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ABSTRACT

Generative models have shown their promising performance on various real-world
tasks, which, at the same time, introduce the threat of leaking private information
of their training data. Several membership inference attacks against generative
models have been proposed in recent years and exhibit their effectiveness in dif-
ferent settings. However, these attacks all suffer from their own limitations and
cannot be generalized to all generative models under all scenarios. In this paper,
we propose the first generalized membership inference attack for generative mod-
els, which can be utilized to quantitatively evaluate the privacy leakage of various
existing generative models. Compared with previous works, our attack has three
main advantages, i.e., (i) only requires black-box access to the target model, (ii)
is computationally efficient, and (iii) can be generalized to numerous generative
models. Extensive experiments show that various existing generative models in
a variety of applications are vulnerable to our attack. For example, our attack
could achieve the AUC of 0.997 (0.997) and 0.998 (0.999) against the generative
model of DDPM (DDIM) on the CelebA and CIFAR-10 datasets. These results
demonstrate that private information can be effectively exploited by attackers in an
efficient way, which calls on the community to be aware of privacy threats when
designing generative models.

1 INTRODUCTION

Recent arms race in the visual generation has reached a new peak. Dall-E-2 (Ramesh et al., |2022),
Imagen (Saharia et al., 2022), and Parti (Yu et al. 2022}, driven by big data and empowered by
deep generative models, have emerged one after the other in a short period of time to showcase their
improved power. The realism and creativity of generated media have set up a new state of the art
that were never envisioned one year ago. In the backend, Generative Adversarial Networks (GANSs),
Variational AutoEncoders (VAEs), and diffusion probabilistic models (for short, we use “diffusion
models” to refer to this family of models) are three representative milestones. While enjoying the
benefits of these technologies, the threat of privacy leaks |Chen et al.| (2020); |Azadmanesh et al.
(2021); Hu & Pang| (2021); [Zhou et al.| (2022) comes with them. To this end, we aim to reveal the
hidden privacy issues posed by generative models through the lens of membership inference attacks.

Membership Inference Attacks (MIAs), which aim to infer whether a query sample is in the training
set of the target model or not, could be leveraged by malicious adversaries to cause severe conse-
quences. For example, an adversary might infer that an individual is in the training set of a disease
diagnosis classifier trained on data from high-income people. The membership status, in this case,
directly reveals the income of the target individual, which is a typical privacy breach. On the other
hand, MIAs can also be used for benign purposes such as auditing, i.e. quantitatively assessing the
privacy breach of machine learning models. Moreover, MIAs are commonly used as the building
block for more sophisticated attacks, which makes it an important problem and has attracted lots of
attention in recent years.

Most existing MIAs aim at discriminative models [Shokri et al.| (2017); [Salem et al.[ (2019); |Choo
et al.| (2021); |[Zhang et al|(2021); |Li & Zhang| (2021)), which cannot directly extend to generative
models due to the heterogeneous architecture of target models. A few existing MIAs explore pri-
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vacy risks in generative models |[Hayes et al.| (2019)); |Chen et al.| (2020); |Azadmanesh et al.| (2021),
however, they are limited to certain attack assumptions, e.g. requiring white-box access. These lim-
itations hinder their application in state-of-the-art generative models like diffusion models, which
motivates researchers to propose more practical and generalized MIAs.

In this paper, we propose the first generalized membership inference attack against generative mod-
els with relaxed assumptions. Compared with existing attacks, our method has three main advan-
tages: (i) Relaxed assumptions. Our work assumes that the adversary only has black-box access to
the target model. That is, the attacker could only query the target model in an API manner, without
the knowledge of the training data and the architecture of the target model. (ii) Computationally
efficient. Contrary to existing attacks, our method does not require training shadow models, which
makes the method computationally efficient. (iii) Good generalizability. Our attack can be applied
to extensive generative models including the state-of-the-art diffusion models. Whereas previous
works are limited by their generalizability.

