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Abstract

Vision Language Foundation Models (VLFMs) have
shown impressive generalization capabilities, making them
suitable for Domain Generalization (DG) tasks, such as
training on synthetic images and testing on real data.
However, existing evaluations predominantly use academic
benchmarks constructed from internet images, akin to the
datasets used for training VLFMs. This paper assesses
the performance of VLFM-based DG algorithms on two
synthetic-to-real classification datasets, Rareplanes-tiles
and Aerial Vehicles, designed to emulate industrial con-
texts. Our findings reveal that while VLFMs excel on aca-
demic benchmarks, outperforming randomly initialized net-
works, their advantage is significantly diminished on these
industrial-like datasets. This study underscores the impor-
tance of evaluating models on diverse, representative data
to understand their real-world applicability and limitations.

1. Introduction
The performance of deep learning algorithms heavily relies
on the quantity and quality of training samples. In certain
scenarios, obtaining realistic data can be costly, making the
generation of synthetic data that mimics real data a more
convenient alternative. Although synthetic data is becoming
increasingly similar to real data, a distribution discrepancy
persists. When dealing with images, this discrepancy can
arise from various factors such as texture, lighting, and ar-
rangement of elements. Consequently, a deep learning algo-
rithm whose parameters have been learned using synthetic
data may perform poorly on real data. This problem is ad-
dressed by domain adaptation [24] when a few target sam-
ples are available, and by domain generalization [7, 12, 20]
when no target samples are available.

Vision Language Foundation Models (VLFMs) such as
CLIP [15] or CoCa [29], trained on billions of (text, image)
pairs, produce high-quality image representations. VLFMs
consist of a visual encoder and a text encoder, trained to
minimize a contrastive loss, bringing together semantically
related text and images while separating unrelated ones.
Their remarkable ability to generalize is a key driver for
their successful application in domain generalization tasks.

The multimodal datasets used to train VLFMs [5, 17]
are built by collecting images that are openly available on
the internet. While internet images represent a vast do-
main, they are far from encompassing every conceivable
task. Consequently, we can expect VLFMs to produce high-
quality image representations for images that follow the dis-
tribution of ”internet images,” which may be the case for
images from academic benchmarks, primarily constructed
by collecting internet images [14, 16]. However, their ef-
fectiveness is far from obvious for industrial applications.

This work evaluates the performance of VLFM-based
domain generalization algorithms on datasets that deviate
from typical academic benchmarks, with a focus on the sce-
nario where a classifier is trained on synthetic images and
tested on real images. Specifically, we assess these algo-
rithms on two internal datasets, Rareplanes-tiles and Aerial
Vehicles, where we know the images are not available on
the internet and thus not present in the multimodal datasets
used to train VLFMs. By evaluating on these datasets that
are more representative of industrial applications, we aim
to gain insights into the real-world applicability and limi-
tations of VLFM-based domain generalization approaches
for synthetic-to-real transfer.

2. Related work
Several works have explored training deep models on syn-
thetic data for various computer vision tasks, either gener-
ating synthetic datasets [9, 10, 28] or proposing techniques
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to leverage synthetic data for improving real-world per-
formance [1, 18, 25]. [10] [28] generated large synthetic
overhead imagery datasets and demonstrated their benefits
for training segmentation and object detection models, re-
spectively. [9] released a synthetic vehicle dataset, show-
ing its advantages over ImageNet for pretraining vehicle-
related tasks. [18] reviewed data augmentation and syn-
thetic data generation methods for improving training with-
out additional real data. [1] proposed a contrastive frame-
work to enhance feature diversity and real-world generaliza-
tion when training on synthetic data. [25] showed the possi-
bility of performing face-related tasks using only highly re-
alistic synthetic training data. [2] investigated domain adap-
tation techniques for augmenting rare classes with synthetic
samples in imbalanced datasets.

More recently, due to the quality of the learned visual
encoder, VLFMs have been widely used in domain gener-
alization tasks. The simplest way to use VLFMs for do-
main generalization is to learn a linear classifier on top of
the frozen visual encoder. While this yields good results at
very low computational cost, methods have been developed
to further improve generalization.

