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Abstract

We investigate the multiclass classification prob-
lem where the features are event sequences. More
precisely, the data are assumed to be generated by
a mixture of simple linear Hawkes processes. In
this new setting, the classes are discriminated by
various triggering kernels. A challenge is then to
build an efficient classification procedure. We de-
rive the optimal Bayes rule and provide a two-step
estimation procedure of the Bayes classifier. In the
first step, the weights of the mixture are estimated;
in the second step, an empirical risk minimization
procedure is performed to estimate the parameters
of the Hawkes processes. We establish the consis-
tency of the resulting procedure and derive rates of
convergence. Finally, the numerical properties of
the data-driven algorithm are illustrated through a
simulation study where the triggering kernels are
assumed to belong to the popular parametric expo-
nential family. It highlights the accuracy and the
robustness of the proposed algorithm. In particular,
even if the underlying kernels are misspecified, the
procedure exhibits good performance.

1 INTRODUCTION

A crucial challenge in multiclass learning is to provide al-
gorithms designed to handle temporal data. In the present
paper, we tackle the multiclass classification problem where
the features are time event sequences. More precisely, we
assume that the data come from a mixture of Hawkes pro-
cesses and we focus on the classification per trajectory (and
not per event).

In neuroscience, we can consider event sequences as
recorded spike trains on several neurons from different pop-
ulations (healthy or sick subjects, for instance). The goal is
then to predict the status (healthy or not) of a new subject

from the associated recording [Lambert et al., 2018].

Hawkes processes, originally introduced in [Hawkes, 1971],
are proposed to model tricky event sequences where the
past events influence the future events. Hawkes processes
arise in a wide variety of fields, ranging from neuroscience
to finance. In mathematical finance, see e.g. [Bacry et al.,
2015] for a complete review; in the social network literature,
see e.g. [Lukasik et al., 2016] and [Qu and Lemhadri, 2021].
In neuroscience, Hawkes processes have a statistical interest
for modeling neuron spike occurrences, see e.g. [Hansen
et al., 2015], [Ditlevsen and Löcherbach, 2017], [Foschi,
2020].

Seminal work for Hawkes process properties is [Brémaud
and Massoulié, 1996]. Furthermore, there are numerous
statistical methods of inference for Hawkes processes. For
instance, one can cite [Hansen et al., 2015], [Bacry and
Muzy, 2016] and more recently [Bacry et al., 2020], or in a
Bayesian framework, [Rasmussen, 2013]. Besides, [Favetto,
2019] focuses on parameter estimation for Hawkes pro-
cesses from repeated observations in the context of electric-
ity market modeling.

However, the aim of the paper is a multiclass classification
task and not the parameter inference. To the best of our
knowledge, except the paper of [Lukasik et al., 2016], there
is no work which deals with supervised classification for
Hawkes processes. In [Lukasik et al., 2016], the authors
propose to use multivariate Hawkes processes for classifying
sequences of temporal textual data, with an application to
rumours coming from Twitter datasets. They highlight that a
model based on Hawkes processes is a competitive approach
which takes into account the temporal dynamic of the data.
But, they do not provide any theoretical properties.

More recently, Dutta et al. [2020], Tondulkar et al. [2020],
Ram and Srijith [2018] focus on the question of time classi-
fication. Indeed, for classical Twitter example from PHEME
dataset, used to do rumor stance classification, the models
impose a label on each tweet (each time). The classification
setting, with temporal and textual data, is thus a bit different
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from our framework. Besides, as in [Lukasik et al., 2016],
the authors do not provide theoretical properties to support
their procedures.

In this work, we observe repeatedly jump times coming
from the mixture of Hawkes processes, on a fixed time
interval [0, T ]. The classes are characterized by different
triggering kernels. We first formally define the model and
provide the explicit form of the Bayes classifier in Section 2.
The expression of the Bayes classifier suggests to consider a
plug-in approach to estimate the optimal predictor. Section 3
is devoted to the definition of plug-in type classifier and the
study of its properties. We show how the misclassification
error, for any plug-in predictor is linked to the estimation
error of the process parameters. We propose in Section 4
a two-step procedure to build a plug-in type classifier. A
first step is dedicated to the estimation of the weights of
the mixture. In a second step the parameters of the process
are estimated through an empirical risk minimization proce-
dure by using similar ideas as in [Denis et al., 2020]. The
resulting algorithm benefits from the attractive properties of
the empirical risk minimizer: it is computationally efficient
and offers good theoretical properties. In particular, under
mild assumptions, we show that the proposed procedure per-
forms as well as the Bayes classifier. Section 5 illustrates the
performance and the robustness of the method in the case
where the triggering kernels are assumed to belong to the
parametric exponential family. Finally, a discussion which
highlights some directions for future works is proposed in
Section 6.