We extensively evaluate our work on the state-of-the-art generative models. Concretely, we conduct
experiments on four benchmark datasets (i.e., CIFAR-10 [CIF, CelebA [Liu et al.| (2015) ,LSUN-
Bedroom and LSUN-Church |Yu et al.| (2015) with three commonly-used diffusion models structures
(i.e., DDPM Ho et al.| (2020), DDIM |Song et al.| (2021)) and FastDPM |Kong & Ping| (2021))). Ex-
perimental results show the effectiveness of our work. For instance, when the target models are
established on the CelebA and CIFAR-10 datasets with the backbone of DDPM (DDIM), our at-
tack achieves the AUC of 0.997 (0.997) and 0.998 (0.999). We further validate the effectiveness of
our work on other generative tasks, including the class-conditional generation (Esser et al [2021),
semantic-conditional generation (Liu et al., |2019) and text-conditional generation (Rombach et al.,
2022)), the stylization (Park et al., [2020)), the superresolution (Chen et al., 2021), the image inpaint-
ing (Li et al.}[2022), the denoising (Zamir et al.| 2021]), the colorization (Zhang et al.,|2016) and the
artifact reduction (Zamir et al.,2021). Our attack is proved to be effective on all of these tasks.

In summary, our contributions are as follows:

* We propose the first generalized membership inference attack against generative models.
Compared with previous works, our attack requires fewer assumptions and is computa-
tionally efficient. Moreover, our attack can be generalized to extensive generative models,
including state-of-the-art diffusion models.

* We empirically validate the effectiveness of our attack on four benchmark datasets with
three diffusion model architectures. Experimental results show that our attack works well
on diffusion models (AUC close to 1).

* We further explore the privacy threats on other generative tasks, and the results demonstrate
that almost all tasks are subject to privacy threats. Our work fills the blank of understanding
privacy risk for generative models, which motivates researchers to take privacy threats into
concern when designing generative models.

2 RELATED WORKS

Generative models: Generative models have achieved prosperity development in recent years, and
several generative model architectures have been proposed. Based on their design philosophy, cur-
rent generative models can be categorized into three main classes, i.e., generative adversarial net-
works (GANSs) |Arjovsky et al.|(2017); Wang et al.| (2018)); |Zhang et al.[(2018); Brock et al.| (2019);
Patashnik et al.| (2021)), variational autoencoders (VAEs) [Kingma & Welling (2014); Higgins et al.
(2017); |Sohn et al.| (2015); van den Oord et al.| (2017)); Tolstikhin et al.| (2018)); |Chen et al.| (2018)),
and diffusion probabilistic models (diffusion models for short) Ho et al.| (2020); [Song et al|(2021));
Kong & Ping| (2021)); Rombach et al.| (2022)); Ramesh et al.| (2022); |Saharia et al.| (2022). A GAN-
based generative model basically consists of a generator and a discriminator, where the generator
manages to create images which will not be regarded as fake ones by the discriminator. A VAE-
based generative model is to estimate a normal distribution for each input image, then to sample a
latent representation form this distribution, finally to restore the input image from this sampled rep-
resentation. Regarding diffusion generative models, an input image is added noises step by step, then
a U-Net model predicts the added noised for each step, finally, the noised image is denoised using
the predicted noises step by step until being a clean image. In this paper, we investigate the privacy



Under review as a conference paper at ICLR 2023

risk introduced by diffusion models, as diffusion models have attained state-of-the-art performance
in quantities of generative tasks.

Membership inference attacks: Membership inference attacks aim to infer whether a query sam-
ple is involved in the model training process. Existing attacks mainly focus on the discriminative
models [Shokri et al.| (2017); Salem et al.| (2019); |Choo et al.| (2021)); [Zhang et al.| (2021); Li &
Zhang| (2021)), which are difficult to apply to the generative models. In this work, we mainly focus
on membership inference attacks against generative models. To our best knowledge, current mem-
bership inference attacks against generative models mainly focus on GAN-based generative models,
which limits the applicable scope of membership inference. [Hayes et al.|(2019)) present the member-
ship inference attack on several GANs and a single VAE, which starts with the white-box access to
the target model and then involves auxiliary knowledge of dataset samples for the black-box attack.
Hilprecht et al.|(2019) propose two kinds of membership inference against GANs and VAEs. One
works on both GANs and VAESs, and only aims at samples of the model which are close to training
data records. And the other is designed specifically for VAEs. (Chen et al.| (2020) study the first
taxonomy of membership inference applicable to various settings, which mainly focuses on GANs.
And a calibration technique is discussed to boost the attack performance. |Azadmanesh et al.|(2021)
conduct a white-box membership inference against GANs, which requires the access to generator
structure of the victim GAN, then an autoencoder is built that shares the generator structure, finally
the membership status is inferred according to the cost values of the autoencoder. Unfortunately,
these works cannot generalize well to the state-of-the-art generative technique, i.e., diffusion mod-
els, due to the diversity property of diffusion models. For instance, regarding the black-box attack
in|Chen et al.| (2020), it only achieves a chance-like performance on diffusion models since a single
generated image is hard to represent the training data (members) of the target model. To this end,
we make use of generative distributions to learn the attack model, i.e., involving a set of generated
images instead of a single one. Our approach is architecture-agnostic, which is applicable to various
generative models. Moreover, our attack does not build a shadow model, which is computationally
efficient.

