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Abstract

Data-to-text generation is challenging due to001
the great variety of the input data in terms of do-002
mains (e.g., finance vs sports) or schemata (e.g.,003
diverse predicates). Recent end-to-end neural004
methods thus require substantial training ex-005
amples to learn to disambiguate and describe006
the data. Yet, real-world data-to-text problems007
often suffer from various data-scarce issues:008
one may have access to only a handful of or009
no training examples, and/or have to rely on010
examples in a different domain or schema. To011
fill this gap, we propose Any-Shot Data-to-Text012
(ASDOT), a new approach flexibly applicable013
to diverse settings by making efficient use of014
any given (or no) examples. ASDOT consists015
of two steps, data disambiguation and sentence016
fusion, both of which are amenable to be solved017
with off-the-shelf pretrained language models018
(LMs) with optional finetuning. In the data dis-019
ambiguation stage, we employ the prompted020
GPT-3 model to understand possibly ambigu-021
ous triples from the input data and convert each022
into a short sentence with reduced ambiguity.023
The sentence fusion stage then uses an LM like024
T5 to fuse all the resulting sentences into a co-025
herent paragraph as the final description. We026
evaluate extensively on various datasets in dif-027
ferent scenarios, including the zero-/few-/full-028
shot settings, and generalization to unseen pred-029
icates and out-of-domain data. Experimental030
results show that ASDOT consistently achieves031
significant improvement over baselines, e.g., a032
30.81 BLEU gain on the DART dataset under033
the zero-shot setting.034

1 Introduction035

Data-to-text generation (Kukich, 1983a; Reiter and036

Dale, 1997) aims at generating natural language037

text conditioned on structured data content such as038

tables and graphs. The task has a broad range of ap-039

plications such as task-oriented dialog (Wen et al.,040

2015), weather forecasting (Goldberg et al., 1994;041

Sripada et al., 2003), sports news reporting (Wise-042

man et al., 2017), and biography generation (Lebret 043

et al., 2016a; Wang et al., 2018). 044

The problem is challenging in practice due to 045

the vast diversity of the input data in terms of the 046

domains (e.g., finance vs sports), schemata (e.g., 047

the set of predicates, table structures), etc. The 048

inherent ambiguity makes it particularly difficult 049

to learn to understand and describe the data. For 050

instance, in the tuple <Fearless, time, 2008> 051

from a music domain, the predicate word time 052

means the release time of an album, while in <100 053

metres, time, 9.58> from sports it expresses 054

the world record time. Recent approaches based on 055

end-to-end neural models, e.g., by finetuning pre- 056

trained language models (LMs) (Puduppully et al., 057

2019a; Koncel-Kedziorski et al., 2019; Zhao et al., 058

2020), typically require massive training instances 059

to resolve the ambiguity and are not applicable to 060

many data-scarce scenarios. 061

In practice, a data-to-text problem of interest 062

may have a varying number of training examples, 063

ranging from a (small) set to only a few shots, 064

or even no examples at all, and sometimes may 065

rely on available examples out of the current do- 066

main to facilitate the generation. We refer to the 067

diverse practical scenarios as the any-shot data-to- 068

text problems. Recent work has studied data-to-text 069

solutions when limited examples are available, but 070

is often restricted to single specific settings. For 071

instance, Chen et al. (2020b) and Su et al. (2021) fo- 072

cused on few-shot problems but fail to apply when 073

no examples are accessible, while the zero-shot 074

neural pipeline by Kasner and Dusek (2022) is not 075

capable of using training examples for further im- 076

provement, nor could it handle out-of-domain data 077

due to the reliance on human-crafted templates. 078

In this paper, we develop Any-Shot Data-to- 079

Text (ASDOT), a new flexible approach that makes 080

efficient use of any given (or no) examples and 081

achieves stronger generation quality compared to 082

the prior specific methods. ASDOT draws inspira- 083
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tion from how humans describe data, namely by084

