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Abstract

Generative models excel at creating images that closely mimic real scenes, suggesting
they inherently encode scene representations. We introduce Intrinsic LoRA (I-LoRA), a
general approach that uses Low-Rank Adaptation (LoRA) to discover scene intrinsics such
as normals, depth, albedo, and shading from a wide array of generative models. I-LoRA is
lightweight, adding minimally to the model’s parameters and requiring very small datasets
for this knowledge discovery. Our approach, applicable to Diffusion models, GANs, and
Autoregressive models alike, generates intrinsics using the same output head as the original
images. We show a correlation between the generative model’s quality and the extracted
intrinsics’ accuracy through control experiments. Finally, scene intrinsics obtained by our
method with just hundreds to thousands of labeled images, perform on par with those from
supervised methods trained on millions of labeled examples.

1 Introduction

Generative models can produce high-quality images almost indistinguishable from real-world photographs.
They seem to demonstrate a profound understanding of the world, capturing nuances of realistic object
placement, appearance, and lighting conditions. Yet, it remains an open question how these models encode
such detailed knowledge, and whether representations of scene intrinsics exist in these models and can be
extracted explicitly.

Why is this an important question? Understanding the basis of generative models’ realistic outputs could
enhance our grasp of the physical world through computational eyes, potentially refining image generation
and interpretation processes across various applications. Our primary motivation is to explore whether
intrinsic properties can be extracted from various generative models using the same approach. This lays the
groundwork for future applications, such as improving the primary generation capabilities of these models.
Developing a universally optimal method for this extraction has been the ultimate goal, yet it has eluded
researchers in both computer vision and other fields, such as NLP, where this effort has been ongoing for
years (e.g., Belinkov & Glass (2019); Ettinger (2020)). Our work aims to fill this gap, providing valuable
insights into the inner workings of generative image models and their potential applications.

Recent work has begun to study this question. Bhattad et al. (2023a) demonstrated that StyleGAN can
encode important scene intrinsics. Similarly, Zhan et al. (2023) showed that diffusion models can understand
3D scenes in terms of geometry and shadows. Chen et al. (2023) found that Stable Diffusion’s internal
activations encode depth and saliency maps that can be extracted with linear probes. Three independent
efforts (Luo et al., 2023b; Tang et al., 2023; Hedlin et al., 2023) discovered correspondences in diffusion models.
However, these insights often pertain to specific models, leaving a gap in our understanding of whether such
encoding is ubiquitous across generative architectures. Our work addresses this gap by introducing a uniform
approach, Intrinsic LoRA (I-LoRA) to extract intrinsic properties across multiple generative image model
types, including GANs, Autoregressive, and Diffusion models.

Why study all types of generative models? Although diffusion models, such as Stable Diffusion (Rombach
et al., 2022) and Imagen (Saharia et al., 2022), have garnered significant attention recently, the latest iterations
of other model types like GigaGAN (Kang et al., 2023), CM3leon (Yu et al., 2023), and Parti (Yu et al., 2022)
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Figure 1: We propose Intrinsic LoRA (I-LoRA), a model-agnostic, general approach for extracting
visual knowledge from various generative models, including autoregressive, GANs, and diffusion models. Our
method applies targeted, lightweight fine-tuning to modulate key feature maps, using low-rank adaptation
(LoRA) on attention layers in VQGAN (a) and Stable Diffusion (d), and affine layers in StyleGAN (b and c).
This allows us to discover fundamental scene intrinsics–normals, depth, albedo, and shading–directly from the
models’ learned representations, eliminating the need for additional task-specific decoding heads or layers.

have demonstrated a capacity to produce comparably high-quality images. Investigating these diverse models
enables us to devise a general framework that applies not only to current models but is also adaptable to
future developments and new generative models.

Our Contributions and Findings. We conduct our inquiry across a spectrum spanning diffusion, GANs,
and autoregressive models to understand whether they encode fundamental scene intrinsics such as normals,
depth, albedo, and shading (Barrow & Tenenbaum, 1978). We show that our method, I-LoRA, efficiently
extracts these intrinsics across different model types with minimal computational overhead (less than 0.17%
additional parameters for models like Stable Diffusion v1-5) and data requirements (as few as 250 labeled
images). Importantly, I-LoRA does not require learning new heads, unlike Luo et al. (2023a) and Zhao
et al. (2023), or complete fine-tuning (Zhao et al., 2023; Ke et al., 2023); instead, it predicts these intrinsic
images from the same head or decoder that generates the images. This is significant because this simplified
knowledge extraction reduces parameter requirements while maintaining efficiency and effectiveness.

A summary of our findings is presented in Tab. 1 and elaborated in Sec. 4. We observed significant improvement
in the quality of recovered intrinsics when we used improved versions of Stable Diffusion (v1-1, v1-2, v1-5). In
our control experiment, we found that randomly initialized Stable Diffusion architecture could not produce
scene intrinsics. These findings suggest that the intrinsic knowledge within generative models is not accidental
but a byproduct of large-scale learning to mimic image data. In summary, our contributions are:

• Wide Applicability: We validate I-LoRA ’s capability to extract scene intrinsics (normals, depth,
albedo and shading) across a broad spectrum of generative models, highlighting its adaptability to
diverse architectures. We also show our method can be extended to non-generative models.
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Table 1: Summary of scene intrinsics found across different generative models without changing generator
head. ✓: Intrinsics can be extracted with high quality. ∼: Intrinsics cannot be extracted with high quality.
×: Intrinsics cannot be extracted.