With a textual description of each class, the text-image
alignment of VLFMs allows the construction of a simple
zero shot algorithm by encoding a prompt representing each
class in order to create a linear classification head. It has
been shown that adding some context to the prompts en-
hances the zero-shot algorithm [15]. For example, if the
test images have a particular style, e.g. cartoonish, then us-
ing prompts such as a cartoon of a {classname}
will produce a better classifier than the generic prompts
{classname}. Following this observation, [31] propose
CoOp, a few shot classification algorithm using contextual
optimisation. More precisely, they aim to learn the context
words that lead to the best accuracy on a few set of images,
turning CLIP into an effective few shot learner. CoCoOp
[30] adds an image-conditioned part into context optimiza-
tion, leading to better domain generalization performance.

Fine-tuning a model is usually the standard way to ben-
efit from the knowledge embedded in the model. However,
in the presence of a distribution shift, fine-tuning VLFMs
on source data can actually degrade the performance of the
fine-tuned algorithm on target data. Several methods have
been developed to mitigate this problem. WiSE (Weight
Space Ensembling) [27] proposes to ensemble weights from
the zero shot and the fine-tuned model and ”model soups”
[26] ensembles weights from fine-tuned models with differ-
ent set of hyperparameters.

A final category of VLFMs-based DG algorithms re-
lies on a textual description of the target domain to modify
source images in order to reduce the domain gap with the
target images. [22] and [4] propose to learn an augmenta-
tion function per source image that modifies its intermedi-

ate representation such that its CLIP representation is closer
to the target domain description. The modified intermedi-
ate representations are then sent to a segmentation or object
detection algorithm. Finally, LADS [3] and LANDA [23]
use StyleGAN-NADA’s [6] directional loss to learn a global
augmentation function that operates in CLIP space.

3. Experimental Study

As mentioned in the introduction, this paper’s primary con-
tribution is to conduct a comprehensive experimental cam-
paign aimed at evaluating the effectiveness of approaches
based on Vision-Language Foundation Models (VLFMs)
like CLIP in learning from synthetic data. The methodology
employed for these experiments is detailed in this section.

3.1. Evaluated Methods

We evaluated the following six methods:
1. SourceOnly is a simple end-to-end learning approach

on images from the source domains (i.e., using only syn-
thetic images without any adaptation mechanism) of a
randomly initialized ResNet50 with a linear classifica-
tion head.

2. CLIP ZS is the zero-shot classification algorithm pro-
posed in [15], where a linear classification head is com-
puted with prompts representing each class, while the
image encoder remains frozen.

3. FT CLIP refers to the end-to-end fine-tuning of the pre-
trained CLIP visual encoder ResNet50 and the zero shot
classification head, aiming to leverage the generalization
capability of the CLIP model.

4. WiSE [27] is a robust fine-tuning method that consists
of averaging the weights of the zero-shot model and the
fine-tuned model. In our experiments, we used a mixing
coefficient of α = 0.5.

5. CoOp [31] is a prompt learning method that learns the
optimal context that leads to the best accuracy.

6. CoCoOp [30] (Conditioned Context Optimization)
learns a context adapted to an unseen image, aiming to
improve out-of-distribution performance. For CoOp and
CoCoOp, we used a context length of M = 4 in our ex-
periments.
Several VLFMs-based domain generalization image

classification methods [3, 23] rely on a textual descrip-
tion of the target domain. As we will see in Section 5,
these methods are not well-suited for the proposed indus-
trial datasets, as there is no way to find relevant textual de-
scriptions of the target domains.

3.2. Datasets from Scientific Literature

We evaluate VLFMs-based domain generalization algo-
rithms on several datasets commonly used to benchmark
domain generalization algorithms: DomainNet [14] (6 do-
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mains, 345 classes), PACS [11] (4 domains, 7 classes), and
OfficeHome [21] (4 domains, 65 classes).

Each of these datasets has a domain depicting photore-
alistic images. We conduct our experiments utilizing the
photorealistic domain as the target and the other domains as
sources in a multi-source setup.

