Video Diffusion Models Excel at Tracking
Similar-Looking Objects Without Supervision

Chenshuang Zhang! Kang Zhang' Joon Son Chung!
In So Kweon' Junmo Kim'* Chengzhi Mao?*
KAIST!, Rutgers University?

Abstract

Distinguishing visually similar objects by their motion remains a critical challenge
in computer vision. Although supervised trackers show promise, contemporary
self-supervised trackers struggle when visual cues become ambiguous, limiting
their scalability and generalization without extensive labeled data. We find that pre-
trained video diffusion models inherently learn motion representations suitable for
tracking without task-specific training. This ability arises because their denoising
process isolates motion in early, high-noise stages, distinct from later appearance
refinement. Capitalizing on this discovery, our self-supervised tracker significantly
improves performance in distinguishing visually similar objects, an underexplored
failure point for existing methods. Our method achieves up to a 6-point improve-
ment over recent self-supervised approaches on established benchmarks and our
newly introduced tests focused on tracking visually similar items. Visualizations
confirm that these diffusion-derived motion representations enable robust tracking
of even identical objects across challenging viewpoint changes and deformations.

1 Introduction

Imagine tracking one of two similar-looking deer walking in the forest (Figure [T(a)). Humans
effortlessly resolve such visual ambiguities by relying on the distinct motion signatures of objects.
This ability to perceive coherent objects through their unique temporal dynamics, even when static
appearances are confounding, is fundamental. However, imbuing visual representations with this
innate understanding of temporal dynamics, especially for tracking similar-looking objects, remains a
significant challenge in computer vision [31} 23,10} 51]].

Many self-supervised methods [[7, 123} 45]], while good at learning intra-frame appearance features, fail
when confronted with visually similar targets (see DIFT [45]] in Figure c)). Their Achilles’ heel is
the neglect of inter-frame temporal relationships. Even approaches that incorporate temporal signals
through training objectives like cycle-consistency [32} 52| 24] often process frames independently at
inference using 2D image encoders. This inherently limits their ability to model the continuous motion
crucial for disambiguating similar objects in dynamic scenes (see CRW [24] and Spa-then-Temp [31]]
in Figure [T[c)).

In this paper, we show that representations for similar-looking object tracking do not need to be
learned from scratch with intricate tracking-specific objectives. Instead, they can be repurposed
within the internal workings of pre-trained video diffusion models [58, [2]. Unlike methods that view
video as a sequence of isolated images [20, 123} |36l], video diffusion models, by their very nature of
generating coherent and realistic video, must implicitly capture the complex interplay of inter-frame
dynamics. We find that the denoising process, particularly as it reconstructs motion from highly
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Figure 1: Video label propagation on similar-looking objects. State-of-the-art self-supervised
trackers, such as DIFT [45]], CRW [24] and Spa-then-Temp [31], often struggle when multiple objects
look similar in a video. This failure is due to their exclusive reliance on appearance features. By
dissecting and repurposing pretrained video diffusion models, we construct a feature that captures
intra-frame motions in videos, allowing us to correctly track similar-looking objects, such as the deer
highlighted by the green box in (c). In this figure, the green and red masks represent segmentation
maps of different objects, while the blue, green, and red boxes highlight the ground truth regions,
correctly predicted regions, and incorrectly predicted regions, respectively.

noisy states, already encodes a rich, motion-aware representation through its feature activations—a
representation ripe for tracking without any explicit tracking supervision.

We introduce the Temporal Enhanced Diffusion tracking framework (TED), a simple yet remark-
ably effective approach that harnesses these latent diffusion features. TED synergizes the motion
intelligence distilled by video diffusion models with conventional appearance features, enabling
it to conquer the limitations of prior art [6} 23| |45] and robustly track visually indistinct objects

(Figure[T[c)).

Experimental results show that our TED method outperforms 17 popular self-supervised models,
achieving state-of-the-art performance in pixel-level object tracking. On the widely-used DAVIS-2017
benchmark [35]], our TED significantly outperforms recent self-supervised methods [23145,[36.31]] by
up to 6%. When evaluated on videos that include multiple similar-looking objects, our TED method
achieves even larger improvement by up to 10%. Visualizations confirm that our representations
encode differently for similar looking objects with different motion. Our approach also achieves
significant improvement in other challenging scenarios, such as appearance-identical objects, real-
world viewpoint changes, and object deformations.

2 Related Work

Learning video representations for temporal correspondence is crucial for visual tracking [46} 55} [31].
Due to limited annotations, recent studies have proposed various pretext tasks to learn representations
in a self-supervised manner. We discuss related work below.

Self-supervised representation learning from images. Prior studies learn appearance features in
video representations by training models on independent images [20} 16,23} 145]]. Some methods adopt
instance discrimination as a pretext task, such as MoCo [20] and SimCLR [6]. SFC [23]] improves
further by integrating image-level and pixel-level cues for representation learning. DIFT [45]
leverages knowledge from image diffusion models [40]. However, these methods only learn intra-
frame appearance features, which fail in tracking visually similar objects (Figure[T[c)).

