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ABSTRACT

We present an online planning framework for solving multi-object rearrangement
problems in partially observable, multi-room environments. Current object rear-
rangement solutions, primarily based on Reinforcement Learning or hand-coded
planning methods, often lack adaptability to diverse challenges. To address this
limitation, we introduce a novel Hierarchical Object-Oriented Partially Observed
Markov Decision Process (HOO-POMDP) planning approach. This approach
comprises of (a) an object-oriented POMDP planner generating sub-goals, (b) a
set of low-level policies for sub-goal achievement, and (c) an abstraction system
converting the continuous low-level world into a representation suitable for ab-
stract planning. We evaluate our system on varying numbers of objects, rooms,
and problem types in AI2-THOR simulated environments with promising results.

1 INTRODUCTION

Multi-object rearrangement with egocentric vision in realistic home environments is a fundamental
challenge in embodied AI, encompassing complex tasks that require perception, planning, naviga-
tion, and manipulation. This problem becomes particularly demanding in multi-room settings with
partial observability, where large parts of the environment are not visible at any given time. Such
scenarios are ubiquitous in everyday life, from tidying up households to organizing groceries, mak-
ing them critical for the development of next-generation home assistant robots.

Existing approaches to multi-object rearrangement typically fall into two categories: Reinforcement
Learning (RL) methods and hand-coded planning systems. RL methods often struggle as the prob-
lem becomes increasingly complex and lengthy, making it difficult to scale to more challenging sce-
narios. To address this limitation, many researchers have adopted a modular approach, decomposing
the task into a series of subtasks (Gu et al., 2022) such as manipulation skills, navigation skills, or
exploration skills. These subtasks are then sequenced together in different ways to accomplish the
overall goal. However, current modular approaches have their own limitations. Some pre-determine
the sequence in which to apply skills, while others use greedy planners (Trabucco et al., 2022). This
constrains their potential for full optimization in terms of determining the optimal order to interact
with objects and handling new problems, such as when another object blocks the path to an object or
location or if the goal location itself is obstructed. To overcome these challenges, a more general ap-
proach that incorporates high-level planning based on the current state would be beneficial. Such an
approach would enable the system to handle novel problems without requiring extensive re-learning
from scratch, thus increasing its adaptability and efficiency in diverse environments. Solving these
new problems is particularly important in the context of household robots, where obstacles, blocked
paths, and obstructed goals are common occurrences that a robust system must be able to handle
effectively.

While significant progress has been made in rearrangement, the majority of current research focuses
on single-room settings or assumes that a large number of objects are visible at the beginning of
the task, either through a third-person bird’s eye view (Ghosh et al., 2022) or a first-person view
where most of the room is visible. However, as we move towards the more practical version of
the problems, such as cleaning a house, the majority of the space and objects to be manipulated
are not initially visible, and existing solutions begin to falter. This scenario of partial observability
introduces several major challenges: 1) uncertainty over object locations, as the starting positions of
objects are unknown; 2) execution efficiency of searching for objects while simultaneously moving
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them to the correct goal locations; 3) scalability of planning over increasing numbers of objects and
rooms; 4) extensibility to scenarios involving blocked goals or obstructed paths; and 5) graceful
handling of object detection failures.

Figure 1: a) shows the agent’s ego-centric view of
the world at initialization. b) shows the top-down
view of the environment before the start of the re-
arrangement task. The dotted bounding boxes in-
dicate the starting state of the object, and the solid
bounding boxes indicate the object’s goal state. In
a) The lines indicate the path between the start and
goal states. Object 1’s path to goal is blocked by
object 2, and its goal location is blocked by ob-
ject 3. Object 3’s path to its goal is also blocked
by object 2. Hence, object 2 needs to be moved
to its goal, then object 3 to its goal, and only then
can object 1 be moved to its goal. Objects 4 and 5
are blocking each other’s goals, and hence, one of
them needs to be placed elsewhere, and then the
swap can happen.

We employ a hierarchical approach to decom-
pose the complex multi-object rearrangement
problem into two distinct levels. This structure
allows us to address object combinatorics at the
high level while managing regional interactions
at the low level. By separating these aspects,
we effectively mitigate the challenges inherent
to each. We use an object-oriented representa-
tion rather than low-level perceptual represen-
tations such as point clouds, which reduces the
complexity of planning and is more natural in
our setting. Our hierarchical Object-Oriented
Partially Observed Markov Decision Process
(HOO-POMDP) planning framework has the
following components: 1) A perception module
that detects objects and outputs object-oriented
observations, 2) A belief update and state ab-
straction system, 3) A high-level planning mod-
ule that plans the sequence of locations to be
visited or objects to be transported, 4) A low-
level navigation and manipulation module that
plans a path to its next destination or control
actions to pick and place objects.

In more detail, the agent maintains a factored
belief state over object locations based on its
prior beliefs and the output of its object de-
tection module. An abstract object-oriented
POMDP planner produces a high-level policy
for the given goal. The first high-level action
in the plan is treated as a (navigation or ma-
nipulation) sub-goal for the low-level planner,
which produces a lower-level sequence of ac-
tions. The agent takes the first action in the
lower-level plan, updates its belief state based
on its new perception, and the cycle repeats.

The main contributions of our research are as follows:

• A modular planning system, which includes an object-oriented planner and a state abstraction
module for object rearrangement in multi-room environments.

• A new dataset featuring blocked path problems and expanded room configurations alongside ex-
isting rearrangement challenges.

• An empirical evaluation of the system in the new dataset in AI2Thor under different conditions.