3 OUR ATTACK

3.1 PROBLEM STATEMENT

In this paper, we study the problem of membership inference attack against generative models,
whose goal is to infer whether a query image Zquery belongs to the training set (members) of the
target generative model M,eeer. The attack A can be formulated as follow:

At Zquery, Marger, K — {member, non-member } (D
Here, K denotes extra information known to the attacker. Previous works always rely on strong
assumptions that the attacker has information about the model, i.e., white-box access to the model.
However, in our work, we only require the attacker has black-box access to the model, which means
the attacker can only interact with the model through an API manner. Following convention, we also
assume the attacker has access to an auxiliary dataset D,,x, which comes from a similar distribution
as the training dataset Dyin.

Our attack is architecture-agnostic and can be generalized to extensive generative models. For ease
of illustration, in the following, we use the diffusion model as an example, as it outperforms other
structures in numerous tasks, and no existing attacks are applicable to it. Specifically, we consider
two main classes of tasks as attack scenarios, i.e., the unconditional generation task and the condi-
tional generation task. The main difference is the input to the generative models. For the uncon-
ditional generation task, the generative model takes noises as input, and output generated images.
While for conditional tasks, the generative model takes extra information to guide the generation
process, e.g., data sampled from an auxiliary dataset. In our attack, we regard the samples from the
auxiliary dataset as non-members and label the samples generated by generative models as members.

3.2 METHODOLOGY

Figure [I] depicts the general framework of our attack. The attack process consists of three steps:
image generation, attack model establishment, and membership inference, where image generation
is the core step of our attack.
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Figure 1: The framework of membership inference attacks against a diffusion generative model. The
round-dot double-arrow line indicates the relationship between two entities. The solid arrow lines
indicate the workflow of our attack. And the dash arrow line indicates an optional operation that
is dependent on the application implemented by the target model. Besides, the yellow and green
triangles in the auxiliary dataset indicate that the images regarded as negative samples and the ones
used to query the target model are disjoint. In addition, the blue rounded rectangle means black-box
access to the target model.

Image generation: In the image generation step, our goal is to generate training data for the attack
model. The negative samples are easy to collect, as we mentioned in Section 3.1 we use samples
from the auxiliary dataset as the negative samples. However, the challenge is how to obtain quantities
of positive samples to train the model, as the member samples are hard to obtain. To tackle this
problem, we leverage the fact that generated images can reflect the pattern of real member images to
a large extent. Consequently, we use the images generated by generative models as positive samples.

For unconditional generation tasks, we query the generative model with Gaussian noise, i.e., z ~
N(0,1), then label the generated data as a member. By querying the target model, we obtain the
positive training pair, (M arget(2), member), which will be used for attack model training.

For conditional generation tasks, the target model receives information to guide the generation pro-
cess. We illustrate the case where the input is images as a representative. We first separate the
auxiliary dataset Dy into two disjoint parts, DI and D% For data sampled from D2, we label
it as non-member, formally:

Vo € D%, wehave (r,non-member) ()

then we query the target model using the data sampled from DI, and label the generated images as
member: )

V:L' 6 D:&X)
Note that our attack is architecture-agnostic and task-agnostic, thus the input to the generative model

could be other types of information, like text sentences, images with artifacts and grayscale images.

we have  (Marger(2), member) 3)

Attack model establishment: The Image generation step generates positive and negative samples,
which can be used to construct the attack set D,y cx for the attack model M,k The goal of the
attack model is to predict the membership status given a query sample, we train the attack model in
a supervised way leveraging the labeled pairs in the training dataset Dy .

