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ABSTRACT

The Lennard-Jones potential, initially developed to model molecular interactions,
is characterized by a repulsive force at short distances to prevent over-clustering
and an attractive force at longer distances to maintain balanced proximity, resem-
bling the equilibrium-seeking behavior of particles in natural systems. This offers
a potential pathway for more orderly entropy reduction in higher-order features.
This paper introduces a self-supervised approach for feature re-representation, uti-
lizing a Lennard-Jones potential loss to constrain the gradient directions between
positive and negative features in computer vision tasks. Unlike supervised learn-
ing directly driven by downstream tasks or contrastive learning with multi-label
data pairs and multi-feature extractors, the proposed loss term integrates with ex-
isting task-specific losses by directly constraining gradient directions, thereby en-
hancing the feature learning process. Extensive theoretical analysis and experi-
mental results demonstrate that, across various domains, datasets, network archi-
tectures, and tasks, models incorporating the Lennard-Jones potential loss signif-
icantly outperform baseline models without this auxiliary loss in both accuracy
and robustness. This approach highlights the potential of physics-inspired loss
functions to improve deep learning optimization.

1 INTRODUCTION

The second law of thermodynamics (Clausius, |1850) posits that in an isolated system, without exter-
nal interference, the system will naturally progress toward a state of disorder and equilibrium. Simi-
larly, in deep learning, loss functions act as external forces, guiding randomly initialized, disordered
parameters toward a more organized and structured state, thereby enhancing model performance.
Task-specific loss functions, like cross-entropy loss (Shannonl [1948)), typically target the final-layer
features for downstream tasks. While effective at optimizing task performance, these loss func-
tions often overlook the structural refinement of the feature space, which is crucial for enhancing
generalization.

Recently, contrastive loss functions (Hadsell et al., 2006) have improved feature space structure
by maximizing similarity between similar samples and minimizing similarity between dissimilar
ones. Notable examples include the single-modal dual-encoder model in MoCo (He et al., 2020b)
and multi-modal learning in CLIP (Radford et al., 2021). However, these methods tend to require
substantial additional resources, such as data augmentation, multiple feature extractors, or annotated
paired data, which complicate models and increase computational costs (Chen et al.l |2020a; |Grill
et al., [2020a).

In parallel to how physical laws govern the transformation of systems from disorder to order, deep
learning optimization aims to evolve chaotic initial features into a low-entropy ordered state. Early
research (Rackauckas et al., 2020; [Karniadakis et al., 2021} [Zhu et al.| [2019; |Chen et al., 2018}
Rackauckas et al., [2020) explored this idea by integrating physical principles into the optimization
process. Energy-based (LeCun et al., [2006; Ngiam et al. [2011) and entropy-based (Jaynes, [1957;
Grandvalet & Bengiol|2005) methods, inspired by physics, offer alternative perspectives for optimiz-
ing feature spaces. Energy-based models cluster similar samples by minimizing energy states, while
entropy-based methods increase the entropy of feature distributions to avoid over-fitting. These
physics-inspired approaches have shown promise in both self-supervised and unsupervised tasks by
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Figure 1: The comparison between SE Loss, contrastive Loss, and our proposed LJ Loss.

improving feature representation, reducing dependence on labeled data, and boosting generalization,
thus paving the way for advancements in contrastive learning with simplified model designs.

Building on this foundation, we propose Lennard-Jones (LJ) Loss, an auxiliary loss function aimed
at optimizing the feature space. Inspired by the Lennard-Jones potential (Lennard-Jones| [1924)) in
physics, LI Loss employs a dual mechanism of “attraction” and “repulsion” within the feature space.
When semantic distances between samples are small, LJ Loss applies a repulsive force to avoid over-
clustering, while larger distances trigger an attractive force to reduce feature dispersion. As shown
in Figure [T} LT Loss better balances intra-class compactness and inter-class separation compared
to traditional Euclidean distance-based methods, without adding inference overhead. Extensive ex-
periments on various computer vision tasks demonstrate substantial performance improvements,
especially in cases with small sample sizes and complex intra-class distributions. These findings
underscore the potential of LJ Loss in enhancing feature learning and optimization, and suggest
promising future research directions. The main contributions of this paper are:

* Propose a gradient direction-constrained loss function based on the Lennard-Jones poten-
tial, optimizing feature distributions by regulating sample positions and gradient directions.

* Demonstrate significant performance improvements across various computer vision tasks,
including image classification, multi-view learning, and semantic segmentation.

* Analyze feature categories and limitations of LJLoss, providing theoretical insights and
proofs to establish a new foundation for optimizing feature representations.

Through these contributions, we demonstrate that a gradient direction-constrained loss based on the
Lennard-Jones potential enhances deep learning model performance, promoting the integration of
physical models in the development of advanced loss functions.

2 RELATED WORK

2.1 COMPUTER VISION MODELS

Deep learning models have made significant advancements in computer vision tasks (LeCun et al.,
1998 [Krizhevsky et al., [2012; |Simonyan & Zisserman) 2014} He et al., 2016aj Tan & Lel 2019
Dosovitskiy et al.| 2021b; [Liu et al.,|2021), including image classification, object detection, and se-
mantic segmentation, primarily by learning rich and discriminative feature representations. Classic
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architectures like the ResNet (He et al. 2016b) and its variants utilize deep convolutional neural
networks (CNNGs) to hierarchically extract features from images, aiming to distinguish between dif-
ferent classes (inter-class variation) while minimizing differences within the same class (intra-class
variation). These models, however, typically lack mechanisms to handle more subtle intra-class
variations — the differences between instances of the same class that are not necessarily captured
by maximizing inter-class variance alone. For example, in image and point cloud processing, mod-
els can effectively separate different object categories but may struggle with differentiating nuanced
intra-class differences, such as variations in pose, illumination, or style among objects of the same
category. This limitation suggests the need for more refined approaches that consider both inter-class
and intra-class relationships within the feature space.

2.2 CONTRASTIVE LEARNING

Contrastive learning has become a powerful approach for self-supervised representation learn-
ing (Chen et al., [2020bj He et al.l 2020a; |Grill et al.l |2020b; [Khosla et al., [2020), where the ob-
jective is to learn meaningful features without direct supervision by maximizing agreement between
positive pairs and minimizing agreement between negative pairs. This method relies on explicitly
defining what constitutes a ’positive” sample (typically, different augmented views of the same in-
stance) and a ’negative” sample (different instances altogether), often requiring manual or heuristic-
based labeling of these pairs. While contrastive learning excels at learning inter-class distinctions
by pulling positive samples closer together and pushing negative samples apart in the feature space,
it inherently lacks mechanisms to handle intra-class consistency.