2 RELATED WORK

Rearrangement: Rearrangement is the problem of manipulating the placement of objects by pick-
ing, moving, and placing them according to a goal configuration. In this work, we are mainly
concerned with the rearrangement of objects by mobile agents in simulated environments such as
AI2Thor and Habitat (Kolve et al., 2017),(Szot et al., 2021) and (Gan et al., 2020). We hypothesize
that successful rearrangement planning in simulators with noisy sensors and effectors will go a long
way towards successful planning and execution in robotics.

There are many versions of the rearrangement problem in literature. In tabletop rearrangement, a
robot hand with a fixed base moves objects around to achieve a certain configuration in a limited

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

space (Zhai et al., 2024; Huang et al., 2024). Many current approaches for rearrangement by mobile
agents work by finding the misplaced objects and then use greedy planners to decide what order to
move the objects in (Gadre et al., 2022; Trabucco et al., 2022; Sarch et al., 2022). This can lead
to a high traversal cost since it is not explicitly optimized. The above works and others such as
(Mirakhor et al., 2024a) are also limited to a single-room setting where most objects are visible to
the agent.

Rearrangement has also been studied from the Task and Motion Planning (TAMP) perspective (Gar-
rett et al., 2020a; 2021; 2020b). perspective. Garrett et al. (2020b) is limited to a single-room kitchen
problem and assumes perfect detection of objects. Unlike most previous work, our proposed solu-
tion optimizes the traversal cost and addresses multi-room settings and imperfect object detection
in an integrated POMDP framework. Tekin et al. (2023) and Mirakhor et al. (2024b) address the
multi-room rearrangement problem. However, the decision-making process of Tekin et al. (2023)
about when to explore and when to move an object is fixed and assumes perfect object detection.
Our framework optimizes, naturally handles exploration and manipulation, and addresses object de-
tector failures in a unified framework. Mirakhor et al. (2024b) make the assumption that objects are
always on top of or inside containers. This limits its extendability to handling new problems, such
as blocked paths where the objects could be in the path of another object without any containers.
Our framework naturally allows for these new possibilities.

Object Oriented POMDP (OOPOMDP) Planning: Our work is partly inspired by Wandzel et al.
(2019b), who OOPOMDP and perform a multi-object search in a 2D environment. Zheng et al.
(2023) and Zheng et al. (2022) extend this formulation to object search in 3D environments. How-
ever, they are limited to the task of object search. In our work, we build on their formulation of
OOPOMDP and extend it to include rearrangement actions and their corresponding belief updates.
We further extend this rearrangement OO-POMDP to HOO-POMDP through action abstraction.

3 PROBLEM FORMULATION

Environment and Agent: Our agent is developed for the AI2Thor simulator environment (Kolve
et al., 2017). It consists of a simulated house with a set of objects located in one or more rooms. The
agent can take the following low-level actions: As = (MoveAhead, MoveBack, MoveRight,
MoveLeft, RotateLeft, RotateRight, LookUp, LookDown, PickObjecti, PlaceObject,
Startloc, Done). The Move actions move the agent by a distance of 0.25m in the environment.
The Rotate actions rotate the agent pitch by 90 degrees. The Look actions rotate the agent yaw
by 30 degrees. Start action starts the simulator and places the agent at the given location, and the
Done action ends the simulation. After executing any of the above actions, the simulator outputs
the following information: a) RGB and Depth images, 2) the agent’s position (x, y, pitch, yaw),
and 3) whether the action was successful. There are two types of objects in the world - interactable
objects and receptacle objects. The interactables are the ones that can be picked and placed. The
receptacles are objects that are not movable but can hold other objects.

Task Setup: Rearrangement is done in 2 phases. Walkthrough phase and rearrange phase. The
walkthrough phase is meant to get information about stationary objects. The 2D occupancy map is
generated in this phase, as well as the corresponding 3D Map. We get the size of the house(width
and length) from the environment and uniformly sample points in the environment. We then take
steps to reach these locations (if possible - some might be blocked). This simple algorithm ensures
we explore the full house. At each of the steps, we receive the RGB and Depth. Using this, we
create a 3D point cloud at each step and combine them all to get the overall 3D point cloud of the
house with stationary objects. We then discretize this point cloud into 3D map voxels of size 0.25m,
we further flatten this 3D map into a 2D map of grid cells (location in the 2D map is occupied if
there exists a point at that 2D location at any height in the 3D map). While doing this traversal,
we also get information about the receptacles by detector on the RGB images we receive during
this traversal. This ends the walkthrough phase. (this walkthrough process needs to be done only
once for any house configuration of stationary objects - walls, doors, tables, etc.). Then, objects
are placed at random locations (done using AI2Thor environment reinitialization). This is when the
rearrangement phase begins, with the planner taking the following as input - the map generated in
the walkthrough phase, the set of object classes to move, and their goal locations.
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4 HIERARCHICAL OBJECT ORIENTED POMDP (HOO-POMDP) PLANNER

This section presents our online planning framework designed to solve multi-object rearrangement
problems in partially observable, multi-room simulated home environments. Our approach enables
the system to tackle complex rearrangement tasks that involve challenging sub-problems, such as
clearing blocked paths.

Figure 2: The agent receives RGB and depth im-
ages from environment at the start. The vision
module creates the observation from this input and
sends it to the belief update system. Belief is up-
dated based on observation, and an abstract state is
generated, which is sent to the OO POMDP Plan-
ner that outputs sub-goals. The sub-goals are used
by the low-level policy executors to get and exe-
cute low-level actions in the environment.