first disambiguating and understanding the data085

content, and then fusing and organizing the infor-086

mation together into text paragraphs. As a result,087

given input data (e.g., a table or graph), ASDOT088

consists of two intuitive steps, i.e., data disam-089

biguation and sentence fusion. Importantly, each090

of the two steps is amenable to be solved with the091

appropriate off-the-shelf pretrained LMs with op-092

tional finetuning, enabling the unique flexibility093

of ASDOT in the presence of any-shot training ex-094

amples. More specifically, in data disambiguation095

aiming to understand each data entry (e.g., triple096

<Fearless, time, 2008>), we use the prompted097

GPT-3 model (Radford et al., 2019), which has en-098

coded rich commonsense and world knowledge, to099

convert the triple into a short sentence (Fearless100

was released in 2008) with greatly reduced101

ambiguity. The subsequent sentence fusion stage102

then uses another LM, such as T5 (Raffel et al.,103

2020), to combine all the resulting sentences into104

a coherent paragraph as the final description. The105

sentence fusion as a sub-task allows us to incor-106

porate any available in-/out-of-domain training ex-107

amples as well as existing large weakly supervised108

corpus (Kasner and Dusek, 2022) to finetune the109

LM and boost the performance.110

We evaluate the proposed approach in a wide111

range of practical any-shot scenarios, including112

(1) the zero-/few-/full-shot setting where we have113

access to a varying number of training examples,114

(2) the unseen-predicates setting where we describe115

the data of new predicates that are never seen in116

the training examples, and (3) the out-of-domain117

setting where we are presented only with examples118

from other domains. Extensive experiments show119

that our approach consistently achieves significant120

gains over the diverse previous methods specifically121

designed for each of the different scenarios.122

2 Related Work123

Data-to-text (D2T) generation is a long-standing124

problem in natural language processing with broad125

applications in practice. Early research on this task126

focused on rule-based and pipeline approaches (Ku-127

kich, 1983b; Reiter and Dale, 1997), decomposing128

the task into text planning, sentence planning, and129

linguistic realisation (Reiter and Dale, 1997). Re-130

cent work has developed various neural approaches.131

Lebret et al. (2016b) used a neural encoder-decoder132

for the task, followed by attention (Bahdanau et al., 133

2015), content selection (Puduppully et al., 2019a), 134

and entity modeling (Puduppully et al., 2019b) for 135

further improved performance. Recent studies have 136

also incorporated pretrained LMs (Kale and Ras- 137

togi, 2020b; Ribeiro et al., 2021; Clive et al., 2021). 138

Although previous fully-supervised methods have 139

achieved remarkable performances, most of them 140

require a large amount of in-domain training exam- 141

ples, leading to limited applicability to the common 142

low-data scenarios in practice. 143

Recent interests are aroused in zero-/few-shot 144

data-to-text generation problems. Chen et al. 145

(2020b) first formulated the few-shot setting and 146

incorporated a pretrained model with a pointer gen- 147

erator as a solution. Chen et al. (2020a) developed a 148

knowledge-grounded pretrained LM for both zero- 149

and few-shot data-to-text generation. Gong et al. 150

(2020) and Chen et al. (2020b) proposed to solve 151

the few-shot task with content matching and pro- 152

totype memory, respectively. There are also stud- 153

ies on combining templates and pretrained LM for 154

zero-/few-shot generation. For example, Kale and 155

Rastogi (2020a) trained a neural model to rewrite 156

templates for few-shot task-oriented dialogue. Hei- 157

dari et al. (2021) applied the idea of template rewrit- 158

ing to build a practical few-shot data-to-text sys- 159

tem. Kasner and Dusek (2022) proposed a neu- 160

ral pipeline for zero-shot data-to-text generation, 161

which rephrases templates with general-domain 162

text-based operations. Most of the previous meth- 163

ods have each focused on a specific setting (e.g., 164

either zero- or few-shot). In comparison, our work 165

studies a wide spectrum of any-shot scenarios with 166

a varying number of training examples from cur- 167

rent or different domains. We develop a new data- 168

to-text approach that is generally applicable and 169

excels in the various settings. 170

3 Any-Shot Data-to-Text Generation 171

We propose ASDOT for any-shot data-to-text gen- 172

eration. §3.1 describes the any-shot problems. We 173

then provide an overview of our method (§3.2) and 174

give details of each of the components (§3.3, 3.4). 175

Figure 1 illustrates our method. 176

3.1 The Any-Shot Data-to-Text Problems 177

In the data-to-text generation task, we are given 178

structured data (e.g., a table or graph) as in- 179

put, which can be represented as a set of triples 180

{x1,x2, ...,xn}. Each triple xi = ⟨si, pi, oi⟩, 181
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Prompt 2
Table: Michael | birth Place | USA

Text: Michael was born in the USA.
……

Table: Buzz Aldrin | birthPlace | Glen Ridge 

New Jersey

Text:

Prompt 1
Table: Michael | birth Place | USA

Text: Michael was born in the USA.
……

Table: Apollo 11 | operator | NASA

Text:

birth
Plac

e
SelectedByNASA

Buzz Aldrin

Glen Ridge
New Jersey

Essex County
New Jersey

isPartO
f

crew
M

em
ber

operator

Apollo 11

backupPilot

William
Anders 1963

NASA

<Apollo 11, operator, NASA>

<Buzz Aldrin, birthPlace, Glen Ridge
New Jersey>

……

Data triples

Input Data

Apollo is 
operated by 
NASA.

Buzz Aldrin was
born in Glen
Ridge, New
Jersey.

……
……

GPT-3

Data Disambiguation Sentence Fusion

Final output
Buzz Aldrin was 
born in Glen Ridge, 
Essex County, New 
Jersey. He went on 
to become a crew 
member on Apollo 
11 which was 
operated by NASA 
in 1963. William 
Anders was the 
backup pilot for 
Apollo 11.…

Short sentences

PLM
(e.g. T5)

Weakly-
supervised
finetuning

Any-shot
finetuning

Figure 1: An overview of our method. Our approach consists of two core steps, i.e., data disambiguation (§3.3) and
sentence fusion (§3.4). The approach first leverages a prompted GPT-3 to convert each data triple into short sentences
with reduced ambiguity. The resulting sentences are then fused by a pretrained LM with optional finetuning using
public weakly-supervised corpus or available training examples.