Self-supervised representation learning from videos. Some methods introduce temporal signals to
model training, using two pretext tasks: cycle-consistency over time and frame reconstruction. Cycle-
consistency task tracks a patch backward and forward in time to align its start and end points [32, |52}
24, while frame reconstruction aims to reconstruct pixels from adjacent frames [47, 28, [27]]. Recent
studies integrate temporal and spatial cues for training, such as Spa-then-Temp [31] and SMTC [36].
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Figure 2: Our approach successfully tracks objects with identical appearances. We conduct a
controlled study, that we perform object label propagation on videos featuring two identical-looking
and independently moving balls, with frames and their ground truth labels shown in (a) and (b). State-
of-the-art methods [24, 31} 45]] fail to distinguish these two balls, leading to incorrect predictions (c).
In contrast, our approach accurately track both balls despite their identical appearance (d).

However, during inference, these models process frames independently using 2D image encoders,
neglecting temporal context. Therefore, they fail to track similar-looking objects as in Figure [I[c).

Video object segmentation. Supervised methods for video object segmentation [9} 57, 8] achieve
impressive results but rely on large-scale annotated datasets for model training. For example,
SAM?2 [38]] is trained on 50.9K videos with 35.5M masks. In contrast, our work addresses self-
supervised tracking: no segmentation labels are used. Furthermore, models like SAM2 [38] use
discriminative training objectives, whereas our work explores the inherent tracking capability of
generative models. We find that video diffusion models can effectively track visually similar objects
without any tracking-specific supervision, pointing to a promising direction for future trackers.

Video diffusion models. Diffusion models [21] have achieved great success in image generation [37}
43\ 134, 142]], such as Stable Diffusion [40] and ADM [14]. Video diffusion models further include
temporal blocks for frame consistency [3} 48], with pioneering work Sora [4], I2VGen-XL [58]], and
Stable Video Diffusion [2]]. Diffusion models have also been used in tasks like image classification [29]
12]], semantic segmentation [1} 160} 53] and pose estimation [22}16]]. In contrast to these studies, we
are the first to show that video diffusion models excel at tracking similar-looking objects without any
tracking-specific training. Our finding that video diffusion models learn motions at high-noise stages
also advances the understanding of video diffusion models.

Track by diffusion models. There has been recent interest in applying diffusion models to track-
ing [25,159,150]. Track4Gen [_25] tackles point tracking by training video diffusion models on labeled
point trajectories, whereas our work explores pretrained video diffusion models for object segmen-
tation without any tracking-specific training. Diff-Tracker [59] is built on image diffusion models
with additional motion encoders to learn temporal cues. By contrast, our work directly explores the
built-in motion of pretrained video diffusion models without extra modules. VidSeg [50] performs
instance-agnostic video semantic segmentation that cannot distinguish different objects in the same
category. It also requires maintaining and updating an additional KNN classifier to learn temporal
changes during tracking. By contrast, our approach can distinguish even similar-looking objects
without extra components.

3 Challenges for Tracking Visually Similar Objects

Task definition. We focus on video label propagation task, which aims to transfer ground truth labels
of the first frame (e.g., segmentation map) to subsequent frames [47]]. The key is training models to
obtain frame representation R, which learns pixel-level correspondence among frames [23} 136, 31].
Due to limited annotations, prior studies train models in a self-supervised manner [24, 31]], with
pretext tasks like instance discrimination [20} [7, 23]]. During inference, for each pixel in the current
frame, the label is predicted by aggregating labels of its most similar pixels from previous frames,
where the pixel similarity is computed using representation R (see Section [4.4]for details).

Challenges for tracking similar-looking objects. Label propagation for visually similar objects
demands capturing robust motion signals, as appearance cues can become ambiguous and misleading.
While prior studies excel at tracking objects using appearance features [23 36, 31], they often fail
when tracking multiple, similar-looking objects. We find this is due to their excessive dependence on
appearance—a shortcut effective for distinct objects but a point of failure when objects are visually
alike.
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Figure 3: Framework. Our work tracks objects via video label propagation, which transfers ground
truth label of the first frame to subsequent frames. As video diffusion models typically have a
maximum input length, we first divide the long video into overlapping video windows (see (a)). For
each window, we use video diffusion models to to extract frame representations that capture rich
inter-frame motion features(see (b)). Specifically, our method uses the 3D UNet backbone that can
processes the entire video sequence along the temporal axis. Finally, to predict the label for a query
pixel i in the target frame (R?), we follow prior studies to aggregate the labels of its most similar
pixels in previous frames (see (c); details in Section[d.4). We term our method Temporal Enhanced
Diffusion tracking framework (TED). Experiments demonstrate that our TED improves tracking
performance across diverse video scenarios, including those with similar-looking objects.

To illustrate this, we begin our investigation with a controlled toy experiment featuring two identical-
looking, independently moving balls (Figure [2(a)). Given the ground truth segmentation map of each
ball in the first frame (Figure [2(b), left), the task is to predict pixel-level labels of subsequent frames.
Since the balls are identical, motion is the only signals that the trackers can rely on to make the right
prediction. Figure[2|c) shows that state-of-the-art methods [45] 24, 31]] struggle with object identity,
leading to poor tracking. Moreover, we experiment on real-world videos with similar-looking objects.
As shown in Figure Ekc), state-of-the-art trackers [45] 24} 31] fail to distinguish similar-looking deer
when they swap positions. These findings highlight the difficulty of tracking multiple similar-looking
objects in video label propagation.