Model Pretrain Type Domain Normal Depth Albedo Shading
VQGAN (Esser et al., 2020) Autoregressive FFHQ ∼ ∼ ✓ ✓
SG-v2 (Karras et al., 2020b) GAN FFHQ ✓ ∼ ✓ ✓

SG-v2 (Yu et al., 2021) GAN LSUN Bed ✓ ✓ ✓ ✓
SG-XL (Sauer et al., 2022) GAN FFHQ ✓ ∼ ✓ ✓
SG-XL (Sauer et al., 2022) GAN ImageNet × × × ×

SD-UNet (single-step) (Rombach et al., 2022) Diffusion Open ✓ ✓ ✓ ✓
SD (multi-step) (Rombach et al., 2022) Diffusion Open ✓ ✓ ✓ ✓

• Efficient and Lean Approach to knowledge extraction: I-LoRA is highly efficient, requiring a
little increase in parameters (less than 0.17% or as few as 0.04% for Stable Diffusion) and minimal
training data, as few as 250 images.

• Insights from Learned Priors: Through control experiments with various Stable Diffusion
configurations, we illustrate the role of learned priors in facilitating intrinsic representation, suggesting
that the quality of intrinsics extracted is correlated to the visual quality of the generative model.

• Competitive Quality of Intrinsics: Our method, supervised with hundreds to thousands of
labeled images, generates intrinsics on par with or even better than those produced by the leading
supervised techniques requiring millions of labeled images. Moreover, our method outperforms linear
probing and full finetuning of models in the limited data regime scenarios.

2 Related Work

Generative Models: Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have been widely
used for generating realistic images. Variants like StyleGAN (Karras et al., 2019), StyleGAN2 (Karras et al.,
2020b) and GigaGAN (Kang et al., 2023) have pushed the boundaries in terms of image quality and control.
Some work has explored the interpretability of GANs (Bau et al., 2020; Bhattad et al., 2023a), but little is
known about their ability to capture scene intrinsics.

Diffusion models, such as Denoising Score Matching (Vincent, 2011) and Noise-Contrastive Estimation (Gut-
mann & Hyvärinen, 2010), have been used for generative tasks and are perhaps the most popular at the
moment (Karras et al., 2022; Ho et al., 2020; Rombach et al., 2022). These models have been shown to
understand complex scene intrinsics like geometry and shadows (Zhan et al., 2023), but the generalizability
of this understanding across different scene intrinsics is largely unexplored.

Autoregressive models like PixelRNN (Van Den Oord et al., 2016) and PixelCNN (Van den Oord et al., 2016)
generate images pixel-by-pixel, offering fine-grained control but at the cost of computational efficiency. More
recently, VQ-VAE-2 (Razavi et al., 2019) and VQGAN (Esser et al., 2020) have combined autoregressive
models with vector quantization to achieve high-quality image synthesis. While these models are powerful,
their ability to capture and represent scene intrinsics has not been thoroughly investigated.

Scene Intrinsics Extraction: Barrow & Tenenbaum (1978) highlighted several fundamental scene intrinsics
including depth, albedo, shading, and surface normals. A large body of work has focused on extracting
some related properties, like depth and normals from images (Eigen et al., 2014; Long et al., 2015; Eftekhar
et al., 2021; Kar et al., 2022; Ranftl et al., 2021; Bhat et al., 2023) using labeled annotated data. Labeled
annotations of albedo and shading are hard to find and as the recent review in Forsyth & Rock (2021) shows,
methods involving little or no learning have remained competitive. However, these methods often rely on
supervised learning and do not explore the capabilities of generative models in this context.

Many recent studies have used generative models as pre-trained feature extractors or scene prior learners.
They use generated images to enhance downstream discriminative models, fine-tune the original generative
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model for a new task, learn new layers or decoders to produce desired scene intrinsics (Abdal et al., 2021;
Jahanian et al., 2021; Zhang et al., 2021b; Li et al., 2021; Noguchi & Harada, 2020; Bao et al., 2022; Xu
et al., 2023; Sariyildiz et al., 2023; Zhao et al., 2023; Ke et al., 2023). InstructCV (Gan et al., 2023) executes
computer vision tasks via natural language instructions, abstracting task-specific design choices. However, it
requires re-training of the entire diffusion model. In contrast, we show that many generative models capture
intrinsic image knowledge implicitly and do not require specialized training to extract this information.

Knowledge in Generative Models: Several studies have explored the extent of StyleGAN’s knowledge,
particularly in the context of 3D information about faces (Pan et al., 2021; Zhang et al., 2021a). Yang et al.
(2021) show GANs encode hierarchical semantic information across different layers. Further research has
demonstrated that manipulating offsets in StyleGAN can lead to effective relighting of images (Bhattad et al.,
2024; 2023b) and extraction of scene intrinsics (Bhattad et al., 2023a). Chen et al. (2023) found internal
activations of the LDM encode linear representations of both depth data and a salient-object / background
distinction. Wu et al. (2023) also demonstrate rich latent codes of diffusion models can be easily mapped to
annotations with small amount of training samples. Recently, Tang et al. (2023); Luo et al. (2023b); Hedlin
et al. (2023) found correspondence emerges in image diffusion models. Sarkar et al. (2023) showed generative
models struggle to replicate accurate projective geometry in generated images.

Concurrent studies, such as the one by Luo et al. (2023a), have explored training task-specific “readout”
networks to extract signals like pose, depth, and edges from feature maps in Stable Diffusion models for
controlling image generation. Our goals are different: We are interested in recovering intrinsic images, while
the aim of Luo et al. (2023a) is controlling image generation. Our method offers notable advantages in
parameter efficiency: Our I-LoRA is approximately 5 times more parameter-efficient than readout networks
in their application to SD v1-5 (compare 8.5M vs 1.59M). Lastly, the broad applicability of “readout” networks
across various generative model types remains uncertain.

Another concurrent work Lee et al. (2023) applies a LoRA-like approach to adapt a pre-trained diffusion
model for dense semantic tasks. Our work differs from theirs in several aspects: First, their goal is to use
pre-trained diffusion models as strong priors for dense prediction. Second, their tasks are within restricted
domains, such as bedrooms. Finally, they do not extend to the wide range of generative models our study
explores. Our paper not only demonstrates I-LoRA’s efficacy across different model architectures but also
explores its application in a diverse array of scene contexts including real images.