Overview: Once the initial list of recepta-
cles and 3D map have been generated, they,
along with the goal information, are sent to
the HOO-POMDP planner. The system oper-
ates in a cyclic fashion, integrating perception,
belief update, state abstraction, abstract plan-
ning, and action execution (see Figure 2 and Al-
gorithm 1). First, the perception subsystem de-
tects objects in the RGB and depth image and
outputs the observation z. This z is used by the
belief update subsystem to update the object-
oriented belief state, which consists of the prob-
ability of each object being at a certain location
in M2D. The abstraction system uses this infor-
mation to update its abstract state. The updated
abstract state is sent to the abstract POMDP
planner, which outputs a sub-goal that corre-
sponds to a low-level policy. The low-level pol-
icy executor executes the low-level policy cor-
responding to the sub-goal. This might involve
navigating to a specific location, grasping an
object, or placing an object in a new position.
After each action is executed, the environment
state changes. The agent receives new output
from the environment, and the cycle repeats un-
til the overall rearrangement task is completed.
In the rest of this section, we will discuss each
of the subsystems and their interaction.

Algorithm 1: HOO-POMDP Rearrangement(M2D, G,R)

1 Function HOO POMDP Rearrangement():
2 env← InitializeEnv (); beliefState← InitializeBeliefState ();
3 agent← InitializeAgent (); loc← random(); lowLevelAction← Startloc;
4 while not TaskComplete() do
5 rgb, depth← env.GetObservation (lowLevelAction);
6 observation← ProcessObservation (rgb, depth);
7 beliefState← UpdateBelief (beliefState, observation, lowLevelAction);
8 abstractState← GenerateAbstractState (beliefState, G, R);
9 abstractAction← POUCTPlanner (abstractState, beliefState);

10 if abstractAction == Done then
11 return()
12 lowLevelPolicy← SelectLowLevelPolicy (abstractAction);
13 lowLevelAction← lowLevelPolicy.GetAction (abstractAction, rgb, depth);

Abstract OO-POMDP Planning :

Background: POMDP: A POMDP is a 7-tuple (S,A, T,R, γ,O,Omodel) (Kaelbling et al., 1998).
The state space S is the set of states in which the agent and the objects in the environment can be.
Action space A is the set of actions that can be taken in the environment. The transition function
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T (s, a, s′) = p(s′|s, a) is the probability of reaching the state s′ when the action a is taken in the
current state s. The agent receives an observation z ∈ O when an action is taken. The probability
of receiving an observation when being in a given state s after having taken action a is defined by
the observation model Omodel(s, a, z) = p(z|s, a). The reward function R(s, a) defines the reward
received when taking action a in state s, and γ is the discount factor. In a partially observed world,
the agent does not know its exact state and maintains a distribution over possible states, i.e., a belief
state b. The belief is updated when an action is taken, and observation is received with the following
equation, where η is the normalizing constant:

b′(s′) = ηO(s′, a, z)
∑
s∈S

T (s, a, s′)b(s) (1)

Object Oriented POMDP: Object-oriented POMDP factors the state and observations over the
objects. Each state s is represented as a tuple of its n objects s = (s1, . . . , sn) ,each observation
z = (z1, . . . , zn) (Wandzel et al., 2019a) and the belief state b is factorized as b =

∏n
i=0 bi .

Abstract Object Oriented POMDP:

We now instantiate the rearrangement problem as an abstract POMDP. In our definition of the ab-
stract OOPOMDP, we make an object independence assumption - that at any given time, the obser-
vation and belief of any object do not depend on any other object. More formally, (P (zi|sj , zj , si) =
P (zi|si), observation zi is independent of the states and observations of other objects, condi-
tioned on its own state si (observations are conditionally independent). Similarly, we also assume
P (s′i|si, sj , a) = P (s′i|si, a) when j! = i, i.e., the next state of object i only depends on its own pre-
vious state and the action. This allows us to represent the state and observation as entities factored
on objects, which in turn helps make independent belief updates for each object(Algorithm 2).

• State Space: We use a factored state space that includes the robot state sr, and the target
object states stargets. The complete state is represented as s = (sr, stargets). stargets =
(starget1 , . . . , stargetn) where n is the number of objects to be moved. stargeti = (loci, picki,
placelocs, is held, at goal, gi) : loci is the current location of the object, picki corresponds to
the location from where this object can be picked, placelocs corresponds to the set of locations
(absolute 2D coordinates) from where this object can be placed from. gi is the goal location of the
object. All locations are discretized grid coordinates in the 2D map (M2D).

• Action Space: The action space consists of abstract navigation and interaction actions.
A = {MoveAB , Rotateangle, PickPlaceObjecti−goalloc , Done}

• Transition Model :

– MoveAB - The move action moves the agent from location A to location B.
– Rotateangle - The rotate action rotates the agent to a given angle.
– PickPlaceObjecti−goalloc - The PickPlace action picks Objecti from the current position of

the robot and places it at the given goalloc.

• Observation Space: We use a factored observation space similar to state space factoriza-
tion. Each observation can be divided into the robot observation and object observation z =
(zrobot, zobjects), where zobjects = (ztarget1 , . . . ztargetn). Each observation ztargeti ∈ L∪Null
- is a detection of the object i’s location or Null based on the detector’s output for object i.

• Observation model: By definition of z above, Pr(z|s) = Pr(zr|sr) Pr(zobjects|stargets) and
Pr(zr|sr) = 1 since the robot pose changes deterministically. Under the conditional independence
assumption, Pr(zobjects|s) can be compactly factored as follows:

Pr(zobjects|s) = Pr(ztarget1 , . . . , ztargetn |starget1 , . . . stargetn , sr) (2)

=

n∏
i=1

Pr(ztargeti |starget1 , . . . , stargetn , sr), (all ztargeti are independent ) (3)

=

n∏
i=1

Pr(ztargeti |stargeti , sr), (ztargeti does not depend on state of other objects)

(4)
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Pr(zi|stargeti , sr) is defined differently for each object based on the object detector’s capability
to detect the object of interest and the current state. More details are in A.1.2.

