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Abstract— A relevant problem in many areas of science is to
determine the structure of a network by observing its nodes. A
desirable property of any network reconstruction techniques
is consistency, namely the convergence of the reconstructed
network to the actual structure when the time horizon of the
observations goes to infinity. Unfortunately, when feedthrough
components are present in the network, multiple structures
could give rise to the same observations. Hence, in these
situations, the best theoretical result that can be achieved is
the determination of all the possible structures compatible
with what is being observed. There are some results offering
such theoretical guarantees, but these methods rely on a large
number of statistical tests making their sample complexity rela-
tively large. This article proposes the adoption of reconstruction
techniques where, given the observed data, each structure is
evaluated according to a score representing the likelihood that
such structure is the actual one. Such a technique is proven to
have the same consistency properties of state-of-the-art methods
based on statistical tests, while numerical experiments show it
to have a lower sample complexity.

I. INTRODUCTION

In many areas of science, it is often of interest to recover
a graphical representation that highlights the connections
among different components in a distributed system just by
using observational data. Indeed, reconstructing the unknown
graph underlying the interconnection of a distributed dy-
namic system with multiple components is an active field
of research with applications in medicine [1], economics[2]
and climate studies [3]. Given some a priori knowledge about
the system, several techniques can provide guarantees of a
correct reconstruction of the underlying graph [4], [5], [6],
[7], [8], [9]. For example, the work in [5] can reconstruct
the underlying graph of a network under the assumption that
it has a tree structure with exactly one root. The work in [8]
relaxes these assumptions by considering trees with multiple
roots while the work in [7] considers directed acyclic graphs.
When all the transfer functions in the network are strictly
proper there are approaches that allow a reconstruction of
the graph even in presence of loops such as the work in
[4], [6], [10] or approaches based on variations of Granger
causality or directed information [11], [12]. The work in
[9] generalizes these techniques since it considers networks
with generic topologies (including the presence of feedback
loops) making only the mild assumption that every feedback
loop includes at least a strictly causal transfer function. A
fundamental limitation for all these techniques is given by the
fact that, in presence of feedthrough terms, the orientation
of all edges might not always be recovered since multiple
structures compatible with the data might exist. For example,
[5] does not orient the recovered edges for the underlying
tree, at all. The results in [9] recover the orientations for
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the subset of the edges that correspond to strictly causal
transfer functions. Even though the orientation of all edges
is not always recovered, these works typically guarantee the
convergence to the correct undirected topology when the
length of the observed time series is sufficiently large. How-
ever, these techniques have limited applications in scenarios
where the length of the time series tends to be relatively
short (e.g. DNA microarray data). Another drawback of these
techniques that limits their applicability to real case scenarios
is the fact that the detection of each individual edge typically
requires to perform a relatively large number of statistical
tests resulting in an overall high computational complexity.

Thus, it is desirable to devise better performing techniques
requiring at the same time lower sample complexity and
lower computational complexity. In the area of graphical
models, there is a specific class of methods for selecting
a graph that fits i.i.d. observational data with the goal of
keeping the sample complexity as low as possible. This class
of methods is often referred to as score-and-search methods
[13]. For any given graph, score-and-search methods assign
a score describing how well the graph fits the observed data
and then implement a search to determine the graph with the
maximum score. The fundamental contribution of this article
is to borrow core ideas behind score-and-search methods and
apply them to the reconstruction of networks of dynamic
systems. In particular, we show that a specific score function,
often referred to as Bayesian Information Criterion (BIC),
provides some form of consistency properties in the sense
that its maximization, for sufficiently long time series, results
in the determination of all possible structures compatible
with the data. A related approach for network discovery using
the BIC score was recently applied in [10] but only in the
context of networks with strictly proper dynamics where the
problem of network reconstruction is always well-posed.

The article outline is as follows. In Section II we describe
Linear Dynamic influence Models (LDIMs), which are the
class of models considered in this article to obtain the main
theoretical results. In Section III, we formulate the network
reconstruction problem observing that exact recovery of the
structure of an LDIM from data is an ill-posed question, in
the general case. Section IV provides preliminary notions
from the theory graphical models that are then exploited
in Section V to obtain consistency guarantees about the
topology reconstruction of an LDIM. Section VI illustrates
the consistency results via some numerical experiments.