Relation to Fine-Tuning and Linear Probing. Previous approaches for depth extraction from generative
models fine-tune the entire model (Zhao et al., 2023; Ke et al., 2023) or apply linear probing (Chen et al.,
2023). Fine-tuning alters the entire model with a specific dataset, transforming it into a new version that
might lose its original image-generating capabilities. This raises questions about whether the depth perception
was an inherent quality of the model or a result of the fine-tuning process. A drawback of linear probing lies
in modeling each layer independently. While the tiny parameters, samples, and iterations required to train
I-LoRA indicate that intrinsic information is easy to surface in generative models, the weak performance of
linear probes indicates this knowledge is distributed throughout the network.

In contrast, I-LoRA performs efficient fine-tuning, and leverages the entire network’s learned representation,
modulating the internal flow of information for intrinsic extraction. This approach not only ensures a more
holistic utilization of the network but also proves to be superior, as evidenced by our ablation studies.
Another important property of I-LoRA is its preservation of the original’s model output head to extract
scene intrinsics—normals, depth, albedo, and shading as 3-channel, image-like maps, without requiring any
new decoding layers. By doing so, it retains the original image generation functionality, while accessing the
latent visual knowledge within generative models.

LoRA (Low-Rank Adaptation). LoRA (Hu et al., 2022), originally proposed to reduce the cost of
fine-tuning large language models for downstream tasks, introduces trainable low-rank decomposed matrices
into specific layers of the model architecture. These matrices are the only components updated during
task-specific optimization. This results in a significant reduction in the number of trainable parameters,
ensuring only slight modifications to the model, and preserving its core functionality and accessibility.
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Figure 2: Overview of I-LoRA applied to Stable Diffusion’s UNet in a single-step manner. We adopt an
efficient fine-tuning approach, specifically low-rank matrices corresponding to key feature maps – attention
matrices – to reveal scene intrinsics. Distinct low-rank adaptors (LoRA) are optimized for each intrinsic
(violet adaptors for surface normals; swappable with other intrinsics). We use a few labeled examples for this
fine-tuning and directly extract scene intrinsics using the same decoder that generates images, circumventing
the need for specialized decoders or comprehensive model re-training.

3 Intrinsic LoRA

A generative model G maps noise/conditioning information z to an RGB image G(z) ∈ RH×W ×3. We seek
to augment G with a small set of parameters θ that allow us to produce, using the same architecture as G,
an image-like map with up to three channels, representing scene intrinsics like surface normals.

I-LoRA’s Learning Framework. Our method, Intrinsic LoRA(I-LoRA), learns to extract intrinsic
properties of an image (such as depth) using a small number of labeled examples (image/depth map pairs) as
supervision. In cases where we do not have access to the actual intrinsic properties, we use models trained on
large datasets to generate estimated intrinsics (such as estimated depth for an image) as pseudo-ground truth,
used as training targets for Gθ. To optimize θ of Gθ using a pseudo-ground truth predictor Φ, we minimize
the objective:

min
θ

Ez[d(Gθ(z), Φ(G(z)))], (1)

where d is a distance metric that depends on the intrinsics we wish to learn.

Diffusion models require special treatment since they are effectively image-to-image and not noise-to-image.
During inference, diffusion models repeatedly receive a noisy image as input. Thus instead of conditioning
noise z we feed an image x(generated or real) to a diffusion model G. In this case, given a real image x, our
objective function becomes minθ Ex[d(Gθ(x), Φ(x))].

For surface normals Φ is Omnidatav2-Normal (Eftekhar et al., 2021; Kar et al., 2022). To generate pseudo
ground truth for depth we use ZoeDepth (Bhat et al., 2023) as the predictor Φ. For Albedo and Shading Φ is
Paradigms (Forsyth & Rock, 2021; Bhattad & Forsyth, 2022). For SG2, SGXL and VQGAN, d in Eq.1 is

d(x, y) = 1 − cos(x, y) + ∥x − y∥1 (2)
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for normal and MSE for other intrinsics. For latent diffusion, there isn’t a clear physical meaning to the
relative angle of latent vectors in encoded normals, so we use the standard objective of MSE for all intrinsics.

We use LoRA, a parameter-efficient adaptation technique, to recover image intrinsics from generative models.
LoRA introduces a low-rank weight matrix W ∗, which has a lower rank than the original weight matrix
W ∈ Rd1×d2 . This is achieved by factorizing W ∗ into two smaller matrices W ∗

u ∈ Rd1×d∗ and W ∗
l ∈ Rd∗×d2 ,

where d∗ is chosen such that d∗ ≪ min(d1, d2). The output o for an input activation a is then given by:

o = Wa + W ∗a = Wa + W ∗
u W ∗

l a. (3)

To preserve the original model’s behavior at initialization, W ∗
u is initialized to zero. We next describe how we

leverage LoRA modules to extract intrinsics from Diffusion models, GANs, and Autoregressive models.

Applying I-LoRA. For diffusion models, I-LoRA adaptors are learned atop cross-attention and self-
attention layers. The UNet is utilized as a dense predictor, transforming an RGB input into intrinsics in one
step. This approach, favoring simplicity and effectiveness, delivers superior quantitative results. Depending
on the intrinsic of interest, the textual input varies among “surface normal”, “depth”, “albedo”, or “shading”.
Fig. 2 illustrates the I-LoRA pipeline. For GANs, I-LoRA modules are integrated with the affine layers
that map from w-space to s-space (Wu et al., 2021). In the case of VQGAN, an autoregressive model,
I-LoRA is applied to the convolutional attention layers within the decoder.

4 Experiments

In this section, we outline I-LoRA’s contributions, demonstrating its general applicability across generative
models (Sec. 4.1) and its efficiency in terms of parameters and labeling (Sec. 4.2). Control experiments
provide evidence of I-LoRA’s effectiveness (Sec. 4.3), while comparative analysis establish its superiority
over both fine-tuning and linear probing methods (Sec. 4.4). Additional ablation studies and baseline
comparisons further confirm I-LoRA’s robustness (Appendix B). Note: our analysis in Sec. 4.2 uses a
single-step I-LoRA model for intrinsic image extraction from stable diffusion. In Sec. 5, we discuss the
challenge of naively applying I-LoRA to a multi-step Stable Diffusion model. To address this, we propose a
simple modification to the architecture by adding an extra, non-learned layer for improved intrinsic image
extraction. We refer to this modified model as Augmented I-LoRA (I-LoRAaug).