4 Temporal-Enhanced Diffusion for Tracking

In Section[3] we show that state-of-the-art methods fail to track visually similar objects, highlighting
the difficulty of self-supervised tracking when visual cues are ambiguous. To address this challenge,
we propose a new Temporal-Enhanced Diffusion tracking framework (TED). We show that video
representations for similar-objects tracking do not necessarily to be learned from scratch with tracking-
specific objectives. Our TED leverages the motion intelligence from a pre-trained video diffusion
model, enabling robust tracking of similar-looking objects.

In this section, we first introduce the tracking setup and video diffusion models. We then show
how we obtain motion-aware representations without any tracking-specific objectives, and how to
complement them with appearance features for further improvement. Finally, we show how these
representations yield tracking results by label propagation.

4.1 Preliminaries: Tracking Setup and Video Diffusion Models

We focus on video label propagation task [47] as defined in Section [3] Following prior work [27], we
aim to learn a frame representation, R, for each frame I; of a video, such that the similarity between
representations reflects the true correspondence of pixels across frames.

Our approach builds upon video diffusion models, which are often obtained by adding a temporal
dimension to image diffusion models, using 3D architectures to capture temporal context. Video
diffusion models are trained to generate realistic video sequences by learning to reverse a diffusion
process [211 39, 4]. This process involves adding Gaussian noise to a clean video X" at different
noise levels, indicated by step 7. The model, €y, is trained to predict the added noise at each step 7,
minimizing the following loss:

L =Ex e~n(0,1),r e — Ee(XTaT)“g )
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Here, o, is a noise schedule parameter, with larger 7 indicating higher noise levels. A'(0, 1) denotes
the Gaussian distribution. This training process forces the model to learn not only the visual content
of individual frames, but also the coherent motion that connects them. Given a noisy video X7, the
model obtains a cleaner X”~! by removing the predicted noises in X7, termed denoising process. In
this work, we study video diffusion models using the widely-used 3D UNet as ¢y, which is built by
inserting temporal layers, such as temporal attention and 3D convolution, into a 2D UNet [41]]. Our
work is also model-agnostic, which adapts to any pretrained video diffusion model that may not use a
3D UNet.

4.2 Space-time Learning for Motion-aware Representations

We begin by investigating the internal feature activations of video diffusion models. We find that
high noise levels during the denoising process encode a rich representation of motion, while low
noise levels primarily capture appearance information (see Figure []and Section[5.3)). This discovery
motivates us to a novel approach for object tracking. We leverage the internal feature activations (g)
at these high noise levels to extract robust motion cues.

Formally, given a video sequence X = {I1, Io,..., Iy}, we first add noise to obtain X" (following
Equation 2). Then, we perform a single forward pass through the UNet of video diffusion models
(UNet,) to obtain features from n, layer, with entire video X7 as input (Figure 3[b)):

R!,R?,...,RY = UNet, (X", n,) 3)

where 7 represents the noise level. Crucially, unlike prior methods that compute R! by independently
processing each frame (R' = F'(I;)) using 2D image encoders, our video diffusion model’s features
R',R?, ... RY incorporate temporal information through temporal attention and 3D convolutions.
Consequently, each R represents not only the appearance of frame I; , but also inter-frame motion
dynamics captured within the representation from high-noise inputs, enabling effective tracking.

Handling long videos: sliding window approach. Video diffusion models typically have a maximum
input length, L. To handle videos longer than that, inspired by temporal segment networks [49], we
adopt a sliding window method, as shown in Figure a). The video X = {I1, I3, ..., Iy} is divided
into multiple overlapping short video clips { X} } with window size L.

Xl - {Ila IQ7 e aIL}7
X2 = {11+L—overlap7 IZ+L—overlap7 sy IL+L—overlap}a (4)

where 0 < overlap < L. By integrating the temporal knowledge from the 3D UNet, for each frame
representation RY in the clip, it encodes the temporal motions from all frames in the current video
clip Xj. Overlapping frames further improve motion consistency among video clips.

Visualization of motion-aware representations. After obtaining representations from video diffu-
sion models (R,,,), we study if R,,, can differentiate similar-looking objects. We visualize both our
representations R, and representations from state-of-the-art methods [31},45]] in Figure 4] where
two similar-looking deer swapping positions over time. We perform principal component analysis
(PCA) [33] on two frames (denoted s and ) for each model (e.g., R?,, R, = PCA(R, || Rf,) for

our R,,,). In Figure |4} similar pixel colors indicate similar representations. Figure 4 shows that prior
methods [31} 45] capture similar features for different deer, indicated by similar colors. In contrast,
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Figure 5: Predictions for pixel-level object tracking. We evaluate TED on the video label prop-
agation task, comparing its predicted segmentation maps with those from state-of-the-art meth-
ods [31} 45]. Our TED consistently outperforms both methods [31} 45]] on DAVIS (Figure a-d)
and YouTube-Similar (Figure e-f) datasets, aligning with Table[I] Notably, our TED delivers more
accurate predictions in scenarios with complex deformations (a) and viewpoint changes (b), while
Spa-then-Temp [31] and DIFT [43] struggle with tracking completeness, e.g., the missing arm in (a).
Our TED also achieves superior tracking in multi-object scenarios, such as interacting objects (c-d)
and similar-looking objects (e-f). In contrast, Spa-then-Temp [31] and DIFT [45] have mislabeling
issues, such as incorrect labels for the gun in (d) and misaligned labels for sheep in the background
(f). These results show that our TED significantly improves tracking performance, highlighting the
superiority of our motion-aware representations in tracking. (Best viewed when zoomed in.)

our R,, learns clearly distinct features for each deer, shown as different color. These results highlight
the superiority of our method in capturing object motions, enabling tracking similar-looking objects.
Note that PCA is used only for visualization, and the original R,,, is used for tracking.