The fundamental limitation of contrastive learning lies in its focus on distinguishing samples based
on pre-defined positive and negative pairs. This binary relationship does not inherently consider the
nuanced variations that may exist within a single class, such as subtle differences in shape, texture, or
style among samples that share the same label. Consequently, contrastive learning methods are not
designed to ensure that the features extracted within a single class maintain semantic coherence and
meaningful alignment. This gap limits their effectiveness in tasks that require a finer understanding
of intra-class structure and variability, especially when dealing with complex or highly variable data
distributions.

2.3 APPLICATIONS OF THEORETICAL PHYSICS IN DEEP LEARNING

In recent years, theoretical physics has inspired several innovative applications in deep learning,
providing new methods for model design and optimization. For example, concepts from statistical
mechanics, such as energy minimization, have been used to develop energy-based models that better
capture underlying data distributions and improve robustness against adversarial attacks. The Ising
model (Ising, [1925), commonly used in physics to describe ferromagnetism, has been adapted to
analyze and optimize neural networks, drawing parallels between the dependencies among neurons
and the interactions of magnetic spins. Additionally, ideas from quantum mechanics, such as the
Feynman path integral (Feynman, |1948)), have influenced new approaches to probabilistic reasoning
and uncertainty estimation in machine learning. These applications demonstrate that insights from
physics can offer fresh perspectives on deep learning, particularly in enhancing model robustness
and interpretability. However, most of these applications do not directly address the structuring of
feature spaces or the refinement of relationships between individual samples within those spaces,
leaving room for new approaches that leverage physical principles in more targeted ways.

3 THEORY

This section introduces the theoretical foundation of a loss function inspired by the Lennard-Jones
potential (LJ) and its application to deep learning. We start by formalizing the problem of fea-
ture optimization and discussing the limitations of traditional contrastive learning methods. Next,
we introduce the concepts of global and local features, which are crucial for modeling interactions
within the feature space as part of the same physical system. This perspective allows us to apply
the Lennard-Jones potential effectively in controlling feature representations (a detailed proof is
provided in the appendix). Finally, we provide the physical background of the Lennard-Jones po-
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tential, which describes the interactions between microscopic particles, laying the groundwork for
our proposed loss function.

3.1 FORMALIZATION AND PROBLEM DEFINITION

In the context of feature optimization for deep learning, consider a dataset D = {x;}Y ,, where
x; € R and N represent the i-th sample and the total number of samples, respectively. d is the
dimensionality of the samples. A feature extractor f : R? — R™ maps each sample z; to a vector in
the feature space, denoted as f; = f(z;) € R™, where m is the dimensionality of the feature space.

The similarity between two samples ¢ and j in the feature space can be quantified by the cosine of
the angle 6;; between their feature vectors:

£ £
cosb;; = ——2—, (D
TN

where f; - f; denotes the inner product of the feature vectors, and ||f;|| and ||f;|| denote the Euclidean
norms of the feature vectors. A distance measure between the sample pairs can then be defined as

Tij = 1 —cos 92’]’7 Tij € [072] 2)

This distance metric reflects the relative positioning of the sample pairs: when the feature vectors
f; and f; are identical, 7;; = 0; when they are in opposite directions, r;; = 2. However, in certain
applications, it is challenging to determine which sample pairs are positive or negative, making it
difficult to directly apply traditional contrastive loss functions. Therefore, a new approach is required
to guide the optimization of feature representations from their initial state to an optimal state.

To model the interactions among features effectively, we consider them as entities within the same
physical system. This perspective necessitates distinguishing between global and local features,
which plays a critical role in how we apply the Lennard-Jones potential to feature optimization (the
specific proof is provided in the appendix).

3.2 GLOBAL AND LOCAL FEATURES DEFINITION

Global features refer to the comprehensive information extracted from all elements of an input sam-
ple, reflecting the overall characteristics of the sample. Unlike local features, global features are not
restricted to specific regions or subsets of the input. Instead, they encapsulate high-level informa-
tion derived from the entire sample, which can be obtained through various means, such as fully
connected layers, pooling operations, or attention mechanisms. In a more generalized form, global
features can be expressed as:

G =f(X)=g(x1,22,...,7N),

where X is the input sample, x; represents each element or region in the sample, and g(+) is a general
operation (such as pooling, attention, or a combination thereof) that aggregates information from the
entire input, with no assumption that it must be an average.

Local features, in contrast, focus on a subset of the input sample and are typically extracted by
earlier layers of a neural network. Convolution is a common method for generating local features
(see Appendix [B), as its receptive field generally cannot cover the entire sample. For example, in
the case of convolutional layers, the extraction of local features can be described mathematically as:

k—1k—1

Lm,n = E § Wi,5 * Tm4-i,n+j,

i=0 j=0

where w; ; denotes the convolutional kernel weights, %,,,4; n+; corresponds to the local region of
the input sample centered at position (m, n), and k is the kernel size.
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However, local features can also be derived through other methods that focus on specific regions or
patches of the input, depending on the architecture of the model used. The key difference between
global and local features is that local features capture finer details within small regions, while global
features integrate information from the entire input.

3.3 LENNARD-JONES POTENTIAL

The Lennard-Jones (LJ) potential is a widely used model to describe intermolecular interactions,
especially van der Waals forces (van der Waals, |1873)). The classical 12 — 6 form of the potential is
given by:

vo-[0)"-9)]

where 7 is the distance between particles, € represents the potential well depth, and o defines the
equilibrium distance. This form captures the balance between short-range repulsion, dominated by

12 . 6
the (2) ~ term, and long-range attraction, governed by the (2)"~ term.

To generalize this potential for more flexible modeling, we can extend the 12 — 6 formto a 2n — n
form:

vor- (2" ),

where n is a positive integer that controls the steepness of the repulsive and attractive terms. This
generalization allows tailoring the interaction profile to specific systems by adjusting n.

The force derived from this generalized potential is given by:

Foﬁdvgﬁ4ne[2(”)%L(“)"}. (5)

dr r T T

At r = o, the system is in equilibrium with zero net force. For r < o, the repulsive term domi-
nates, preventing overlap, while for » > o, the attractive term dominates, drawing particles closer.
This generalization is useful for capturing a wider range of physical behaviors, from hard-sphere
interactions to softer profiles.

In both its classical and generalized forms, the Lennard-Jones potential remains a robust framework
for modeling intermolecular forces, balancing short-range repulsion with long-range attraction, and
providing flexibility for different physical systems.