4.1 I-LoRA is General and Universally Applicable

We evaluate I-LoRA across diverse generative models, including StyleGAN-v2 (Yu & Smith, 2019), StyleGAN-
XL (Sauer et al., 2022), and VQGAN (Esser et al., 2020), trained on datasets like FFHQ (Karras et al.,
2020b), LSUN Bedrooms (Yu et al., 2015), and ImageNet (Deng et al., 2009). I-LoRA adaptors are tailored
to each model and dataset to extract intrinsics: surface normals, depth, albedo, and shading, demonstrating
broad applicability and robustness in both qualitative assessments (Fig. 1, 3, 4, 6) and quantitative (Tab. 2
on generated images, Tab. 3 on real images). In all experiments – covering both generated and real images
– we use pseudo-ground truth from pre-trained models as a supervisory signal for fine-tuning I-LoRA to
discover scene intrinsics within generative models as previously mentioned in Sec. 3. We use I-LoRA with
Rank 8 as default for all generative models if not otherwise mentioned.

We find I-LoRA can unearth intrinsic knowledge across almost all models tested, the notable exception is
StyleGAN-XL trained on ImageNet. Where it yields qualitatively poor results, which we attribute to the
model’s limited ability to generate realistic images (Fig. 5). This suggests the quality of intrinsic extraction is
correlated with the generative model’s fidelity (see Sec. 4.3). In evaluations of generated images, our method
is benchmarked against pseudo-ground truths derived from existing models, compensating for the lack of true
ground truths. The performance of I-LoRA , gauged through these comparisons, provides useful indicators
but must be interpreted within the context of the selected pseudo-ground truths.

Thanks to their architecture as image-to-image translators, diffusion models excel as powerful image generators.
This feature simplifies their application to real images. Taking advantage of this, we apply I-LoRA to
directly extract intrinsic images from Stable Diffusion’s UNet in a single step. This method bypasses the

6



Under review as submission to TMLR

Surface Normals Depth Albedo Shading
V

Q
G

A
N

St
yl

eG
A

N
v2

St
yl

eG
A

N
X

L

Image Kar et al.
(2022)

I-LoRA Bhat et al.
(2023)

I-LoRA Bhattad &
Forsyth (2022)

I-LoRA Bhattad &
Forsyth (2022)

I-LoRA

Figure 3: Scene intrinsics from different generators – VQGAN, StyleGAN-v2, and StyleGAN-XL – trained
on FFHQ dataset: The “image” column shows the synthetic images produced by each model. Subsequent
columns show four scene intrinsics extracted by a SOTA non-generative model and I-LoRA (ours).
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Figure 4: I-LoRA’s extracted scene intrinsics from StyleGAN-v2 trained on LSUN bedroom images are
competitive with task-specific models.

iterative reverse denoising process. The model receives a real image as input and outputs the corresponding
image intrinsics through I-LoRA. Such direct application allows for evaluation against actual ground truth.
This provides a definitive benchmark for assessing I-LoRA’s effectiveness on DIODE dataset (Vasiljevic
et al., 2019). We use the official training/evaluation split in all of our DIODE experiments. For training with
fewer samples, we randomly chose samples from the official training partition. All the metrics we reported
on DIODE are computed over the entire evaluation set. In Tab. 3, we find that I-LoRA not only matches
but, in several metrics (median error for surface normals, RMSE for depth), surpasses the performance of
Omnidata and ZoeDepth – the source of its training signal – while using significantly less data, parameters,
and training time (see Sec.4.2).
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Figure 5: StyleGAN-XL trained on ImageNet. Top: pan, bottom: laptop, with the corresponding scene
intrinsics (pseudo ground truth and extracted) alongside. The surface normals and depth maps, while capturing
the basic shape and volume, lack precise detail and exhibit artifacts. Albedo and Shading extractions fail.
These difficulties are correlated with the overall worse realism and consistency of the generated images.

Surface Normals Depth Albedo Shading

Image Kar et al. (2022) I-LoRA Bhat et al.
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Figure 6: Scene intrinsics from I-LoRA applied to randomly generated images. I-LoRA accurately predicts
the table’s normal in the first row when compared to Kar et al. (2022). The globe in the right corner also
appears to be closer to the camera in our depth compared to Bhat et al. (2023). In the second row, ceiling
lamp normals are also visible in I-LoRA but not in Kar et al. (2022). The comparison highlights I-LoRA’s
ability to closely align with, and sometimes surpass, these supervised SOTA monocular predictors.

Table 2: Quantiative analysis of scene intrinsics extraction performance by I-LoRA on generated images.
We compare with pseudo ground truths from Omnidata-v2 for surface normals, ZoeDepth for depth, and
Paradigms for albedo and shading. Metrics include mean angular error, median angular error, and L1 error
for surface normals; RMS and δ < 1.25 for depth; RMS for albedo and shading.