3.3. Industrial Datasets

We also run our experiments on two datasets that are more
representative of the type of images encountered in indus-
trial applications. These datasets are more challenging,
sometimes featuring low-resolution images and represent-
ing objects rarely found in academic benchmarks.

For both datasets, the two domains are synthetic and
real images. The first dataset addresses the recognition of
Rareplanes-tiles, while the second focuses on the recog-
nition of Aerial Vehicles. The former is created from the
open-source detection dataset Rareplanes [19], and the lat-
ter is a dataset used in a company. The composition of the
datasets is described in the following paragraphs.

Rareplanes-tiles: Rareplanes [19] is an object detection
dataset containing synthetic and real satellite imagery of
aircraft seen from the sky at multiple locations. It con-
tains ∼630k synthetic aircraft annotations and ∼14k real
aircraft annotations. Each aircraft is accompanied by a
collection of characteristics, including the number of en-
gines, role, wings, etc. In total, there are 7 different roles:
civil large/medium/small transport, military fighter, military
bomber, military transport, and military trainer. However,
the synthetic images only contain three different aircraft
roles: civil large/medium/small transport. We decided to
train a classifier to distinguish between these three roles.
We extracted individual aircraft images using the provided
bounding boxes. This resulted in a three-way classification
problem, with 14k realistic images and 37k synthetic im-
ages. For simplicity, we did not use all of the 630k synthetic
aircraft annotations. See Figure 1 for image examples. In
the following experiments, the classifiers are trained on syn-
thetic images and evaluated on real images.

Aerial Vehicles consists of low-resolution synthetic and
real infrared images of vehicles as seen from the sky. The
classification problem is to predict the role of the vehicle
(car, truck, military truck, armored vehicle, tank) or if there
is no vehicle at all. This results in a six-way classifica-
tion problem, with ∼24k synthetic images and ∼23k real
images. See Figure 2 for image examples. In the follow-
ing experiments, as for Rareplanes-tiles, the classifiers are
trained on synthetic images and evaluated on real images.

Figure 1. Examples of images from Rareplanes-tiles. Top row:
synthetic images, bottom row: real images. Left column: small
planes, middle: medium planes, right: large planes. Images have
an average size of 80 pixels (std = 70 pixels).

Figure 2. Examples of images from Aerial Vehicles. Top row:
synthetic images, bottom row: real infrared images. Left column:
car, middle: truck, right: tank. Images have an average size of 30
pixels (std = 12 pixels).

3.4. Visual-Language Model

We use the CLIP pre-trained ResNet50 from OpenAI1.
Its architecture differs slightly from the original ResNet50
in that it replaces global pooling with multi-head atten-
tion. We use the same architecture when training the
model in the SourceOnly experiments. For the experi-
ments requiring a zero-shot algorithm, we build the lin-
ear classification head with prompts such as a photo of
a classname for academic datasets and an aerial
photo of a classname for industrial datasets.

3.5. Hyperparameter Tuning

Following the recommendations of DomainBed [8], we
chose the hyperparameters (learning rate, weight decay,

1https://github.com/openai/CLIP
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OH PACS DN RP AV

SourceOnly 26.1 30.7 12.6 72.9 30.8
CLIP ZS [15] 80.2 99.5 76.6 37.4 19.5
FT CLIP 75.3 83.7 55.4 74.2 33.5
WiSE [27] 81.6 97.0 77.4 60.4 26.9
CoOp [31] 81.8 99.2 78.9 73.2 37.0
CoCoOp [30] 82.3 99.3 79.6 74.0 36.8

Table 1. Macro-accuracy on OH = OfficeHome, PACS, DN = Do-
mainNet, RP = Rareplanes-tiles, AV = Aerial vehicles.

stopping iteration) that maximized accuracy on a validation
set containing 20% of the training images. In all our exper-
iments, we used the AdamW optimizer [13].

