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Abstract
We introduce a new approach to prediction in
graphical models with latent-shift adaptation, i.e.,
where source and target environments differ in the
distribution of an unobserved confounding latent
variable. Previous work has shown that as long as
"concept" and "proxy" variables with appropriate
dependence are observed in the source environ-
ment, the latent-associated distributional changes
can be identified, and target predictions adapted
accurately. However, practical estimation meth-
ods do not scale well when the observations are
complex and high-dimensional, even if the con-
founding latent is categorical. Here we build upon
a recently proposed probabilistic unsupervised
learning framework, the recognition-parametrised
model (RPM), to recover low-dimensional, dis-
crete latents from image observations. Applied
to the problem of latent shifts, our novel form
of RPM identifies causal latent structure in the
source environment, and adapts properly to pre-
dict in the target. We demonstrate results in
settings where predictor and proxy are high-
dimensional images, a context to which previous
methods fail to scale.

1. Introduction
In real world prediction problems, challenges often arise
owing to shifts between training and test distributions. For
example, suppose we want to predict language exam per-
formance (Y ) given past written essays (X) from the same
students. A naive model trained on students from one school
may fail to accurately predict the performance of students
from another where the mix of socio-economic backgrounds
differs, as these contextual factors can affect not only the
marginal distributions of prior and future scores, but also the
relationship between them. Attempts to mitigate the impact
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of such distribution changes on performance of tasks such
as classification depend on assumptions about which distri-
butions have changed and which probabilities are conserved.
In covariate shift (Shimodaira, 2000), the distribution of the
observed covariate X changes but the conditional probabil-
ity of Y |X remains the same. In the label shift setting (Gart
& Buck, 1966), the distribution of the predicted variable Y
shifts but the conditional dependence of X|Y is preserved.
However, in our school example, both the distributions on
X and Y as well as their conditionals may shift, and these
assumptions are not general enough.

Latent shift assumes a change in the distribution of an un-
observed confounding latent subgroup variable U that influ-
ences bothX and Y |X , while the conditional dependence of
X , Y and any other observed variables on U are preserved.
Alabdulmohsin et al. (2023) introduce a graph with proxy
and concept variables observable in the source environment,
which allows the identification of the distribution of U and
its confounding effects. They show that this model can be
used to adapt predictions in the target environment to shifts
in the distribution of U .

However, the learning algorithm they propose has difficulty
scaling to settings where the observed covariates are high-
dimensional and complex, such as images or documents.
This is a setting in which the Recognition-Parametrised
Model (RPM) (Walker et al., 2023) is helpful. The RPM
makes it possible to learn a tractable underlying latent graph-
ical structure from high dimensional observations, without
needing an explicit generative model. Here we propose a
novel adaptation of the RPM in which factors of the graph
involving high dimensional observations are parametrised
in recognition form, while keeping generative factors for
categorical variables including the predicted variable Y .
We refer to this model as a "partial" RPM. We show that
it can be used to identify the confounding latent within a
source distribution P with complex observed variables, and
to adapt for latent subgroup shift in a target distribution
Q, outperforming previous models as the dimensionality of
the observation increases. We demonstrate an application
in which the observations are images from the CIFAR-10
dataset, and quantify predictive performance after shift for
different observed sample sizes in source and target.
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2. Previous Work
Many recent studies have sought to learn models that adapt
to shifts in distribution from source P to target Q, with
different assumptions on which conditional probabilities are
preserved. Covariate shift (Shimodaira, 2000; Zadrozny,
2004; Huang et al., 2006; Gretton et al., 2008; Bickel et al.,
2009; Sugiyama & Kawanabe, 2012; Chen et al., 2016;
Schneider et al., 2020) considers the case in which P (X) ̸=
Q(X) but the conditional probability P (Y |X) = Q(Y |X)
stays the same. This is usually solved by reweighting the
classifier loss by Q(X)/P (X) in an attempt to make the
source data look like it was drawn from the target data.
Similarly, label shift (Manski & Lerman, 1977; Rosenbaum
& Rubin, 1983; Saerens et al., 2002; Forman, 2008; Storkey,
2009; Plessis & Sugiyama, 2013; Zhang et al., 2013; Lipton
et al., 2018; Azizzadenesheli et al., 2019; Alexandari et al.,
2020; Garg et al., 2020; Tachet des Combes et al., 2020; Wu
et al., 2021) considers the case where P (Y ) ̸= Q(Y ) but the
conditional probabilities P (X|Y ) = Q(X|Y ) remain the
same. Again, this shift is usually mitigated by reweighting
the classifier loss, this time with Q(Y )/P (Y ). Both the
problem settings above have been framed as assumptions on
the causal structure of the generation of the data (Schölkopf
et al., 2012).