II. GENERATIVE CLASS OF MODELS

The focus of this article is the reconstruction of the
connectivity structure of network models of a specific form
which have been extensively studied in the system identifi-
cation literature [14], [4], [5], [15].
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Definition 1 (Linear Dynamic Influence Models (LDIMs)).
Linear Dynamic Influence Models (LDIMs) are a class of
networks representing input/output relations among stochas-
tic processes. An LDIM is defined as a pair pHpzq, eq where

‚ e “ pe1, e2, ..., enqT is a vector of n rationally related
random scalar processes that are mutually independent
(namely the cross-power spectral density Φeiej “ 0 for
i ‰ j and Φeipzq is a rational function for i “ 1, ...n.)

‚ Hpzq is an n ˆ n transfer matrix with rational entries.
The output processes tyjunj“1 of the LDIM are defined as
yj “ ej `

řn
i“1 HjipzqYi or y “ e ` Hpzqy where y “

py1, ..., ynqT . Furthermore
‚ If the entries of Hpzq are all proper, we say that the

LDIM is proper.
‚ If the power spectral density matrix of e is a constant,

namely Φepzq “ Φe, we say that the LDIM has static
excitation.

‚ If the system has no algebraic loops, we say that the
LDIM is causally well-posed.

The structure of the connections among the output pro-
cesses tyjunj“1 of an LDIM pHpzq, eq can be suggestively
represented using a graph where each output process is a
vertex and the set of edges represents the sparsity structure
of the matrix Hpzq. We assume the reader is already familiar
with standard notions of graph theory and we just briefly
introduce our notation. We denote a directed graph G as a
pair pV,Eq where V is the set of vertices and E Ď V ˆV is
the set of directed edges. We represent a directed edge from
yi P V to yj P V as pyi, yjq, or yi Ñ yj , or yj Ð yi. If
yi Ñ yj P E, we say that yj is a child of yi or, equivalently,
that yi is a parent of yj using the notation paGyj

to denote the
set of all parent of yj . We say that two edges are adjacent if
they share a vertex. If a path goes from one node to itself, the
path is a cycle. Furthermore, if all the edges have the same
orientation, we say that the path is directed. We note yj a
descendant of yi if there exists a directed path yi Ñ ... Ñ yj .

The skeleton of a directed graph is the undirected graph
obtained by removing all the orientations from the edges in
the graph.

In this article, in order to represent the structure of an
LDIM conveying information about the presence of potential
feedthrough terms, we use a generalized notion of graphs,
known as multi-typed graphs [9], [16]. Multi-typed graphs
are an extension of standard graphs where there are edges
of different types connecting the nodes. Specifically in the
representation of an LDIM connectivity, we are going to
use two different types of edges to describe the presence
of feedthroughs and/or the presence of strictly causal com-
ponents in each of the entries Hjipzq.

Definition 2 (Multi-arrowed graph representation of LDIMs
[9]). Let G “ pH, eq be an LDIM with output processes
y1, ..., yn. Consider a multi-typed graph G “ pV,E1, E2q

with the two sets of edges E1, E2 Ď V ˆ V . We say that
G is a graphical representation for LDIM G if the following
two properties hold

‚ Hjipzq has a non-zero direct feedthrough component
implies pyi, yjq P E1 and

‚ Hjipzq has a non-zero strictly proper component implies
pyi, yjq P E2.
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Fig. 1: (a) and (b) respectively depict multi-arrowed graph
representation and hybrid representation of an LDIM. The
transfer functions associated with each edge are the compo-
nents of Hpzq in the underlying LDIM.

If the above statements hold in the opposite direction as well,
we say that G is the perfect graph representation for G. We
refer to E1 as the direct feedthrough edges and represent its
elements with a single-headed edge. We refer to E2 as the
strictly proper component edges and represent its elements
with a double-headed edge. If the standard graph pV,E1q

which contains only the single headed edges has no loops,
we say that the graphical representation G is recursive.

