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ABSTRACT

The effectiveness of large language models (LLMs) is not only measured by their
ability to generate accurate outputs but also by their calibration—how well their
confidence scores reflect the probability of their outputs being correct. While
unsupervised pre-training has been shown to yield LLMs with well-calibrated
conditional probabilities, recent studies have shown that after fine-tuning with
reinforcement learning from human feedback (RLHF), the calibration of these
models degrades significantly. In this work, we introduce Adaptive Temperature
Scaling (ATS), a post-hoc calibration method that predicts a temperature scaling
parameter for each token prediction. The predicted temperature values adapt based
on token-level features and are fit over a standard supervised fine-tuning (SFT)
dataset. The adaptive nature of ATS addresses the varying degrees of calibration
shift that can occur after RLHF fine-tuning. ATS improves calibration by over 10-
50% across three downstream natural language evaluation benchmarks compared
to prior calibration methods and does not impede performance improvements from
RLHF.

1 INTRODUCTION

Large language models (LLMs) have become a cornerstone of modern artificial intelligence, offering
impressive capabilities in natural language processing tasks. However, the reliability of LLMs is
intertwined with their ability to generate confidence scores that accurately reflect the likelihood of
their outputs being correct. This calibration, aligning a model’s confidence with its accuracy, is
essential, especially when LLMs are deployed in real-world scenarios where decisions based on
incorrect outputs can have significant consequences.

While unsupervised pre-training methods have shown success in producing well-calibrated LLMs, a
challenge arises when these models undergo fine-tuning through reinforcement learning from human
feedback (RLHF). While RLHF fine-tuning is effective in enhancing model performance on specific
tasks and aligning outputs with human preferences, recent studies indicate a notable degradation in
the calibration of LLMs post-RLHF fine-tuning (Achiam et al., 2023; Tian et al., 2023; Kadavath
et al., 2022). This degradation compromises the model’s ability to provide reliable confidence scores,
an issue that becomes critical when these models are applied to tasks requiring high levels of trust
and accuracy. An important question arises: how can we maintain the performance gains achieved
through RLHF fine-tuning while ensuring that the model’s confidence scores remain reliable?

To address this challenge, our work introduces Adaptive Temperature Scaling (ATS), a post-hoc
calibration technique that predicts a temperature scaling parameter for each token prediction based on
a language model’s hidden features. Basic temperature scaling is a widely-used calibration method
that applies a single temperature parameter across all outputs of a model. This technique, while
effective in some contexts, assumes uniform calibration needs across all inputs, which is often not
the case for complex models like LLMs. ATS, in contrast, predicts a unique temperature scaling
parameter for each set of token predictions. This input-specific approach allows ATS to refine the
calibration process, addressing the varying degrees of calibration shift that can occur after RLHF fine-
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tuning. For instance, certain inputs or topics might be more susceptible to miscalibration post-RLHF,
and ATS can adaptively adjust the scaling for these instances more aggressively than for others where
the model’s confidence remains relatively well-aligned with its accuracy. Importantly, our approach
reduces the need for task-specific calibration, which may be difficult to achieve in many cases, given
the wide variety of downstream tasks that LLMs may be used for.

We conduct experiments on MMLU, TriviaQA, and TruthfulQA to evaluate the effectiveness of ATS
in improving the calibration of LLMs following RLHF fine-tuning. Our findings demonstrate that
ATS improves the calibration of post-RLHF LLMs by 10-50% on average, while having no effect on
model outputs.

2 RELATED WORK

Recent literature has extensively discussed the challenges of maintaining calibration in LLMs,
particularly highlighting the degradation in calibration post-RLHF (Lin et al., 2022; Park and Caragea,
2022; Kadavath et al., 2022; Xiao et al., 2022; Kuhn et al., 2023). The concept of verbalized
confidence has been explored as a way to counteract this degradation (Xiong et al., 2023; Tian
et al., 2023), and dialogue models have been shown to express uncertainty in a well-calibrated
manner (Mielke et al., 2022; Zhou et al., 2023). Unlike these approaches, we focus on recalibrating
the conditional probabilities of LLMs post-RLHF.