• Reward Function:

– MoveAB : The cost of moving from location A to B [Cost = −1 ∗Na (where Na number of
required actions)].

– Rotateangle: The cost of rotating the agent from the current rotation to the final given angle.
– PickPlaceObjecti−goalloc : Cost of moving from current location to goal location + cost of

pick + cost of place. It gets an additional reward of 50 if the object is being placed at its goal
location gi and this gi is free in the current state.

– Done - This action receives a reward of 50 if all objects have been placed at their goal location
and −50 otherwise.

Abstract OOPOMDP Planner: Given a task defined as an abstract OOPOMDP and an initial
abstract state, the OOPOMDP planner uses partially observable UCT (POUCT) Silver & Veness
(2010) to search through the space of abstract actions to find the best sub-goal. POUCT is an
extension of the UCT algorithm Kocsis & Szepesvári (2006) to partially observable settings. The
search tree in POUCT is over the histories instead of states. A history is a sequence of actions and
observations ht = (a1, z1, . . . , at, zt). Similar to the UCT algorithm, the POUCT maintains a tree,
where each node corresponds to a history T (h), and for each node, a count variable (N(h)) and
a value variable (v(h)) are stored, representing the number of times this history has been visited
and the expected value of history h, which is estimated by the expected return of all simulations
starting at h. The algorithm samples a state from the belief space b for the current history, and if
the tree already contains all the children for the current node, then the action with the best value is

selected using the equation V (ha) = V (ha) + c
√

logN(h)
N(ha) to compute the value for all actions. If

the tree does not contain all children, then a rollout policy is used to select actions for simulations,
and the tree is updated with information from the simulations. Once that is done, the best action is
selected and returned. The full algorithm is in Algorithm 3 in the Appendix. The rollout policy is a
random policy that picks randomly amongst available actions. The Move and the Rotate actions are
initialized by the values in the abstract state for each object. Recall that each object has the following
information in its abstract state si = (loci, picki, placelocs, is held, at goal). A separate MoveAB

is initialized with A = agent pos and B = all pick locations defined for all objects. Rotateangle
- for all objects, less than 2m from the agent, the angle is computed based on the agent’s required
orientation to view the object from its current position. PickPlace - is defined for each object where
the agent is less than 2m away from that particular object, for all locations in the placelocs as goalloc
initializing a set of PickPlace action for each object.

Policy Executor: Each sub-goal/action in the abstract OO-POMDP corresponds to a policy. When
the planner outputs a sub-goal, the information in the given sub-goal is used to initialize the low-level
policy. The output from the low-level policy is a sequence of low-level actions.

The Move sub-goal corresponds to the Move policy, which uses the A∗ algorithm to move from
location A to B. The Rotate policy also uses the A∗ algorithm. The PickPlace policy consists of 2
RL agents and A∗ that picks the object from the current location and places it at the goal location.

• Sub-goal MoveAB gives the Move policy the location B to move to from location A, which is used
to initialize the A∗ algorithm and get a sequence of low-level move actions to reach goal location
B. The action space available to the system is all the Move actions and all the rotate actions. It
uses an Euclidian distance-based heuristic.

• Sub-goal Rotateangle gives the Rotate policy the final angle to be at, which is used as the final
state the A∗ system must reach and outputs a sequence of rotate actions.

• Sub-goal PickPlaceObjecti−goalloc provides the object to interact with and which location to place
it at. The policy takes this information as input and outputs a sequence of actions consisting of
Pick, Place, and navigation actions that enable it to pick the object, move to the given destination,
and place the object at that location. The PickPlace consists of 3 separate components a) An
RL model trained to pick an object, b) the A∗ navigation model to go its destination c) An RL
model trained to place the object when the agent is near the goal. All 3 of these run sequentially
and make up the PickPlace Policy. It is designed this way to improve modularity and reduce
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Algorithm 2: HOO-POMDP Belief Update

1 Function UpdateBelief(beliefState, action, observation):
2 b← beliefState ; z ← observation;
3 for each object i in b do
4 for each possible state sij of object i do
5 if action is navigation then
6 b′i(sij)← ηp(zi|sij)bi(sij)
7 else if action is place then
8 b′i(sij)← 1 if sij = action.goalLocation, 0 otherwise
9 else if action is pick then

10 b′i(sij)← 1 if si = action.agentLocation, 0 otherwise
11 return b′;

the complexity of each part. Both the pick model and place model are trained using the PPO
algorithm. The action space is {As−Place} for pick model and {As−Pick} for the place model.
The training process for the pick model involves randomly positioning the target object within a
specified proximity to the agent. The goal is to pick a selected object successfully. For the place
model, the training methodology follows a similar approach, with the key distinction being the
absence of object detection requirements, as the agent begins each scenario already holding the
object. In all training instances for the place model, the initial state consists of the agent holding
an object, and the task involves depositing the object at a predetermined location.

Perception: Once the agent executes the low-level action, it receives an RGB and Depth image. An
object detector is used to detect objects in the RGB image, and the depth map is used to get their 3D
location in the world. This is used to generate the object-oriented observation z = (z1, . . . , zn).

Belief Update: Algorithm 2 presents the belief update function for our HOO-POMDP. The
UpdateBelief function takes as input the current belief state b, the performed action a, and the
received observation z. For each object i in the belief state and each possible state sij (j = 1, . . . , L,
where L is the set of all its possible locations in the 2D Map) of that object, the algorithm updates
the belief based on the action type. For navigation actions, it applies a probabilistic update using the
observation model p(zi|sij) (Line 6). For ‘place’ actions, it sets the belief to 1 if the object’s state
matches its desired goal location gi, and 0 otherwise (Line 8). For ‘pick’ actions, it assigns a belief
of 1 if the object’s state corresponds to the agent’s location and 0 otherwise (Line 10).