4. Results
In these experiments, the source domain comprises syn-
thetic images, while the target domain consists of real im-
ages, evaluating the synthetic-to-real transfer capability. As
academic datasets from the scientific community do not in-
clude synthetic data, we utilize the photorealistic domains
as targets and the other domains as sources for a multi-
source setup. Each experiment is repeated 5 times, and the
average accuracy is reported. Due to a high class imbalance
in the real domains of both Rareplanes-tiles and Aerial Ve-
hicles, we compute the macro accuracy (treating all classes
equally) on the test domain to evaluate the methods fairly.
The results are presented in Table 1.

On academic datasets, CLIP-based algorithms signifi-
cantly outperform randomly initialized end-to-end training.
For example, accuracy is more than tripled on OfficeHome.
Prompt learning strategies (CoOp, CoCoOp) seem to out-
perform fine-tuning the whole encoder, even with the addi-
tion of WiSE robust fine-tuning.

For industrial datasets, CLIP ZS performs only
marginally better than random guessing, indicating poor
text-image alignment for the images in Rareplanes-tiles
and Aerial Vehicles. CLIP-based DG algorithms improve
the performance of a randomly initialized network, but the
gain is much lower than that observed on academic datasets.
The former observation partially explains the latter, as each
of the CLIP-based DG algorithms we tested relies heavily
on the ZS model. FT CLIP involves fine-tuning the zero-
shot model, WiSE ensembles the fine-tuned model and the
ZS model, and prompt learning strategies build a classifier
using textual descriptions of the classes, similar to ZS.

5. The challenge of describing atypical do-
mains

Some domain generalization methods [3, 23] leverage a tex-
tual description of the target domain to modify the source

photo art painting cartoon sketch

photo 18.15 17.53 17.47 18.39
artistic painting 14.81 20.49 16.25 18.67
cartoon 12.46 14.83 16.89 19.17
sketch 12.98 15.80 14.51 19.56

Table 2. Mean cosine similarities (%) between images of PACS’s
domains and a textual description.

real synthetic

aerial photo 16.29 17.53
aerial synthetic image 18.08 19.23

Table 3. Mean cosine similarities (%) between images of
Rareplanes-tiles and a textual description.

images in order to bridge the domain gap. These methods
require a textual description that specifically describes the
target domain. It is relatively straightforward to find tex-
tual descriptions for the domains of academic benchmarks,
where the name of the domain is often a sufficient descrip-
tion, possibly with a slight modification (art painting →
artistic painting). However, crafting textual descriptions
for Rareplanes-tiles and Aerial Vehicles is challenging.

We measure the capacity of a textual description tD to
represent a domain D by computing the mean cosine simi-
larity in CLIP space between tD and the images of D:

Sim(tD,D) =
1

|D|
∑
x∈D

ET (tD) · EV (x)

∥ET (tD)∥2∥EV (x)∥2

with EV the visual encoder and ET the textual en-
coder. Table 2 shows the similarity matrix between the do-
mains of PACS and the textual descriptions corresponding
to each PACS domain, computed using the textual and vi-
sual encoders of CLIP ResNet50. We observe that, in most
cases, the textual description that best represents a domain
is the one derived from the domain name. However, for
Rareplanes-tiles, aerial synthetic image better
represents images from both the real and synthetic domains
(see Table 3). Such a textual description that describes
both source and target domains is not a relevant informa-
tion. We tried several variations of the word synthetic
(simulated, artificial...) without finding a satis-
factory textual description for the synthetic images. We
make similar observations for Aerial Vehicles.

As a consequence, we cannot use the domain generaliza-
tion methods that exploit a textual description of the target
domain. This confirms that these type of images are in the
blind spot of CLIP.
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6. Conclusion and Future Work
This paper evaluated VLFMs-based Domain Generaliza-
tion (DG) algorithms on two synthetic-to-real classification
datasets, Rareplanes-tiles and Aerial Vehicles, designed to
emulate industrial data. While VLFMs-based DG meth-
ods outperformed end-to-end training on academic bench-
marks, their effectiveness was significantly limited on these
industrial-like datasets. Further research is needed to lever-
age the knowledge in VLFMs for classifying atypical data
not well-represented during their training.
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