Membership inference: Once the attack model M,k is trained, the adversary can infer the mem-
bership status of a query sample Zquery. Note that, in the inference procedure, the adversary does not
need to interact with the target model. Specifically, the adversary directly queries the trained attack
model Mack With the query sample Zquery. Then, the membership status is inferred according to
the output of the attack model. This process can be formulated as:

Mattack(xquery) = Ytarget 4)

where Yareer is a 2-dimensional vector indicating the membership status of the query sample Zguery-
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(a) CIFAR-10_Positive.

L

(e) Bedroom_Positive.

(b) CIFAR-10_Negative.  (c) CelebA _Positive. (d) CelebA Negative.

(h) Church_Negative.

(f) Bedroom_Negative. (g) Church_Positive.

Figure 2: The image examples from different sources, where the images of “Positive” are derived
from the datasets of members while the images of “Negative” are derived from the auxiliary datasets.

Table 1: The dataset settings of various generative models. In the column of “Positive (Generated)”,
the positive training samples are the generated images. And in the “Positive (Members)” and “Neg-
ative (Auxiliary)” columns, the samples are directly sampled from the member or auxiliary datasets.

Application Generative Model Training Dataset Inference Dataset

pp Positive (Generated) | Negative (Auxiliary) | Positive (Members) | Negative (Auxiliary)
Class-conditional VQGAN CIFAR-10 CIFAR-10 ImageNet CIFAR-10
Text-conditional LDM COCO COCO LAION COCO
Semantic-conditional CC-FPSE ADE20K ADE20K COCO ADE20K
Colorization Colorization CIFAR-10 CIFAR-10 ImageNet CIFAR-10
Super resolution LIIF UTKFace UTKFace CelebA-HQ UTKFace
Image inpainting MAT UTKFace UTKFace CelebA-HQ UTKFace
Stylization SwappingAutoencoder Wild church Wild Church LSUN-Church Wild church
Denoising MPRNet ImageNet ImageNet SIDD ImageNet
Artifact reduction MPRNet ImageNet ImageNet SIDD ImageNet

4 EVALUATION

In this section, we empirically evaluate the effectiveness of our attack. We first present the exper-
imental settings in Section .I] Then explore the state-of-the-art generative technique, diffusion
models, in Section %t the last, we extensively evaluate nine more generative models with dif-
ferent tasks in Section

4.1 EVALUATION SETTINGS

Dataset description: To evaluate our work on diffusion models, we leverage four benchmark
datasets to train the target model, i.e., CIFAR-10 (CIF), CelebA (Liu et all 2013), and LSUN
including Bedroom and Church. As mentioned in Section 3| negative samples are col-
lected from an auxiliary dataset. Thus for different training datasets, we use different sampling
strategies to construct the auxiliary dataset. Specifically, for the CIFAR-10 dataset, we use STL-
10 (Coates et al, [2011)) as the auxiliary dataset. For CelebA, we choose UTKFace (Zhang et all,
as the auxiliary dataset. Note that, compared to CIFAR-10, the dataset of STL-10 contains the
category of monkey instead of frog. This difference displays a practical scenario in the real world,
in which it might be too expensive to find another dataset with the exact same categories. And re-
garding the negative samples for the members from Bedroom and Church, we collect wild images
from the internet with manually filtering since no existing similar dataset is available. In Figure 2]
we present the examples from different sources, where the images of “Positive” are derived from the
datasets of members while the images of “Negative” are derived from the auxiliary datasets.