4 METHODOLOGY OF LJ LOSS FUNCTION

Inspiring by the Lennard-Jones potential, the proposed loss function models molecular interactions,
to address limitations in existing contrastive learning approaches. Specifically, the LJ Loss func-
tion introduces both inter-class repulsive forces and intra-class attractive forces, promoting well-
separated inter-class features while ensuring compact intra-class distributions. Unlike contrastive
learning, the LJ Loss function does not rely on predefined positive and negative pairs but instead
constructs interaction forces based on the distances between sample representations.

In the feature optimization context, the relative distance between two samples ¢ and j is expressed
as r;; = 1 — cos0;;, where 0;; is the angle between feature vectors f; and f;. The generalized
Lennard-Jones potential can then be applied as:

g gn 1 NN
Vig=de| 5= Lu=532. > Vi (6)
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where n is a positive integer controlling the decay rate of the interaction, ;; = 1 —cos 6;; represents
the distance between two samples, and € and o are constants that regulate the strength and range of
the potential.

The gradient of V;; with respect to the angle 6;; is computed as:
oVij

Grad. = a0, = —4esinb;; <

m O.Zn no™
+ . @)
(1 —cosb;;)?n+t (1 cos@,;j)"“)
Notably, in Eq[5] the derivative of the Lennard-Jones potential corresponds to the force exerted on
the particles. Similarly, the gradient in Eq[7)can be interpreted as a force acting on the feature vec-
tors. Specifically, for small angles 0;;, where features are more similar, attractive forces dominate,
drawing intra-class samples closer together. Conversely, at larger angles, repulsive forces prevail,
pushing inter-class samples further apart and thereby enhancing class separation.

By minimizing the LJ Loss, the method ensures a feature space where intra-class samples form
compact clusters and inter-class samples are well-separated. This physically inspired loss function
provides an effective mechanism for optimizing feature representations without requiring predefined
positive and negative pairs, offering a flexible solution to representation learning challenges.

For classification tasks, where only intra-class interactions are needed, each vector experiences an
attractive force from similar vectors, converging to a stable state similar to physical systems. Repul-
sive forces prevent excessive overlap when vectors become too close. However, in tasks requiring
inter-class interaction, such as segmentation, attractive forces between distinct classes with low sim-
ilarity are inappropriate, and only repulsive forces should apply. Thus, we have made adaptive
modifications to LJ Loss for multi-class tasks. The adaptive equation is as follows:

B 0_277, o
Vij = 4e (27: — cosb;; % n) , cosb;; € [—1,1] ()
rén r

iJ 1]

where the additional similarity cos ;; denotes as multiplication operator. Specifically, when f; and
f; represents different classes resulting in a negative number of the cos 0;;, the effect of LJ Loss is
manifested as a repulsive resultant force. Evidence of the necessity of the proposed loss is provided
in the Appendix [A]

5 EXPERIMENT

We evaluate LJ Loss on 2D image recognition and 3D point cloud classification and segmentation
tasks. Using visualizations, we highlight its performance across tasks. Various hyperparameter set-
tings (see in Appendix with implement code), and it’s sensitive in Appendix were tested to
ensure a comprehensive evaluation. All experiments ran on up to two RTX 4090 GPUs with a max-
imum of 24 CPU threads. Classic backbone networks were used, covering a range of architectures.
To ensure result consistency, the random seed was fixed at 1, implement details see Appendix
The baseline performance with default loss functions was compared to LJ Loss, focusing on training
stability, test set performance, and loss function reduction.

5.1 2D IMAGE RECOGNITION

We evaluate Vision Transformer (ViT) (Dosovitskiy et al.,2021a) and ResNet (He et al.,|2016b) vari-
ants on CIFAR-100 (Krizhevsky & Hinton| [2009) and TinyImageNet (Deng et al., 2009) datasets.
CIFAR-100 has 50,000 training and 10,000 test images across 100 classes (32x32 resolution), while
TinyImageNet has 100,000 training and 10,000 test images across 200 classes (64x64 resolution).
Only random flipping is used for data augmentation during training.

Direct Classification The design principle of the backbone network variants is to simulate under-
fitting, proper fitting, and overfitting scenarios (proof in Appendix [D)), in order to assess the impact
of LJ Loss on model performance under these conditions and evaluate its applicability. The specific
parameters of the ViT shown in Table|l|and ResNet variants are detailed in the Appendix
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Table 1: Comparison of ViT Models with and without LJ Loss in TinyImageNet. Dim refers to
the hidden layer dimension. MLP Ratio is 4 for all models. Accuracies are in percentages. At
represents the percentage of additional training time required for the LJ Loss version compared to
the baseline. Bold values in parentheses indicate the percentage improvement brought by LJLoss.

Model Head Layer Patch Dim Train Acc Val Acc Max Val Acc At
ViT-S/8 6 6 8 192 91.64(+0.12) 38.50(+0.78) 41.74(+1.53) 9.62%
ViT-S/16 6 6 16 192 93.42(+2.06) 39.93(+2.89) 44.19(+0.30) 7.31%
ViT-B/8 12 12 8 384  90.41(+2.03) 37.69(+2.50) 41.27(+2.04) 11.84%

ViT-B/16 12 12 16 384  92.94(+2.45) 39.53(+0.92) 42.67(+1.78) 3.75%
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Figure 2: Log visualization of different ViT settings on TinyImageNet.

To address the challenge of LJ Loss struggling to find optimal solutions during fine-tuning—which
hampers effective gradient descent in downstream tasks—we trained the ViT model from scratch.
Without extra pre-training data, ViT significantly underperforms compared to CNN-based methods
that incorporate inductive biases. We recorded test performance and loss at the end of each epoch;
Figure [2| visualizes the training of four variants from Table[l|on TinyImageNet.

Models incorporating LJ Loss consistently outperformed the baseline in both training and testing.
Larger patches led to a more substantial decrease in loss due to their richer global information and
enhanced interactions within attention layers. In smaller ViT-S configurations, we observed slight
performance improvements attributed to underfitting from over-parameterization. Even in these
underfitting scenarios, models using LJ Loss were less affected and showed greater improvements
over the baseline, highlighting LJ Loss’s ability to effectively utilize limited information.