4.3 Motion Meets Appearance for Robust Tracking

While the motion-aware representations extracted from the video diffusion model (R,,) are pow-
erful, they are not the only source of useful information for tracking. Appearance cues remain
important, particularly for distinguishing objects that are not identical. Inspired by the Two-Stream
ConvNets [44]], we combine the orthogonal motion (R,,,) features from video diffusion models and
appearance (R, ) features from a pre-trained image diffusion model [43]:

~

R R
R = concat <)\~m,(1)\)~a> 5
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where || - || denotes L2 normalization, and A is a weighting factor (between 0 and 1) that controls the
relative importance of motion and appearance. Different from R.,,,, which learns inter-frame features
as defined in Equation[3] R, is obtained by feeding each frame independently into the 2D UNet;
of an image diffusion model. Specifically, for each frame I;, we compute its appearance feature as
Rfl = UNet;(I],n;), where I is computed by adding noise to Iy, and n; is the block index within
the image diffusion model for feature representation. We refer to this combined approach using frame
representation R for tracking as Temporal-Enhanced Diffusion tracking method (TED).



4.4 Tracking via Label Propagation

To perform tracking (i.e., label propagation), we follow the standard protocol used in previous
work [52} 124} 23]]. Given the ground truth labels in the first frame /7, we use a recurrent method to
propagate the labels to subsequent frames from I to I, based on frame representations (R ).

Figure c) shows how we predict the label for a query pixel 7 in the target frame (R?). Define the
first frame and the previous m frames as reference frames, we first compute the pairwise similarities
between pixel ¢ and pixels in the reference frames. In Figure [3(c), we show the case with one
reference frame, with representation termed R". Following prior studies [24} 23| [31]], we restrict
the similarity computation to a spatially local neighborhood S(7) around 4. This yields a similarity
matrix Ay, where each element Ay, (7, j) is the dot product of the representations of pixel 7 in R!
and pixel j in R” (with j € S§(7)). To identify the most similar pixels to ¢, we retain only the top-K
values from Ay, to form A}, setting all other values to zero. Finally, the label for pixel ¢ is predicted
by aggregating the labels from its most similar pixels in the reference frames using a weighted sum:
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The pixel-level labels y; is computed in the representation space and then interpolated to match the
size of video frames following [24} 23| [31]]. We show the pseudocode of our TED in Appendix [A]

4.5 Implementation Details

Motion-aware representations R,,,. Any pretrained video diffusion models can serve as our motion
feature backbone. We default to the widely-used I2VGen-XL [58] and also explore Stable Video
Diffusion [2]. Since I2VGen-XL supports up to 16 frames, longer videos are split into multiple
16-frame clips. We pass each clip through model’s 3D UNet and extract features from the third block
as R,,,. The diffusion step 7 for computing model input X is chosen empirically.

Appearance-aware representations R,. Our TED framework supports any frame representations
that learn appearance features. Different from R, that takes the entire video sequence as model
input (Section , we obtain R, for each frame by inputting the image independently to the image
encoder (i.e., R* = F(I;)). We default to image-diffusion model ADM [14] as image encoder,
extracting features from its eighth block as R,,. We also test Stable Diffusion [39].

Tracking via label propagation. Our TED method uses Ry, a fusion of R,, and R, to obtain
tracking results. We follow the setups of prior studies [24} 23| |45]] for label propagation, with
pseudocode and details in Appendix [A]and Appendix

S Experiments

5.1 Experimental Setups

Baselines. Our TED advances self-supervised tracking without any labeled training data. We evaluate
on video label propagation task, and compare against 17 state-of-the-art self-supervised methods.

Self-supervised representation learning from images. We evaluate 7 models that
learn appearance features by training on independent images. We consider instance-discrimination
methods, e.g., MoCo [20]. We also test SFC [23]], a strong baseline that integrates image-level and
pixel-level cues, and DIFT [45]], which leverages knowledge from image diffusion models [40].

Self-supervised representation learning from videos. We benchmark 10 models that
incorporate temporal cues to training through diverse pretext tasks. We evaluate on strong baselines
trained for frame reconstruction (e.g., UVC [32]), cycle consistency (e.g., CRW [24]), and video
contrastive learning (e.g., VES [55]]). We also include recent Spa-then-Temp [31] and SMTC [36].

Datasets. Our method uses pretrained diffusion models for tracking, without additional training. We
benchmark on following test sets, with video examples in Appendix [B.2] We follow prior studies
[24] 36, 131]] to report region similarity (7,,,) and contour accuracy (F,,) for evaluation.

Standard benchmark. We follow previous work [32} 27, 52| [24] |36/ 31]] and evaluate on the
widely-used DAVIS-2017 validation set [35]], which contains 30 videos (2023 frames, 59 objects).



