328

scenarios with k ≤ 30 on the Youku and Taobao 1329

datasets, both LLM-DA and ProgGen lead to per- 1330

formance degradation compared to models trained 1331

without synthesized data. This suggests that the 1332

synthesized samples generated by these methods 1333

may contain inherent semantic distribution biases, 1334

which diminish their effectiveness in enhancing 1335

performance in certain low-resource domains. 1336

In contrast, our method consistently delivers sig- 1337

nificantly better performance improvements for 1338

k ≤ 50, with particularly notable gains on the 1339

Weibo dataset. These results demonstrate that the 1340

samples synthesized by our approach are more 1341

closely aligned with the target domain’s distribu- 1342

tion and exhibit superior robustness. 1343

F Visualization of the Logits with 1344

Extension Labels 1345

To further investigate the interaction between the 1346

introduced extension labels and target labels in the 1347

model, we visualized the logit scores of extension 1348

labels corresponding to each predicted target label 1349

position in the test set. These scores were aggre- 1350

gated by summing and averaging across label cate- 1351

gories, and the results are displayed as a heatmap in 1352

Figure 8. In each heatmap subplot, the horizontal 1353

axis represents the target labels, while the vertical 1354

axis corresponds to the extension labels. 1355

The results reveal that certain extension labels 1356

exhibit strong correlations with specific target la- 1357

bels. For instance, in the Weibo dataset, both 1358

“PER.NAM” and “PER.NOM” show a notable asso- 1359

ciation with the extension label “PERSON”. Sim- 1360

ilarly, in the Resume dataset, “COUNT” demon- 1361

strates strong correlations with the extension labels 1362

“Country,” “Location,” and “description”. Incorpo- 1363

rating these significant relationships during training 1364

allows the model to leverage co-occurrence pat- 1365

terns, enhancing its ability to perform fine-grained 1366

semantic understanding and improving target entity 1367
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Figure 8: Heatmap visualization of logits scores between target labels and extension labels on the test sets.

prediction.1368

However, some extension labels were observed1369

to have strong correlations with all target labels.1370

Since the KnowFREE model produces indepen-1371

dent probability scores for each target label, the1372

influence of such extension labels on target entity1373

predictions is generally limited when their number1374

is small, as their training weights are relatively low.1375

Conversely, when these extension labels become1376

overly numerous, they can negatively impact model1377

training. In such cases, reducing their weights fur-1378

ther can help mitigate these effects and enhance1379

overall model performance.1380

G Statistics of Datasets1381

The detailed statistics of the datasets are shown1382

in Table 7. These datasets span various domains,1383

including Social Media, E-commerce, and Medical,1384

enabling a comprehensive evaluation of the model’s1385

performance across different fields.1386

Dataset Dev Test Label Types Domain

Weibo 0.27k 0.27k 8 Social Media
Youku 1.00k 1.00k 3 Video Content
Taobao 1.00k 1.00k 4 E-commerce
Resume 0.46k 0.48k 8 Human Resources
CMeEE-v2 4.98k 4.98k 9 Medical
PKU 1.00k 2.04k 1 News
MSR 1.00k 3.99k 1 News
UD 0.50k 0.50k 16 News, Literature
CoNLL’03 3.47k 3.68k 4 News
MIT-Movie 1.00k 1.95k 12 Entertainment

Table 7: Statistics of development sets, test sets, label
types and domains of all datasets.

H More Experiment Settings 1387

In this section, we describe the additional exper- 1388

imental parameter settings for our method. In 1389

the pipeline of label extension annotation, the pre- 1390

trained embedding model of M is set as “text2vec” 1391

(Ming, 2022), the Top-p value is set as five, and the 1392

threshold ϵ is set as 1.5. In the training stage, the 1393
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hidden size D, D′, and D̃ are set as 768, 200, and1394

200, respectively. The activation function of σ and1395

σ∗ are defined as Leaky ReLU and GeLU, respec-1396

tively. In the local multi-head attention module, the1397

window size ω is set as three and the number of1398

attention heads K is set as ten. In the sequence la-1399

beling model, we distinguish between the learning1400

rate for the PLM and other modules, setting them1401

to 2e-5 and 1e-3, respectively. For the weight α of1402

extension labels, we introduce a dynamic weight1403

calculation mechanism to handle the influence of1404

frequently occurring extension labels (e.g., POS1405

tags). These frequent labels can affect the gradient1406

calculation, leading to reduced attention to target1407

labels. To address this, we calculate the count Ci of1408

each extension label and the average count Ĉ of tar-1409

get labels, and then compute the weight coefficient1410

αi as follows:1411

αi = 0.5× (Ĉ/Ci). (15)1412

Dataset Weight Decay β Type

Weibo 1e-3 1.0 Flat NER
Youku 1e-2 0.4 Flat NER
Taobao 1e-3 0.4 Flat NER
Resume 1e-3 0.4 Flat NER
CMeEEv2 1e-3 0.4 Nested NER
PKU 1e-2 1.0 Word Segment
MSR 1e-2 1.0 Word Segment
UD 1e-2 1.0 POS Tagging
CoNLL’03 1e-3 0.4 Flat NER
MIT-Movie 1e-2 0.4 Flat NER

Table 8: Settings of β and weight decay across different
datasets.