Multi-View Classification We constructed a MLP model on CIFAR-10 (Krizhevsky & Hinton)
2009). First, the RGB channels were converted to HSV, with each of the three channels carrying
distinct but complete RGB information. Each channel was flattened into a 1D vector and processed
by three identical fully connected layers, followed by fusion and classification. The fusion methods
include channel averaging and concatenation. This approach can be considered a multi-view image
classification model, where each of the three feature extraction heads captures global information.
Based on this framework, we evaluated the potential of LJLoss in multi-view learning, with results
shown in Table[2l
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Table 2: Performance of MLP models on CIFAR-10, with accuracy reported as percentages. Bold
values indicate improvements from LJLoss over the baseline. The two results under each accuracy
column represent average fusion and concat fusion, respectively.

Layers Training Accuracy

0 44.19 (4-0.04) / 45.77 (+0.11)
1 74.79 (—0.12) / 89.77 (—0.30)
2 79.83 (—0.29) / 92.92 (+0.34)
3 81.91 (+0.06) / 93.92 (4-0.20)

Test Accuracy

38.93 (+0.51)/37.71 (+1.15)
54.11 (+0.25) / 53.12 (+0.67)
53.29 (+1.12) / 52.56 (+1.31)
51.63 (+1.20) / 50.71 (+1.88)

The results indicate that the model performs best with a single hidden layer. Throughout train-
ing, test accuracy did not decrease, suggesting that the issue is not overfitting but rather over-
parameterization. Compared to average fusion, concat fusion fits the training set better but re-
sults in lower test performance, likely due to the threefold increase in the final classification layer’s
parameters, making convergence difficult with limited training data. Across various scenarios,
LJLoss directly optimizes the final convergence of multi-view global features. Notably, under over-
parameterization, LJLoss significantly improves model performance, mitigating its adverse effects.

Table 3: Performance of ViT models on CIFAR-100. All accuracy values are percentages. Bold
values in parentheses indicate the percentage improvement brought by LJLoss.

Model Train Acc Test Acc Max Test Acc
ViT-S/8 97.16 (—0.46) 56.22 (+0.66) 56.78 (+0.58)
ViT-S/16  97.31 (+0.13) 52.68 (+0.87) 54.18 (+0.74)
ViT-B/8 96.38 (+0.04) 54.64 (+1.34) 54.64 (+1.54)
ViT-B/16  96.35 (+0.55) 52.18 (+1.05) 54.00 (+0.45)

We conducted experiments with the ViT model on the CIFAR-100 (Krizhevsky & Hintonl 2009)
dataset to further validate LJLoss in mitigating over-parameterization, as shown in Table[3] In some
cases, training accuracy decreased while test accuracy improved due to high feature homogeneity,
leading to conflicts between LJLoss and the downstream loss. Removing LJLoss increased training
accuracy but reduced test accuracy, underscoring the harmful effects of over-parameterization. This
strengthens the evidence for LJLoss’s performance benefits. Larger models are more affected due to
higher feature dimensionality, resulting in lower performance than ViT-S under patch consistency.
LJLoss not only improves general performance but also significantly benefits over-parameterization
networks, supporting the conclusions in Table 2]

5.2 3D POINT CLOUD UNDERSTANDING

We apply LJ Loss to point cloud backbones based on different methods, then test and compare their
performance across various downstream tasks. The first task is the ModelNet-40 (Qiu et al., 2022)
classification benchmark, which is a point cloud dataset generate from CAD models, consisting
of 40 classes, with 9,843 training samples and 2,468 validation samples. The second task is the
Scannet v2 (Dai et al.,[2017)) semantic segmentation benchmark, a point cloud dataset reconstructed
from RGB-D frames, comprising 1,201 training scenes and 312 validation scenes.

LJ Loss is incorporated into high-level feature interactions, where each point aggregates semantic
information across layers. We conducted classification experiments on ModelNet-40 with Point-
Net (Qi et al., [2017a)), PointNet++ (Q1 et al., 2017b), PointMLP (Ma et al.,[2022), and Point Trans-
former V3 (PTv3) (Wu et al., 2024), showing that LJ Loss improved accuracy with minimal training
overhead (Table ). For segmentation, we adapted LJ Loss to PTv3 on the ScanNet v2 benchmark.
After the encoder, points with similar semantics experience both attraction and repulsion forces,
while dissimilar points are influenced by repulsion only, reducing cosine distances between similar
points. This method yielded superior results, confirming its efficacy. Figure[3|provides a partial visu-
alization of the training process. LJ Loss showed stable performance improvements in both accuracy
and loss reduction, achieving faster convergence with comparable training time to the baseline.
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Table 4: Performance (percentage for OA or mloU) and training details for different 3D Backbone
on various point cloud datasets. At represents the percentage of additional training time required
for the LJ Loss version compared to the baseline. PointMLP and PTv3 are trained on our settings.

Backbone Method ModelNet40 (OA) Scannet v2 (mloU)
Performance ~ At  Performance At
PointNet MLP 89.2 (+2.3) 5.68 - -
PointNet++ MLP 91.9 (+1.3)  6.12 - -
PointMLP MLP 92.3 (+0.6) 6.00 - -
PTv3 Transformer  92.6 (+0.4) 4.82 77.6(+0.4) 6.57
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Figure 3: The visualized comparison encompasses two experimental sets. The inset highlights the
final 20% of epochs for clearer comparison. The first set reports Train Accuracy, Test Accuracy, and
Class Accuracy of PointNet++ on the ModelNet-40 classification task. The second set reports Train
Loss, validation mloU, and validation Accuracy of PTv3 on the Scannet v2 segmentation task.

6 CONCLUSION AND LIMITATION

This paper theoretically and experimentally demonstrates the feasibility of applying physical laws
to feature re-representation under known initial and final states. The improvements are reflected
in comprehensive performance, mitigating the impact of over-parameterization and constraining the
model’s tendency toward overfitting. Introducing the Lennard-Jones potential as a loss function does
not add significant burden to the model and often accelerates convergence, saving time. However,
its computational cost grows quadratically with the number of feature channels. Additionally, the
globality and parameter combinations, while theoretically sound, may impose overly strict or irrele-
vant physical constraints. Just as the Lennard-Jones equation is unsuitable for all systems, it cannot
handle highly skewed potential wells. Future work will aim to address these limitations.
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A WHY LENNARD-JONES POTENTIAL OVER OTHER PHYSICAL EQUATIONS

We selected the Lennard-Jones (LJ) potential over other physical equations because it effectively
guides the feature space optimization toward the intended objective of balancing intra-class com-
pactness and inter-class separation. Other physical equations, such as Coulomb’s law (Coulomb,
1785)) and gravitational models (Newton |1687)), are not suitable for achieving this goal due to their
inherent limitations in describing the relationships between features in a manner conducive to our
optimization process. Moreover, these alternatives introduce challenges in quantifying properties
like mass or charge, which do not have direct analogs in deep learning feature representations.