To evaluate the nine generative models, we involve one benchmark dataset (members) for each
application, i.e., ImageNet for class-conditional generation and colorization,
LAION [Schuhmann et al| (2021) for text-conditional generation, COCO for
semantice-conditional generation, CelebA-HQ (2015) for super resolution and image in-
painting, LSUN-Church for stylization, and SIDD |Abdelhamed et al.| (2018)) for
denoising and artifact reduction, which are shown in the column of “Positive (Members)” in Tablem
Similar to the evaluation of diffusion models, for each dataset of members, the adversary finds an
auxiliary dataset from a similar but different distribution. Concretely, from Table |I| we can see that
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Figure 3: The attack performances of DDPM, DDIM and FastDPM on the datasets of CIFAR-10,
CelebA, LSUN (including Bedroom and Church).

the pairs of auxiliary datasets and member datasets are as follows: CIFAR-10 for ImageNet, COCO
for LAION, ADE20K [Zhou et al/| for COCO, UTKFace [Zhang et al.|(2017) for CelebA-HQ,
ImageNet for SIDD, and wildly collected church images for LSUN-Church. In Table[l] the dataset
Q in the column of “Positive (Generated)” means that the positive training samples are the generated
images from the target model by querying with Q. And regarding the dataset Q in the other “Posi-
tive (Members)” and “Negative (Auxiliary)” columns, the samples are the images directly sampled
from the member or auxiliary datasets Q, as demonstrated in Section @ Note that, in Table m
even though the columns of “Training Dataset” and “Inference Dataset” are associated to the attack
model, the column of “Positive (Members)” also corresponds to members which are used to train
the target model.

Model architectures: For the unconditional generation task we focuses on three widely used
diffusion models, i.e., DDPM 2020), DDIM (Song et al., [2021) and FastDPM (Kong &
Ping| [2021). Consistently, these models are based on the structure of U-Net (Ronneberger et al.,
2015) to predict noises used for the denoising process, where the noises share the same size with
images.

In Section[.5] we adopt nine generative models corresponding to different generation tasks, includ-
ing VQGAN [Esser et al| (2021)) for class-conditional generation, LDM [Rombach et al| (2022) for
text-conditional generation, CC-FPSE [Liu et al.| (2019) for semantic-conditional generation, Col-
orization [Zhang et al| (2016)) for colorization, LIIF |Chen et al.| (2021) for super resolution, MAT

(2022) for image inpainting, SwappingAutoencoder [Park et al] (2020) for stylization, and
MPRNet |[Zamir et al.|(2021)) for denoising and artifact reduction, which are shown in Tablem

To infer the membership status from the target model, an attack model is established with the back-
bone of ResNetl18 2016). Specifically, we fit the last linear layers of the pretrained
ResNet18 for binary classification (i.e., inferring the query sample belonging to members or non-
members) and finetune it using the generated images as positive data and negative images sampled
from the auxiliary dataset (as mentioned in Section 3)).

Evaluation metric: Following previous works Salem et al.| (2019), (Chen et al.| (2020), |Li & Zhang|
(2027)) and [Zhang et al| (2021)), we utilize AUC as the metric to evaluate our work. Specifically,
during the inference, images used to train the model are regarded as positive samples while images
from the auxiliary dataset are regarded as negative samples. In a word, AUC represents the degree
of separability, which tells how much the model is capable of distinguishing between classes.

4.2 EFFECTIVENESS ON UNCONDITIONAL GENERATION TASKS

In this part, we evaluate the effectiveness of our attack on unconditional generation tasks, specif-
ically, we conduct our attack on three state-of-the-art diffusion models, i.e., DDPM, DDIM and
FastDPM, on four benchmark datasets.

As we can see from Figure 3] our attack achieves a significant improvement compared with random
guess on all four datasets. Especially, on the CIFAR-10 and CelebA datasets, our attack even has
almost perfect performance with AUC close to 1. These results well demonstrate the effectiveness
of our attack.
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Figure 4: The attack performances of DDPM, DDIM and FastDPM on CIDAR-10 and CelebA using
different number of generated images, from 100 to 1,000 with a step of 100 and from 1,000 to 5,000
with a step of 1,000.