such as <Apollo 11, operator, NASA> as in Fig-182

ure 1, consists of a subject si, a predicate pi, and183

an object oi, which expresses a relation between184

the subject and the object. The goal of the task is185

to generate a paragraph consisting of a sequence of186

words y = {y1, y2, ..., ym} that can describe the187

input data faithfully and fluently.188

Due to the vast diversity of the content domains,189

data structures, and predicate sets, etc., building190

a data-to-text solution often suffers from insuf-191

ficient training examples for learning to under-192

stand/describe the target data. In practice, most193

often we are presented with a varying number of la-194

beled examples, directly or remotely related to the195

target data. For instance, we may need to describe196

a table from a financial report on a new website,197

where we have no access to any labeled examples198

(i.e., zero-shot) or have access to only a few de-199

scription examples (i.e., few-shot). Besides, the200

available examples may not even be in the finan-201

cial domain (out of domain), or uses different table202

structures (different schemata) and different table203

headers (different predicates). We refer to the data-204

to-text training in the various practical scenarios as205

the any-shot problem. It is highly desirable to de-206

velop a general approach that is widely applicable207

to the different settings.208

3.2 Method Overview209

Intuitively, a data-to-text generation process con-210

sists of two core steps, namely, (1) disambiguating211

and understanding the data triples, and (2) produc-212

ing the text description. Previous neural approaches213

typically model the task in an end-to-end manner214

and require a large number of training examples to215

learn the data-to-text mapping. In contrast, we take 216

advantage of the task structure by formulating the 217

two stages and solving each with appropriate re- 218

sources (e.g., pretrained LMs) that are readily avail- 219

able. Figure 1 offers an overview of the approach. 220

Specifically, since each data triple is inherently am- 221

biguous given the compact predicate words, rich 222

commonsense and world knowledge is required to 223

correctly understand the content. For instance, in 224

<Apollo 11, operator, NASA>, a model would 225

need knowledge to determine that NASA operates 226

Apollo 11 rather than the other way around. There- 227

fore, in the data disambiguation stage, we leverage 228

a powerful LM—GPT-3 in our case—that contains 229

massive implicit knowledge in the parameters, to 230

convert each triple into short sentences with re- 231

duced ambiguity (e.g., Apollo is operated by 232

NASA). Once we collect a set of short sentences, 233

in the sentence fusion stage, we use another pre- 234

trained LM with optional finetuning to compose the 235

sentences into a well-formed paragraph. The stage 236

offers the flexibility to make use of any available 237

training example to boost performance. 238

3.3 Data Disambiguation 239

In this stage, the goal is to generate a short sentence 240

to describe each data triple precisely. As above, a 241

triple can be highly abstract and ambiguous as it 242

compresses complex relational information into the 243

compact format x = ⟨s, p, o⟩, where the predicate 244

p is often a concise word or phrase (e.g., the pred- 245

icate time in triple <Fearless, time, 2008>). 246

To reduce the ambiguity, we want to “recover” the 247

missing information in the triple by augmenting 248

it into a complete sentence (e.g., Fearless was 249
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released in 2008). Another advantage of con-250