2 GENERAL FRAMEWORK

Section 2.1 introduces the considered model, some notation
and explains the objective of the paper. In Section 2.2, we
provide an explicit formula of the optimal predictor.

2.1 STATISTICAL SETTING

Let Y a random variable which takes its values in Y =
{1, . . . ,K}, withK ≥ 2, representing the label of the obser-
vations. The distribution of Y is denoted by p∗ = (p∗k)k∈Y
and is unknown. We assume that the observations come
from a mixture N of simple linear Hawkes processes ob-
served on the time interval [0, T ]. Precisely, conditionally
on Y , N is a simple linear Hawkes process. The number
of points that lie in [0, t] is denoted by Nt and the corre-
sponding counting process is (Nt)0≤t≤T . The jump times
of N are denoted T1, . . . , TNT

. The filtration (or history)
at time t− is denoted Ft− and contains all the necessary
information for generating the next point of N .

Conditional intensity The intensity of the process N at
time t ≥ 0, with respect to the filtration (Ft)t≥0, is defined

as

λ∗Y (t) := λ(µ∗,h∗Y )(t) := µ∗ +
∑
Ti<t

h∗Y (t− Ti), (1)

where the first term µ∗ > 0 is the baseline, or exogenous
intensity, and the second term is a weighted sum over past
events. For each class k ∈ Y , the function h∗k is the trig-
gering kernel which is nonnegative and supported on R+.
Besides, both parameters µ∗ and h∗ = (h∗1, . . . , h

∗
K) are

assumed to be unknown.

Note that the baseline intensity is assumed to be common to
all classes. This assumption is notwithstanding consistent
according to the neuronal experimental setting described
in Section 1. Indeed, if the spike trains are recorded on the
same type of neurons (e.g. neurons which play the same
role), it seems relevant to assume that the exogenous inten-
sity is homogeneous between the classes.

Objective Given a sequence TT = {T1, . . . , TNT
} of ob-

served jump times of N over the fixed interval [0, T ], the
goal is then to build a predictor, namely a classifier g, a
measurable function such that g(TT ) is a prediction of the
associated label Y . The performance of a classifier g is then
measured through its misclassification risk

R(g) := P (g(TT ) 6= Y ) .

In the following, we denote by G the set of classifiers.

2.2 BAYES RULE

The unknown minimizer ofR over G is the so-called Bayes
classifier, denoted by g∗, and is characterized by

g∗ (TT ) ∈ argmax
k∈Y

π∗k(TT ),

with π∗k (TT ) = P (Y = k|TT ). The following proposition
gives the expression of the conditional probabilities π∗k and
then provides a closed form of the Bayes classifier.

Proposition 2.1. Let T ≥ 0. For each k ∈ Y , we define,

F ∗k (TT ) = F (µ∗,h∗k)(TT ) (2)

:= −
∫ T

0

λ(µ∗,h∗k)(s) ds+
∑
Ti∈TT

log(λ(µ∗,h∗k)(Ti)).

Therefore, the sequence of conditional probabilities satisfies

π∗k (TT ) = φp
∗

k (F∗(TT )) P− a.s.,

where F∗ = (F ∗1 , . . . , F
∗
K) and φp

∗

k : (x1, . . . , xK) 7→
p∗kexk∑K
j=1 p

∗
je
xj

are softmax functions.



Note that conditionally on the event Y = k, F ∗k (TT ) is
the likelihood function of the sequence TT . Proposition 2.1
highlights the dependencies of the optimal Bayes classifier
w.r.t. the unknown parameters. In the following, for a given
classifier g ∈ G, we define its excess risk as

E (g) := R(g)−R(g∗).

3 PLUG-IN TYPE CLASSIFIER

We first introduce assumptions related to the model in Sec-
tion 3.1 and then define a set of classifiers which relies on the
plug-in principle in Section 3.2. Finally, the main properties
of the plug-in classifier are provided in Section 3.3.