Model Pre-training Type Domain LoRA Param. Surface Normal Depth Albedo Shading
Mean Error°↓ Median Error°↓ L1 Error× 100 ↓ RMS ↓ δ < 1.25×100% ↑ RMS ↓ RMS ↓

VQGAN Autoregressive FFHQ 0.18% 19.97 20.97 16.33 0.1819 62.33 0.0345 0.0106
StyleGAN-v2 GAN FFHQ 0.57% 16.93 19.60 13.87 0.1530 90.74 0.0283 0.0110
StyleGAN-XL GAN FFHQ 0.29% 15.28 18.07 12.63 0.1337 93.87 0.0287 0.0125
StyleGAN-v2 GAN LSUN Bedroom 0.57% 13.94 24.76 11.49 0.0897 66.88 0.0270 0.0074
StyleGAN-XL GAN ImageNet 0.29% 24.09 25.52 19.44 0.2175 38.38 0.1065 0.0119

I-LoRAaug (multi step) Diffusion Open 0.17% 21.41 28.57 17.39 0.2042 41.21 0.0881 0.0099
I-LoRA (single step) Diffusion Open 0.17% 16.63 23.64 13.69 0.1179 52.59 0.0487 0.0118

Extending I-LoRA to DINO. I-LoRA can extend beyond generative models to include self-supervised,
non-generative models like DINO (Darcet et al., 2023). To explore this possibility, albeit tangential to our
main objective of extracting intrinsic knowledge from generative models, we follow Oquab et al. (2023) by
learning a linear head to project DINO features to pixel space, along with our I-LoRA modules. Using
DINOv2’s “giant" model, we achieve quantitative results on par with our I-LoRA at the cost of only 0.26%
extra parameters. However, qualitatively, DINOv2 produces less smooth intrinsics (Fig. 7d) with apparent
discontinuities. This broad applicability echoes Bhattad et al. (2023a)’s “meaningful image representations
are those that can capture these intrinsic properties", a hypothesis validated across models of various types.
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Table 3: Quantitative analysis of scene intrinsic extraction performance across different models on real images.
Model Pre-training LoRA Surface Normal Depth

Type Param Mean Error°↓ Median Error°↓ L1 Error× 100 ↓ RMS ↓ δ < 1.25× 100 ↑
Omnidata-v2 (Kar et al., 2022)/ZoeDepth (Bhat et al., 2023) Supervised - 18.90 13.36 15.21 0.2693 47.56

DINOv2 Non-Generative 0.26% 19.74 13.72 16.00 0.2094 44.32
I-LoRAaug (multi step) Diffusion 0.17% 23.74 19.08 19.31 0.2651 43.19

I-LoRA (single step) Diffusion 0.17% 20.31 12.54 16.53 0.2046 44.90

(a) Real (b) GT (c) OD-v2 (d)DINOv2 (e) rank 2 (f) rank 4 (g) rank 8 (h) rank 16 (i) rank 32

Mean Angular Error°↓ 18.90 19.74 22.28 22.57 20.31 21.17 21.84
L1 Error (× 100 )↓ 15.21 16.00 18.14 18.39 16.53 17.19 17.81

LoRA Param. - 0.26% 0.04% 0.08% 0.17% 0.34% 0.68%

Figure 7: Parameter Efficiency of I-LoRA. We evaluate I-LoRA across various rank settings for surface
normal extraction. Lower ranks such as 8 offer a balance between efficiency and effectiveness. All model
variants are trained using SD’s UNet (v1.5) with 4000 samples. Performance metrics, such as Mean Angular
Error and L1 Error for normals, and additional parameter counts are detailed below each variant.

(a) Real (b) GT (c) OD-v2 (d) 250 (e) 1000 (f) 4000 (g) 16000 (h) 24895

Mean Angular Error°↓ 18.90 27.73 22.22 20.31 21.26 21.64
L1 Error (× 100) ↓ 15.21 22.46 18.05 16.53 17.33 17.64

Figure 8: Data efficiency of I-LoRA. Note: SOTA supervised model (c), was trained using 12M+ labeled
training samples. Even with 250 samples, I-LoRA captures surface normals. We observe the best performance
with 4k samples. Models (d)-(h) all use the same SD UNet(v1-5) and rank 8 LoRA.

4.2 I-LoRA is Parameter and Label Efficient

Our single-step I-LoRA model, distinguished by its high quantitative performance, serves as the basis for
ablation studies that assess the influence of rank and labeled data quantity on intrinsic extraction efficiency.
We verify that the requirements for compute, parameters, and data to learn I-LoRA are minimal.

Parameter efficiency. Fig. 7 shows surface normal predictions across LoRA ranks. The highest accuracy is
achieved with Rank 8, balancing accuracy and memory. Notably, a Rank 2 LoRA with only 0.4M additional
parameters (a mere 0.04% increase) still yields good performance. Note that across different generative
models, Rank 8 adaptors adds only 0.17% to 0.57% additional parameters (Tab. 2).
Label efficiency. The impact of the labeled data size is analyzed in Fig. 8. I-LoRA reaches peak performance
using a modest 4000 training examples, with credible predictions visible from as few as 250 samples.

4.3 Control Experiments and Correlation with Generative Quality

To assess if our I-LoRA leverages pre-trained generative capabilities or primarily depends on LoRA layers,
we performed a control experiment using a randomly initialized SD UNet, following the same training protocol
of our I-LoRA model. The poor results from this model (see Fig. 9) corroborate that the learned features
developed during generative pre-training are crucial for intrinsic extraction, rather than I-LoRA layers
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Real GT Random init. I-LoRA v1-1 I-LoRA v1-2 I-LoRA v1-5
Mean Angular Error°↓ 36.18 21.84 21.41 20.31

L1 Error (× 100) ↓ 29.28 17.78 17.38 16.53

Figure 9: We find a correlation between generative model quality and scene intrinsic extraction accuracy. We
compare different versions of Stable Diffusion (v1-1, v1-2, v1-5). The progress from SD v1-1 to SD v1-5 shows
improvements in intrinsic extraction paralleling improvements in image generation. Control experiments with
a randomly initialized UNet fail to extract surface normals, emphasizing the reliance on learned priors from
generative training for effective intrinsic representation extraction.

Image GT I-LoRA Linear Probe Fine-tuning

Figure 10: Comparison with baselines. All models are trained with 250 samples. Note LoRA effectively
extracts better normals compared to other baselines.