Since multi-typed graphs are a generalization of standard
graphs, typical notions defined for standard graphs, such as
parents, children, paths, cycles, extend naturally to multi-
typed graphs by considering a standard graph with the same
nodes and having as edges the union of all edge sets.

In some situations, it might be more convenient to work
with an equally informative representation of an LDIM in
terms of a standard graph which we refer to as hybrid graph.

Definition 3 (Hybrid Representation of LDIMs). Let G “

pV,E1, E2q be a graphical representation of an LDIM G with
output processes V :“ ty1, ..., ynu. Let S´ :“ ty´

1 , ..., y
´
n u

a set of nodes representing the “past” of each process in
V , namely the time series y´

i “ yi|
t´1
´8, 1 ď i ď n. Let

S` :“ ty1ptq, ..., ynptqu be a set of nodes representing the
“present” of each process in V . Let V h :“ S´ Y S` be
the nodes for the hybrid graph Gh. The set of edges Eh is
defined as follows:

‚ pyiptq, yjptqq P Eh if and only if pyi, yjq P E1,
‚ py´

i , yjptqq P Eh if and only if pyi, yjq P E2.

In Figure 1(b) we have the hybrid graph associated to the
graphical representation of Figure 1(a). Also, by looking at
the transfer functions on the edges of both figures, it is easy
to observe that they are both graphical representation of one
unique LDIM.

It is straightforward from Definition 3 that given any
graphical representation of an LDIM, we can immediately
obtain an associated hybrid graph and viceversa.

III. PROBLEM STATEMENT

A relevant problem in many areas of science is to de-
termine the structure of a network by observing its nodes.
In the case of an LDIM, we could formalize this problem
as the reconstruction of its perfect graphical representation
from the observation of its output processes. Unfortunately,
such a problem is in general ill-posed. Indeed, as Example
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1 in Section IV will show, multiple LDIMs with different
perfect graphical representations can generate exactly the
same output processes. Thus, the best we can achieve is to
determine the structures of all LDIMs which are compati-
ble with the observed data. This consideration justifies the
following problem statement.
Problem. Determine a method that, from the observation of
the output processes generated by an LDIM G˚, consistently
recovers the perfect graphical representations of all LDIMs
G compatible with the observed data.

IV. BASIC NOTIONS FROM THE THEORY OF GRAPHICAL
MODELS

In order to tackle the problem formulated in Section III, we
need to recall some definitions from the theory of graphical
models [13]. In the theory of graphical models, a special role
is played by graph substructures often referred to as colliders.

Definition 4 (Colliders, Shielded and unshielded colliders).
Given a graph G, we say that a node yk is a collider between
yi and yj if yi Ñ yk and yj Ñ yk are edges in the graph.
If either yi Ñ yj or yj Ñ yi are edges in the graph, the
collider is shielded. Otherwise we say it is unshielded.

A set of vertices Z can activate a path according to the
following definition.

Definition 5 (Active path). Let yπ0 , ..., yπℓ
be a path π in

graph G. Let Z be a subset of variables in G such that
yπ0

, yπℓ
R Z. The path yπ0

, ..., yπℓ
is active given Z if

‚ In the path π for every collider yπi of the form yπi´1 Ñ

yπi
Ð yπi`1

, yπi
or one of its descendants are in Z,

and
‚ all other nodes in the path are not Z.

The following notion of d-separation in a graph is central
in the theory of graphical models.

Definition 6 (d-separation). Let Z be a subset of nodes in
G. We say that yi and yj are d-separated given Z if there’s
no active path between yi and yj given Z. We write this
relation as dsepGpyi, yj |Zq.

Observe that the concept of d-separation is purely a
“graphical notion” since it can be defined just from the
graphical representation of an LDIM. Instead “probabilistic
notions” of separation can be defined among stochastic
processes in the following way.