Generating Abstract State: We now have a belief state over the set of all possible locations for each
object. We need to generate the abstract object-wise state consisting of object location information
and their corresponding pick-and-place information. The information that needs to be computed for
each object is as follows: picki, placelocs, is held, at goal.

The value for is held comes from the previous low-level action and previous state. If the previous
state had is held as false and low-level action was to pick the object of interest, is held is set to
true. If the previous action was not a pick or a pick action for a different object, then the variable
remains unchanged. If the previous action was place and is held is true, then it is set to False.

The value for at goal is copied from the previous state if the last low-level action was not the place
action. If it was, and if is held was true in the previous state, then at goal is set to true.

The value for placelocs are sampled from the object goal location and three nearby receptacles as
alternate goal locations for the object. For each of these goal locations, a location from where the
object can be placed is sampled.

The location picki is sampled based on the belief distribution of where the object could be and is
the location from which the object can be picked. If the distribution over location is spread out, we
sample multiple locations (by ensuring each sampled location is far from the other sampled locations
for the same object). For both the locations in placelocs and for the location picki, we then check if
they are reachable. If they are not, those locations are discarded.

7
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This sampling method enables our system to handle scenarios involving blocked goals, object swaps,
and obstructed paths effectively. If an object’s path is blocked, the planner will receive information
indicating that there is no accessible location from which to pick up the object, necessitating the
relocation of other objects first. When placing objects, we provide alternative receptacle locations.
This approach allows us to move an object to another location if its goal position is blocked, thereby
freeing up its current location. This strategy addresses both blocked goal and swap scenarios. Fur-
thermore, this sampling process enhances our system’s extensibility. We can incorporate additional
constraints based on new object properties. For example, if opening an object requires interaction
from a distance, the sampler can ensure that the sampled location is sufficiently far to enable suc-
cessful opening.

After creating this abstract state, it is sent to the abstract planner, and the cycle starts again.

5 EXPERIMENTS

5.1 DATASET

• RoomR: This is the rearrangement challenge dataset proposed by Batra et al. (2020). It contains
single-room environments with 5 objects to be rearranged. It has 25 room configurations with 40
different rearrangements for each room configuration.

• ProcTHORRearrangement (Proc): This is a dataset present in AI2Thor, which is bigger in
terms of the rooms (two rooms, five objects) and, hence, partial observability. It has 125 room
configurations with 80 rearrangements for each room configuration.

• Multi RoomR: We introduce a novel dataset designed to address more challenging problems,
featuring larger environments (2-4 rooms) and an increased number of objects (10-20 objects). It
has 400 room configurations. More details in Appendix A.2.4.

5.2 METRICS

• Success Rate (SR): 1 if all objects have been moved to the correct goal locations, 0 otherwise.
• Object Success Rate (OSR): (Total Objects successfully moved)/(Total objects to move) - this

metric captures the proportion of objects moved to the correct goal location.
• Total Actions taken (TA): A measure of the efficiency of the system in terms of the total number

of actions taken. We present the average number(rounded up) of actions taken during successful
runs where the scene was fully rearranged.

5.3 BASELINES DEFINITION

• Perfect Knowledge (PK): In this baseline, we will start with all the information about the world.
That is, we know the initial locations of all the objects. This is the upper limit of the system’s
performance as there is no uncertainty to manage.

• Perfect Detector with partial observability (PD): In this baseline, we will be solving our multi-
object rearrangement problem with a perfect detector (objects in the visual field are detected with
100% probability). The main challenge is to find all objects and move them around efficiently.

• OURS (Imperfect Detector with partial observability): In this setting, we will solve the multi-
object rearrangement challenge where the agent is expected to handle perception uncertainty (the
detector fails to detect objects in the visual field) along with object’s starting position uncertainty.

• OURS-HP (ablation): In this setting, we remove the hierarchical planning and use the POMDP
planner to output low-level actions directly.

Experimental setup: Each experimental setting was evaluated across 100 distinct rearrangement
configurations. For the RoomR dataset, we utilized 25 different room setups, with four rearrange-
ment configurations per setup. For the other datasets, we employed 100 unique room configurations,
each with one rearrangement configuration. In the blocked goal and swap settings, at least one ob-
ject’s goal location was obstructed by another object. The swap case required the exchange of
positions for at least one pair of objects to complete the rearrangement task. In the blocked path
scenario, all scenes contained a minimum of one object that needed to be moved to its goal position
from its initial location to enable the rearrangement of other objects.
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Dataset Objs #BG #Sw #BP #Rm #V PK PD Ours OURS-HP

ap SS↑ OSR↑ TA↓ SS↑ OSR↑ TA↓ SS↑ OSR↑ TA↓ SS↑ OSR↑ TA↓

RoomR 5 1 0 0 1 3-4 63 88 176 62 87 189 49 71 211 13 33 302
2 1 1 1 3-4 51 77 210 49 76 238 39 61 289 8 27 392

Proc 5 1 0 0 2 2-3 60 82 203 60 81 269 46 68 352 9 29 410
2 1 1 2 2-3 47 71 246 42 63 311 31 53 398 4 19 565

Multi
RoomR

10 1 1 0 2 2-3 41 77 457 40 79 529 32 65 710 5 25 1029
2 1 1 2 2-3 33 69 489 29 67 587 21 49 789 2 19 1092

10 2 1 0 3-4 1-2 39 75 726 37 74 834 30 62 1189 3 16 1408
2 1 1 3-4 1-2 32 69 789 31 72 985 18 44 1321 1 7 1549