The training weight for synthesized samples (β)1413

and the weight decay parameter are provided in1414

Table 8. As shown, for most NER datasets with1415

more complex entity semantics, we use a smaller1416

weight decay parameter to improve model fitting1417

during training. In contrast, for POS tagging and1418

tokenization datasets, we apply a larger weight de-1419

cay to prevent overfitting. Additionally, for NER1420

datasets, where entity labels are more prone to1421

noise from synthesized samples, we set β = 0.4.1422

On the other hand, for datasets with strong baseline1423

performance, increasing β to 1.0 helps the model1424

better utilize synthesized samples during training.1425

Our implementation is built on the Huggingface1426

Transformers (Wolf et al., 2020), and all experi-1427

ments are conducted using two NVIDIA A60001428

GPUs for both training and inference.1429

I Prompts 1430

In this section, we present detailed examples of our 1431

workflow prompts for label extension annotation in 1432

Figure 9, 10 and enriched explanation synthesis in 1433

Figure 11, 12. Since the target dataset is entirely in 1434

Chinese, all original prompts are written in Chinese. 1435

The English portions in the prompt examples are 1436

translations of the original prompts. 1437
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Entity Extraction Prompt

指令 :请识别并抽取输入句子的命名实体 ，并使用
JSON格式的数组进行返回，子项包括entity和type属
性：
条件：1. 输出格式为[{entity: '', type: ''}],其中entity表
示所提取的实体文本, type表示所提取的实体类型,一
个entity对应一个type
2.如果不存在任何实体，请输出空数组[]

Instruction: Please identify and extract the named
entities from the input sentence and return them in a
JSON array format. Each item should include the
attributes `entity` and `type`:

Conditions: 1. The output format should be [{entity: '',
type: ''}], where `entity` represents the extracted entity
text, and `type` represents the extracted entity type. Each
entity corresponds to one type.
2. If no entities exist, output an empty array [].

Figure 9: The entity extraction prompt in label extension
annotation.

POS Tag Extraction Prompt

指令:请提取输入句子的词性 (POS)，并使用JSON格
式的数组进行返回，子项包括word和pos属性：
条件：1. 输出格式为[{word: ‘’, pos: ‘’}],其中word表
示所提取的文本, pos表示所提取的词性, 一个word对
应一个pos
2. 请务必将输入中**所有字符**和**标点**都进行
标注

Instruction: Please extract the Part-of-Speech (POS) of
the input sentence and return them in a JSON array
format. Each item should include the attributes `word`
and `pos`:

Conditions: 1. The output format should be [{word: '',
pos: ''}], where `word` represents the extracted text, and
`pos` represents the corresponding part-of-speech. Each
word corresponds to one `pos`.
2. Ensure that all **characters** and **punctuation**
marks in the input are annotated.

Figure 10: The POS tag extraction prompt in label
extension annotation.

Entity Explanation Prompt

指令: 你作为拥有丰富知识储备的专家，需要根据我
给出的样例进行续写，给学生们解释样例中包含的
实体含义，我会给定你样例和其包含的实体加实体
类型，请续写样例的后文，并解释每个实体在样例
中的含义。
样例：现任中国科技大学商学院院长 、中国现场统
计学会副理事长、美国当代统计索引CIS通讯编辑，
为美国ASA、IMS会员。
实体：['中国科技大学商学院(组织机构)’,
'院长(头衔职称)'…]

Instruction: As an expert with extensive knowledge,
you are required to continue writing based on the
provided sample and explain the entities included in the
sample for students. I will give you a sample along with
the entities it contains and their corresponding entity
types. Please continue writing the sample and explain
what each entity means in the sample.

Sample: Currently the Dean of the School of
Management at the University of Science and
Technology of China, Vice Chairman of the Chinese
Society of Probability and Statistics, Communications
Editor of the Contemporary Index of Statistics (CIS) in
the United States, and a member of the American
Statistical Association (ASA) and the Institute of
Mathematical Statistics (IMS).

Entities: ['School of Management at the University of
Science and Technology of China (Organization)’,
'Dean (Title)' …]

Figure 11: The entity explanation prompt in enriched
explanation synthesis.

Extension Description Prompt

指令: 你作为拥有丰富知识储备的专家，需要将我给
出的样例中包含的“关键短语”(如**实体**或**序列
**)进行抽取，并给学生们解释这些关键短语在样例
中的含义，我会给定你样例，请先将“关键短语”抽
取出来，其次再根据 “关键短语”续写样例的后文，
并解释每个“关键短语”在样例中的含义。
样例：现任中国科技大学商学院院长 、中国现场统
计学会副理事长、美国当代统计索引CIS通讯编辑，
为美国ASA、IMS会员。

Instruction: As an expert with extensive knowledge,
you are required to extract "key phrases" (such as
**entities** or **phrases**) from the given sample and
explain their meaning in the context of the sample to
students. I will provide you with a sample. Next, you
should extract the "key phrases," then continuous
generate the sample's content based on these "key
phrases" and explain the meaning of each "key phrase"
in the sample.

Sample: Currently the Dean of the School of
Management at the University of Science and
Technology of China, Vice Chairman of the Chinese
Society of Probability and Statistics, Communications
Editor of the Contemporary Index of Statistics (CIS) in
the United States, and a member of the American
Statistical Association (ASA) and the Institute of
Mathematical Statistics (IMS).

Figure 12: The extension description prompt in enriched
explanation synthesis.
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