Table 4: We find I-LoRA to consistently outperform baselines for different training samples (first row).
Steps/s Peak Train GPU Mem% 250 1000 4000 16000

Mean Error°↓ L1 × 100 ↓ Mean Error°↓ L1 × 100 ↓ Mean Error°↓ L1 × 100 ↓ Mean Error°↓ L1 × 100 ↓
Linear Probe 2.13 29.46% 29.10 23.74 28.45 23.25 28.52 23.26 28.22 23.11
Fine-tuning 0.77 86.78% 34.40 27.58 25.19 20.28 28.03 22.17 27.39 22.24

LoRA (Ours) 0.94 63.48% 27.73 22.46 22.22 18.05 20.31 16.53 21.26 17.33

alone. Furthermore, analyzing multiple Stable Diffusion versions (v1-1, v1-2 and v1-5) under the same
I-LoRA protocol reveals that enhancements in image generation quality correlate positively with intrinsic
extraction capabilities. This assertion is further reinforced by observing a correlation between lower FID
scores (9.6 for VQGAN (Esser et al., 2020), 3.62 for StyleGAN-v2 (Karras et al., 2020a) and 2.19 for
StyleGAN-XL (Sauer et al., 2022)) and improved intrinsic predictions in our FFHQ experiments (Fig. 3 and
Tab. 2: first three rows), confirming that superior generative models yield more accurate intrinsics.
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Image Kar et al. (2022) I-LoRA SDv1-5 (multi) I-LoRAaug

Figure 11: I-LoRA yields satisfactory results, but multiple diffusion steps lead to misalignment in extracted
intrinsics (fourth column). The last column, I-LoRAaug , demonstrates successfully correcting the misalign-
ment using our image conditioning approach, resulting in well-aligned and detailed intrinsic extractions

4.4 Superiority of I-LoRA over Fine-tuning and Linear Probing

We compare I-LoRA with two common baselines: linear probing and full model fine-tuning. Following Chen
et al. (2023) for linear probing and employing standard fine-tuning practices, we train all methods with a small
dataset of 250 samples to 16000 samples. All three models are trained with the same number of epochs and
have converged at the end of the training. Our findings in Tab. 4 and Fig. 10 show that I-LoRA significantly
outperforms these baselines in low-data regimes, validating its superior efficacy and data efficiency.

5 I-LoRAaug : Towards Improved Intrinsic Extraction
In the previous section, we showed that Stable Diffusion models inherently capture various scene intrinsics like
normals, depth, albedo, and shading, as evidenced by our evaluation of I-LoRA . A natural question arises:
can we enhance these intrinsics using multi-step diffusion inference? While multi-step diffusion improves
sharpness, we find it introduces two challenges: 1. intrinsics misaligned with input, and 2. shift in the
distribution of outputs relative to the ground truth (visually manifesting as a color shift) (see Fig. 11).

To address the first challenge, we augment the noise input to the UNet with the input image’s latent encoding,
as in InstructPix2Pix (Brooks et al., 2023). The second challenge is a known artifact attributed to Stable
Diffusion’s difficulty generating images that are not with medium brightness (Deck & Bischoff, 2023; Lin
et al., 2023). Lin et al. (2023) propose a Zero SNR strategy that reduces color discrepancies but requires
diffusion models trained with v-prediction objective, which SDv1-5 does not. However, Stable Diffusion v2-1
employs a v-prediction objective. Therefore we replace SDv1-5 with SDv2-1 while maintaining our previously
described learning protocol. We name this multi-step augmented SDv2-1 model I-LoRAaug. I-LoRAaug
solves the misalignment issue and reduces the color shift significantly (Fig. 12), resulting in the generation
of high-quality, sharp scene intrinsics with improved quantitative accuracy. However, quantitatively, the
results still fall short of our single-step I-LoRA result. In the future, we hope this problem will be solved by
improved sampling techniques and the next generation of generative models.

6 Discussions, Limitations and Broader Impact

We find consistent evidence that generative models implicitly learn physical scene intrinsics, allowing tiny LoRA
adaptors to extract this information with minimal fine-tuning on small labeled data. More powerful generative
models produce more accurate scene intrinsics, strengthening our hypothesis that learning this information is
a natural byproduct of learning to generate images well. Additionally, we discovered scene intrinsics exist
across generative models and the self-supervised DINOv2, resonating with Barrow & Tenenbaum (1978)’s
hypothesis of fundamental “scene characteristics” emerging in visual processing.
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Image Pseudo GT DINOv2 I-LoRA I-LoRA1-5aug I-LoRAaug GT

Figure 12: We show normals (top in each set) and depth (bottom in each set) derived from improved
multi-step diffusion process from our I-LoRAaug compared with other alternatives. I-LoRA1-5aug is
similar to I-LoRAaug except it uses SDv1-5 and does not use Zero SNR strategy. I-LoRA1-5aug presents
sharper details, especially in complex areas – structures like lamp stand and chair. I-LoRAaug, on the other
hand, illustrates a significant improvement in reducing color shifts while maintaining sharpness, as seen in
the comparison with ground truth in the last column.

Our approach shows that models can generate intrinsic images directly from the same decoder head, despite
these images being out-of-distribution and unlike real images. Surprisingly, it is easy to extract this information
using our method, which is broadly applicable across generative models, supporting our argument that these
representations are indeed inherent in the learned model.

Limitations. Although we have demonstrated that generative models carry a wealth of intrinsic information,
it is still ambiguous how these models use this information when generating images. Secondly, even though
I-LoRA is both parameter and label-efficient, we believe there is still room for further reduction of training
requirements and perhaps the development of a parameter-free approach. Lastly, the I-LoRAaug generates
sharper results but still lags behind its single-step counterpart in terms of quantitative analysis. Further
work is needed to explore this question.

Our future work will focus on overcoming the limitations we have encountered so far and expanding on our
findings. One way to do this is by explicitly incorporating the extracted scene intrinsics into the learning
process of generative image models to improve them further via efficient fine-tuning. Additionally, developing
an evaluation of generative models based on physical properties may help develop interpretable metrics.
Another direction interesting to explore is learning specific latent codes similar to Bhattad et al. (2023a) for
each intrinsics, as opposed to using LoRA modules, to further reduce the number of learned parameters.