Table 1: Results for pixel-level similar-looking object tracking task. Our TED advances self-
supervised tracking without any labeled data. We evaluate it on the video label propagation task
against 17 state-of-the-art self-supervised methods. *Temporal Train’ indicates whether the method
uses temporal signals during training. Colored numbers indicate the best results. Our TED achieves
significant improvements across all datasets. On the widely-used DAVIS benchmark [35]], our TED
outperforms recent methods by up to 6%. On Youtube-Similar, featuring real-world similar-looking
objects, our TED achieves an even larger gain of 10%. On Kubric-Similar, with two identical-
looking, independently moving balls, TED reaches a high 7, of 87.2%, while most methods stay
near 50%, equivalent to random guessing due to the objects’ identical sizes. These results highlight
the effectiveness of our TED in tracking similar-looking objects.

Temporal Method DAVIS Youtube-Similar Kubric-Similar
Train j&]:m(T) jm(T) -7:m(T) J&]:m<T) Jm(T) ]:m(T) j&fm(T) x7m(T) Fm(T)
InstDis [54] 66.4 63.9 68.9 - - - - - -
MoCo [20] 65.9 63.4 68.4 48.0 48.5 474 56.6 51.6 61.6
SimCLR [6] 66.9 64.4 69.4 37.5 36.9 38.1 55.6 50.3 60.9
X BYOL [19] 66.5 64.0 69.0 47.1 47.7 46.5 54.8 49.2 60.5
SimSiam [7] 67.2 64.8 68.8 47.4 47.9 47.0 58.4 52.6 64.1
SFC [23] 71.2 68.3 74.0 55.5 553 55.7 47.7 431 52.3
DIFT [45] 75.7 72.7 78.6 60.7 59.8 61.7 55.1 52.7 57.6
Colorization [47] 34.0 34.6 32.7 - - - - - -
TimeCycle [52] 48.7 46.4 50.0 39.8 413 38.2 50.6 44.0 57.2
CorrFlow [28] 50.3 48.4 52.2 39.6 40.0 39.3 32.6 27.0 38.3
UVC [32] 60.9 59.3 62.7 49.7 49.8 49.7 56.9 51.3 62.6
v VINCE [17] 65.2 62.5 67.8 44.9 454 443 54.1 48.5 59.7
MAST [27] 65.5 63.3 67.6 - - - - - -
CRW [24] 67.6 64.8 70.2 52.0 52.3 51.6 54.9 49.7 60.1
VFS [55] 68.9 66.5 71.3 57.3 57.1 57.5 442 38.5 49.9
SMTC [36] 73.0 69.4 76.6 57.5 57.2 579 68.6 64.7 72.5
Spa-then-Temp [31] 74.1 71.1 77.1 59.6 59.2 60.1 489 44.0 53.8
v TED (Ours) 77.6 74.4 80.8 66.0 65.1 67.0 90.2 87.2 93.1

Real-world similar-looking benchmark. We introduce Youtube-Similar, including 28 videos
featuring similar-looking objects from Youtube-VOS [56], totally 839 frames and 69 objects.

Controlled identical-object benchmark. Inreal-world videos, visually similar objects can
still differ due to factors like gestures. To eliminate these variations, we introduce Kubric-Similar,
including 30 videos (480 frames, 60 objects) in which two identical-looking balls move independently.
The dataset is generated by Kubric simulator [18]], with random ball colors, sizes, and motions.

5.2 Experimental Results

Quantitative results. We compare our TED method with 17 self-supervised methods in Table|I} Our
TED achieves the state-of-the-art tracking performance on all datasets. On the standard DAVIS
dataset, our TED significantly outperforms recent methods by up to 6%, such as SFC [5] by 6.4%,
SMTC [36]] by 4.6%, Spa-then-Temp [31] by 3.5% and DIFT [45]] by 1.9%. By introducing motion-
aware features from video diffusion models, our TED achieves an even greater improvement when
tracking similar-looking objects on Youtube-Similar, such as Spa-then-Temp [31] by 6.4% and
DIFT [45] by 5.3%. On Kubric-Similar that includes identical objects, many methods achieve a J,,
around 50%, no better than random guessing due to identical sizes of two balls. By contrast, our
TED achieves a high J;, of 87.2%. These improvements highlight the effectiveness of our method in
object tracking, even for challenging settings with multiple similar-looking objects.

Visualizations. Figure [5|compares our tracking results with state-of-the-art methods on the DAVIS
dataset (a-d) and YouTube-Similar (e-f). Our TED approach significantly outperforms prior methods,
aligning with Table[T} Our TED effectively handles complex deformations (Figure[5{a)) and viewpoint
changes (Figure [5(b)), while Spa-then-Temp [31] and DIFT [45]] struggle with elements like the
human arm (Figure[5(a)). Our TED also excels in multi-object scenarios, such as interacting objects
(Figure [5|c-d)) and similar-looking objects (Figure 5(e-f)). By contrast, Spa-then-Temp [31]] and
DIFT [45] often confuse different objects, leading to incorrect tracking results. For example, in
Figure[5(d), Spa-then-Temp mislabels a gun as a human and DIFT shows significant contour errors.
In Figure [5(f), both Spa-then-Temp and DIFT mistakenly assign the target label to a background
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Figure 6: Tracking results under different denoising steps. We evaluate tracking performance
using model inputs X7 at various denoising steps 7, where larger 7 indicates more noise (see (b)).
The performance of appearance features R, degrade significantly as 7 increases, while our motion
feature R,,, maintains high tracking accuracy even with a large 7. Notably, R,,, peaks at 7=600 on
Youtube-Similar and 7=900 on Kubric-Similar, where appearance cues are almost available. These
results reveal that video diffusion models can learn object motions from highly noisy inputs, enabling
effective, motion-aware tracking.

sheep. These results demonstrate that our TED significantly outperforms prior methods across various
scenarios, highlighting the superiority of motion-aware features in our work.