Definition 7 (Feedthrough Wiener Separation). Let G be
an LDIM with output processes Y “ ty1, ..., ynu. Con-
sider yi, yj and Z such that yi, yj R Z. Define Z̄ :“
Y zpZ Y ti, juq. Compute the causal Wiener filter esti-
mating yjptq from yi|

t
´8, yj |

t´1
´8, yZ |t´8 and yZ̄ |

t´1
´8. Let

Wjipzq be the component associated with yi. If Wjipzq

has no feedthrough component, we say that yi and yj are
feedthrough-Wiener-separated by Z. We write such a relation
as cwsep`pyi, yj |Zq

Definition 8 (Strictly proper Wiener Separation). Let G be
an LDIM with output processes Y “ ty1, ..., ynu. Consider
yi, yj and Z such that yj R Z. Define Z̄ :“ Y zpZ Y tjuqq.
Compute the causal Wiener filter estimating yjptq from
yj |

t´1
´8, yZ |t´8 and yZ̄ |

t´1
´8. Let Wjipzq be the component as-

sociated with yi. If Wjipzq has no strictly proper component,

we say that yi and yj are strictly proper-Wiener-separated
by Z. We write such a relation as cwsep´pyi, yj |Zq

Observe that Definition 7 and Definition 8 describe re-
lations among stochastic processes in an LDIM that only
depend on their statistical/probabilistic properties which can
be tested just from data. A fundamental property of LDIMs is
that d-separation in the hybrid graph implies causal-Wiener-
separation [17].

Theorem 1. Let G be an LDIM with static excitations,
graphical representation given by G and associated hybrid
graph Gh. Then

dsepGhpyiptq, yjptq|Zq ùñ cwsep`pyi, yj |Zq

dsepGhpy´
i , yjptq|Zq ùñ cwsep´pyi, yj |Zq.

Proof: The proof is an immediate consequence of the
application of Theorem 24 in [17] to the hybrid graph Gh.

If in an LDIM the previous notions of Wiener-separation
implies d-separation in its hybrid graph Gh, then we say that
the LDIM is faithful to Gh (or equivalently to the graphical
representation G associated to Gh).

Definition 9 (Faithfulness). Let G be an LDIM with static
excitations, graphical representation given by G and asso-
ciated hybrid graph Gh. We say that G is faithful to Gh (or
equivalently to the graphical representation associated with
G) if

cwsep`pyi, yj |Zq ùñ dsepGhpyiptq, yjptq|Zq

cwsep´pyi, yj |Zq ùñ dsepGhpy´
i , yjptq|Zq.

As recently shown in [18], for a given structure G, if
we consider a parameterization of all LDIMs with perfect
graphical representation G, we find that only a zero measure
set of the parameter space leads to an unfaithful LDIM.
Hence, faithfulness can be considered as a non-restrictive
technical assumption that simply prevents the occurrence of
pathological cases. In the set of all hybrid graphs, we can
introduce a notion of equivalence.

Definition 10 (Class of Equivalent Hybrid Graphs). We say
that hybrid graph Gh

1 is equivalent to hybrid graph Gh
2

if and only if they have the same skeleton and the same
unshielded colliders. All Gh

i s that are equivalent belong to
an equivalence class of hybrid graphs.

Since the hybrid graph and its associate graphical repre-
sentation can be obtained from each other, we can extend the
definition of equivalence to graphical representations. Thus,
two multi-arrowed graphical representation are equivalent if
and only if the hybrid graphs associated with them belong
to a class of equivalent hybrid graphs. Figure 2 illustrates
hybrid graphical representations of three different LDIMs
G1, G2, and G3.

The following is a minimalistic example that shows that
the problem of recovering the graphical representation of an
LDIM from observational data is an ill-posed problem.

Example 1. Consider the three LDIMs Ga “ pHapzq, eaq,
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Fig. 2: Perfect hybrid graphical representations of three
LDIMs mentioned in Example 1. The graphs posses the
same skeleton and unshielded collider structures. Thus, they
belong to the a class of equivalent hybrid graphs.

Gb “ pHbpzq, ebq, and Gc “ pHcpzq, ecq defined as follows.