Latent shift was framed in the causal view by Yue et al.
(2021), where a shift in distribution of an unobserved la-
tent confounder changes the distribution on both X and Y .
This work finds a proxy for X and one for Y , both caused
by U , and finds an invariant bridge function to remove the
effect of the latent shift. However, as pointed out by Alab-
dulmohsin et al. (2023), this approach does not guarantee
that the mapping from U to either proxy is identifiable, a
condition which is necessary to correctly adapt to the shift
in distribution of U . Alabdulmohsin et al. (2023) solve the
identifiability problem of U by introducing proxy variable
W and concept variable C as in the graph of Figure 1. Both
C and W are observed in source P but not in target Q.
They then introduce an algorithm to adapt to shifts in the
latent distribution under the assumption that all probabilities
conditioned on U are preserved between source and target.
However, as we demonstrate here, this algorithm does not
scale well as the dimensionality ofX andW grow, although
such high-dimensional covariates may be encountered in
realistic settings. Our goal in this study is to develop a
new approach to estimation and prediction in the latent-shift
setting that scales to real-world dimensionalities

3. Latent Shift Adaptation
We follow Alabdulmohsin et al. (2023) by assuming the
graphical model of Figure 1, where U is the unobserved
latent, X is the observed covariate, Y the variable to be pre-
dicted, W is the proxy variable, and C is a concept variable.

X WU

C Y

Figure 1. Graphical model of observations and confounding latent
U . X is the observed variable, C is the concept variable, W
is the proxy variable, and Y is the predicted variable. All of
{X,C,W, Y } are observed in the source, but only X is available
in the target.

The concept C ensures that Y ⊥⊥ X|C,U , while the proxy
W provides sufficient additional information about U to
make it identifiable. Further discussion about the inclusion
of C and W can be found in (Alabdulmohsin et al., 2023).
We takeC, Y , and U to be discrete variables whereasX and
W may be discrete or continuous, possibly vector-valued
and high-dimensional. Our goal is to predict Y given obser-
vations X from the target distribution Q, having trained on
observations {X,C,W, Y } from the source distribution P .
We assume the distribution of the unobserved latent U can
shift between P and Q, but that all probabilities conditioned
on U are preserved across the source and target.

3.1. The Partial Recognition-Parametrised Model

Let X and W be (discrete or continuous) vector-valued, ob-
served random variables and C and Y be discrete observed
random variables. We want to identify the underlying dis-
crete latent variables U giving rise to the conditional inde-
pendencies shown in the graph of Figure 1. The conditional
dependence structure implies the factorisation

p(U,C,Y,X,W ) = p(X|U)p(W |U)p(C|X,U)p(Y |C,U)p(U)

The Recognition-Parametrised Model (RPM; Walker et al.,
2023) makes it possible to learn a flexible recognition model
(e.g. a neural network) without an explicit generative model
for the observations. This is appropriate to the current set-
ting, where there is no need to generate either X or W
in either source or target setting. Therefore, we introduce
RPM-like terms in place of the conditional dependencies
p(X|U) and p(W |U)

p(X|U) → P0x(X)fθx(U |X)

Fθx(U)

p(W |U) → P0w(W )fθw(U |W )

Fθw(U)
(1)

P0x(X) = 1
N

∑
n δ(X − X(n)) is the empirical mea-

sure with atoms at the N data points X(n). Similarly,
P0w(W ) = 1

N

∑
n δ(W − W (n)). The factor fθx(U |X)

is a parametrised recognition distribution and Fθx(U) =



Latent Subgroup Shifts with High-dimensional Observations∫
dX P0x(X)fθx(U |X) is the mixture with respect to P0x.