5.3 Analysis and Ablation Studies

The impact of diffusion features from different noisy levels on motion-based tracking. We
evaluate tracking performance using model inputs X" at various denoising steps 7 (see Equation 2]
and Equation [3)), as shown in Figure[6] We will show that video diffusion models capture object
motions even at early denoising steps when the input X7 is highly noisy.

Figure[6{a) shows that the tracking performance of appearance feature R,, drops significantly with
larger 7 (e.g., 7 > 600). This is because X" is heavily corrupted at high noise levels, as shown
in Figure [6[b), thus appearance features are almost unavailable. In contrast, our motion feature
R, achieves high tracking results at high noise levels. Interestingly, R,, even achieves its best
performance (marked by a star in the figure) at 7=600 on Youtube-Similar and 7=900 on Kubric-
Similar, when R, almost fails. While motion features are crucial for identifying similar-looking
objects, appearance features provide fine-grained details for accurate segmentation. This explains why
our fused representation R ; outperforms motion-only features R, in real-world data, highlighting
the benefit of jointly leveraging motion and appearance cues for tracking.

An interesting question is: how do video diffusion 90

. . . . . . —8— DAVIS
models learn object motions with highly noisy in- —&— Youtube-Similar
put X7? With loss defined in Equation [I] diffusion 80 1 —e— Kubric-similar
models are trained to reconstruct clean input from its
noisy counterparts. To achieve this goal, they solve
different tasks at different noise levels [11]. When 60 1
X7 is highly corrupted at high noise levels, video
diffusion models are trained to solve the hard task
that learns coarse-grained signals in the video, such
as motion (e.g., changes of object positions among
frames). Therefore, its representation R,,, encodes Figure 7: Fusion weight (\). Our method
rich motion information that enables effective track- integrates the advantages of motion and ap-
ing of similar-looking objects. When input X7 is less pearance features. For dataset where visual
noisy, diffusion model is trained to denoise appear- clues are ambiguous, such as Kubric, more
ance details, where motion features are also learned video diffusion features are important in im-
but may not be so prioritized, leading to performance proving the accuracy.
decrease at low noise levels. Our analysis and results provide new insights into both tracking and
video diffusion models.

00R, 02 04 06 08 10R,
Fusion weight (A)



The effect of coefficients for combining motion and appearance. Figure[7]shows tracking accuracy
with varying fusion weight X (see Equation [3)), where A=1 gives Ry = R,,, while A=0 gives Ry
= R,. On Kubric-Similar with visually identical balls, motion features solely are sufficient for
successful tracking. Our results align with this expectation by achieving the best result with A=1.0.
On real-world DAVIS and Youtube-Similar, our R ; performs best with a moderate A value around
0.5. These results show that our R effectively integrates the advantages of motion and appearance

features in complex scenarios, outperforming the case of using either R,,, or R, alone.

The effect of layers for feature representation. We
extract representations from internal layers of video
and image diffusion models for tracking, with block
indices denoted as n, and n; as in Section[d Our
framework is agnostic to specific layers. Motion
and appearance features can be taken from different
layers, and the optimal layers for the two backbones
do not need to be the same. Following [45], we use
the decoder representations from UNet. We report
the tracking results using R,,, alone from different
decoder blocks in Table 2l Table D] shows that the
medium block (block 3) yields the best performance

The impact of overlapping frames on tracking.
Motion features are crucial for successful tracking
of similar-looking objects. Figure [§]shows the track-
ing accuracy on Youtube-Similar versus overlapping
frames (I) among video clips. Compared to the
non-overlapping case (I=0), introducing overlapping
frames (/>0) achieves higher tracking accuracy due
to improved motion consistency among video clips.
At the same time, a small [ (e.g., [=2) is sufficient for
good performance since tracking accuracy improves
marginally with higher values of I. These results
highlight the importance of accurate inter-frame mo-
tions in frame representations when tracking similar-
looking objects.

The effect of diffusion models. We evaluate our
TED using representations from different diffusion
models on DAVIS dataset, as shown in Table[3] Our
TED achieves the best tracking results using motion

Table 2: Block indexes. Motion represen-
tation R, achieves the best tracking results
when extracted from the third block of pre-
trained I12VGen-XL [58]].

1 24.8 28.2 21.4
2 47.6 52.7 42.5
3 66.3 63.4 69.1
4 31.5 272 35.8

among all blocks on the DAVIS dataset.

65.5 1
65.3

E650

64.3

6 8 10 12 14

Overlapping frames(/)
Figure 8: Overlapping frames among video
clips (I). A small [ (e.g., [=2) is sufficient for
boosting tracking accuracy, highlighting the
importance of using multiple input frames in
capturing motion clue for our method.