Broader Impact Statement. Our paper introduces “Intrinsic LoRA”, a model-agnostic framework
for extracting intrinsic properties and visual knowledge from generative models. This advancement has
the potential to significantly enhance the interpretability and usability of generative models across various
applications, from computer vision to autonomous systems. By enabling efficient and accurate extraction
of scene intrinsics, our approach could improve image generation quality and provide deeper insights into
how these models understand and recreate the visual world. Furthermore, the ability to recover intrinsic
information with minimal data and computational resources promotes more sustainable and accessible AI
research and development. Finally, our work contributes to the foundational understanding of generative
models, paving the way for more responsible, transparent and effective AI systems in the future.
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A Additional Ablation Studies

A.1 Number of Diffusion Steps

Mean Angular Error°↓ 25.83 23.79 23.48 23.86 23.79 23.74 23.67
L1 Error (× 100) ↓ 21.08 19.39 19.10 19.40 19.35 19.31 19.25

Image GT Omni-v2 Kar
et al. (2022)

Steps=2 Steps=5 Steps=10 Steps=15 Steps=20 Steps=25 Steps=50

Figure 13: Ablation study to determine the effect of varying numbers of diffusion steps while keeping CFG
fixed at 3.0. Our findings show that there are very small differences, both in terms of quantity and quality,
after 10 steps. For our main paper, we report results for 25 steps as it is more stable across different intrinsics.

To assess the impact of the number of diffusion steps on the performance of the multi-step I-LoRAaug model,
we conducted an ablation study. The results are presented in Fig. 13. For all our experiments in the main
text, we used DPMSolver++ (Lu et al., 2022). Interestingly, the quality of results did not vary significantly
with an increased number of steps, indicating that 10 steps are sufficient for extracting better surface normals
from the Stable Diffusion. Nevertheless, we use 25 steps for all our experiments because it is more stable
across different image intrinsics.

A.2 CFG scales

When working with the multi-step I-LoRAaug , the quality of the final output is influenced by the choice of
classifier-free guidance (CFG) scales during the inference process. In Fig. 14, we present a comparison of the
effects of using different CFG scales. Based on our experiments, we found that using CFG=3.0 results in the
best overall quality and minimizes color-shift artifacts.

B Other Ablations and Baselines

We extensively study the effect of applying LoRA to different attention layers within Stable Diffusion models.
Specifically, we investigate the outcomes of targeting up-blocks, mid-block, down-blocks, cross-attention,
and self-attention layers individually. We find (Fig. 15) that isolating LoRA to up or down blocks or the
mid-block alone is less effective or diverges, and applying to either cross- or self-attention layers yields decent
results, though combining them is best.
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Mean Angular Error°↓ 24.28 23.48 25.72 27.80 29.85 31.93 34.12
L1 Error (× 100) ↓ 19.48 19.10 21.01 22.72 24.36 26.03 27.78

Image GT Omni-v2 Kar
et al. (2022)

CFG=1 CFG=3 CFG=5 CFG=7 CFG=9 CFG=11 CFG=13

Figure 14: Ablation study analyzing the impact of different classifier-free guidance (CFG) on I-LoRAaug
surface normal prediction. For efficiency, we experimented with a step of 10. We observed that CFG=1
sometimes led to incorrect semantic predictions, particularly in the case of stairs in row 4. On the other hand,
using large CFGs (5 and beyond) results in more severe color shift problems.

Image GT Up blocks Mid block Down blocks Cross-attn Self-attn All

Mean Angular Error°↓ 32.25 - 36.71 23.72 21.70 20.31
L1 Error (× 100) ↓ 26.10 - 29.95 19.27 17.69 16.53

Figure 15: Ablation study on the effect of applying LoRA on different types of attention layers. We started
all models with SD v1-5, 4000 training samples and LoRA rank=8. Training with LoRA only on the mid
block never converges.

Image VISII (Nguyen et al.,
2023)

Text. Invers. (Gal et al.,
2022)

IP2P (Brooks et al.,
2023)

I-LoRA Pseudo GT

Figure 16: Comparison of image editing techniques for surface normal mapping. VISII and Textual Inversion
yield unsatisfactory results, while InstructPix2Pix fails to interpret the task, resulting in near-original output.

Additionally, we evaluated other image editing methods such as Textual Inversion (Gal et al., 2022) and
VISII (Nguyen et al., 2023), alongside InstructPix2Pix’s response to “Turn it into a surface normal map”
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Table 5: Comparison of quality of normals extracted from StyleGAN Bhattad et al. (2023a).
Mean Error°↓ Median Error°↓ L1 × 100 ↓

“StyleGAN knows" (Bhattad et al., 2023a) 19.92 46.65 16.64
I-LoRA-StyleGAN (Ours) 13.24 23.55 10.92

Image Pseudo GT Bhattad et al. (2023a) I-LoRA

Figure 17: Qualitative results of normals extracted from StyleGAN by Bhattad et al. (2023a) and Ours.

Image s=0.2 s=0.5 s=0.7 s=1.0

Figure 18: We observe applying SDEdit method on the SDv1-5 model alone, without incorporating the
additional input image latent encoding, fails to produce satisfactorily aligned and high-quality scene intrinsics.
The reason for this might be the considerable domain shift that exists between RGB images and surface
normal maps, which results in severe artifacts when using SDEdit. The variable “s” represents the strength
of SDEdit.

instruction (Brooks et al., 2023). As shown in Fig. 16, these methods perform poorly for intrinsic image
extraction, demonstrating the effectiveness of our I-LoRA approach in extracting scene intrinsics.

We also provide a comparison with Bhattad et al. (2023a) in Tab. 5 and Fig. 17. This comparison is for the
same 500 randomly generated images. I-LoRA outperforms Bhattad et al. (2023a) significantly.