The factors fθw and Fθw are defined analogously. Together,
these terms define a normalised joint model

Pθ,X(N),W(N)(U,C, Y,X,W ) = Pϕ(C|X,U)Pψ(Y |C,U)

PθP (U)
P0x(X)fθx(U |X)

Fθx(U)

P0w(W )fθw(U |W )

Fθw(U)
(2)

where θx, θw, θp, ϕ, and ψ are learned parameters. PθP (U)
is a normalised distribution on the latent. The observed
datasets X(N) = {X (1) . . .X (N)} and W(N) appear in the
subscript to highlight that the model parametrisation de-
pends on these data through P0x and P0w and the mixtures.

3.2. RPM Latent Adaptation

We observe data {X,Y,C,W} from source P , and {X}
from target Q and seek to estimate Q(Y |X). The steps for
learning and adaptation in our model are detailed below.

Step 1: Learn RPM for source P. The parameters
{θx, θw, θu, ϕ, ψ} of the source model of Equation (2) are
learnt by maximizing the free energy using Expectation-
Maximization (EM).

F =
+C

⟨log fθx(U |X)⟩η(U) − ⟨logFθx(U)⟩η(U)

+ ⟨log fθw(U |W )⟩η(U) − ⟨logFθw(U)⟩η(U)

+ ⟨logPϕ(C|X,U)⟩η(U) + ⟨logPψ(Y |C,U)⟩η(U)

+ ⟨logPθP (U)⟩η(U) +H[η(U)] (3)

where η(U) is the variational distribution and H is the en-
tropy function. The expectation step to update η(U) in EM
is exact for discrete U (Walker et al., 2023) and so EM will
converege to a (local) maximum of the likelihood.

Step 2: Learn the shifted prior QθQ(U) on target. Now
only using {X} from target Q, we learn the joint Q(U,X)
by maximizing the free energy. Note that any conditional
probability dependent on U remains the same as in P . Only
the prior changes: P (U) → Q(U). Thus, we can reuse
parameters learned from the source distribution. We then
have:

Q(U |X) =
Q(X|U)QθQ(U)

Q(X)

=
P (X|U)QθQ(U)

Q(X)

∝ fθx(U |X)

Fθx(U)
QθQ(U) (4)

Now we maximize the free energy to learn the parameter
θQ while keeping all other parameters fixed

F =
+C

⟨log fθx(U |X)⟩ν(U) − ⟨logFθx(U)⟩ν(U)

+ ⟨logQθQ(U)⟩ν(U) +H[ν(U)] (5)

Figure 2. Accuracy in predicting Y given X from the target dis-
tribution, as a function of the dimensionality of X . erm_source
predicts using a model trained on source distribution X and Y ,
giving a lower bound on prediction performance. erm_target pre-
dicts using an oracle model trained on target distribution X and Y ,
giving an upper bound on prediction performance.

where ν(U) is the variational distribution which can be
computed analytically in the expectation step of EM.

Step 3: Make predictions Q(Y |X). Using all the factors
learned in the previous steps, make predictions

Q(Y |X) =
∑
U,C

Q(Y |C,U)Q(C|U,X)Q(U |X)

=
∑
U,C

Pψ(Y |C,U)Pϕ(C|U,X)Q(U |X) (6)

where again we use the fact that by conditioning on U , we
can use the probabilities learned on the source P.

4. Experiments
4.1. Scaling with observation dimensionality

To show how the partial RPM is able to handle complex
observations, we used a simulated numerical setting with
varying dimensionalities of X .