3.1 ASSUMPTIONS

We first make the following assumptions on the triggering
kernels.

Assumption 3.1 (Stability condition). For each k ∈ Y ,
hk : R+ → R+ is bounded and satisfies

∫
hk(t) dt < 1.

Assumption 3.2. There exist 0 < µ0 < µ1 such that µ0 ≤
µ∗ ≤ µ1.

Assumption 3.3. There exists a positive constant p0 such
that min(p∗) > p0.

Assumption 3.1 guarantees that NT admits finite expo-
nential moments, that is, there exists a > 0 such that
E[exp(a|NT |)] <∞, see for instance [Roueff et al., 2016].
In particular the exponential and power-law kernels sat-
isfy this assumption (with additional assumptions on the
corresponding parameters). Assumption 3.2 is a technical
assumption and Assumption 3.3 ensures that all the compo-
nents of the mixture occur with non-zero probability.

Let us denote the following subset of probability weights

Pp0 := {p ∈ RK+ :

K∑
i=1

pi = 1, min(p) > p0}.

3.2 DEFINITIONS

In this section, we present the construction of the plug-in
type classifiers.

First we introduce a set H of nonnegative functions sup-
ported on R+. For a K-tuple h = (h1, . . . , hK) inHK , we
associate p a vector of probability weights and a baseline
intensity µ > 0. For each k ∈ Y , we then define

λk(t) = λ(µ,hk)(t) = µ+
∑
Ti<t

hk(t− Ti), t ∈ [0, T ].

Hence, the random functions (λk)k=1,...,K are approxima-
tions of the conditional intensities λ∗k defined by (1). Be-
sides, similarly with the definition (2) of F ∗k (TT ), we define

Fk(TT ) = F (µ,hk)(TT )

= −
∫ T

0

λk(s) ds+
∑
Ti∈TT

log(λk(Ti)).

We also consider

πkp,µ,h(.) := φpk (Fµ,h(.)), (3)

with the φpk ’s defined in the same manner of the φp
∗

k ’s
given in Proposition 2.1. Finally, we denote πp,µ,h(.) =(
πkp,µ,h(.)

)
k∈Y

and π := πp,µ,h.

A plug-in type classifier gπ is naturally defined as

gπ(TT ) = argmax
k∈Y

πk(TT ). (4)

3.3 PROPERTIES

In this section, we establish important properties of plug-in
type classifiers. For a vector of functions h ∈ HK , let us
denote the supremum norm

‖h‖∞,T = max
k∈Y

sup
t∈[0,T ]

|hk(t)|.

We introduce for a positive constant A the following set

HKA :=

{
h ∈ HK s.t. sup

h∈HK

‖h‖∞,T ≤ A
}

and the set of probabilities

Π =
{
πp,µ,h : p ∈ Pp0 , µ ∈ (µ0, µ1), h ∈ HKA

}
. (5)

The first result is a key step to obtain the consistency of the
classification procedure presented in Section 4.

Proposition 3.4. Let us consider π and π
′

two vectors func-
tions belonging to the set Π defined by (5) with respective pa-
rameters (p, µ,h), and (p

′
, µ
′
,h
′
). Grant Assumptions 3.1,

3.2, 3.3, the following holds

E
[∥∥∥π − π′∥∥∥

1

]
≤ C

(∣∣∣µ− µ′ ∣∣∣+
∥∥∥h− h

′
∥∥∥
∞,T

+
∥∥∥h− h

′
∥∥∥2

∞,T
+
∥∥∥p− p

′
∥∥∥

1

)
,

where C is a constant depending on K, T , h∗, µ0, µ1, p0

and A.

Proposition 3.4 provides a bound on L1-distance between
two elements of the set Π. It shows that this distance is
bounded by the distance between the corresponding parame-
ters of the associated models. From this result, for a plug-in
type classifier g, we can easily deduce a bound of its excess
risk.



Corollary 3.5. For all π = πp,µ,h ∈ Π, we have that

E (gπ) ≤ C
(
|µ− µ∗|+ ‖h− h∗‖∞,T

+ ‖h− h∗‖2∞,T + ‖p− p∗‖1
)
,

where C is a constant depending on K, T , h∗, µ0, µ1, p0

and A.

An important consequence of this result is that a plug-in type
classifier which relies on consistent estimators of p∗, µ∗ and
h∗ is then consistent w.r.t. misclassification risk.