In addition, we show that directly applying SDEdit (Meng et al., 2021) will also fail to extract reasonable
image intrinsics. We take the model from the SDv1-5 column in Fig.13 of the main paper and apply SDEdit.
In Fig. 18, we show directly applying SDEdit results in severe artifacts, regardless of strength.

C Hyper-parameters

In Table 6, we show the hyperparameters we use for each model.

D Generated Images Used for Quantitative Analysis

In Tab. 2 of the main paper, we report quantitative results on synthetic images. For Autoregressive models
and GANs, we first randomly sample 500 noises and use them to generate 500 RGB images. The same
500 noises will then be used to generate intrinsics with our learned LoRAs loaded. For Stable Diffusion
experiments (both single-step and multi-step), we use a single dataset with 1000 synthetic images with various
prompts.

The pseudo GT are obtained by applying SOTA off-the-shelf models on the RGB images.

20



Under review as submission to TMLR

Table 6: Hyper-parameters for each model. LR refers to the learning rate and BS refers to the batch size.
Please note that the number of steps required to reach convergence reported above is for normal/depth.
However, it is worth noting that albedo and shading tend to require significantly fewer steps to converge
(usually half of normal/depth). Additionally, I-LoRAaug (multi-step) and I-LoRA (single-step) are trained
on real-world DIODE dataset, while the other models are trained on synthetic images within a specific domain.
(Num. of params of VQGAN counts transformer + first stage models; Num. of params of I-LoRAaug and
I-LoRA counts VAE+UNet)

Model Dataset Resolution Rank LR BS LoRA Params Generator Params Convergence Steps
VQGAN FFHQ 256 8 1e-03 1 0.13M 873.9M ∼ 4000

StyleGAN-v2 FFHQ 256 8 1e-03 1 0.14M 24.8M ∼ 4000
StyleGAN-v2 LSUN Bedroom 256 8 1e-03 1 0.14M 24.8M ∼ 4000
StyleGAN-XL FFHQ 256 8 1e-03 1 0.19M 67.9M ∼ 4000
StyleGAN-XL ImageNet 256 8 1e-03 1 0.19M 67.9M ∼ 4000

I-LoRAaug (multi step) Open 512 8 1e-04 4 1.59M 943.2M ∼ 30000
I-LoRA (single step) Open 512 8 1e-04 4 1.59M 943.2M ∼ 15000

E Additional Qualitative Results

In Fig. 19, we present more results for I-LoRAaug and I-LoRA1-5aug . Fig. 20 shows extra results for
models trained on FFHQ dataset. More examples of scene intrinsics extracted from StyleGAN-v2 trained on
LSUN bedroom can be found in Fig. 21. In Fig. 22, we show results for Stable Diffusion I-LoRA (single-step)
on generated images. Shown in Fig. 23 are extra results for StyleGAN-XL trained on ImageNet.

F Results on 10242 synthetic images

Our multi-step I-LoRAaug models, although trained exclusively on 5122 images from the DIODE dataset,
demonstrate their robustness by successfully extracting intrinsic images from 10242 high-resolution synthetic
images generated by Stable Diffusion XL (Podell et al., 2023), as shown across Figures 24 to 33
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Real Pseudo GT DINOv2 I-LoRA1-5aug I-LoRAaug GT

Figure 19: Additional results after applying improved diffusion techniques with I-LoRAaug. I-LoRAaug
was found to significantly reduce color shift artifacts observed in I-LoRA1-5aug during the extraction of
detailed scene intrinsic results.

22



Under review as submission to TMLR

Surface Normals Depth Albedo Shading

V
Q

G
A

N
St

yl
eG

A
N

v2
St

yl
eG

A
N

X
L

Image OD-v2 (Kar
et al., 2022)

I-LoRA ZoeD (Bhat
et al., 2023)

I-LoRA PD (Bhattad &
Forsyth, 2022)

I-LoRA PD (Bhattad &
Forsyth, 2022)

I-LoRA

Figure 20: Additional results of scene intrinsics from different generators – VQGAN, StyleGAN-v2, and
StyleGAN-XL – trained on FFHQ dataset.
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Figure 21: Additional results of scene intrinsics extraction from Stylegan-v2 trained on LSUN bedroom
images.
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Figure 22: Additional results of scene intrinsics extraction from Stable Diffusion I-LoRA (single-step).
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Figure 23: Additional results for StyleGAN-XL trained on ImageNet. StyleGAN-XL’s inability to produce
image intrinsics may be due to its inability to create high-quality plausible images.
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Figure 24: Results of I-LoRAaug models applied on unseen 10242 synthetic images. Left: original image;
middle: ours; right: pseudo ground truth.
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Figure 25: Cont. results of I-LoRAaug models applied on unseen 10242 synthetic images. Left: original
image; middle: ours; right: pseudo ground truth.
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Figure 26: Cont. results of I-LoRAaug models applied on unseen 10242 synthetic images. Left: original
image; middle: ours; right: pseudo ground truth.
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Figure 27: Cont. results of I-LoRAaug models applied on unseen 10242 synthetic images. Left: original
image; middle: ours; right: pseudo ground truth.
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Figure 28: Cont. results of I-LoRAaug models applied on unseen 10242 synthetic images. Left: original
image; middle: ours; right: pseudo ground truth.
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Figure 29: Cont. results of I-LoRAaug models applied on unseen 10242 synthetic images. Left: original
image; middle: ours; right: pseudo ground truth.
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Figure 30: Cont. results of I-LoRAaug models applied on unseen 10242 synthetic images. Left: original
image; middle: ours; right: pseudo ground truth.

32



Under review as submission to TMLR

Figure 31: Cont. results of I-LoRAaug models applied on unseen 10242 synthetic images. Left: original
image; middle: ours; right: pseudo ground truth.
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Figure 32: Cont. results of I-LoRAaug models applied on unseen 10242 synthetic images. Left: original
image; middle: ours; right: pseudo ground truth.
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Figure 33: Cont. results of I-LoRAaug models applied on unseen 10242 synthetic images. Left: original
image; middle: ours; right: pseudo ground truth.
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