We constructed data with binary U , Y , W , and C but con-
tinuous X . In the source distribution P , U was drawn with
P (U = 1) = 0.9 and in the target Q, Q(U = 1) = 0.1.
The first two dimensions of X were drawn from a Gaussian
with mean dependent on U . All the other dimensions of
X were simply {10,−10} with probability 0.5 and had no
relevance to the prediction of Y . This structure was chosen
based on the hypothesis that previous methods using the
structured Wassertein Autoencoder (WAE) or Variational
Autoencoder (VAE) (Kingma & Welling, 2014), which must
learn to reconstruct the observation X , would be challenged
as irrelevant dimensions of X were added and so learn a
worse representation of U . Further details of the generative
model are given in Appendix A.
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We compared our approach to several baselines. Empirical
risk minimization is a neural network (NN) trained on source
data (erm_source) to predict Y from X . It is then simply
applied to target data X and serves as a lower bound to pre-
diction. Conversely, erm_target is an oracle network trained
on target data X and Y and is an upper bound to prediction
performance. Latent shift adaptation using the structured
WAE (vae_graph) (Alabdulmohsin et al., 2023) is trained
with a recognition model p̂e(Ũ |X,C, Y,W ) and a decoder
that respects the conditional independence structure of the
model and reconstructs all observations by Ŷ = fy(C,U),
Ĉ = fc(X,U), X̂ = fx(U), and Ŵ = fw(U). Details of
its training can be found in the Appendix A. Latent shift
adaptation using the vanilla VAE (vae_vanilla) (Alabdul-
mohsin et al., 2023) is trained with the same recognition
model to U p̂e(Ũ |X,C, Y,W ) but the decoder has no struc-
ture p̂d(X,C, Y,W |Ũ). The partial RPM recognition model
from X to U is a multilayer perceptron (MLP) with a single
hidden layer of 100 units and ReLU activations, the same
recognition model used in vae_graph and vae_vanilla, and
the same as the NN in erm_source and erm_target. The
partial RPM recognition model has binary U as in the true
generative model, unlike vae_graph and vae_vanilla where
U is allowed 5 categories. This is needed in the VAE models
to capture more structure in X , and using binary U in those
cases results in worse performance.

As seen in Figure 2, partial RPM accuracy remains high
as more dimensions are incorporated into X , while the
vae_graph performance falls to the erm_source baseline.
This is consistent with our hypothesis that VAE models,
unlike the RPM, require the latent U to capture enough
information to reconstruct observation X and are thus af-
fected by the noisy dimensions. The RPM avoids this by
dispensing with generation, and so focusing only on the
information in X that is shared with the other observed vari-
ables through U . In the next section, we consider the case
where W is also continuous and high-dimensional.

4.2. Latent shift with CIFAR-10 image observations

To demonstrate close to real-world scaling, we allow X and
W to be images from different sets of classes in the CIFAR-
10 dataset. The data are generated with U , Y , C, X̃ , and W̃
discrete assuming sizes of ku = 3, ky = 2, kc = 3, kX̃ =
2, and kW̃ = 3 respectively. U is drawn from the prior
according to P (U) for the source and Q(U) for the target.
P (Y |C,U), P (C|X̃, U), P (X̃|U), and P (W̃ |U) are all
drawn according to probability matrices given in Appendix
B. The variables X̃ and W̃ give the class identity of the
CIFAR-10 image for X and W , which are then randomly
drawn from the corresponding class. We chose X and W
from a set of classes that did not overlap. Although X
and W are similar here, this is not essential to the RPM
model. As fθx(U |X) and fθw(U |W ) are parameterized by

Figure 3. Accuracy in predicting Y given X from the target dis-
tribution. erm_source predicts using a model trained on source
distribution X images and Y and does not adapt to latent shift.

two separate neural networks (NN), the observations can be
completely different in dimensionality or statistical structure
(Walker et al., 2023).