For instance, Coulomb’s law is expressed as:

keq192

F =3

where ¢; and ¢ represent electric charges, and r is the distance between them. Coulomb’s force is
restricted to binary interactions—either attractive or repulsive, depending on the charge signs. In the
context of deep learning, feature representations do not have a natural equivalent to electric charge,
making it difficult to apply this equation in a meaningful way. Furthermore, Coulomb’s law, with its
inverse-square relationship, can result in extreme gradient magnitudes when applied to optimization,
leading to potential instability, such as gradient explosion or vanishing.

Similarly, the gravitational force equation:

Gmims
F=—
r

where m, and my denote masses, suffers from similar limitations. The gravitational force only
describes attraction between masses, lacking any repulsive counterpart. This makes it unsuitable
for controlling both intra-class compactness and inter-class separation, as required in feature space
optimization. Additionally, mass, like charge, is not a well-defined property in deep learning models,
complicating its application. The lack of repulsion in the gravitational model would result in features
clustering too tightly, which is undesirable for maintaining separation between distinct classes.

In contrast, the Lennard-Jones potential (Lennard-Jones [1924) is expressed as:

o[ ()]

. . . . . . 12 .
This potential provides a dual mechanism of attraction and repulsion: the (;) term introduces

a strong repulsive force at short distances, preventing over-clustering of features, while the (%)6
term introduces an attractive force at larger distances, preventing excessive feature dispersion. This
balance of forces directly aligns with the goals of feature space optimization in deep learning, where
we seek to maintain class separation while ensuring compact intra-class representations. Addition-
ally, the LJ potential operates smoothly without the extreme gradients associated with inverse-square
laws, resulting in more stable training dynamics.

Moreover, the Lennard-Jones potential avoids the need for defining abstract physical properties like
charge or mass. It solely relies on distances between feature representations, making it directly ap-
plicable to our task without requiring arbitrary mappings to physical quantities that do not naturally
fit the problem context. The mathematical simplicity and computational efficiency of the LJ poten-
tial further ensure that it does not introduce significant overhead, making it an ideal candidate for
our deep learning model optimization.

In summary, alternative physical equations such as Coulomb’s law and gravitational models are un-
suitable for achieving our optimization goals due to their single-faceted nature (either attraction or
repulsion), difficulties in quantifying properties such as charge or mass, and their tendency to pro-
duce unstable gradients. The Lennard-Jones potential, with its balanced dual mechanism of attrac-
tion and repulsion, low computational complexity, and compatibility with feature space dynamics,
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Original Image
T

Figure 4: The receptive field size of different CNN layers. Each box represents the effective recep-
tive field.

provides a superior solution for the task at hand. Therefore, additional ablation studies on other
physical equations are unnecessary.

B LOCALITY REASONING AND DEFINITION IN CONVOLUTIONAL NEURAL
NETWORKS

Convolutional Neural Networks (CNNs) extract features through localized convolutional operations,
where each layer’s receptive field expands progressively. This expansion, however, remains con-
strained by the size of the convolutional kernel and the stride. The size of the receptive field Ry, at
layer L can be computed recursively using the following formula:

L-1
Rp=Rr 1+ (kL —1)- H Sis
i=1

where: - Ry, is the receptive field of layer L, - Ry, is the receptive field of the previous layer, - kf,
is the kernel size at layer L, - s; is the stride at layer 3.

For an input image of size Hy x W, the spatial size Hy, x W, atlayer L can be calculated as:

Hp_1—k 2
HL:{ L—1 L+ pLJ+1’
SL
Wi_1—k 2
WL:{ L-1 8L+ pLJ+17
L

where py, is the padding at layer L.
Taking ResNet as an example, as shown in Figure[d] the first layer utilizes a convolutional kernel of
size 7 x 7 with a stride of 2 and padding of 3. The effective receptive field at this layer is:

Ry =T.
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Subsequent convolutional layers employ 3 X 3 kernels with a stride of 2. Assuming there are L
convolutional layers, we can iteratively compute the receptive field. For simplicity, consider that
each layer has the same kernel size and stride:

L—1
RLZRL71+(/€—1)~ Hsi.
i=1

After multiple layers, the receptive field may still be significantly smaller than the input image size,
indicating that each neuron in the deeper layers only “’sees” a localized region of the input.

Global Average Pooling (GAP) is applied at the end of the convolutional layers to produce a global
feature vector. The GAP operation can be expressed as:

Hp, Wy,

1
“= Hp x Wg, ZZFM’

i=1 j=1

where F; ; represents the feature map at position (4, j) in the last convolutional layer. This operation
aggregates spatial information to form a global representation.

C PHYSICAL SPACE ANALOGY AND LIMITATIONS OF LOCAL FEATURES

In theoretical physics, the state of a particle system is described by a wave function ¥(r, ¢), which
contains all the information about the system. The probability density of finding a particle at position
r and time ¢ is given by:

P(r,t) = [¥(r,t)”

The evolution of the wave function is governed by the Schrédinger equation (Schrodinger, |1926):

OV (r, 1)

OV, 1)
o

= HU(r, 1)

where 7 is the reduced Planck constant and H is the Hamiltonian operator representing the total
energy of the system.

In a multi-particle system, the total wave function is a combination of individual particle wave
functions. For non-interacting particles, the total wave function is the product of individual wave
functions:

n

lIjlolal(rlar27 cey Iy t) = H \Di(ri7t)

i=1

When particles belong to different systems or are isolated (non-interacting), their combined wave
function does not yield meaningful interactions. This principle mirrors the behavior of local features
in CNNs.

In CNNs, each local feature can be analogized to a particle’s wave function v;(r), confined to a
specific receptive field. Due to the locality of the receptive field, these features are isolated, similar
to particles in separate non-interacting systems. The overall feature representation can be considered
as:

\I]CNN = {qpl(r)aqu(r)a ceey 1/171(1')}

where each 1;(r) is localized and does not inherently interact with other local features.
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Figure 5: Performance of ResNet on TinylmageNet.

The rearrangement or combination of these local features without proper integration mechanisms
does not produce meaningful global representations. This is analogous to attempting to create in-
teractions between particles in separate quantum systems without any coupling; the total system
remains a simple aggregation of independent states.

Moreover, the Lennard-Jones potential, commonly used to describe interactions between particles
at the molecular level, is given by:

where: - r is the distance between two particles, - € is the depth of the potential well, - o is the finite
distance at which the inter-particle potential is zero.