The calibration of neural networks has been a topic of significant interest, with foundational concepts
such as proper scoring rules (Gneiting et al., 2007) laying the groundwork. Model mismatch and
distribution shift often degrade calibration, common quantified with common metrics including
Expected Calibration Error (ECE) (Naeini et al., 2015) and Brier score (Brier, 1950). Modern neural
networks have been found to exhibit overconfidence (Guo et al., 2017; Thulasidasan et al., 2019; Wen
et al., 2020), especially in the context of image classification (Geirhos et al., 2018; Taori et al., 2020;
Wen et al., 2020; Hendrycks et al., 2021).

Various methods have been proposed for calibrating neural networks, including temperature scal-
ing (Guo et al., 2017), Platt scaling (Platt et al., 1999; Niculescu-Mizil and Caruana, 2005), label
smoothing (Müller et al., 2019), and more sophisticated approaches (Hendrycks et al., 2018; Katz-
Samuels et al., 2022; Choi et al., 2023; Jiang et al., 2023). While these methods offer strategies for
improving model calibration, our approach uniquely adapts the temperature scaling parameter for
each token prediction based on its hidden features, tailoring the method to the problem of language
modeling.

3 BACKGROUND AND PROBLEM SETTING

We consider access to a conversation SFT dataset of D = {(x, y)} with vocabulary V where x ∈ V lx ,
denotes the instruction, each with sequence length lx, and y ∈ V ly is the corresponding response
with sequence length ly. We wish to calibrate language model π(y|x). While we do not make
any assumptions about the training process of π, we find our calibration method is most useful for
language models following an RLHF process where token-level calibration is often significantly
degraded compared to base language models which are generally well calibrated Achiam et al. (2023).

For a given sample (x, y), we generate a set of unnormalized logits ẑ = π(x) ∈ Rlx+ly×|V | where
each ẑi defines the unnormalized logits for the i+ 1-th token and |V | is the vocabulary size. Prior
methods Guo et al. (2017); Platt et al. (1999) propose various scaling methods for calibrating models
by transforming logits. In matrix scaling, a calibration head is used to produce calibrated logits
q̂ = Wẑ + b where W, b are learnable parameters. In the case of language modeling where |V | is
large, learning a full transform matrix becomes computationally infeasible, so we compare to vector
scaling, where W is constrained to a diagonal matrix. Temperature scaling is the case when W
is constrained further to a scalar matrix and b to the zero-vector. To learn these parameters, these
methods minimize the cross-entropy over the SFT dataset calculated over response tokens.

4 ADAPTIVE TEMPERATURE SCALING

Architecture. Temperature scaling, while effective in classification settings, struggles to adapt
logits well in language modeling as the confidence scores that are most important (such as those
that contain actual answers or facts) account for only a small portion of natural language sequences.
Therefore, optimizing a single temperature parameter often results in post-RLHF language models
still being overconfident post scaling. Additionally, language model miscalibration largely varies
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Model Calibration MMLU TriviaQA TruthfulQA

Acc ECE BS Acc ECE BS Acc ECE BS
Llama-2-7b-Chat (Touvron et al., 2023) None 0.474 0.298 0.313 0.592 0.221 0.239 0.322 0.507 0.480

Temperature 0.474 0.270 0.295 0.592 0.187 0.224 0.322 0.492 0.463
Vector Scaling 0.474 0.324 0.333 0.592 0.211 0.234 0.322 0.499 0.471
ATS (Ours) 0.474 0.125 0.227 0.592 0.069 0.217 0.322 0.197 0.264

Qwen-7b-Chat (Bai et al., 2023) None 0.571 0.141 0.215 0.495 0.272 0.311 0.230 0.372 0.304
Temperature 0.571 0.093 0.215 0.495 0.269 0.308 0.230 0.313 0.262
Vector Scaling 0.571 0.144 0.218 0.495 0.252 0.308 0.230 0.369 0.302
ATS (Ours) 0.571 0.050 0.190 0.495 0.254 0.303 0.230 0.165 0.188

Table 1: Model Calibration Comparison. We find that ATS yields significant improvements over
other calibration methods for both LLama-2-7b-Chat and Qwen-7b-Chat.

loss ECE BS
no smoothing 0.226 0.269
full smoothing 0.149 0.236
selective 0.125 0.227

Table 2: Smoothing type. Se-
lective smoothing outperforms
cross-entropy (no smoothing)
and full smoothing (standard
label smoothing).