In the partial RPM, fθx(U |X) and fθw(U |W ) are convo-
lutional NNs that output discrete probabilities on U and
Pϕ(C|X,U) is a convolutional NN to discrete probabilities
on C. As all terms are discrete in Pψ(Y |C,U), its pa-
rameters are simply the corresponding probability matrices.
Learning is achieved by maximizing the free energy in Equa-
tion (3), with adaptation following by the steps elaborated
in Section 3.2. In Figure 3, the target adaptation perfor-
mance is shown as a function of source and target dataset
size. The partial RPM (blue) is compared to erm_source
(red) with a NN that is the same size as the RPM recognition
network for fθx(U |X) but with output size ky . erm_source
demonstrates that no matter the size of the dataset, simple
prediction trained on source will not account for the shift
and perform poorly on target. We see here that the partial
RPM can adapt to the latent shift even for complex inputs
such as CIFAR-10 images with sufficient training data.

5. Conclusion
We have introduced a new method for latent shift adaptation
using the RPM. Our method scales to high-dimensional,
structured data by avoiding the need to reconstruct that data.
We have shown that previous models do not perform well
as the dimensionality of the observed covariate is increased,
even when the added dimensions only contain noise, while
the RPM approach is still able to predict with these observa-
tions. Furthermore, we demonstrated that the observations
can be highly structured as in CIFAR-10 dateset and the
RPM still adapts to latent shifts with enough training data.
This makes the RPM a strong model for real world applica-
tions.
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Latent Subgroup Shifts with High-dimensional Observations

A. Numerical Simulation Experiment
We describe the numerical experiments in which we change the dimensionality of the observation X . U , Y , C, and W
are discrete while X is continuous. We let the dimensions of each of the variables to be kU = 2, kC = 2, kY = 2, and
kW = 2. The dimensionality of X is varied from 2 to 20 in steps of 2. Below is how each variable is generated, closely
following (Alabdulmohsin et al., 2023). o(U) is the one-hot representation of the variable U . IkX is the identity matrix of
size kX × kX . Θ is the Heaviside function, Θ(z) = 1 if z > 0 and 0 otherwise.

U ∼ Categorical(π)
W |U = u ∼ Θ(N (o(U)MW |U , 1))

X[0 : 2]|U = u ∼ N (o(U)MX|U , IkX )

X[2 :] ∼ 10× (2× Bernoulli(0.5)− 1)

C|X = x, U = u ∼ Bernoulli(logit−1(XMC|X,U=u + o(U)MC|U ))

Y |C = c, U = u ∼ Bernoulli(logit−1(CMY |C,U=u + o(U)MY |U ))

Here are each of the generative parameters:

MW |U =
[
−3 3

]T
,MX|U =

[
−0.5 0.5
0.5 −0.5

]
,MC|U =

[
−1 1

]T
MC|X,U=u0

=
[
−1 1

]
,MC|X,U=u1

=
[
1 −1

]
MY |U =

[
−2 2

]T
,MY |C,U=u0

=
[
−1 1

]T
,MY |C,U=u1

=
[
1 −1

]T
(7)

For the source distribution, π = [0.1, 0.9] while in the target distribution π = [0.9, 0.1]. We used 7× 104 samples of both
source and target distributions.

We chose these parameters such that any VAE model would struggle to reconstruct the data. To see this, notice that the
latent dimensionality kU is fixed at 2. The first two dimensions of X contain all the relevant information about U and all
other dimensions are noise. However, the noisy dimensions have a large scale. Therefore, when the WAE reconstructs the
data X, error in the noisy dimensions contribute significantly to the loss. Therefore, the WAE may learn to represent the
noisy dimensions in the latent U and ignoring the parts of X that pertain to the latent shift. As the dimensionality of X
grows, this problem only worsens. In the RPM, however, there is no reconstruction in the loss term and therefore no need to
represent the noisy dimensions. The U that maximizes the loss is only that which makes X conditionally independent of the
rest of the graph.

The ERM source and target models both were MLPs with one hidden layer of 100 units with ReLU activations. They were
trained for 500 epochs with batch size of 128 and learning rate of 0.01 in stochastic gradient descent (SGD). This learning
rate was rediced by a factor of 10 if the training loss did not decrease by 0.01 in the last 20 epochs. The minimum learning
rate was set at 10−7. Weight decay of 10−6 was used.