Table 3: Pretrained diffusion models.. Our
TED achieves the best tracking results using
representations from 12VGen-XL [58] and
ADM [14].

features from [2VGen-XL [58]] and appearance fea-

tures from ADM [14], which are used by defaultin =~ Rm Ra TJ&EFu(1)  In(t)  Fu(h)

this work. SVD [2] SD [39] 71.5 689  74.1
SVD [2] ADM [14] 76.6 736 7197

Computation cost analysis. Our method has  [2VGen[58] SD [39] L7 69.0 745
12VGen [58] ADM [I4] 77.6 744 808

20% more computation time than generative model
method DIFT [45] on DAVIS videos and 89% than the popular self-supervised discriminative model
method SFC [23]]. For memory, our method uses 64% more than DIFT and 705% more than SFC.
See more details in Appendix [B.3).

6 Conclusion

We demonstrate that video diffusion models excel at tracking similar-looking objects without any task-
specific training. We show that pre-trained video diffusion models possess an inherent, previously
unrecognized ability to encode motion information at high noise levels. Rather than designing
complex architectures or training objectives for tracking, we simply extract this readily available
motion representation, achieving state-of-the-art tracking performance. Our approach achieves
significant improvement over prior methods in diverse scenarios, such as challenging viewpoint
changes and deformations. Our work opens new avenues for leveraging the latent capabilities of
diffusion models beyond generation.
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A Pseudocode of Our Temporal Enhanced Diffusion Tracking Method (TED)

We provide the pseudocode of our Temporal Enhanced Diffusion tracking method (TED) in Algo-
rithm[I] For clarity, we denote the process of obtaining noisy input X" for video diffusion model in
Equation [2] of Section[d.T]as the function AddNoiseVD. We also term the similar process for image
diffusion models that adds noise to image inputs as AddNoiselD.

B Experimental Setups and Results

B.1 Tracking Setups for Label Propagation

We follow the experimental setups of prior studies [23] for video label propagation, as
summarized in Table 4

Table 4: Experimental setups of TED for video label propagation.

Dataset Video diffusion Image diffusion Fusion Softmax Propagation k for
Model Timestep Block Model Timestep Block weight temp radius top-k
DAVIS 12VGen-XL 300 3 ADM 51 8 0.4 0.2 15 10
Youtube-Similar  12VGen-XL 600 3 ADM 51 8 0.6 0.1 15 10
Kubric-Similar ~ 12VGen-XL 900 3 ADM 51 8 1.0 0.1 15 10

B.2 Datasets

Our method applies pretrained diffusion models for tracking, without additional training. We
introduce the test sets in Section[5.1]and show video examples from each dataset in Figure[9]

e o 14 g 1205 Figure 9: Video examples from test sets. Follow-

; ing prior studies [36, 311 43]], we evaluate on

e the standard DAVIS-2017 benchmark [35] (first

column). To evaluate tracking on visually simi-

lar objects, we introduce Youtube-Similar (second

° column), a real-world test set with similar-looking

° objects, and Kubric-Similar (third column), a con-

trolled set with identical objects.

To ensure the quality of Youtube-Similar, three graduate students were hired to manually select videos
from Youtube-VOS according to the following rubrics. Only the videos that all annotators find
qualified are included in the final YouTube-Similar dataset. The first rubric is object similarity. To
create a dataset with similar-looking objects, we first select videos that contain at least two objects
belonging to the same category from YouTube-VOS. The second rubric is video filtering. We exclude
static videos from the pool obtained in the first stage. In such videos, spatial appearance features can
serve as a shortcut for tracking, which may influence our evaluation of the motion features learned in
model representations.

B.3 Computational Cost Analysis

We compare computation cost with prior methods in Table[5] tested on a single A100 GPU using
DAVIS videos. Our full model achieves the highest accuracy (77.6%) using a time of 682 ms per
frame, compared to DIFT (75.7%, 566 ms) and SFC (71.2%, 360 ms).

For each video, a technique to boost accuracy in our full method is averaging representations computed
from multiple noisy inputs. We also provide an efficient variant by removing this averaging step,
which runs at 521 ms and achieves 77.2% accuracy, still significantly outperforming prior methods.
Our efficient version achieves a tradeoff between tracking accuracy and efficiency.

Our work is the first to show that video diffusion models can track similar-looking objects without
tracking-specific training. Our finding that motion features are learned at high-noise stages also
provides new insight into video diffusion models. Additionally, our method is compatible with
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Algorithm 1: Temporal Enhanced Diffusion Tracking (TED)

Input: Video frames I, Io, ..., I; Ground-truth label Y; for I7; Video diffusion model UNet,;
Image diffusion model UNet;; Denoising steps: 7, (video diffusion) and 7; (image
diffusion); Block index for features: n,, (video diffusion) and n; (image diffusion);
Fusion weight A.

Qutput: Label predictions Y5, Ys, ..., Yy for frames Io, ..., Iy.