4 CLASSIFICATION PROCEDURE

This section is devoted to the presentation and the study of
the proposed data-driven procedure that mimics the Bayes
classifier. Our estimation method is then presented in Sec-
tion 4.1 and theoretical guarantees of the procedure are
derived in Section 4.2.

4.1 ESTIMATION STRATEGY

Based on the results of Section 3, we propose an hybrid clas-
sification procedure which involves both plug-in and empiri-
cal risk minimization (E.R.M.) principles. To this end, we in-
troduce a learning sample Dn = {(T iT , Y i), i = 1, . . . , n},
which consists of n independent copies of (TT , Y ).

We propose a two-steps procedure. In a first step, we es-
timate the vector p∗ by its empirical counterpart p̂. The
second step relies on the empirical risk minimization over a
suitable set. In view of the results obtained in Section 3.3,
we introduce the following approximation of the set Π:

Π̂ =
{
πp̂,µ,h : p ∈ Pp0 , µ ∈ (µ0, µ1), h ∈ HKA

}
(6)

and the corresponding set of classifiers:

GΠ̂ = {gπ : π ∈ Π̂}.

Since g∗ is the minimizer of the misclassification risk, a nat-
ural estimator of g∗ would be the empirical risk minimizer
over the family GΠ̂

ĝ = argmin
g∈Π̂

1

n

n∑
i=1

1{g(T i
T )6=Y i}.

Nevertheless, as a solution of non convex minimization
problem, it is known that this estimator is computationally
intractable.

Convexification To avoid computational issues, it is then
natural to replace the classical 0-1 loss with a convex surro-
gate (see [Zhang, 2004]). Let us denote the scores functions
set:

F := {f = (f1, . . . , fK) : · → RK}.

As convex surrogate, we consider the square loss and then
define for a score function f , the following risk measure

R(f) := E

[
K∑
k=1

(
Zk − fk(TT )

)2]
,

with Zk = 21{Y=k} − 1.

The choice of the square loss as a convex surrogate is mo-
tivated by the fact that, if we define g(·) = argmax

k∈Y
fk(·),

then

E [R(g)−R(g∗)] ≤ 1√
2

(
E [R(f)−R(f∗)]

)1/2
, (7)

with f∗k(TT ) = 2π∗k(TT ) − 1 which satisfies f∗ ∈
argmin

f∈F
R(f). Hence, consistent procedure w.r.t. to the L2-

risk involves consistent classification procedure w.r.t. the
misclassification risk.

Resulting estimator As suggested by the form of the op-
timal score function f∗, we then consider the set of scores
functions

F̂ = {2π − 1 : π ∈ Π̂},

and then consider the empirical risk minimizer over F̂ :

f̂ ∈ argmin
f∈F̂

R̂(f), (8)

with

R̂(f) :=
1

n

n∑
i=1

K∑
k=1

(
Zik − f(T iT )

)2
. (9)

Finally, the resulting classifier ĝ is the plug-in type classifier
associated to f̂ defined as

ĝ = argmax
k∈Y

f̂k. (10)

Note that, in order to reduce the computational burden, we
have chosen to not introduce the estimation of the prob-
ability weights p∗ in the minimization problem given in
Equation (8). Nevertheless it remains a possible strategy.

In the next section, we establish rates of convergence of our
classification procedure.

4.2 RATES OF CONVERGENCE

The study of the statistical performance of ĝ defined by (10)
relies on the following assumption.

Assumption 4.1. Let ε > 0, we assume that there exists a
ε-netHε ⊂ HKA , w.r.t. sup-norm ‖ · ‖∞,T such that

log(Cε) ≤ C log
(
ε−d
)
,

where Cε is the number of elements ofHε, d ≥ 1 and C is
a positive constant which does not depend on ε.



Theorem 4.2. Grant Assumptions 3.1, 3.2 and 3.3 and As-
sumption 4.1. If h∗ ∈ HKA , the following holds

E [R(ĝ)−R(g∗)] ≤ C
(
d log(n)

n

)1/4

,

where C > 0 depends on K, T , h∗, µ0, µ1, p0 and A.

Theorem 4.2 establishes that, when n goes to infinity, the
proposed classification procedure is consistent provided that
h∗ belongs toHKA . If h∗ does not belong toHKA , a classical
additional bias term appears.