15 1 1 0 3-4 2-3 32 78 895 30 74 921 22 59 1228 * * *
2 1 1 3-4 2-3 29 71 988 25 69 965 14 41 1416 * * *

20 2 1 0 3-4 2-4 27 75 1168 27 74 1197 17 55 1621 * * *
2 1 1 3-4 2-4 22 70 1307 20 68 1336 10 36 1786 * * *

Table 1: Comparison between our methods with different levels of information and difficulty of problems and
ablation on hierarchy. The difficulty is represented in terms of the following: a) #BG - number of blocked goal
locations, b) #Swap Number of objects that need to be swapped, c) #BP: Number of objects blocking the path
that need to be moved out of the way, d) #Rm: Number of rooms in the environment, e) #V: Number of objects
initially visible. * indicates results not ready yet. Will be in by camera-ready version.

6 RESULTS AND DISCUSSION

Methods comparison: The perfect knowledge system is the best performance our agent can have -
there is no uncertainty in the world, and hence, it boils down to a path-traversal length optimization
problem. We can see from Table 1 that the results of the perfect detector setting and the perfect
knowledge setting are similar in the overall scene success rate as well as the object success rate.
This shows that the PPOMDP planner is able to explore and find all the objects perfectly. The
failures in both cases are due to the low-level policies failing to pick/place objects. The difference
between the methods can be seen in the steps taken. The perfect detector system has to explore and
rearrange and hence ends up taking more steps than the perfect knowledge system. The third set
of results are for our system with an imperfect detector and partial observability. We can see that
the detector failure causes our success rate to fall by a fair amount - this is because if an object is
not detected more than once at its location, the planner’s belief update prevents it from going to
that region to pick that object up. Since our detector only has a 50-60% success rate (different for
different classes of objects), it misses a fair subset of the objects, and hence the drop. As a result
of needing to explore more due to detector failure, the number of steps taken is greater than that of
the other methods. The difference between OURS and OURS-HP clearly shows the importance of
hierarchy and abstraction. The performance drop is significant across all settings for OURS-HP.

Comparison Across Datasets: We can see that the results of the RoomR dataset of a single room
and the Proc dataset with multiple rooms are similar (in scene success rate and object success rate).
This indicates that our method effectively manages the exploration of multiple rooms as well as a
reduction in the number of objects visible initially. Initial object visibility decreases when scaling
from 2 to 4 rooms in MultiRoomR with ten objects, yet success rates remain relatively stable. The
performance drops in our custom dataset with a larger number of objects. In particular, the object
success rate drops slightly, but the scene success rate drops significantly. This is because, for a scene
to succeed, we need all objects to be rearranged correctly, so even if 9/10 objects are rearranged
correctly, it is still considered a failure. Hence, there is a bigger reduction in scene success rate.

Across Different Challenges: From the different rows for each dataset (the difference being the
existence of blocked paths), we can see that the results for the blocked path version of the problem
are lower. This is because the low-level policy is not as good at picking the objects on the floor
as it is at picking the objects from the top of other objects. Also, the number of PickPlace actions
increases as we tackle more complex problems such as swaps.

Error Analysis: The majority of failures of our system are due to low-level policy failures - the
pick or the place action fails due to the imperfections of the low-level RL policy. The other type of
failure in our system is due to belief estimation errors caused by detector failures - if a detector is
looking at a certain location and it fails to detect an object multiple times (due to partial occlusion

9
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or high distance), then our belief about the object being in that region reduces to a large extent. In
that case, we are unlikely to come back to that part of the house. If a false positive happens, an agent
might pick up the wrong object and place it and believe it has placed the correct object - leading to
object and scene failure. These are the main causes of our failures in imperfect detector settings.

Comparison to existing baselines: It is important to note that our system addresses a variant of
the multi-object rearrangement problem that differs in key aspects from those tackled by existing
baselines. Unfortunately, this means that direct comparisons are not meaningful or informative. The
primary distinction lies in the prior knowledge available to our system: we are given information
about the classes of objects to be moved, whereas other systems Mirakhor et al. (2024a) (Mirakhor
et al., 2024b), (Gadre et al., 2022) operate without this advantage. The motivation for it is that
when this information is not provided, agents must perform a walkthrough phase for each new goal
configuration to identify movable objects. In contrast, our formulation requires only a single initial
walkthrough to map stationary objects in the environment. Subsequently, our system can efficiently
handle multiple goal configurations without additional walkthroughs.

However, it is worth highlighting that our problem formulation introduces its own set of challenges.
In particular, while existing systems report initial visibility of approximately 60% ((Mirakhor et al.,
2024b), table 1) of target objects at the outset of their tasks, only about 20% of the objects are initially
visible in our problem settings, necessitating more extensive and strategic exploration. This reduced
initial visibility significantly increases the complexity of our task in terms of efficient exploration
and belief management. It underscores the importance and effectiveness of our hierarchical planning
approach in handling partial observability and perception uncertainty. The other key difference is we
use low-level policies for navigation and manipulation, whereas other works Mirakhor et al. (2024b)
and Mirakhor et al. (2024a) assume perfect navigation and manipulation capabilities.

While the difficulties faced by our system and existing baselines are not directly comparable, we
believe our results demonstrate the efficacy of our approach in solving a challenging and practically
relevant variant of the multi-object rearrangement problem. The performance across various metrics
and scenarios, as detailed in the preceding sections, showcases the robustness and scalability of our
HOO-POMDP framework in environments with high uncertainty and limited initial information.