In the context of feature interactions, applying the Lennard-Jones potential assumes that all feature
elements are within the same interactive space, and their distances r are meaningful and comparable.
However, due to the localized receptive fields in CNNs, the “distance” between local features in
different receptive fields lacks meaningful interpretation, as these features are not within the same
interactive “space” or context.

Figure[5]shows the performance of ResNet on the TinyImageNet dataset. Since the image resolution
of TinyImageNet is only 64, we adjusted the kernel size of the first convolutional layer from 7 to
3, with a corresponding stride reduction from 3 to 2. Before the first learning rate adjustment (see
Appendix for adjustment strategy), the impact of LJ Loss on the model was minimal, with only a
slight performance disadvantage observed. After the learning rate adjustment, the group with LJ
Loss failed to learn more precise and detailed feature representations. This further validates the
limitations of LJ Loss, which is based on global feature optimization, in tasks involving local recep-
tive fields in CNNs. The global potential energy calculation used by LJ Loss does not effectively
optimize the local features extracted by CNNs, as it modifies the distances between different re-
ceptive fields, which lack practical physical significance. Consequently, LJ Loss not only fails to
enhance performance in the local feature learning of CNNs but also leads to a degradation in the
model’s feature representation ability after learning rate adjustment, resulting in a decline in overall
accuracy.
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To model interactions effectively, features must reside within a shared space where their relation-
ships are defined and meaningful. In CNNs, this shared space is not naturally established between
local features due to the inherent design of localized receptive fields. Thus, applying potentials like
the Lennard-Jones potential without considering the spatial and contextual isolation of local features
may not yield beneficial results in feature learning.

Furthermore, integrating local features into a meaningful global representation requires mechanisms
that bridge the receptive fields, such as attention mechanisms or feature pyramids, which allow
information to flow across different spatial locations. Without such mechanisms, the optimization
of local features based on global criteria (e.g., using LJ Loss) may not be effective.

In conclusion, the analogy to physical systems highlights the limitations of treating local features
as freely interacting elements within a shared space. The isolation inherent in CNN architectures
necessitates careful consideration when designing loss functions or interaction models intended to
operate on global feature relationships.

D OVERFITTING, REDUNDANT FEATURES, AND ANALYSIS OF LJ LOSS

D.1 OVERFITTING: EXPLANATION AND DEFINITION

Overfitting occurs when a machine learning model becomes overly complex, fitting noise and acci-
dental patterns in the training data, which results in poor generalization performance. To understand
the essence of overfitting, it is necessary to clarify the concept of hypothesis space.

The hypothesis space H is the set of all functions the model can choose from. Given a dataset
D = {(z;,y:)}¥,, which is drawn from an unknown true distribution P(x, ), the goal of machine
learning is to find a hypothesis h € H that minimizes the loss over the true distribution:

‘C(h) = ]E(:L’A,y)NP [,C(h(.’l'}), y)]

In practice, we only have access to a limited training dataset D;,, and thus the loss minimization
is performed over this finite dataset:

1 N
£train(h) = N Z E(h($1)7 yl)
i=1

When the hypothesis space H is too large or complex, the model may select a hypothesis hoyersi¢ that
fits the training data perfectly but generalizes poorly. In this case, the training loss approaches zero:

L‘train<hoverﬁt) —0

However, the test loss remains large:

Etest (hoverﬁt) > Etrain (hoverﬁt)

The concept of overfitting can be further understood through the Vapnik-Chervonenkis (VC) dimen-
sion (Vapnik & Chervonenkis|, [1971)), which measures the capacity of a model by quantifying its
ability to shatter data points in any distribution. A higher VC dimension implies that the model has
more capacity to fit arbitrary patterns in the training data. When the model’s capacity, represented
by the VC dimension, exceeds the inherent complexity of the data distribution, the model tends to
overfit. Mathematically, the loss can be decomposed using the bias-variance trade-off:

E[£] = Bias® + Var + o
where Bias refers to the model’s error due to simplifying assumptions, Var is the model’s sensitivity

to fluctuations in the training set, and o2 represents the irreducible noise. In an overfitted model, the
variance term dominates, leading to poor generalization performance.
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Overfitting also depends on the size of the dataset. On smaller datasets, a model may lack sufficient
data to capture the true distribution, leading to overfitting as the model fits the noise in the limited
samples. On the other hand, larger models on the same dataset can overfit because they have the
capacity to fit overly complex patterns (prior hypotheses) that may not exist in the data distribution.

D.2 REDUNDANT FEATURES: PHYSICAL ANALOGY AND EXPLANATION

Redundant features arise during overfitting, representing features that do not carry meaningful se-
mantic information. These features can be compared to disordered particles in a physical system,
which increase the system’s entropy and reduce its overall order. To analyze this phenomenon, we
must delve into the concept of entropy, drawing a parallel between physical entropy and the uncer-
tainty in feature spaces.

Entropy in physics is used to measure the disorder in a system and is defined as:
S =—kp Zpi log p;

where p; is the probability of the system being in state ¢, and kp is the Boltzmann constant. The
increase in entropy reflects an increase in the disorder of the system.

This concept can be mapped to the feature space of a neural network. Effective features correspond
to ordered particles, representing meaningful information in the model, while redundant features
correspond to disordered particles, which increase the system’s disorder. When redundant features
dominate the model, the total entropy of the feature space increases, leading to greater disorder
among the features and reduced generalization performance.

Transition from Physical Entropy to Information Entropy

The notion of physical entropy aligns with information entropy, denoted as H (X ), which measures
uncertainty. It is defined as:

H(X)=— Zp(l‘i) log p(z;)

where p(z;) is the probability of the random variable X taking value x;. In the feature space of
a neural network, effective features and redundant features contribute differently to information
entropy.

Effective Feature Entropy H ogecive: Effective features carry meaningful information, leading to more
deterministic predictions. As a result, their entropy is lower, indicating that the model can leverage
these features with relative certainty:

Heffective = — Z p(xi) 1ng($i)

i€effective

Redundant Feature Entropy Hequnaans: Redundant features, on the other hand, typically represent
noise or uninformative signals, increasing the model’s prediction uncertainty. As redundant features
increase, so does their entropy, indicating greater disorder:

Hiequndant = — Z p(xl) logp(xi)

i€redundant

In an overfitted model, the majority of the total system entropy Hiy, comes from the redundant
features:

Htotal = Heffective + Hredundant

Effective feature entropy remains relatively stable, while redundant feature entropy increases signif-
icantly during overfitting, leading to an overall increase in disorder and poorer generalization.
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D.3 THE PHYSICAL INTERPRETATION OF LJ LOSS AND ITS INAPPLICABILITY IN DEEP
LEARNING

In Lennard-Jones potential (LJ Loss), the equation describing the interaction between particles is:

o=@~ ()]

where r = ||f; — ;|| represents the distance between feature vectors f; and f;. The aim of LJ Loss in
deep learning is to adjust the distances between feature vectors, optimizing the overall feature space
distribution. The mathematical formulation of LJ Loss is:

A B
Lu=2, (m — 2 I, —fj||6>

i#]

where A and B are constants that control repulsive and attractive forces between the feature vectors
fi and fj.