1 Initialize a queue @ < () for storing representations and labels of reference frames;

2 Let L be the maximum input length for UNet, and [ be the number of overlapping frames
between video clips;

3 Divide the entire long video to ClipNumber = | (N — L)/(L —1)| + 1 video clips using
sliding window approach.

4 for & = 0 to ClipNumber — 1 do

5 Define current video clip X = {I14r(n—1), > Lr+k(z—1) }:

6 Step 1: Compute Frame Representations ‘

7 (a) Motion-aware R, : Compute R,,, in one forward pass of UNet,:

8 RLFED L REFFETDZ UNet, (AddNoise VD (X, 7 ), 10):

9 (b) Appearance-aware R,: Compute R, in multiple forward pass of UNet;:
10 For each frame I; € X}, compute R! = UNet; (AddNoiseID(I;, 7;), n;);
11 (c) Fused R : For each frame I; € X}, compute fused representation:

t _ R}, _ R,
R = concat (A e (1 A) re )

12 ‘ Step 2: Predict Tracking Labels ‘

13 if £ = 0 then
14 L Resize label Y7 to match the size of Ry, termed as as y;. Add (R}, y1) to Q;

15 for each frame I; € X;, do

16 if (RY,y:) is already in Q then

17 L continue;

18 for each query pixel v in R} do

19 for each pixel j from each reference frame R,. € @) do

20 if j locates in the spatial neighborhood of pixel i (S(i)) then

21 L Compute similarity score Ay, (i) = DotProduct(R (i), R’} (5)) ;

22 Identify the most similar pixels to ¢ by retaining the top-K values in Ay, and setting
others as zero, obtaining A}, ;

23 Predict the label of pixel i by: y: (i) = >_,.c0 2 jes) Atr(4:.9) yr(4)

24 Add (R}, y:) to Q;

25 if Size(Q) equals the maximum allowed reference frames then

26 L remove the oldest entry from Q);

27 | Interpolate y; to the original frame size to obtain Y;;

28 return Yo, Ys, ..., Yy,

Table 5: Computation cost analysis. We report the tracking accuracy (7 &.Fy,) and computation
cost per frame on DAVIS. Our full method achieves the highest accuracy, while our efficient version
achieves a tradeoff between tracking accuracy and efficiency.

Method Accuracy Time (ms) Memory (GB)
SFC [23] 71.2 360 1.9
DIFT [45] 75.7 566 9.3
Ours (Efficient) 77.2 521 11.8
Ours (Full) 77.6 682 15.3
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acceleration techniques such as FlashAttention [[13] and quantization [30] for further speedup. We
leave further efficiency optimization for future work.

B.4 Results on More Tasks and Datasets

We conduct experiments for human pose tracking on JHMDB dataset [26] and human part tracking
on VIP dataset [61]], as shown in Table [6] We also evaluate our method on YouTube-VOS [56] and
MOSE [[13] for video object segmentation, as shown in Table[7} Experimental results show that our
method consistently improves tracking accuracy across diverse datasets and tracking tasks.

Table 6: Results on JHMDB for human pose tracking and VIP dataset for human part tracking.

Dataset JHMDB VIP
PCK@0.1(1) PCK@0.2(1) mloU (1)
SFC [23] 61.9 83.0 384
Spa-then-temp [31] 66.4 84.4 41.0
DIFT [45] 63.4 84.3 43.7
TED (Ours) 68.3 85.8 4.2

Table 7: Results on YouTube-VOS and MOSE datasets for video object segmentation.

YouTube-VOS MOSE
TJE&Fu(1) TIn() Falt) TEFu() In(t) Fulh)
DIFT [45] 70.5 638.2 72.7 34.5 28.9 40.1
TED (Ours) 71.1 68.9 73.4 35.6 30.1 41.1

C Discussions

Limitations and future work. Although our approach achieves significant tracking improvement
across various scenarios. it comes with certain limitations. As discussed in Section [5.3]and Ap-
pendix [B.3] using video and image diffusion models for tracking increases computational cost
compared to previous methods. However, our work aim to show that video diffusion models can ef-
fectively track similar objects without tracking-specific training, suggesting a new direction for future
trackers. Our finding that motions are learned at high-noise stages also advances the understanding
of video diffusion models. One promising research direction is distilling motion intelligence from
video diffusion models into smaller models for more efficient tracking. We leave further efficiency
improvements for future work.

Broader impacts. Our work leverages the motion intelligence from video diffusion models and
achieves the state-of-the-art tracking performance without task-specific supervision, reducing reliance
on costly labeled data. This greatly benefit various applications, such as robotics and autonomous
driving. Since our method leverages pretrained diffusion models for tracking, its performance may
reflect biases present in those models, such as the underrepresentation of certain video types. We
believe that mitigating bias in diffusion models is a promising research direction. We hope our work
encourages further studies in this field, which benefit not only generative tasks but also perception
tasks such as tracking.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our work finds that video diffusion models excel at tracking similar-looking
objects without task-specific training. Building on this insight, we propose a self-supervised
tracking method, Temporal Enhanced Diffusion (TED), which significantly improves track-
ing performance across diverse scenarios. Our abstract and introduction reflect the paper’s
contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in Appendix [C]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: This work does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our work is reproducible, and we introduce all the information needed to re-
produce the main experimental results in Section @] Section[5.1] Appendix [A]l Appendix [B.T]

and Appendix

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will release the code and data.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We introduce experimental setups and details in Section [5.1} Appendix [A]l
Appendix [B.T] and Appendix [B.2}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our work uses pre-trained models without additional training. During tracking,
our work averages video representations computed by a batch of noisy inputs for each video,
achieving stable results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

20


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We introduce the computation cost of proposed method in Section [5.3]and
Appendix
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our work conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader impacts in Appendix [C|
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not include data or models that appear to have a high risk for
misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use public pretrained models and datasets. We also properly cite and
introduce them Section .5 and Section 511

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce new datasets, Kubric-Similar and Youtube-Similar, in Section[5.1]
and Appendix

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not include crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This work does not involve LLMs for the core method development.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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