verting the structured triples into the free-form text251

is that a text sequence is more amenable to the LMs252

used in the subsequent sentence fusion stage (§3.4)253

as described shortly.254

As the above examples show, augmenting a triple255

into a sentence naturally requires relevant external256

knowledge (e.g., Fearless is an album). Training257

a model specifically for the task could be expen-258

sive and could easily overfit to the training domain.259

Instead, we resort to the general GPT-3 model.260

Specifically, as shown in Figure 1 (middle panel),261

we provide GPT-3 with a few demonstrations of262

converting triples into short sentences, and then263

feed the target triple to elicit the desired sentence.264

Appendix A shows the complete demonstrations.265

We found that the same set of four demonstrations266

is sufficient to be used for target data in any domain.267

We thus use the same prompt consisting of those268

demonstrations throughout our experiments.269

Querying the GPT-3 API can be slow and expen-270

sive. Given a set of target data in a domain, we271

reduce the number of queries by generating tem-272

plates. More concretely, for each predicate in the273

set, we sample one triple containing the predicate,274

and generate a sentence for the triple with GPT-3.275

Then we replace the subject and object in the sen-276

tence with placeholders <subject> and <object>277

to get a template. For instance, the template for the278

predicate birthPlace in Figure 1 is "<subject>279

was born in <object>". We then use the tem-280

plate to generate the sentences for all triples with281

the same predicate.282

It is worth noting that many existing data-to-text283

approaches, ranging from the classical pipeline284

solutions (Reiter and Dale, 1997) to the recent285

neural methods (Kale and Rastogi, 2020a; Kas-286

ner and Dusek, 2022), have also included similar287

template components, while their templates are typ-288

ically crafted by human annotators, making the ap-289

proaches hard to apply to the diverse new domains.290

In contrast, our ASDOT is fully automated with the291

pretrained LMs, without the need of human efforts292

nor training examples.293

3.4 Sentence Fusion294

In the second stage, we aim to fuse the sentences295

from the last step and produce a final coherent296

and fluent paragraph as the output data descrip-297

tion. We naturally formulate the sentence fusion as298

a sequence-to-sequence problem, and use the pre-299

trained LMs, particularly T5 (Raffel et al., 2020), as 300

the backbone for solution. Specifically, we simply 301

concatenate the short sentences, prepended with 302

a prefix word "summarize:", and feed them into 303

the T5 model to obtain the output text. We pick 304

"summarize:" as the prefix for T5 to mimic its pre- 305

training configuration, since the sentence fusion 306

task is similar to the summarization task on which 307

T5 was pretrained. 308

A key advantage of the sentence fusion stage 309

is that the component permits easy finetuning 310

with diverse available resources. On one hand, 311

there are automatically constructed weak supervi- 312

sion datasets publicly available, such as WikiSplit 313

(Botha et al., 2018) mined from Wikipedia’s edit 314

history and DiscoFuse (Geva et al., 2019) con- 315

structed by rules. In our zero-/few-shot experi- 316

ments (§4), we finetune the sentence fusion model 317

with the public WikiFluent dataset (Kasner and 318

Dusek, 2022) which was constructed by applying 319

a sentence splitting model on the Wikipedia sen- 320

tences. On the other hand, one can also use any 321

labeled data-to-text examples (by first converting 322

with the data disambiguation stage), even if the ex- 323

amples are from different domains. This is because 324

the general sentence fusion task tends to be domain- 325

agnostic, since the operations to fuse sentences are 326

usually similar across domains, e.g., by inserting 327

connective words or subsuming one sentence as 328

the clause of another. We evaluate in our experi- 329

ments the out-of-domain generalization ability of 330

our approach. 331

4 Experiments 332

We conduct extensive experiments on the various 333

any-shot settings. All code and data will be re- 334

leased upon acceptance. 335

4.1 Datasets 336

We experiment on three widely-used data-to-text 337

benchmarks based on which we study various any- 338

shot settings. 339

WebNLG (Gardent et al., 2017) consists of 340

data-text pairs where each data is a set of triples 341

extracted from DBpedia and the text is written 342

by human to describe the data. The dataset is 343

split into training, validation, and test set, with 344

18,102/872/1,862 examples, respectively. The test 345

set is further split into the test-seen and test-unseen 346

subsets. The instances in the test-unseen set are 347

from Wikipedia categories not seen in the training 348
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Figure 2: Results of zero-/few-shot learning on WebNLG (left) and DART (right), respectively. The x-axis is the
number of training examples, and the y-axis is the BLEU score. We report results of other metrics in Appendix C.
Neural Pipeline (Kasner and Dusek, 2022) is applicable only to the zero-shot setting and the specific WebNLG data
due to the need of human-written templates on the dataset. Our method show superior performances under any-shot
settings. Our approach shows consistent improvement over the baselines, especially when the training size is small.

set, which is used in our "unseen predicates" ex-349

periments (§4.4). WebNLG contains 354 types of350

predicates in total.351

DART (Novikova et al., 2017) is a large352

open-domain data-to-text corpus, constructed353

from WikiSQL (Zhong et al., 2017), WikiTable-354

Questions (Pasupat and Liang, 2015), as well355

as the WebNLG and E2E datasets. It con-356

tains 62,659/2,768/5,097 examples in the train-357

ing/validation/test sets, respectively, and has 4,299358

different predicates in total. To evaluate model359

generalization to unseen predicates, we extract a360

subset of 2,71 test examples whose predicates are361

completely unseen in the training/validation sets,362

leading to a more difficult test-unseen set compared363

to that of WebNLG.364

E2E (Novikova et al., 2017) is a data-to-text365

corpus in the restaurant domain annotated by hu-366

man. The dataset has 42,061/547/629 examples in367

the training/validation/test sets, respectively. The368

dataset is relatively easy since it only contains 7369

types of predicates and has limited patterns.370

4.2 Experimental Setup371

For ASDOT, the data disambiguation stage (§3.3)372

uses the GPT-3 Davinci API provided by OpenAI,373

with greedy decoding, maximum generation length374

256 and the stop token "\n". Please refer to Ap-375

pendix A for the full prompt we use. For the sen-376

tence fusion stage (§3.4), we use T5 models of377

varying sizes as the sentence fusion LM. In the378

zero-/few-shot settings (§4.3), we finetune the T5379

with the large weakly-supervised data WikiFluent380

(Kasner and Dusek, 2022) as mentioned in §3.4.381

We use the Adam optimizer (Kingma and Ba, 2015)382

with an initial learning rate of 3 × 10−5, and use383

a batch size of 64, for 1 epoch. When any shot 384

of labeled data-to-text examples are available, we 385

further finetune the sentence fusion T5 with those 386

examples. For the generation, we use beam search 387

decoding with a beam width of 5. We provide more 388

details of the experimental setup in the appendix A. 389

Evaluation Metrics Following previous studies, 390

we report the performance in terms of BLEU (Pa- 391

pineni et al., 2002) and METEOR (Banerjee and 392

Lavie, 2005) with gold references, as well as the 393

recent PARENT-F1 metric (Dhingra et al., 2019) 394

which measures the alignment between generated 395

text with both the references and input data. We 396

also perform human evaluation in the few-shot set- 397

ting as detailed later. 398

4.3 Zero-, Few-, to Full-Shot Learning 399

We evaluate ASDOT in the presence of a varying 400

number of training examples, ranging from 0, 10, 401

20, 50, 100 to the size of the full training set. We 402

experiment on the WebNLG and DART datasets, 403

respectively. In the zero-/few-shot settings, we use 404

the T5-large model for our sentence fusion LM. In 405

the full-shot setting, we test three T5 models of dif- 406

ferent sizes (small - 60M parameters, base - 220M, 407

and large - 770M) for sentence fusion. Besides, the 408

recent Prefix-Tuning method (Li and Liang, 2021) 409

shows competitive performances on the data-to-text 410

generation task. We thus also incorporate it with 411

the T5-large architecture and report the results. 412

Baselines In the zero-/few-shot settings, we com- 413

pare with KGPT (Chen et al., 2020a), a knowledge- 414

grounded LM pretrained on large-scale automati- 415

cally constructed data-to-text corpus, as it is one 416

of the few methods applicable to both zero-/few- 417
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Model BLEU METEOR P-F1
BestPlan 47.24 39.00 -
Pipeline-Trans 51.68 32.00 -
PlanEnc 52.78 41.00 -
DataTuner_FC 52.40 42.40 -