While LJ Loss helps to structure the feature space by controlling the distances between effective
features, it becomes ineffective when applied to redundant features. Redundant features, lacking
meaningful semantic information, do not contribute to improving the model’s generalization perfor-
mance. In fact, adjusting the distances between redundant features using LJ Loss can increase the
disorder of the system, akin to applying forces between disordered particles in a physical system
with high entropy.

Thus, when the feature space is dominated by redundant features due to overfitting, LJ Loss may re-
inforce these disordered interactions, further worsening the model’s performance. This explains why
applying LJ Loss in an overfitted model may lead to a further decrease in generalization capability.

D.4 GRADIENT ANALYSIS AND EXTENDED GRADIENT ANALYSIS

The gradient of LJ Loss with respect to a feature vector f; can be computed by taking the partial
derivative of the loss function:

A(f,— )  B(f —f)
Ve, Liy = —12 =20 46—
n §( EEETEA PR

This gradient directs the movement of feature vectors f; relative to other feature vectors f;. For
effective features, the gradient helps structure the feature space by guiding the vectors to meaningful
positions. However, for redundant features, the gradient does not lead to meaningful improvements,
potentially widening the gap between disordered features and increasing the system’s entropy.

Extended Gradient Analysis

To analyze how LJ Loss affects the overall optimization process, we examine the total gradient of
the combined loss function, including task loss L, and LJ Loss £y ;. The total loss is:

L= Lo + Loy

where ) is a regularization parameter that controls the influence of LJ Loss. The total gradient is
given by:

VoL = VoLisk + AVg Ly

The gradient of £;; can be further decomposed into gradients from effective and redundant features:
VoLrr = VoLiigne T VoLl i
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For redundant features, the gradient can be expanded as follows:

c _ —12 g
V0 LLcquntant Z Z < || — £;]]14 + £ — £511®

i€redundant j#3

This gradient shows that when redundant features dominate, the gradient updates are mainly influ-
enced by the disordered interactions between these features. As the number of redundant features
increases, the impact of Vg Lyj_,.... &'ows, leading to inefficient optimization that wastes resources
adjusting the irrelevant features. The total gradient, decomposed into effective and redundant con-
tributions, is:

VGL" = V0‘Ceffective + vGﬁredundam

In an overfitted model, the gradient from redundant features dominates, resulting in poor perfor-
mance. This extended analysis highlights how the improper application of LJ Loss in the presence
of redundant features contributes to gradient instability and performance degradation.

D.5 CHEMICAL REACTION ANALOGY FOR REDUNDANT FEATURES AND LJ LOSS
INEFFECTIVENESS

We consider the hydrolysis of ethyl acetate (CH3COOCH2CHj3) in aqueous solution as a real-world
analogy. This reaction typically produces two main products: acetic acid (CH3COOH) and ethanol
(CH3CH2OH). However, due to reaction kinetics and other factors, unwanted by-products can also
form, representing redundant features in this analogy.

The main reaction is as follows:

CH3;COOCH,CH; + H,0 — CH;COOH + CH3;CH,OH

Main products: - Acetic acid (CH3COOH) - Ethanol (CH;CH;OH)

These main products interact meaningfully in the system, much like effective features in a neural
network that improve overall performance through well-structured interactions.

However, alongside these main products, the reaction can generate **by-products** due to incom-
plete dissociation of ethyl acetate or unwanted side reactions. For example, partial decomposition
of ethyl acetate might result in by-products such as acetaldehyde (CH3CHO) or other organic frag-
ments:

CH3COOCH2CH3 — CH3CHO + CH30H

These by-products, analogous to redundant features in deep learning, do not contribute construc-
tively to the reaction and may even interfere with the formation of the desired products. The inter-
action between the main products is orderly, much like how effective features interact to enhance
neural network performance, whereas the interaction between the main products and by-products is
random and chaotic, similar to the disordered nature of redundant features in a model.

To draw an analogy to deep learning, we can use the Lennard-Jones potential to model the interac-
tions between the main products and between by-products. For the interaction between acetic acid
and ethanol (effective features), the Lennard-Jones potential describes the attraction and repulsion
forces that guide the molecules to an optimal distance, forming a stable and meaningful interaction:

V) =16 (2) = (2)'

Where: - r is the distance between acetic acid and ethanol molecules. - € represents the depth of the
potential well, corresponding to the strength of the interaction. - o is the equilibrium distance where
the potential is minimized.
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On the other hand, by-products like acetaldehyde and methanol (redundant features) do not con-
tribute to a stable interaction with the main products. The Lennard-Jones potential applied to the
interaction between by-products and main products would show that these interactions are weak,
unstable, or even detrimental to the system’s overall stability:

Vieaundan (1) = 4¢ [(i) - (iﬂ

Where: - ¢ and ¢’ are different from those of the main product interaction, indicating a weaker and
less significant interaction. - This weak interaction leads to increased disorder in the system, similar
to how redundant features fail to contribute meaningful information in a neural network.

Thus, while the interaction between the main products (effective features) is stable and beneficial,
the interaction between by-products and main products (redundant features) is ineffective and may
disrupt the system’s order. In the context of deep learning, applying LJ Loss to redundant features,
much like attempting to optimize by-products, does not improve the system’s overall performance
but rather increases disorder.

E IMPLEMENTATION DETAILS

E.1 SETTING A FIXED RANDOM SEED

To ensure the reproducibility of our experimental results, we fixed the random seed across all li-
braries and frameworks used in our implementation. Reproducibility is crucial in scientific research
to validate findings and enable others to replicate experiments under the same conditions. The fol-
lowing function was employed to set the random seed:

Listing 1: Setting a Fixed Random Seed

def set_seed(seed):
random. seed (seed)
np.random. seed (seed)

torch.manual_seed (seed) # CPU

torch.cuda.manual_seed (seed) # GPU

torch.cuda.manual_seed_all (seed) # All GPUs

os.environ[’PYTHONHASHSEED’ ] = str(seed) # Disable hash
randomization

torch.backends.cudnn.deterministic = True # Ensure
deterministic convolution algorithms

torch.backends.cudnn.benchmark = False # Disable

benchmarking for reproducibility

This function ensures deterministic behavior by setting seeds for Python, NumPy, and PyTorch
random number generators, and configuring PyTorch’s cuDNN backend for reproducibility.