We also have to note that Theorem 4.2 applies for a broad
class of functionsH. In particular, Assumption 4.1 covers
the case where H is a bounded linear subspace of func-
tions. Let (ψj)j≥1 an orthonormal basis such that the basis
functions are uniformly bounded and then we consider for
θ0 > 0

H =

t 7→
 d∑
j=1

θjψj(t)


+

: ‖θ‖2 ≤ θ0

 ,

as Laguerre basis for example. Another important example
is the parametric exponential family

H = {t 7→ αβ exp(−βt), 0 < α < 1, 0 < β ≤ β0},

with β0 > 0. Finally, it is possible to obtain better rate of
convergence when the estimation of the probability weights
and the estimation of (µ∗,h∗) are performed on two dif-
ferent independent datasets, this is the purpose of the next
paragraph.

Alternative strategy Hereafter, we consider an alterna-
tive strategy. First, we split the dataset Dn into two inde-
pendent samples D1

n and D2
n. Fore sake of simplicity, we

assume that n is even and that the two datasets D1
n and

D2
n have same size n/2. Based on D1

n, we estimate p∗,
and based on D2

n we estimate f∗. The resulting classifier ĝ
satisfies the following theorem.

Theorem 4.3. Grant Assumptions 3.1, 3.2, 3.3 and 4.1. If
h∗ ∈ HKA , we have

E [R(ĝ)−R(g∗)] ≤ C
(
d log(n)

n

)1/2

,

with C > 0 a numerical constant.

Therefore, the classifier ĝ achieves parametric rate of con-
vergence up to a logarithmic term. Note that from practical
point of view, the splitting of the sample does not affect
the performance of the classifier ĝ. Therefore, we do not
consider this strategy in the numerical section.

4.3 COMMENTS

In this section we make comments about the proposed pro-
cedure.

Parameter µ Contrary to the parameter p0, the estima-
tion procedure requires the knowledge of µ0 and µ1. This
assumption is important to obtain the consistency property.
However, we shall show in Section 5 that the procedure has
good performance if we only assume that µ∗ > 0.

Estimation of the weights p∗ For the estimation of the
mixture weights, another approach is to include the estima-
tion of p∗ in the minimization procedure. In this case, the
rate of convergence of the classification procedure is the
same as the one provided in Theorem 4.3. However, we do
not consider this approach since it significantly increases
the computational cost of the procedure, especially if the
number of classes is large.

Other approach Another strategy is possible motivated
by Proposition 3.4. For example, assuming that the trigger-
ing kernels belong to the exponential kernel family, then
classical estimators of the parameters can be used. There-
fore, with these estimators we can compute a plug-in type
classifier. For this task, the methods implemented in the
tick library as Maximum Likelihood or Least-Squares
estimator can be used. In the next section we illustrate this
strategy with the Least-Squares estimator.

5 NUMERICAL EXPERIMENTS

In this section, we present numerical experiments to illus-
trate the performance of the procedure described in Sec-
tion 4.1 and refer to the resulting algorithm as ERM. We
focus on the case where the set H is the parametric expo-
nential family. Then our method is compared to the plug-in
strategy presented in Section 4.3 which is referred as PI.

We also include a comparison with Long Short-Term
Memory (LSTM) algorithm. Indeed, these recurrent neu-
ral networks are used in time series forecasting and
are a natural solution to study time dependency in data.
The main numerical limitation is that the user needs
to choose a length for the data whereas in the case
of point processes the length is different for each se-
quence. This length has consequently to be chosen large
enough to not lose information on the test sample. We
use the tensorflow.keras library of Python with tun-
ing parameters calibrated as follows: batch_size=10,
epochs=100 and learning_rate=0.01.

The details of the implementation of the ERM estimator
are given in Section 5.1. Then, we describe the experimen-
tal setting in Section 5.2 and discuss the obtained results
in Section 5.3. The source code we used to perform the



experiments can be found at https://github.com/
charlottedion/HawkesClassification.

5.1 IMPLEMENTATION

We present the implementation of our classification proce-
dure in the case where the set of kernel functions H is the
parametric exponential family defined as

H = {t 7→ αβ exp(−βt), 0 < α < 1, β > 0}.