Hapzq “

»

—

–

0 0 0
?
2
2 0 0

0
?
2
2 0

fi

ffi

fl

,Φea “

»

–

1 0 0

0 1
2 0

0 0 1
2

fi

fl

Hbpzq “

»

—

–

0
?
2
2 0

0 0 0

0
?
2
2 0

fi

ffi

fl

,Φeb “

»

–

1
2 0 0
0 1 0

0 0 1
2

fi

fl

Hcpzq “

»

–

0
?
2
2 0

0 0
?
2
2

0 0 0

fi

fl ,Φec “

»

–

1
2 0 0

0 1
2 0

0 0 1

fi

fl

Their hybrid representations are illustrated in Figure 2.
Observe that the three output signals ya, yb and yc have

all identical statistics. Indeed their power spectral densities
are

Φya “ Φyb
“ Φyc “

»

—

–

1
?
2
2

1
2?

2
2 1

?
2
2

1
2

?
2
2 1

fi

ffi

fl

Example 1 proves that we can not differentiate between
the three structures of Figure 2 based on observational data
only since the observed signals could have been generated
by an LDIM with any of those three representations.

V. MAIN RESULTS

In the area of graphical models, there are two large classes
of methods to infer the structure of a network from data.
A first approach is given by constrained based algorithms.
Constrained based algorithms use statistical tests to check
conditional independence relations between different nodes
and on the basis of the results of such tests they determine
the presence or absence of individual edges in the graph.
The main drawback of such methods is that they rely on
a large number of statistical tests and, hence, tend to have
a high sample complexity [19]. Another approach is given
by score-and-search methods [20]. This second class of
methods tries to learn the structure of the underlying graph
by maximizing a score function that represents how well the
graph fits the observed data. While these methods do not rely
on a large number of statistical tests, they need to perform
an optimization over the space of all graphs which has a
combinatorial complexity in the number of nodes. Thus,
these methods offer a lower sample complexity at the price

of a higher computational complexity. The scientific litera-
ture about structure reconstruction for networks of dynamic
systems has mostly focused on constrained based algorithms
[9] [12] and there is a smaller number of results employing
score-and-search methods [5][10].

In this paper, we provide consistency results that hold
in general scenarios which include the presence of direct
feedthroughs and feedback loops. Specifically, we are going
to prove two results

‚ Given an LDIM G, faithful to its perfect graphical
representation G˚, it is possible to define a likelihood-
based score that is maximized by G˚ when the time
horizon of the observations goes to infinity.

‚ All graphs maximizing such a likelihood-based score
are equivalent to G˚ according to Definition 10.

As an immediate consequence of these two results, we obtain
that we can consistently recover the equivalence class of the
perfect graphical representation of an LDIM.

A. Score definition

The choice of the score is key to achieve a good perfor-
mance in learning the structure of an LDIM. One intuitive
choice is the likelihood function. However, the main problem
of the likelihood function is that it tends to overfit the model
by selecting denser graphs: indeed, for example, even if we
have two independent nodes, the sample correlation between
the two associated data streams would never be exactly zero
and the likelihood score would be maximized by assuming a
connection between the two nodes. To obviate this effect,
a common option is to consider the standard likelihood
score and modify it by introducing a term penalizing the
number of edges in the evaluated graph. In particular, in
order to introduce a penalty term we define the dimension
of a graphical representation G.

Definition 11 (Dimension of graphical representation of an
LDIM). Given an LDIM with graphical representation G “

pV,E1, E2q, we define the dimension of G as dimpGq :“
|E1| ` |E2| where |E1| and |E2| are the cardinalities of the
edge sets E1 and E2.

A score that is structured as the standard likelihood with a
penalty term is the Bayesian Information Criteria (BIC)[21],
which we can adapt to our scenario with dimpGq as a penalty
term in the following way

BICpD, Gq “
1

M
2 lnpℓGpD; θ̂qq ´

lnpMq

M
dimpGq, (1)

where, D are the observed time series data over a time
horizon of length M , G is the representation of an LDIM
G with transfer matrix Hpzq parametrized by θ, ℓGpD; θ̂q is
the maximum likelihood function given by

ℓGpD; θ̂q :“ max
θ

ℓGpD; θq,

and θ̂ is the maximum likelihood estimation of θ.
In a way analogous to graphical models, it can be shown

that maximum log-likelihood function can be written in the
following way for LDIMs [22][13].

ln
´

ℓGpD; θ̂q

¯

“ M
n

ÿ

i“1

Ipyi;PaGpyiqq ` M
n

ÿ

i“1

Hpyiq (2)
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Where I is the mutual information rate and H is the entropy
rate of stochastic processes.