Limitations: Our system makes an object independence assumption - that the state and observation
of one object are not dependent on the state of other objects. However, this assumption doesn’t
always hold in cluttered environments. In such cases, observing, picking up, or placing an object
might be affected by the positions of nearby objects. As a result, our object-oriented belief update
system would need to be modified to handle these object interactions in more complex scenarios.
HOO-POMDP cannot handle an unknown class of objects. It could potentially be handled by cate-
gorizing all of the known object types into a single ‘unknown’ class. The difficult part, however, is
to plan to find an empty space to move the unknown object to. In the worst case, this could lead to
complicated packing problems that are NP-hard.

7 CONCLUSION AND FUTURE WORK

In this paper, we presented a novel Hierarchical Object-Oriented POMDP Planner (HOO-POMDP)
for solving multi-object rearrangement problems in partially observable, multi-room environments.
Our approach decomposes the complex task into a high-level abstract POMDP planner for generat-
ing sub-goals and low-level policies for execution. Key components include an object-oriented state
representation, belief updating to handle perception uncertainty, and an abstraction system to bridge
the gap between continuous and discrete planning. Experimental results across multiple datasets
demonstrate the effectiveness of our approach in handling challenging scenarios such as blocked
paths and goals. The HOO-POMDP framework showed robust performance in terms of success rate
and efficiency comparable to Oracle baselines with perfect knowledge or perfect detection. Notably,
our method scaled well to environments with more objects and rooms. One of the ways to expand
the scope is to relax the assumption of object independence partially. We can allow objects to be
dependent on a small number of objects (e.g., objects in their close vicinity). Belief updates can
now consider a small set of objects at any time. This relaxation helps maintain the efficient belief
update while accounting for more real-world situations such as object-object interaction. Another
potential future work is to handle stacking of objects and more cramped spaces, where more careful
reasoning about object interactions is needed to plan the actions and order them appropriately.
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A APPENDIX

A.1 OBJECT DETECTION

A.1.1 DETECTION MODEL : YOLOV10

We collect data from the AI2Thor simulator. We do this by placing the agent in random locations
in 500 scenes and extracting the RGB images along with the ground truth object bounding box
annotations from the simulator. We have 50 pickupable object classes in all our scenes combined.
We train the YoloV10 detector on 10,000 images collected from these 500 scenes.

A.1.2 OBSERVATION PROBABILITY FOR POMDP

The probability of each individual observation based on the current state is the following.

Pr(zi|stargeti , sr) =



1.0− TP si ∈ V(srobot) ∧ zi = null
δFP/|VE(r)| si ∈ V(srobot) ∧ ∥zi − si∥ > 3σ

δzi si ∈ V(srobot) ∧ ∥zi − si∥ ≤ 3σ

1.0− FP si /∈ V(srobot) ∧ zi = null
δFP/|VE(r)| si /∈ V(srobot) ∧ zi ̸= null

The detection model is parameterized by

• TP: Is the True positive of the Detection model for object class i.
• FP: Is the False positive of the Detection model for object class i.
• r: is the average distance between the agent and the object for true positive detections.
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Table 2: Performance Metrics by Class : TP = True Positive, FP = False positive, r = average distance
Class r (m) TP FP

AlarmClock 3.010 0.383 0.022
Apple 3.298 0.065 0.002
BaseballBat 2.941 0.499 0.011
BasketBall 2.631 0.336 0.003
Book 2.888 0.535 0.101
Bottle 2.733 0.465 0.006
Bowl 2.695 0.448 0.073
Box 3.977 0.225 0.012
Bread 1.523 0.082 0.010
ButterKnife 2.084 0.156 0.009
CD 2.082 0.085 0.001
Candle 3.325 0.048 0.004
CellPhone 2.137 0.327 0.006
CreditCard 1.107 0.042 0.002
Cup 2.505 0.513 0.012
DishSponge 1.714 0.306 0.003
Kettle 2.655 0.415 0.001
KeyChain 1.725 0.154 0.007
Knife 1.226 0.056 0.002
Ladle 2.333 0.015 0.000
Laptop 3.405 0.605 0.019
Lettuce 2.681 0.336 0.003
Mug 2.734 0.529 0.010
Newspaper 2.286 0.264 0.005
Pan 2.757 0.350 0.012
PaperTowelRoll 3.066 0.338 0.018
Pen 2.471 0.081 0.013
Pencil 1.853 0.040 0.015
PepperShaker 2.042 0.310 0.016
Pillow 3.615 0.683 0.037
Plate 2.278 0.355 0.010
Plunger 2.900 0.745 0.005
Pot 4.064 0.417 0.010
Potato 2.138 0.157 0.004
RemoteControl 2.176 0.324 0.025
SaltShaker 1.940 0.098 0.010
SoapBottle 3.147 0.519 0.038
Spatula 1.443 0.134 0.002
SprayBottle 2.744 0.085 0.031
Statue 3.095 0.650 0.033
TeddyBear 3.093 0.417 0.003
TennisRacket 3.111 0.128 0.017
TissueBox 4.087 0.286 0.003
ToiletPaper 2.806 0.383 0.006
Vase 3.230 0.699 0.095
Watch 1.661 0.210 0.006
WineBottle 2.903 0.667 0.003

• VE(r): It is the visual field of view of 90 degrees within distance r.

• δ : is the distance weight, it is 1 if detection is within VE(r), else δ = 1/d, where d is the distance
from the robot to the object.

The list of TP , FP and r for the object classes in the dataset presented in table 2.
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A.2 MULTIROOMR DATASET DETAILS

A.2.1 OVERVIEW

The dataset consists of 400 distinct room configurations, with varying complexity in terms of room
count and object arrangements.

A.2.2 DATASET COMPOSITION

• Total Size: 400 room configurations.

• Object Types: Comprehensive selection from AI2Thor environment (see Appendix).