We define for α, β ∈ R the function

hα,β(t) = expit(α) exp(β) exp(− exp(β)t),

where expit denotes the inverse-logit function. Then, we
can writeH asH = {t 7→ hα,β(t), α, β ∈ R}. For α and
β in RK , we denote by hα,β the corresponding function
ofHK . Therefore the set Π̂ defined in Equation (6) can be
rewritten as

Π̂ = {πp̂,exp(µ),hα,β
, µ ∈ R, α,β ∈ RK}.

Hence the minimization step is performed w.r.t. µ, α, and β.
Note that the formulation of the above set Π̂ shows that the
optimization part of our classification procedure does not
require any constraint on the parameters. The minimization
is performed with the Python function minimize with
argument method BFGS. Algorithm 1 sums up the main
steps of the procedure.

Algorithm 1 Classification algorithm

Input: T , Dn, and new observation Tn+1

Estimate p∗ on Dn
Solve the minimization problem (8) based on Dn
Compute ĝ the resulting classifier (10)
Compute Ŷn+1 = ĝ(Tn+1)

Output: Predicted label Ŷn+1

For the procedure PI, we use the tick func-
tion HawkesExpKern with argument gofit =
least-squares for the parameter inference.

5.2 EXPERIMENTAL SETTING

We consider K = 2 or K = 3 classes in the following. We
propose two different models for the experiments that we
refer to as Model 1 and Model 2. For Model 1, we consider
the case where the triggering kernel belongs to the paramet-
ric exponential family. For Model 2, we investigate a more
general form for the kernels (see below). We set the baseline
intensity µ = 1. We use the library tick to generate the
sequence of jump times of the Hawkes processes.
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Figure 1: Kernel functions of Top: Model 1 and Bottom:
Model 2 for Left: class Y = 1, Middle: class Y = 2 and
Right: class Y = 3.

Synthetic data The label Y is drawn from a uniform dis-
tribution on {1, . . . ,K}. Conditionally on Y , we simulate
the jump times according to Model 1 and Model 2 which
are defined as follows:

Model 1 exponential kernels h(t) = αβ exp (−βt), with
(α, β) = (0.7, 1.3) for class Y = 1, (0.2, 3) for class
Y = 2, and if K = 3, (0.5, 5) for class Y = 3.

Model 2 interpolation function kernels with parameters
(a, b, c):

h(t) =


b
a t, t ∈ [0, a],
b−c
a−1 t+ (b− b−c

a−1a), t ∈]a, 1[

0, t ≥ 1

with for (a, b, c) = (0.2, 0.8, 0.2) for class Y = 1,
(0.1, 0.4, 0.2) for Y = 2, and if K = 3, (0.8, 0.3, 0.7)
for class Y = 3.

As an illustration, Figure 1 displays the considered kernels
for both models. We can see from this figure that for Model 1
the kernel of the class Y = 1 seems to be different of the
kernels of the classes Y = 2 and Y = 3 which are more
closed. Hence, it should be easy to discriminate between
observations from class Y = 1 and observations from class
Y ∈ {2, 3}. On the contrary, observations from class Y = 2
and class Y = 3 would be overlapped. Similar comments
can be made for Model 2 with observations from class Y ∈
{1, 2} and observations from class Y = 3.

We also investigate the role of parameter T on the difficulty
of classification problem. To this end, Figure 2 displays
the error rate of the Bayes classifier as a function of T for
Model 1 and K = 3. This error quickly decreases from 0.3
to 0.05 as T goes from 10 to 40. In the following, we shall
give results for T = 20.

https://github.com/charlottedion/HawkesClassification
https://github.com/charlottedion/HawkesClassification


Table 1: Error rates of Bayes, ERM, PI, and LSTM classifiers for n = 100, T = 20.

CLASSIFIER: BAYES ERM PI LSTM

K = 2, MODEL 1 0.07 (0.01) 0.08 (0.01) 0.08 (0.01) 0.09 (0.01)
K = 2, MODEL 2 0.27 (0.01) 0.29 (0.02) 0.29 (0.01) 0.33 (0.02)
K = 3, MODEL 1 0.17 (0.01) 0.18 (0.02) 0.19 (0.02) 0.36 (0.03)
K = 3, MODEL 2 0.39 (0.01) 0.46 (0.02) 0.45 (0.02) 0.54 (0.03)

Table 2: Error rates of Bayes, ERM, PI, and LSTM classifiers for n = 1000, T = 20.