T5-small 56.90 43.05 65.20
58.64 43.47 66.63ASDOT-small (+1.74) (+0.42) (+1.33)

T5-base 58.53 43.89 66.82
60.34 44.37 68.17ASDOT-base (+1.81) (+0.48) (+1.35)

T5-large 60.38 44.49 68.49
61.32 44.79 69.69ASDOT-large (+0.94) (+0.30) (+1.20)

Prefix-Tuning 61.03 44.37 69.17
61.38 44.52 69.39ASDOT-Prefix (+0.35) (+0.15) (+0.22)

Model BLEU METEOR P-F1

LSTM w attention 29.66 27.00 35.00
E2E Transformer 27.24 25.00 28.00
BART-base 47.11 38.00 55.00
BART-large 48.56 39.00 57.00

T5-small 47.53 39.00 59.33
49.32 39.57 60.95ASDOT-small (+1.79) (+0.57) (+1.62)

T5-base 49.62 39.69 61.11
49.85 39.91 61.64ASDOT-base (+0.23) (+0.22) (+0.53)

T5-large 50.17 40.00 61.72
50.79 40.36 62.52ASDOT-large (+0.62) (+0.36) (+0.80)

Prefix-tuning 50.39 40.13 61.60
50.56 40.22 62.27ASDOT-Prefix (+0.17) (+0.09) (+0.67)

Table 1: Full-shot learning results on WebNLG (Left) and DART (Right). ASDOT-X denotes our approach with
T5-X as the sentence fusion model. The best scores are in bold. We also show the performance gains against
respective baseline models in green

shot data-to-text generation. We also compare with418

the end-to-end model based on T5-large, which419

has shown remarkable performance on data-to-text420

tasks with sufficient training examples (Ribeiro421

et al., 2020). Following Ribeiro et al. (2021), for422

the T5 baseline, we prepend <H>, <R> and <T> be-423

fore the subjects, predicates, and objects, respec-424

tively, and add a prefix "translate Graph to425

English:" to the input. We finetune the T5 model426

with available shots of training examples. On the427

WebNLG dataset, we report another baseline Neu-428

ral Pipeline (Kasner and Dusek, 2022), which is429

a template-based pipeline method also trained on430

the WikiFluent dataset and is applicable only to the431

zero-shot setting. However, the method cannot be432

used on the DART dataset since its templates are433

specifically written for WebNLG by human.434

In the full-shot setting, we further compare435

with a wide range of previous full-shot state-436

of-the-art data-to-text systems, including Best-437

Plan (Moryossef et al., 2019), Pipeline-Trans (Cas-438

tro Ferreira et al., 2019), PlanEnc (Zhao et al.,439

2020), DataTuner_FC (Harkous et al., 2020) on440

WebNLG, and LSTM-with-attention, End-to-End441

Transformers, and BART-base/large (Nan et al.,442

2020) on DART.443

Automatic Evaluation The zero-/few-shot re-444

sults are shown in Figure 2. Our method con-445

sistently outperforms baseline models on both446

datasets, demonstrating its strong zero-/few-shot447

learning ability. In particular, with fewer training448

examples, our ASDOT tends to outperform other 449

methods by a larger margin. For instance, we 450

achieve 16.06 higher BLEU than T5-large on 10- 451

shot WebNLG, and 10.53 higher on 10-shot DART. 452

This is because the two-stage ASDOT is designed 453

to excel in the low-data contexts by augmenting the 454

generation process with rich external knowledge 455

in pretrained LMs. Neural Pipeline is competi- 456

tive with ours, but is restricted only to the zero- 457

shot setting on WebNLG. DART contains more 458

diverse types of predicates and thus is arguably 459

more challenging than WebNLG. Our approach 460

tends to achieve stronger performance gains on the 461

difficult dataset. 462

We report the results of the full-shot setting in 463

Table 1. The performance gain tends to be less 464

significant compared to the zero-/few-shot settings 465

as all methods are presented with a large number 466

of training examples. However, our method still 467

achieves consistently stronger performance over 468

the large diversity of baselines, thanks to ASDOT’s 469

proper modeling of the generation process and the 470

incorporation of rich external implicit knowledge. 471

Human Evaluation We conduct a human eval- 472

uation to further assess our ASDOT against other 473

baselines under the 50-shot setting on WebNLG. 474

After training, we sample 50 test instances and ask 475

three proficient English speakers to score the model 476

outputs. Following Chen et al. (2020b), each gener- 477

ated result is evaluated on three aspects: the number 478

of the facts that are consistent with the input table 479
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Model Faithfulness ↑ Contradict ↓ Fluency ↑

KGPT 0.64 2.34 1.00
T5-large 2.22 0.72 1.58

ASDOT 2.37 0.67 1.82

Table 2: Human evaluation results. ↑ means the higher
the better and ↓ means the lower the better. ASDOT
outperforms the baselines with p < 0.05 in Tukey’s
HSD test for all the measures.