• Object Selection Criteria: Includes the majority of AI2Thor objects, excluding objects
too small for reliable detection even at close range.

A.2.3 ROOM CONFIGURATION DISTRIBUTION

Two-Room Configurations

• Total configurations: 200

• Objects per configuration: 10

• Path characteristics:

– 50% contain blocked paths.
– 10 rearrangements per configuration.

Three-Room Configurations

• Total configurations: 100

• Path characteristics:

– 50% contain blocked paths.
– 30 rearrangements per configuration.
– Distribution: 10 rearrangements each for 10, 15, and 20 objects.

Four-Room Configurations

• Total configurations: 100

• Path characteristics:

– 50% contain blocked paths.
– 30 rearrangements per configuration.
– Distribution: 10 rearrangements each for 10, 15, and 20 objects.

A.2.4 OBJECT PLACEMENT CRITERIA

1. Room-wide Movement Requirement: Each room must contain at least one object requir-
ing movement, ensuring comprehensive exploration by the agent.

2. Blocking and Swapping Scenarios: Configurations include:

• Objects blocking goal locations of other objects.
• Objects mutually blocking each other’s goals (swap cases).

3. Path Blocking Optimization: In scenes with blocked paths, blocking objects are strate-
gically placed to maximize inaccessible house area such that at least one object must be
moved out of the way to access all objects.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.3 POUCT

Algorithm 3: POUCT Planner (Modified version from Silver & Veness (2010))

1 Function POUCTPlanner(abstractState, beliefState):
2 b← beliefState;
3 abs← abstractState;
4 T ← {};
5 for j = 0 to SIMULATIONS do
6 ŝ← SAMPLE(b);
7 SIMULATE(ŝ, {}, 0,abs);
8 abstractAction← argmaxa V (ha);
9 return abstractAction;

10 Function SAMPLE(b):
11 for o ∈ Obj do
12 ŝo ∼ bo;
13 return

⋃
ŝo;

14 Function SIMULATE(s, h, depth, abs):
15 if γdepth < ϵ then
16 return 0;
17 if h /∈ T then
18 for all a ∈ A do
19 T (ha)← ⟨Ninit(ha), Vinit(ha)⟩;
20 return ROLLOUT(s, h, depth, abs);
21 a← selectMaxAction();
22 (s′, z, r) ∼ G(s, a);
23 R← r + γ· SIMULATE(s′, hao, depth+ 1);

24 T (ha)←
〈
N(ha) + 1, V (ha) + R−V (ha)

N(ha)

〉
;

25 return R;

26 Function ROLLOUT(s, h, depth, abs):
27 if γdepth < ϵ then
28 return 0;
29 a ∼ πrollout(h, abs);
30 (s′, o, r) ∼ G(s, a);
31 return r + γ· ROLLOUT(s′, hao, depth+ 1);

A.4 QUALITATIVE RESULTS

We test our system with different depths for the MCTS planner to see how much look-ahead affects
the performance of our system. MCTS search depth is one of the important factors determining the
amount of exploration and the time taken for search at step. Results are shown in table 3. The depth
for the system - OURS is 12, and the depth for OURS-MCTS 1 is 1. From the table, we can see
that the greedy approach of just looking ahead by 1 step is not enough to solve the rearrangement
problem. This is because, when we look ahead only 1 step, we do not get enough reward/feedback
from the world about what is a good path to take and hence makes it extremely hard to solve the
problem. We can also see that, in the problems it does solve, it takes significantly longer to solve.
We did not compute the results for 15 and 20 objects in this setting as it failed to solve any problems
in 3-4 rooms with ten objects.
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Dataset Objs #BG #Sw #BP #Rm #V Ours OURS-MCSTS 1

ap SS↑ OSR↑ TA↓ Time(m)↓ SS↑ OSR↑ TA↓

RoomR 5 1 0 0 1 3-4 49 71 211 1.61 8 26 565
2 1 1 1 3-4 39 61 289 2.15 6 21 721

Proc 5 1 0 0 2 2-3 46 68 352 3.42 2 12 875
2 1 1 2 2-3 31 53 398 4.52 1 10 1102

Multi
RoomR

10 1 1 0 2 2-3 32 65 710 7.89 0 7 0
2 1 1 2 2-3 21 49 789 8.98 0 3 0

10 2 1 0 3-4 1-2 30 62 1189 11.45 0 0 0
2 1 1 3-4 1-2 18 44 1321 12.97 0 0 0

15 1 1 0 3-4 2-3 22 59 1228 16.89 NC NC NC
2 1 1 3-4 2-3 14 41 1416 17.12 NC NC NC

20 2 1 0 3-4 2-4 17 55 1621 21.61 NC NC NC
2 1 1 3-4 2-4 10 36 1786 23.79 NC NC NC

Table 3: Performance metrics for our method across different depths for MCTS search. Metrics:
Success Score (SS), Object Success Rate (OSR), Task Actions (TA), execution Time in minutes,
and number of objects initially visible (#V). The difficulty parameters include the number of blocked
goals (#BG), objects to be swapped (#Sw), blocking objects (#BP), and number of rooms (#Rm).
NC: Not computed.

16


	Introduction
	Related Work
	Problem Formulation 
	Hierarchical Object Oriented POMDP (HOO-POMDP) Planner
	Experiments
	Dataset
	Metrics
	Baselines definition

	Results and Discussion
	Conclusion and future work
	Appendix
	Object Detection
	Detection Model : YoloV10
	Observation Probability for POMDP

	MultiRoomR Dataset Details
	Overview
	Dataset Composition
	Room Configuration Distribution
	Object Placement Criteria

	POUCT
	Qualitative Results