CLASSIFIER: BAYES ERM PI LSTM

K = 2, MODEL1 0.07 (0.01) 0.08 (0.01) 0.08 (0.01) 0.08 (0.01)
K = 2, MODEL 2 0.27 (0.01) 0.28 (0.01) 0.28 (0.02) 0.30 (0.01)
K = 3, MODEL 1 0.17 (0.01) 0.17 (0.01) 0.18 (0.01) 0.33 (0.02)
K = 3, MODEL 2 0.39 (0.01) 0.43 (0.01) 0.44 (0.01) 0.49 (0.02)
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Figure 2: Error rate of the Bayes classifier as a function of
T for K = 3, n = 100.

Simulation scheme In order to assess the performance
of our procedure, we evaluate the misclassification risk of
the Bayes classifier, ERM, PI, and LSTM through Monte-
Carlo repetitions. More precisely, for n ∈ {100, 1000} and
ntest = 1000, we repeat independently 50 times the follow-
ing steps:

1. simulate two datasets Dn and Dntest ,

2. from Dn compute the classifier ĝ, and

3. based on Dntest , compute the empirical error rate of
the three classifiers.

The obtained results are presented in Table 1 for n = 100
and Table 2 for n = 1000. Note that, for ERM algorithm, the
following initial guess for the optimization step is consid-
ered: µ = 0.5, α = 1 and β = 1 for all classes.

5.3 RESULTS

From the obtained results, we make several comments. For
Model 1, the ERM and PI procedures achieve similar per-
formance to the Bayes classifier for n ∈ {100, 1000}, and
K ∈ {2, 3}. Similar comments can be made for Model 2

mu alpha beta
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1.25

1.50
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n=100
n=1000

Figure 3: Boxplots of estimates of (µ, α, β) of Model 1
for class Y = 1 for 50 repetitions. True parameters are
(1, 0.7, 1.3).

and K = 2. For K = 3, the difference between the error
rates of the Bayes classifier and the ERM and PI classifiers
is larger. Let us notice that, when n increases the error rate
of ERM is closer to the error rate of the Bayes classifier.

Finally, we can see that the LSTM algorithm has the worst
performance in almost every scenario except for model 1 and
K = 2. Hence, our classifier ERM is competitive to classify
event sequences and can be recommended for future works.

Let us notice that our procedure also outputs estimations
of the parameters (µ, α, β). Although the estimation task is
not our main purpose, it is interesting to evaluate the accu-
racy of the obtained estimators. Figure 3 displays a visual
description of the obtained estimates for n ∈ {100, 1000}
for Model 1 with observations coming from the class Y = 1.
Again, we can see the impact of the parameter n. For
n = 1000, the estimation of the three parameters are clearly
better than for n = 100. Furthermore, for n = 1000, the
resulting estimates are quite good.



6 DISCUSSION

We investigate the multiclass classification setting where
the features come from a mixture of simple linear Hawkes
processes. In this framework, we derive the optimal predic-
tor and provide a classification procedure tailored to this
problem. The resulting algorithm relies on both plug-in and
empirical risk minimization principles. We establish theo-
retical guarantees and illustrate the good performance of the
method through a numerical study.

In future works, we plan to extend our classification pro-
cedure to the case where the observations come from a
mixture of multidimensional Hawkes processes. Indeed, in
neuroscience, the modeling of multivariate neuron spike
data is used for taking into account potential interactions
between neurons (see e.g. [Hansen et al., 2015], [Donnet
et al., 2020]). Hence, it should capture the interactions be-
tween neurons. In this framework, a challenge is to take into
account the high dimension of the space of parameters. For
example, by considering exponential kernels, plug-in type
classifier should benefit from algorithm as ADM4 which is
adapted for high dimensional setting [Bacry et al., 2020].

Another possible development is the case of nonlinear
Hawkes process. A few works focus on this subject, see e.g.
[Brémaud and Massoulié, 1996], [Lemonnier and Vayatis,
2014], [Costa et al., 2020]. This allows us to consider ker-
nels which can take negative values to model an inhibitory
behaviour. The proposed algorithm should remains efficient.
Nevertheless, it will be trickier to establish rates of conver-
gence.

Finally, we could also extend our method to a model with
a common time-inhomogeneous baseline. This idea is con-
sidered in many applications (see e.g. [Li et al., 2017]) and
could be an improvement of the present algorithm.
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