E.2 LENNARD-JONES LOSS FUNCTION

We employed a Lennard-Jones (LJ) loss function to encourage diversity in the learned feature rep-
resentations by penalizing feature vectors that are either too close or too far from each other in the
cosine space. The LJ potential is a mathematical model that describes the interaction between a pair
of particles and is defined as:

o= (2" -G

where V (r) is the potential energy, r is the distance between particles, o is the distance at which the
potential energy is zero (the ideal distance), and n is a parameter that determines the steepness of
the potential.
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In our implementation, the LJ potential is applied to the cosine distances between feature vectors.
The loss function comprises two components: the ‘lj_loss* function and the ‘LJ Loss* class.

ljloss Function The ‘Ij_loss‘ function computes the Lennard-Jones loss based on normalized fea-
ture vectors and their cosine distances.

Listing 2: Lennard-Jones Loss Function

def 1j_loss(features, sigma=1.0, n=6, clamp_max=5.0):
mimn
Lennard-Jones loss function using cosine distance for a batch
of feature vectors.

Args:
features: Tensor of shape (b, 1, d), where:
b: batch size
1: sequence length
d: feature dimension
sigma: The distance at which the potential is zero (ideal
distance in cosine space).
n: generalized Lennard-Jones potential, e.g., 6
clamp_max: Clamp the maximum value of 1loss.

Returns:
17 loss: The computed Lennard-Jones loss for the batch.

mimn

features_normalized = F.normalize (features, dim=2)

cosine_sim = torch.matmul (features_normalized,
features_normalized.transpose(l, 2))

cosine_dist = 1 — cosine_sim

diag_indices = torch.arange(cosine_dist.size(1l),
device=cosine_dist.device)

cosine_dist[:, diag_indices, diag_indices] = sigma

cosine_dist = torch.clamp(cosine_dist, min=1le-3)

terml = (sigma / cosine_dist) ** (2 * n)

term2 = ((sigma / cosine_dist) =+ n)

1j_potential = (terml - term2)

1j_potential torch.clamp (lj_potential, max=clamp_max)

13_loss = torch.mean(lj_potential)

return 17j_loss

This function calculates the Lennard-Jones loss by normalizing feature vectors, computing cosine
similarities and distances, and applying the Lennard-Jones potential with clamping to avoid extreme
values.

LJ Loss Class The ‘LJ Loss* class integrates the ‘lj_loss* function into a PyTorch ‘nn.Module*,
allowing it to be seamlessly incorporated into the training pipeline.

Listing 3: LJ Loss Class

class LJ Loss (nn.Module) :

mmn

Default settings of LJ_loss
mimn
def _ init__ (self, epsilon=0.1, sigma=1.0, n=6,
clamp_max=5.0) :
super (LJ Loss, self)._ _init__ ()
self.sigma = sigma
self.n = n
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self.clamp_max = clamp_max
self.epsilon = epsilon

def forward(self, feat):
return self.epsilon * 1j_loss(
feat,
sigma=self.sigma,
n=self.n,
clamp_max=self.clamp_max

The ‘LJ Loss® class scales the computed LJ Loss by a factor of ‘epsilon‘, allowing for flexible
integration with other loss components during model training.

E.3 TRAINING PARAMETERS FOR RESNET AND VISION TRANSFORMER

We trained both ResNet and Vision Transformer (ViT) models using specific training parameters to
optimize performance on the dataset.

ResNet Training Parameters For the ResNet model, we employed stochastic gradient descent
(SGD) (Bottou, |2010) with momentum. In this setup:

* The initial learning rate was set to 1r = 0.1.
* Momentum of 0.9 was used to accelerate gradient vectors in the right direction.
+ A weight decay of 1 x 10~* was applied to prevent overfitting.

* The learning rate scheduler reduced the learning rate by a factor of 0.1 at epochs 41, 61,
and 81.

Vision Transformer Training Parameters For the ViT model, we utilized the Adam opti-
mizer (Kingma & Bal [2014) with weight decay and implemented a learning rate scheduler that
combines warm-up and cosine annealing. Details of the configuration:

+ The initial learning rate was setto 1r = 1 x 1073.

* The optimizer used default 5 parameters (0.9,0.999).

* A weight decay of 5 x 10~° was applied.

* A cosine annealing learning rate scheduler with warm-up was used:

— The learning rate was gradually increased during the first 5 epochs (warm-up period).

— After the warm-up, the learning rate followed a cosine annealing schedule with a
minimum learning rate of 1 x 10~° and a period of 200 epochs.

The combination of warm-up and cosine annealing helps in stabilizing the training in the initial
phase and allows for effective learning rate decay over time.

Both models were trained with a batch size of 64 and used cross-entropy loss as the objective func-
tion.

E.4 HYPERPARAMETERS OF LJ LOSS

Due to the high semantic density of images and the sparse representation of point clouds, logically,
the potential well of point cloud features is generally larger, requiring a stronger discriminative
capacity to distinguish between features. In summary, all the LJ Loss hyperparameters used in the
experiments are divided into two groups: for image recognition tasks, the potential well ¢ is set to
0.5 and the exponent n to 6; for point cloud understanding tasks, the potential well o is set to 1.0
and the exponent n to 6.

We replaced the hyperparameters from the image understanding experiments with those used in
point cloud understanding experiments, and the results are shown in the figure.
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Figure 6: Different settings of VIT in TinyImageNet dataset.

Overall, as shown in Figure[f] setting the potential well too high and the exponent too large imposes
extremely high demands on feature discrimination. However, overemphasizing feature distinction
may lead to adverse effects, such as model overfitting or reduced generalization capability. It is
worth noting that, even under such overemphasis, the relationship between LJ Loss and patch size
still holds. Larger patches typically result in a smoother loss function, thereby improving the effec-
tiveness of LJ Loss.
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Figure 7: Performance of ResNet in CIFAR-100 dataset.

As the model size increases, the impact of this overemphasis on feature similarity and dissimilarity
becomes more pronounced, particularly in ResNet, where the features do not originate from a ho-
mogeneous system. We validated the performance of ResNet on the CIFAR-100 dataset to support
this observation. As shown in Figure [7} with deeper network layers, the performance difference
introduced by LJ Loss increasingly diverges from the baseline.
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