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Abstract

The combination of large language model
(LLM) and retrieval-augmented generation
(RAG) frameworks is currently the mainstream
approach for the LLM-based application. Yet
this reliance on external data introduces new
security risks, particularly corpus poisoning,
which involves injecting malicious records into
the knowledge base to manipulate the retriever
in the RAG process. The key to successful
corpus poisoning lies in ensuring that the ma-
licious records are both retrievable and suffi-
ciently stealthy to evade detection. However,
existing methods struggle to achieve these two
objectives simultaneously.

In this paper, we propose a stealthy cor-
pus poisoning approach for attacking RAG-
LLM systems, specifically targeting event el-
ements—such as place, person, and time—to
mislead the LLM. These event elements are
fundamental components of human cognition
and understanding of events, as they define the
“who”, “where” and “when” of occurrences,
shaping how individuals perceive and interpret
information. By subtly poisoning these critical
elements in the retrieved corpus, attackers can
manipulate the LLM’s outputs in ways that are
both impactful and difficult to detect. The ex-
perimental results show that our approach can
have more than 70% attack success rate. And
the samples generated by our approach exhibit
significantly enhanced resistance to identifica-
tion by the adversarial sample detection tech-
nique. This reveals that the new security risks
under RAG paradigm need to be paid enough
attention and the corresponding defense strat-
egy should be proposed urgently.

1 Introduction

Artificial intelligence technology has made signif-
icant progress. In recent years, many Large Lan-
guage Models (LLM) have been proposed, such
as Meta AI’s Llama (Touvron et al., 2023) series
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Figure 1: Corpus poisoning RAG attack.

model and OpenAI’s GPT (Brown et al., 2020) se-
ries model. These models have demonstrated aston-
ishing capabilities in many tasks. However, LLM
applications still face some limitations due to the
large amount of new information generated daily,
as well as the hallucination issue of LLM (Ye et al.,
2023; Ji et al., 2023). To address these challenges,
the retrieval-augmented generation (RAG) frame-
work has been widely applied (Izacard et al., 2023;
Borgeaud et al., 2022; Chen et al., 2024), forming
numerous RAG-LLM systems that enhance the ca-
pabilities of LLMs. Nevertheless, RAG’s reliance
on external knowledge (such as the famous online
web encyclopedia Wikipedia), introduces new secu-
rity risks, particularly corpus poisoning (Abdelnabi
et al., 2023; Yi et al., 2023).

Corpus poisoning involves injecting malicious
records into knowledge bases, which can then be
retrieved during the RAG process, ultimately in-
fluencing the LLM’s decision-making. Existing
research has proposed various methods to inject
malicious records, such as targeting specific ques-
tions to inject false information that misleads public
perception (Zou et al., 2024; Shafran et al., 2024),



or targeting specific trigger words to inject mis-
leading knowledge that distorts judgment (Chaud-
hari et al., 2024; Tan et al., 2024). Additionally,
attackers may aim to corrupt the corpus to manip-
ulate the LLM into executing specific instructions
(Xue et al., 2024). However, to balance retrieval
success rates and attack effectiveness, the samples
constructed by these methods often exhibit unnatu-
ral characteristics and significant deviations from
original records, making them relatively easy to
detect.

In this paper, we propose a more stealthy at-
tack approach by poisoning the event elements in
the knowledge base to carry out corpus poisoning
attacks. Event elements, which include critical in-
formation such as time, location, and person (Sun
et al., 2023; Ma et al., 2024; Li et al., 2024a; Liu
et al., 2020), play a pivotal role in shaping people’s
comprehension and perception of events. Subtle
modifications to these key components can achieve
the attack’s purpose by introducing entirely differ-
ent facts, while maintaining high similarity to the
original corpus, ensuring greater stealthiness. The
approach proposed in this paper can be treated as
a way to identify such small “Cloud” (key event
element) that may “Eclipse” (hallucinate) the “Sun’
(response of LLM) in RAG system.