The following theorem proves that when the time horizon
of the observations M goes to infinity, the perfect graphical
representation of the LDIM maximizes the BIC score.

Theorem 2. Given an LDIM with static excitations and
faithful to its perfect graphical representation G˚, the BIC
score is consistently maximized by G˚ (that is, when the
time horizon of the observed time series goes to infinity, G˚

maximizes the BIC score).

Proof: The proof follows identical steps as in [13]
(Chapter 18, Theorem 18.2), but it is applied to LDIMs
which have stochastic processes as nodes instead of graphical
models where nodes represent simple random variables.
Thus, instead of using mutual information, our proof uses
mutual information rate. Let G˚ be the perfect graphical
representation of the LDIM G˚ “ pH˚pzq, e˚q with output
y˚. Let G be the graph of the LDIM G with output y for
which we are computing the BIC score. Let also θ be the set
of parameters parametrizing the transfer function Hpzq and
the noise variance matrix of e. In the expression of likelihood
of Equation 2 the term M

řn
i“1 Hpy˚

i q is the same for any
choice of the graph G and hence it can be neglected in the
following arguments. If no choice of θ is such that Φypzq

matches Φy˚ pzq, then we have
n

ÿ

i“1

Ipy˚
i ;PaG˚ py˚

i qq ą

n
ÿ

i“1

Ipy˚
i ;PaGpy˚

i qq.

Let us define

∆ :“
n

ÿ

i“1

Ipy˚
i ;PaG˚ py˚

i qq ´

n
ÿ

i“1

Ipy˚
i ;PaGpy˚

i qq ą 0.

Then, for M Ñ 8, we have

BICpG˚q ´ BICpGq »

“ 2∆ ´
lnpMq

M
pDimpG˚q ´ DimpGqq .

Hence, for M Ñ 8, the score associated with G˚ is
larger than the score associated with G. If instead, the
parameterization of the graph G can reproduce the PSD
matrix Φypzq, then we have

n
ÿ

i“1

Ipy˚
i ;PaG˚ py˚

i qq “

n
ÿ

i“1

Ipy˚
i ;PaGpy˚

i qq.

In this case, for M Ñ 8, we get

BICpG˚q ´ BICpGq » ´
lnpMq

M
pDimpG˚q ´ DimpGqq .

Thus, the higher score is associated with the graph with
smaller dimension. Since G˚ is the perfect graphical rep-
resentation and G˚ is faithful to G˚, necessarily dimpG˚q

is smaller or equal to dimpGq.
Instead, the following theorem complements Theorem 2

by showing that, when the time horizon of the observations
M goes to infinity, the only graphs maximizing the BIC score
are the ones equivalent to G˚.

Theorem 3. Given the LDIM G which is faithful to its perfect
graphical representation G˚, for M Ñ 8, all graphs that

maximize the BIC score are equivalent to G˚.

Proof: First we want to show that if G is equivalent to
G˚, then the BIC scores are the same for M Ñ 8. Let G
be equivalent to G˚ and let Gh and G˚h be their associated
hybrid graphs. Consider all the conditional independence
relations in Gh˚ and let us denote them as I˚. Consider
the ordering σ given by Gh and the set of all relations I˚.
By applying Pearl-Verma theorem [23] to σ and I˚, we get
the graph Gh1

. Now, consider all the d-separation relations in
Gh and let us denote them as I . Trivially, by applying Pearl-
Verma theorem to σ and I , we get Gh. Since Gh and G˚h

are equivalent and G is faithful to G˚, then I˚ and I are the
same. Hence Gh and Gh1

are the same, as well. Furthermore,
there is a set of parameters for an LDIM G with graphical
representation G that has the same outputs of G˚. Thus, the
graph G has the same score as G˚ for M Ñ 8.