(Faithfulness) and contradicted to the table (Con-480

tradict), and the language fluency, on a 3-Likert481

scale (0,1,2). The results are shown in Table 2.482

The Krippendorff alphas (Krippendorff, 2011) for483

Faithfulness, Contradict, and language fluency are484

0.49, 0.42 and 0.36, respectively, indicating a fair485

inner-annotator agreement. Consistent with the486

automatic evaluation results, we observe that AS-487

DOT is substantially better than the baselines on488

all the three aspects, suggesting that our approach489

generates more faithful and fluent descriptions.490

Ablation Studies We conduct ablation studies491

to investigate the effects of both the data disam-492

biguation and sentence fusion stages. Table 3493

shows the results. Specifically, for the sentence494

fusion stage, we study the effect of the weakly-495

supervised finetuning on the WikiFluent corpus496

(§3.4). From the table, we can see that the perfor-497

mance drops sharply without weakly-supervised498

finetuning, i.e., by 8.86 BLEU points for the zero-499

shot setting. However, ASDOT without weak super-500

vision still outperforms the baselines in most cases,501

validating the strong advantage of our approach un-502

der low-data settings. For the data disambiguation503

stage, we investigate the impact of the automatic504

templates produced by GPT-3. More concretely,505

we replace the GPT-3 templates with the human-506

written templates from Kasner and Dusek (2022).507

The performance is similar or decreases slightly,508

demonstrating that the short sentences or templates509

automatically generated in the data disambiguation510

stage are of competitive or slightly higher quality511

than the manually created ones (perhaps due to512

human errors when writing the hundreds of tem-513

plates).514

4.4 Generating for Unseen Predicates515

We now assess the model’s capability of describing516

new predicates that are never seen during training.517

As mentioned in §4.1, WebNLG provides such an518

official test-unseen set for the evaluation and we519

Model 0 10 20 50 100

KGPT 14.19 17.50 18.40 21.68 24.72
T5-large 10.46 29.10 41.38 46.24 48.68

ASDOT 43.33 45.16 47.46 49.36 49.39
- w/o weak-sup 34.47 39.38 43.67 47.56 48.16
- w/ manual templ. 42.02 43.37 46.12 48.28 48.32

Table 3: Ablation results (BLEU) for zero-/few-shot
learning on WebNLG. The w/o weak-sup row shows the
results of ASDOT without weakly supervised finetuning,
and w/ manual templ. shows the results of using hand-
crafted templates in the data disambiguation stage.

Model BLEU METEOR P-F1

BestPlan 34.41 37.00 -
Pipeline-Trans 38.92 21.00 -
PlanEnc 38.23 37.00 -

T5-small 47.34 39.95 57.99
50.75 40.63 61.20ASDOT-small (+3.41) (+0.68) (+3.21)

T5-base 51.11 41.42 60.94
54.51 42.30 64.36ASDOT-base (+3.40) (+0.88) (+3.42)

T5-large 53.97 42.37 63.81
55.74 42.94 65.90ASDOT-large (+1.77) (+0.57) (+2.09)

Prefix-Tuning 55.26 42.42 65.24
55.86 42.73 65.68ASDOT-Prefix (+0.60) (+0.31) (+0.44)

Table 4: Results on WebNLG test-unseen set.

construct a similar (but more difficult) test set on 520

DART where all the test predicates are not included 521

in training. We train the models on WebNLG 522

and DART, and evaluate on the corresponding test- 523

unseen sets, respectively. As in §4.3, we compare 524

ASDOT with the respective end-to-end T5 mod- 525

els (small, base, large, prefix-tuning). We also 526

include the previously reported baseline results 527

on the WebNLG test-unseen set, including Best- 528

Plan (Moryossef et al., 2019), Pipeline-Trans (Cas- 529

tro Ferreira et al., 2019) and PlanEnc (Zhao et al., 530

2020). The experimental results are shown in Ta- 531

ble 4 and Table 5, respectively. As can be seen, 532

our method achieves consistent improvements over 533

all the baseline methods, showing the robustness 534

of our method to unseen predicates given the rich 535

commonsense and world knowledge introduced 536

through the pretrained LMs in both stages. The 537

superior performance of ASDOT over the corre- 538

sponding end-to-end T5 again demonstrates the 539

advantage of our modularization that applies to and 540

improves various pretrained LMs. Similar as in 541

the zero-/few-shot experiments, here we observe 542

that on the more difficult DART test-unseen set 543
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Model BLEU METEOR P-F1

T5-small 37.65 33.27 43.79
46.60 36.91 52.17ASDOT-small (+8.95) (+3.64) (+8.38)

T5-base 46.13 36.97 49.79
50.90 37.72 54.98ASDOT-base (+4.77) (+0.75) (+5.19)

T5-large 46.37 36.49 50.32
50.70 37.25 55.49ASDOT-large (+4.33) (+0.76) (+5.17)

Prefix-tuning 47.07 36.69 49.67
51.99 38.11 57.26ASDOT-Prefix (+4.92) (+1.42) (+7.59)

Table 5: Results on DART test-unseen set.