Table 2: The transferability results against DDPM, DDIM and FastDPM. Each column corresponds
to one attack setting. In “All”, we use all four datasets to train the attack model. In “Leave”, we
use three non-matching datasets except the matching one to train the attack model. In “CIFAR-
10”/“CelebA”/“Bedroom”/“Church”, we train the attack model using the named dataset. To high-

@ 9

light the transferability results, we cover the duplicate results of Figure E]by .

| All | Leave | CIFAR-10 | CelebA | Bedroom | Church
DDPM

CIFAR-10 | 0.990 | 0.629 -
CelebA 0.974 | 0.665 0.573 -
Bedroom | 0.608 | 0.594 0.592 0.592

0.619 0.604 0.600
0.618 0.622

- 0.541

Church 0.618 | 0.602 0.573 0.601 0.599 -
DDIM
CIFAR-10 | 0.988 | 0.610 - 0.602 0.572 0.568
CelebA 0984 | 0.711 0.557 - 0.619 0.613
Bedroom 0.647 | 0.623 0.591 0.586 - 0.571
Church 0.635 | 0.623 0.571 0.593 0.586 -
FastDPM

- 0.606 0.610 0.580
CelebA 0.966 | 0.693 0.563 - 0.618 0.619
Bedroom | 0.561 | 0.598 0.594 0.575 - 0.544
Church 0.631 | 0.688 0.635 0.623 0.598 -

CIFAR-10 | 0.987 | 0.613

Meanwhile, we also find that the performance gap between different datasets is noteworthy, which
reveals that the quality of the auxiliary dataset influences the attack performance. Concretely, for
the DDPM model, our attack achieves 0.997 AUC on the CIFAR-10 dataset but only 0.768 AUC on
the LSUN-Bedroom dataset, while the attack performance is similar between LSUN-Bedroom and
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LSUN-Church. We posit this is because the auxiliary dataset for LSUN is manually collected from
the internet. However, collecting high-quality auxiliary data from the internet is time- and money-
consuming, which leaves an interesting problem of effectively collecting auxiliary datasets to be
explored in the future. In addition, we also evaluate existing black-box attack|Chen et al.|(2020) to at-
tack these diffusion models, but their attack only gain negligible increments compared with random
guess (thus we do not depict them in the paper), which further shows the advantage of our attack.

4.3 INFLUENCE OF THE QUERY BUDGET

Diffusion models normally require expensive computational resources to generate images, and
sometimes even require users to pay for the query, which will limit the adversary’s ability to gen-
erate unlimited images. To evaluate how the query budget influences the performance of our at-
tack, we change the number of generated images (positive training samples) and see their impact
on the attack performance. Specifically, the adversary generates images from the target model of
DDPM/DDIM/FastDPM which is trained on the dataset of CIFAR-10 or CelebA. Then we change
the number of generated images from 100 to 1,000 with a step size of 100 and from 1,000 to 5,000
with a step size of 1,000. As Figure |4| shows, the attack performance advances when the number
of generated images increases. Then the attack performance saturates when the number of gener-
ated images arrives at 700. Interestingly, even though the generated image number is only 100, our
attack is still effective in most cases. For instance, when the target model is DDPM, DDIM or Fast-
DPM trained on CelebA, our attack achieves the AUC of 0.703, 0.717 and 0.671, respectively. This
obeservation indicates our attack is applicable even the query budget is insufficient.

4.4 TRANSFERABILITY OF OUR ATTACK

We further consider the transferability of our attack, i.e., the attack performance when the attacker
does not have the auxiliary dataset that comes from a similar distribution as the training dataset.
We conduct experiments on three diffusion models, DDPM, DDIM and FastDPM, and the attack
performance are shown in Table 2]

In the table, each column corresponds to one attack setting. Concretely, “All” means we use all four
datasets (three non-matching and one matching datasets) to train the attack model, “Leave” means
we use three non-matching datasets except the matching one to train the attack model, and “CIFAR-
10”/“CelebA”/“Bedroom”/“Church” means we train the attack model using the named dataset. To
highlight the transferability results, we cover the duplicate results of Figure [3|by “-”.

The comparison between “All” and “Leave” shows the advantage of the similarity between the
auxiliary dataset and the training dataset. We take CelebA as an example, under the “All” setting,
our attack achieves 0.974 AUC, whereas the attack only has 0.665 AUC under the “Leave” setting.
However, this advantage is not significant on Bedroom and Church, which indicates the auxiliary
dataset of LSUN is not high-quality enough, consistent with the conclusion we draw in Section[4.2]

Regarding “CIFAR-10"/“CelebA”/“Bedroom”/“Church”, we can see that involving a single non-
matching dataset cannot implement a strong attack as strong as “Leave”. For instance, when
the member dataset is CelebA but the attack model is trained on the generated and auxiliary
images of CIFAR-10/Bedroom/Church, the attack performance drops from the AUC of 0.711 to
0.557/0.619/0.613. These results are as expected since more data can provide more knowledge to
train the attack model, which sheds new light on improving the attack performance, i.e., involving
more data from other domains. In addition, regardless of transferability settings, our attack signifi-
cantly outperforms Random Guess, further indicating the generalizability of our attack.