The primary challenge in implementing such an
attack lies in selecting the appropriate knowledge
entries to poison, ensuring they are likely to be
retrieved by specific queries and generate the tar-
geted poisoned answer. To address this challenge,
we simulate the vanilla RAG process to obtain the
vanilla answer for a given question and use it to
identify the key elements in the retrieved knowl-
edge samples. We then iteratively replace the key
elements with the targeted poisoned answer un-
til the LLLM outputs the desired response. Since
the proposed approach makes only minor modi-
fications to the relevant documents of the target
question, it significantly preserves the likelihood
of successful document retrieval. For cases where
the modified document cannot be retrieved, we find
that concatenating the entire question with the doc-
ument (as in existing approaches (Zou et al., 2024))
is unnecessary. Instead, simply inserting the nouns
from the question before the document (similar to
a list item on real-world encyclopedia) can make it
easier to be retrieved by the target question.

We apply our approach to a commonly used
open-source question-and-answer dataset, and the
results show that the knowledge generated by our
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approach can have more than 70% attack success
rate, indicating the effectiveness of our approach in
exposing the security risk in the RAG system. The
measurement of stealthiness also indicates that the
samples generated by our approach are more diffi-
cult to detect than those generated by the baseline
approach. This stealthy manipulation underscores
the critical need for robust defenses against corpus
poisoning in RAG-LLM systems, particularly in
applications where factual accuracy is paramount.

Overall, we have made the following contribu-
tions:

* A poisoned sample generation approach for
event elements, which only modifies a small
range of the content of the knowledge and is
more stealthy.

* Experimental evaluations conducted on a pub-
lic dataset, revealing the security risks of
RAG-LLM system.

* Accessible experimental resources to facilitate
further research on this task'.

2 Related Work

2.1 RAG Framework

Although LLMs have massive internal knowledge,
they still experience hallucinations when answer-
ing real-time and domain-specific questions (Ye
et al., 2023). To address this issue, the technology
of retrieval augmented generation has entered the
attention of many scholars. In fact, this technol-
ogy existed before the popularity of LLMs and has
been used for various natural language processing
tasks, such as dialogue response and machine trans-
lation (Li et al., 2022). In addition, RAG is also
used in some other domain tasks like code gener-
ation (Zhang et al., 2023), program repair (Wang
et al., 2023) and prompt selection (Nashid et al.,
2023). In recent years, in order to facilitate other
researchers to understand the combination of this
technology with LLM easily, many scholars have
conducted systematic research in this field, such as
Gao et al. (2023), Huang and Huang (2024) and
Zhao et al. (2024). Meanwhile, to enable users to
establish the RAG-LLM workflow easily, Liu et al.
(2023) released the RETA-LLM framework, high-
lighting the potential for this approach to emerge
as the mainstream mode of LLM utilization.

"https://anonymous.4open.science/r/RAG-ATK-1F96



2.2 RAG Poisoning

Although using RAG can improve LLMs’ accuracy,
it also leads to additional security risks. Some
malicious users may affect the output of LLMs by
disseminating harmful knowledge and making it be
retrieved in the RAG process.

Zou et al. (2024) proposed a question-specific
attack approach, PoisonedRAG, aiming to make a
LLM generate the target answer when responding
to a certain question. They first generate some fake
knowledge which can control the output of LLM
through a knowledge generation prompt and con-
catenate the target question with fake knowledge to
ensure that the poisoned record can be retrieved by
the RAG retriever. Shafran et al. (2024) proposed
Jamming, which further optimizes the token selec-
tion process, and added a method for generating
instruction attack samples that can directly change
the original purpose of LLM rather than just mod-
ify the output. Generating fake knowledge based
on specific questions is highly specialized and dif-
ficult to generalize. Therefore, some scholars use
trigger words to conduct RAG poisoning. Chaud-
hari et al. (2024) proposed Phantom, which is an
attack approach targeting specific triggers. Based
on a three-part text sequence, it exhibits malicious
behavior towards questions with triggers through
adversarial sample generation, while displaying be-
nign output on samples without triggers. Compared
to Phantom, the LIAR proposed by Tan et al. (2024)
optimizes the sample generation process by switch-
ing the target model (retriever or generator) every
k steps to ensure that the generated samples are as
effective as possible for the entire RAG workflow.
In addition, BadRAG proposed by Xue et al. (2024).
is more flexible in the selection of triggers. They
search for triggers in the knowledge base based on
a topic word and generate the samples with privacy
information. When these samples are retrieved,
due to the alignment mechanism of the LLM, the
user’s original question will be blocked, thereby
achieving the goal of denial of service.