Test set Model B M P

E2E
T5-large 33.23 35.40 60.18

35.51 35.98 60.06ASDOT (+2.28) (+0.58) (–0.12)

DART
T5-large 25.94 33.64 33.50

30.42 35.30 36.60ASDOT (+4.48) (+1.66) (+3.10)

Table 6: Out-of-Domain results. B, M and P represent
BLEU, METEOR and PARENT-F1, respectively.

with more unseen predicates, our method achieves544

more significant gains than on WebNLG, which545

further shows the advantage of our method when546

generalizing to unseen predicates.547

4.5 Learning with Out-of-Domain Examples548

At last, we quantitatively measure the generaliza-549

tion ability of our approach across domains. To550

simulate the out-of-domain setting, we train our551

model on the WebNLG dataset and evaluate it552

on the test sets of DART and E2E, respectively.553

The DART test set includes the instances from the554

WebNLG and E2E test sets. We remove those in-555

stances to avoid any in-domain test examples (w.r.t556

the WebNLG training examples) and any overlap557

with E2E evaluation. We compare our method with558

the end-to-end finetuned T5-large model. The ex-559

perimental results in Table 6 show that our method560

outperforms the baseline models on both out-of-561

domain test sets, echoing the conclusions in pre-562

vious experiments that our approach with the two-563

stage design and integration of pretrained LMs has564

a superior generalization ability to handle data-to-565

text generation in any-shot scenarios.566

4.6 Case Study567

Table 7 shows the outputs of our ASDOT (based on568

T5-large) after the data disambiguation stage and569

the sentence fusion stage, on two data in the out-570

Source <Zolder, fastest Lap, Liverpool F.C.> ; <Zolder,
Date, October 5>

Disambig Liverpool F.C. set the fastest lap in the Zolder.
Zolder was on October 5.

Fusion Liverpool F.C. set the fastest lap in the Zolder on
October 5.

Baseline Zolder’s fastest lap is Liverpool F.C. and the date
is October 5.

Human On October 5, 2008, Liverpool F.C. got the fastest
lap at a Zolder race.

Source <Aleksandra Kovac, associated Band/associated
Musical Artist, Bebi Dol> ; <Aleksandra Kovac,
associated Band/associated Musical, ArtistK2 Kovac
sisters duo>

Disambig Aleksandra Kovac is associated with Bebi Dol.
Aleksandra Kovac is associated with K2 Kovac sisters
duo.

Fusion Aleksandra Kovac is associated with Bebi Dol and the
K2 Kovac sisters duo.

Baseline Aleksandra Kovac is an associated band/associated
musical artist with Bebi Dol and the K2 Kovac sisters
duo.

Human Aleksandra Kovac is associated with the musical
artist Bebi Dol and is part of the band K2 Kovac
sisters duo.

Table 7: Qualitative examples in the out-of-domain (top)
and unseen-predicates (bottom) settings.

of-domain and unseen-predicates settings, respec- 571

tively. The generated words corresponding to dif- 572

ferent data triples are highlighted in different colors 573

(as in Figure 1). We also provide the results of the 574

T5-large baseline and the human-written references. 575

As can be seen, ASDOT develops a strong gener- 576

alization ability to out-of-domain data and unseen 577

predicates. In the first example, ASDOT success- 578

fully disambiguates the triple <Zolder, fastest 579

Lap, Liverpool F.C.> into "Liverpool F.C. 580

set the fastest lap in the Zolder" while 581

the T5 baseline fails to do so and simply generates 582

"Zolder’s faster lap in Liverpool F.C.". 583

Also, in the second example, the baseline directly 584

copies "associated Band/associated Musical 585

Artist" in the output while ASDOT correctly con- 586

verts it into "is associated with". 587

5 Conclusion 588

We have proposed ASDOT to deal with the diverse 589

any-shot problems for data-to-text generation. AS- 590

DOT is composed of two stages, data disambigua- 591

tion that uses prompted GPT-3 to disambiguate 592

input data triples into short sentences, and sentence 593

fusion using state-of-the-art pretrained LMs to fuse 594

these sentences into the desired paragraphs. In the 595

process, ASDOT integrates rich external implicit 596

knowledge from the large LMs, which ensures 597

strong generalization capability and broad appli- 598

cability to zero-/few-/full-shot, unseen-predicates, 599

and out-of-domain training scenarios. Extensive ex- 600

periments show our approach consistently achieves 601

significant improvements over diverse baselines. 602
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Limitations603