The WAE and VAE approaches used a latent of dimensionality 5. The encoder models both were MLPs with one hidden
layer of 100 units with ReLU activations. The decoder for WAE used the factored form of the joint distribution implied by
the graphical model of Figure 1. The separate decoder networks {fY , fC , fX , fW } all were MLPs with one hidden layer of
100 units with ReLU activations. Details on the loss function are found in (Alabdulmohsin et al., 2023). The WAE was fit
with RMSprop for 500 epochs using 10−4 learning rate. The annealing strategy was the same as the ERM models.

The partial RPM used a latent of dimensionality 2. The recognition model from X to U (fθx(U |X)) and the generative
model from X and U to C (Pϕ(C|X,U)) were MLPs with one hidden layer of 100 units with ReLU activations. fθw(U |W )
and Pψ(Y |C,U) were simply probability matrices. All parameters were learned using Adam for 2000 epochs with learning
rate of 10−3 and batch size of 1000. We also multiply the entropy in the loss by a factor of 5.0 which linearly reduces to 1.0
in 400 epochs.

We ran 10 random initializations of each model on the same generated data for every size of observation X .



Latent Subgroup Shifts with High-dimensional Observations

B. CIFAR-10 Observation Experiment
In the CIFAR-10 experiments, we make observed X and W both CIFAR-10 images. The generative process for these
observations is described here.

Here, U , Y , and C are discrete. Let X̃ and W̃ be discrete variables that determine the class from which CIFAR-10 images
for X and W are randomly drawn. We let the dimensionalities of each of the variables be kU = 3, kC = 3, kY = 2,
kX̃ = 2, and kW̃ = 3. o(v) is the one-hot representation of some variable v ∈ V .

U ∼ Categorical(π)
W̃ |U = u ∼ softmax(M W̃ |Uo(U))

X̃|U = u ∼ softmax(M X̃|Uo(U))

C|X̃ = X̃, U = u ∼ softmax(MC|X̃o(X̃) +MC|Uo(U))

Y |C = c, U = u ∼ sigmoid(MY |Co(C) +MY |Uo(U))

Here are each of the generative parameters:

M W̃ |U =

 1e2 −1e20 −1e20
−1e20 1e2 −1e20
−1e20 −1e20 1e2

 ,M X̃|U =

[
1e2 1e2 −1e20
1e2 −1e20 1e2

]
,MC|U =

5.0 5.0 0.5
5.0 0.5 5.0
0.5 5.0 5.0


MC|X̃ =

5.0 0.5
5.0 5.0
0.5 5.0

 ,MY |U =

[
5.0 5.0 0.5
0.5 5.0 5.0

]
,MY |C =

[
5.0 5.0 0.5
0.5 5.0 5.0

]
(8)

For the source distribution, π = softmax([1.0, 0.1, 0.1]) while in the target distribution π = softmax([0.1, 0.1, 1.0]). The
prediction accuracy of Y after latent shift was tested for 10 random initializations for each dataset, the size of which was
chosen from [2× 103, 5× 103, 104, 2× 104, 5× 104, 105, 2× 105, 5× 105, 106]. The dataset size for both the source P
and the target Q was the same.

The ERM source model was a convolutional NN. The first 2 layers were convolutional layers, with 3 input to 10 output
channels and 10 input to 20 output channels. Each had kernel size 5 and the output was put through a 2D max pooling then
ReLU function before the next layer. Then one linear layer of size 500 to 50 with ReLU activation and then one more linear
layer to output. The output were logits on the discrete Y categories. It was trained for 5000 epochs with batch size of 2000
and learning rate of 0.001 using Adam.

The partial RPM used a recognition model for both X (fθx(U |X)) and W (fθw(U |W )) which was the same convolutional
NN described for the ERM source model. The recognition model the generative model from X and U to C (Pϕ(C|X,U))
was also the same convolutional NN. Pψ(Y |C,U) was a probability matrix. All parameters were learned using Adam for
20000 epochs with learning rate of 10−3 for the recognition parameters, 10−4 for the generative parameters, and 10−3 for
the prior parameters. The batch size was 2000. We also multiply the entropy in the loss by a factor of 5.0 which linearly
reduces to 1.0 in 3000 epochs.