Now, we want to show that if G is not equivalent to G˚,
then its BIC score is strictly less than the score of G˚. As
shown in the proof of Theorem 2, if there no set of transfer
functions such that an LDIM G with graphical representation
G has the same power spectral densities as the outputs of G˚,
then the BIC score of G is strictly less than the score of G˚,
for M Ñ 8. If G is not equivalent to G˚, but there are
transfer functions such that the outputs of G have the same
power spectral densities as in G˚, then all the d-separation
relations in G are also d-separation relations in G˚ because
of faithfulness. Hence all edges in the skeleton of G˚ are
in G (see Theorem 1 in [24]). However, since G is not
equivalent to G˚, there is at least a d-separation relation
in G˚ that is not in G, implying that there is an edge in G
that is not in G˚. Hence dimpGq ą dimpG˚q given a lower
score for G than for G˚.

VI. NUMERICAL EXPERIMENTS

We used the benchmark model described in [9] to test
the consistency properties of the score-and-search method
proposed in this article. The simulated LDIM was defined
by

Hpzq “

»

—

—

–

0.4 1
z 0 0 a14

1
z

0 0.2 1
z 0 a24

a31p1 ` 1
z q a32

1
z 0 0

a41 0 a43 0

fi

ffi

ffi

fl

Φe “

»

—

–

0.4 0 0 0
0 0.3 0 0
0 0 0.4 0
0 0 0 0.3

fi

ffi

fl

with graphical representation depicted in Figure 3. It can
be verified that such a graphical representation is the only
element in its equivalence class. Thus, in this specific case,
the problem of topology reconstruction is well-posed. We
have simulated the network for different time horizons (M
from 50 to 10, 000) and for each time horizon we have run
2, 500 simulations. Then we have used the data and applied
a maximum likelihood approach to estimate the network
parameters. We defined graph error rate as the estimated
probability that a detected edge is actually in the graphical
representation plus the estimated probability that an unde-
tected edge is not in the graphical representation and divided
the result by 2. Thus, the graph error rate is a score in the in-
terval r0, 1s where 0 represents a flawless reconstruction. The
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Fig. 3: Graphical representation of the benchmark model of
Section VI.
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Fig. 4: (a) visualizes the graph error rate as a function
of the data quantity M . The error rate converges to 0 for
M Ñ 8. (b) compares the error rate of determining the
skeleton for the score-and-search method of this article and
the techniques in [9] and [12].

results are reported on Figure 4(a) validating the consistency
results of Theorem 2. Using a similar simulation scheme,
we wanted to compare the performance of our method with
the techniques in [9] and [12]. Those techniques do not
reconstruct the multi-typed graphical representation that we
introduced in this article. In order to have a meaningful
comparison, we decided to only evaluate the performance
of all the methods considering only the skeleton of the
reconstructed topology, since this is information common to
all the techniques. As alluded in the introduction, the main
reason to adopt a score-and-search method is to improve the
performance when the observation horizon is short. Thus,
we only considered time series of length M in the range
r50, 500s. We defined the skeleton error rate as the estimated
probability that a detected edge is actually in the skeleton of
the graphical representation plus the estimated probability
that an undetected edge is not in skeleton of the graphical
representation and divided the result by 2. The results are
reported on Figure 4(b). We notice that for shorter time
series, the score-and-search method is the best performing,
however once the time series become long enough, the
constrained based method of [9] performs better.

VII. CONCLUSION

The main contribution of this paper is extending score-
and-search methods from the area of graphical models to the
reconstruction of the underlying graph of dynamic networks.
We adapted the Bayesian Information Criterion (BIC) in
order to consistently reconstruct the topology of a class
of linear networks. In the general case, it is shown that
multiple topologies are compatible with the data. In such
a case all such topologies are proven to maximize the

BIC score recovering a well-defined class of equivalence
of graphical representations. Numerical experiments validate
the theoretical results and indicate that this method is more
accurate than other methodologies when the data is scarce.
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