4.5 EFFECTIVENESS ON CONDITIONAL GENERATION TASKS

This part, we evaluate the effectiveness of our attack on conditional generation tasks, as we men-
tioned in Section[3.1] conditional generation tasks take extra information as input to guide the gen-
eration process. We involve nine generative models for evaluation, including diffusion models and
GANSs. Concretely, we adopt VQGAN (class-conditional generation), LDM (text-conditional gen-
eration), CC-FPSE (semantic-conditional generation), Colorization (colorization), LIIF (super reso-
lution), MAT (image inpainting), SwappingAutoencoder (stylization), and MPRNet (denoising and
artifact reduction) for evaluation.
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Figure 5: The attack performances of 9 generative models, where “Color” and “Swapping” in the x-
axis are the models of “Colorization” and “SwappingAutoencoder”. “MPRNet-D”” and “MPRNet-A”
are the corresponding versions of MPRNet for the applications of denoising and artifact reduction.

The results of our attack against the above nine models are depicted in Figure [5] where “Color”
and “Swapping” in the x-axis represent the models of “Colorization” and “SwappingAutoencoder”.
“MPRNet-D” and “MPRNet-A” are the corresponding versions of MPRNet for the applications of
denoising and artifact reduction. According to the results, our attack shows promising performances
on various generative models. For instance, our attack achieves the AUC of 0.998, 0.929 and 0.789
against the models of VGGAN (class-conditional generation), LDM (text-conditional generation)
and CC-FPSE (semantic-conditional generation) on the datasets of Imagenet, LAION and COCO,
respectively. And when the target model is LIFF trained on the dataset of CelebA-HQ, our attack
achieves the AUC of 0.902. These results show that our attack can effectively expose the private
information of various generative models.

We also confirm our finding in Section 2] that the attack performance is consistent with the choice
of auxiliary dataset. Specifically, the higher the similarity between the member and auxiliary datasets
is, the stronger the attack is. For instance, when the adversary uses UTKFace as the auxiliary dataset
for CelebA-HQ in the applications of super resolution and image inpainting, the attack performance
is the AUC of 0.902 and 0.885, respectively. However, when wildly collected church images are used
as the auxiliary dataset for LSUN-Church, the attack only achieves the AUC of 0.668. At the same
time, experiments also show that our attack still works even though the similarity is not high enough
between the member and auxiliary datasets. For instance, when the adversary uses ImageNet as the
auxiliary dataset for SIDD, the attack achieves the AUC of 0.673 for both denoising and artifact
reduction applications. These results indicate a larger scope of application scenarios where the
adversary might not gain sufficient budget for data collection.

5 CONCLUSION

Generative models increasingly show their promising talents in generating realistic and creative
images. However, the privacy risks introduced by them are largely unexplored. In the paper, taking
advantage of generated distributions, we propose the first generalized membership inference attack
to quantify the privacy leakage of existing generative models in a variety of applications. Compared
to previous works, our attack gains three main advantages. First, our attack has relaxed assumptions
that the adversary only needs to have black-box access to the target model. Second, no shadow
model is not involved due to the expensive training cost, which makes our attack computationally
efficient. Finally, our attack is architecture-agnostic and task-agnostic, which can be generalized
to extensive generative models. These advantages make our attack easily to be deployed in real-
world scenarios, which can serve as a quantitative evaluation tool to assess the privacy leakage
of existing generative models. We conducted extensive experiments to evaluate the effectiveness
of our attack. Experimental results confirm that our attack outperforms existing attacks and can
even achieve perfect performance for certain datasets. Further studies show that our attack still
works under strict limitations like a limited query budget or a low-quality auxiliary dataset, and the
transferability makes our attack a real threat in real-world scenarios. In summary, our attack exposes
a common and inherent privacy vulnerability of generative models, aiming to inspire the awareness
of privacy protection in the community.
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