One limitation of our approach is that the data dis-604

ambiguation stage is done by the GPT-3 model605

locally, i.e., the GPT-3 model only observes one606

triple and does not utilize the full-table informa-607

tion. In some difficult cases, the full-table context608

may be needed for disambiguation. Besides, in this609

work we directly use the output from GPT-3’s as the610

final disambiguation results, which may be prob-611

lematic since GPT-3 may not always provide the612

correct templates, especially when working with613

highly-specialized domains. In addition, our cur-614

rent approach can only be applied to languages that615

have access to large LMs.616

Ethics Statement617

We are aware of the ACL Code of Ethics and the618

ACM Code of Ethics and Professional Conduct and619

strictly adhere to the rules throughout the course of620

this research.621

Our research does not present any new datasets622

but introduces a new algorithm for data-to-text gen-623

eration, which generates text descriptions for a624

given graph or table. The intended usage of the625

work may potentially provide benefits to people626

with difficulties in reading graphs or tables, such627

as people with visual impairment. We do not antic-628

ipate direct harm with the intended usage.629

Similar to most generation systems, if harmful630

input, such as unethical text or input designed for631

adversarial attacks, exists, our approach is likely632

to generate unintended output. Therefore, we do633

not recommend usages of our approach outside634

controlled research environment before these risks635

are mitigated. We would also like to point out636

that a naive deployment of our method may allow637

malicious exploitation of the backbone Large LMs,638

thus precautions such as a filtering mechanism need639

to be implemented.640

Our model makes use of the common sense rea-641

soning ability of large LMs, which may reinforce642

existing social stereotypes, hence care must be643

taken when applying this approach to materials644

(e.g. tables and graphs) that are sensitive to popula-645

tions that already experience marginalization.646

Computation-wise, our finetuning procedure647

takes around 1836 GPU/Hours on NVIDIA648

GeForce RTX 3090 Ti GPUs. Throughout the649

study, our prompting module makes about 4600650

API calls to Open-AI’s GPT-3 API.651
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A GPT-3 Prompt898

The prefix in the prompt we use is:899

900

Table: Michael | birth Place | USA901

Text: Michael was born in the USA.902

903

Table: First Clearing | location | On NYS904

52 1 Mi. Youngsville905

Text: First Clearing is located at On NYS 52 1 Mi.906

Youngsville.907

908

Table: Abilene Regional Airport | city Served |909

Abilene Texas910

Text: Abilene Regional Airport serves Abilene911

Texas.912

913

Table: Alfred Moore Scales | active Years914

Start Date | 1875-03-04915

Text: Alfred Moore Scales started to be active on916

1875-03-04.917

918

B Experimental Details919

We use a batch size of 5 and a beam search size920

of 5 for zero-shot and few-shot settings. For other921

settings, we do model selection based on the per-922

formance on the validation set, with a batch size923

chosen from {2, 4, 8} and {1, 3, 5}, respectively.924

We use sacreBLEU (Post, 2018) for model selec-925

tion. The URL for the metrics and corpus we use926

are shown in Table 8 and Table 9, respectively.927

Metric URL

BLEU https://github.com/
moses-smt/mosesdecoder/
blob/master/scripts/
generic/multi-bleu.perl

METEOR https://www.cs.cmu.edu/
~alavie/METEOR/index.html

PARENT https://github.com/
KaijuML/parent

SacreBLEU https://github.com/mjpost/
sacrebleu

Table 8: The URLs for the metrics we use in the experi-
ments.

Dataset URL

WebNLG https://gitlab.com/
shimorina/webnlg-dataset/
-/tree/master/webnlg_
challenge_2017

DART https://github.com/
Yale-LILY/dart

E2E https://github.com/
tuetschek/e2e-dataset

WikiFluent https://github.
com/kasnerz/
zeroshot-d2t-pipeline

Table 9: The URLs for the corpus we use in the experi-
ments.

C Zero-/Few-shot Experimental Results 928

We show the BLEU, METEOR and PARENT-F1 929

scores for zero-/few-shot experiments on WebNLG 930

and DART in Table 10 and Table 11, respectively. 931
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#Instance 0 10 20 50 100

KGPT 14.19/20.78/20.67 17.50/23.13/ 25.77 18.40/23.44/26.49 21.68/25.30/29.22 24.72/26.71/46.50
T5-large 10.46/25.63/23.67 24.74/32.28/42.48 41.38/36.12/52.77 45.32/39.49/59.39 48.68/39.24/60.66

ASDOT 43.99/39.32/58.23 45.16/38.95/58.24 47.46/39.35/59.85 49.36/40.08/61.25 49.39/40.09/61.08
- w/o weak-sup 34.47/30.06/51.51 39.38/33.93/56.44 43.67/35.81/57.99 47.56/38.61/60.04 48.60/39.68/60.56
- w/ manual templ. 42.02/38.85/58.26 43.37/38.69/58.80 46.12/38.88/60.94 48.28/39.64/62.02 48.32/39.32/61.92

Table 10: WebNLG few-shot results. x / y / z denotes the model performance on BLEU / METEOR / PARENT-F1.

#Instance 0 10 20 50 100

KGPT 11.15/19.30/18.92 14.91/19.74/23.76 16.83/21.30/26.67 20.16/23.14/31.13 20.31/23.82/31.35
T5-large 8.43/22.67/23.81 29.97/31.44/46.82 32.96/31.76/47.36 37.08/34.43/54.10 39.92/34.90/55.05

ASDOT 38.81/36.91/54.10 40.50/36.65/56.00 41.45/36.45/57.34 42.33/36.99/57.63 42.87/36.77/58.37
- w/o weak-sup 31.92/26.15/43.99 38.15/32.11/54.97 37.12/32.80/54.12 40.79/35.70/56.40 41.22/35.15/57.79

Table 11: DART few-shot results. x / y / z denotes the model performance on BLEU / METEOR / PARENT-F1.
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