α ECE BS
0.1 0.197 0.254
0.2 0.172 0.243
0.3 0.151 0.236
0.4 0.134 0.231
0.5 0.125 0.227
0.6 0.113 0.224

Table 3: Loss weighting. A
high smooth loss weight is nec-
essary to correct for language
model overconfidence.

head ECE BS
linear 0.140 0.233
mlp 0.132 0.230
transformer 0.125 0.227

Table 4: Head architecture.
We use that using a Trans-
former head in the same
configuration as LLaMa-2-7b-
Chat performs best.

based on the type of token being predicted following RLHF. Matrix and vector scaling can in theory
perform adaptive confidence prediction by using logits as features; however, they are prone to
overfitting, as we find in Sec. 5.

To balance regularization with modeling capacity in our calibration head, we instead propose to use a
head architecture that predicts a singular temperature for every token prediction. For an input pair
(x, y), we first produce input-dependent features ĥ ∈ Rlx+ly,h using the language model π. We then
learn a calibration head to produce a temperature vector cθ(ĥ) = τ ∈ Rlx+ly . We exponentiate τ
to ensure positive values then transform logits to yield calibrated logits q̂ = ẑ ◦ eτ . In practice, we
find that directly using the logits ẑ as features can be inefficient (with a large vocabulary size) and
also less effective compared to hidden states. Therefore, we use the last hidden state of the language
model π as the features for predicting τ . With this architecture formulation we retain the ability to
predict confidences adaptively depending on the context, while also never changing the "ranking" of
predictions as each set of token logits are scaled by only a single value.

Loss function. To improve the process of calibration, we take inspiration from selective classi-
fication works (Choi et al., 2023) and use a loss function which adapts targets depending on the
correctness of the original language model. For a logit, label pair q̂ ∈ Rv, y ∈ V , and weighting
hyperparameter α ∈ [0, 1] we optimize the following loss function ℓ:

ℓ(q̂, y) =

{
−(1− α) log (σSM (q̂)y) argmax q̂ = y

− α
|V |

∑|V |
i=1 log(σSM (q̂))i argmax q̂ ̸= y

(1)

This loss function uses a uniform distribution as the target when the model is incorrect and a standard
one-hot cross-entropy when the model is correct.

5 EXPERIMENTS

In this section, we aim to evaluate our proposed method on multiple benchmarks to demonstrate its
effectiveness in improving calibration of LLMs fine-tuned with RLHF. We compare our method to
no calibration as well as existing temperature scaling methods. Additionally, we ablate the main
components of our method including the loss function, loss weighting, and head architecture.

Evaluation Setting. We evaluate using two 7B parameter post-RLHF models LLama-2-Chat-
7b Touvron et al. (2023) and Qwen-Chat-7b. As the calibration dataset, we use the Alpaca GPT-
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4 Peng et al. (2023) instruction tuning dataset, which contains a diverse set of instructions with high
quality answers. We then evaluate model calibration on three downstream tasks.

We perform multiple choice evaluation on the MMLU Hendrycks et al. (2020) by aggregating
statistics across the entire dataset. Specifically we concatenate the confidences and correctness labels
from all subjects, then calculate the calibration metrics. We also evaluate on two free response
datasets, TriviaQA Joshi et al. (2017) and TruthfulQA Lin et al. (2021).

Metrics. In multiple choice inference, we have a set of tokens ids O which represent the valid
options for a multiple choice answer, so the confidence scores are p = σSM (q̂lx,j∈O) where σSM

denotes the softmax function. To calculate confidences over a long sequence of response tokens for
an input x, we sample a generation ŷ of length lŷ from the original language model then concatenate
to the instruction to form ẑ and q̂ following calibration. Then, we calculate an average over transition
probabilities on the response tokens. We use the Expected Calibration Error (ECE) Guo et al. (2017)
and Brier score Brier (1950) to evaluate calibration. We also report accuracy but each method does
not significantly affect accuracy.

Baselines. We compare our method to the post-RLHF model without calibration, temperature scal-
ing, and vector scaling. We do not evaluate matrix scaling as the full matrix becomes computationally
infeasible for large vocabulary sizes.

5.1 RESULTS

We report the results of our method compared to the baselines in Table 1. Overall, we find that our
method improves calibration by 10-50% across the three benchmarks in terms of ECE and Brier Score
compared to the next best method for both LLama-2-7b-Chat and Qwen-7b-Chat. More specifically,
for Llama-7b-Chat, applying ATS achieved the lowest ECE and BS across all downstream benchmarks,
showing how adjusting the temperature scaling parameter for each token prediction can significantly
improve calibration. Qwen-7b-Chat also saw a significant improvement in calibration, although in
the case of TriviaQA, ATS actually makes Qwen-7b-Chat slightly underconfident compared to vector
scaling. Importantly, the calibration dataset used for training ATS, Alpaca GPT-4, is unrelated to
the downstream tasks evaluated on, which suggests that the method does not merely overfit to the
calibration data but rather captures underlying predictive uncertainty principles that are applicable
across various tasks.

5.2 ABLATION STUDIES

To analyze our method, we ablate the main components: loss objective, loss weight, and head
architecture, measuring calibration metrics on MMLU.

Loss objective. We compare different loss objectives, standard cross-entropy, cross-entropy with
label smoothing, and selective smoothing (ours) in Table 2. For label smoothing we performed a
sweep and found a smoothing value of 0.3 to be optimal. We find that selective smoothing outperforms
both the typical cross-entropy loss and label smoothing. One possible explanation for cross-entropy
and standard label smoothing being less effective is that learning adaptive temperature values with a
cross-entropy loss can actually cause the model to increase confidence when the model is incorrect.
In comparison, by using a uniform distribution target for incorrect predictions, this will never happen.

Loss weight. We perform a sweep of smooth loss weight in Table 3. While increasing the loss
weight to 0.6 (compared to 0.5) benefits MMLU calibration, in practice we found this higher loss
weight began to perform worse for TriviaQA, and we did not sweep higher values as the model begins
to become underconfident.

Head architecture. In Table 4, we ablate the choice of head architecture. We find that a causal
transformer layer identical to those used in the LLama-2-7b-chat model performs best. Given that the
inference cost of a single additional layer is relatively negligible, using a full transformer layer is
generally best for calibration performance as it can aggregate hidden state values from prior tokens
for the specific task of predicting calibration.
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6 LIMITATIONS

While ATS offers a significant improvement in model calibration without compromising post-RLHF
performance by adapting the temperature scaling parameter based on token-level features of each
input, limitations remain. In particular, ATS does not address semantic uncertainty or verbalized
confidence, and per-token log-probabilities may be unavailable in some RLHF-LMs. These limitations
underscore the need for ongoing research to refine calibration techniques and incorporate a more
nuanced understanding of semantic uncertainty to develop methods that allow models to express
confidence in a manner that aligns with natural language.
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With Calibration

Without Calibration

Figure 1: Calibration Visualization. We visualize confidence calibration samples, comparing
token-wise confidences before and after calibration. The less confident a token is, the more red we
highlight the background. Additionally, we average the confidences of tokens to form full words in
order to create a more interpretable visualization.
A CONFIDENCE VISUALIZATIONS

In Figure 1, we compare confidence calibration on TruthfulQA dataset samples. We compare the
Llama-2-7b-chat model without any calibration to after calibration with our method. Our method
is able to cause the language model to become significantly less confident on tokens containing
inaccuracies.

B HYPERPARAMETERS

config value
optimizer AdamW
optimizer betas β1, β2=0.9, 0.999

weight decay 0.0
learning rate 5e− 5

learning rate schedule cosine decay
epochs 2
batch size 8

Table 5: Calibration training hyperparameters.

In Table 5 we list the main hyperparameters used for training calibration methods over Alpaca GPT-4.
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