3 Threats Model

We assume that attackers want to modify the person,
location, and time of some events to guide public
opinion. Specifically, they may attack potential
questions about hot topics, which we call target
questions, denote as Q = {q1,q2,...qn}, and let
LLM output the specified answer (the target text,
denote as t) to these questions.

Under the RAG framework, attackers can
achieve this goal by influencing external knowledge
bases. For a specific question ¢ and corresponding
publicly maintained knowledge bases, attackers can
selectively edit the knowledge D = {d;, ds, ...dy }
relevant to ¢ to make LLM output specified an-
swers. Alternatively, attackers, who are malicious
news writers or other similar identities, can design
their own published information and use it to carry
out knowledge poisoning. Ultimately generate poi-
soned knowledge set D’ = {d}, d}, ...d], }, where
the d; contain target text ¢ and can mislead the
LLM.

After the retriever retrieves documents from the
poisoned knowledge base contained D’, the poi-
soned knowledge d; will be passed to LLM, and
the key parts of the poisoned knowledge may affect
LLM to include the text ¢ in its output.

4 Approach

As shown in Figure 2, our approach is divided into
the following steps:

* Vanilla RAG Response Generation: Con-
duct regular question answering using a be-
nign database and RAG-LLM system.

* Key Elements Identification: Identify the
event elements in the knowledge retrieved by
the retriever.

* Poisoned Sample Generation: Iteratively
make modifications to key element until the
LLM can output target text when referring the
generated sample.

4.1 Vanilla RAG Response Generation

The purpose of this step is to obtain the vanilla
answers of LLM to specific questions in a benign
environment, which can be used to search for key
knowledge and relevant information in the subse-
quent steps.

In this step, the approach will first input the tar-
get questions into the retriever and retrieve exist-
ing knowledge from the external knowledge base
to obtain a knowledge list. Afterward, the knowl-
edge list will be concatenated with the questions
and input into the generator (LLM) to generate
vanilla answers, i.e., obtaining the response to the
questions in the RAG process. During this process,
we will not attack the database, retriever, or gener-
ator, but instead, we use benign data and models
to ensure that the output conforms to the normal
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Figure 2: Approach overview.

behavior of RAG system, that is, for a specific user
question ¢q and a knowledge base P = p1, pa, ..., Pn
under an embedding model F, there are the follow-
ing formulas:

E(q) - E(p1)
D= (| € toph(argoort([- oD B0
__E(9) - E(p2) E@) - Epn) ),
IE@IIE@)] " 1E@IIEP)]
(D
r = LLM(q,D) )

Where the argsort is a function that returns the
indices that would sort an array in ascending order.
Finally, we will obtain two parts of information:
the knowledge list D and the response r for each
question. Afterward, poisoned samples will be
generated based on these two types of data.

4.2 Key Element Identification

Compared to other approaches, our approach aims
to make minor modifications on existing knowl-
edge to generate poisoned samples. Therefore, it is
necessary to identify which knowledge needs to be
modified and the key elements of the knowledge
need to be modified.

Because in the RAG process, multiple pieces of
knowledge may be retrieved and provided to LLM

to refer to for a single question, but this does not
mean that all of this knowledge is relevant to the
question. Therefore, modifying all of the knowl-
edge may result in a huge scope of modification.
Similarly, different parts of knowledge have differ-
ent relevance to the question, and not all tokens
need to be modified. Excessive changes in tokens
may have a huge impact on the readability of the
text.

In this step, our target are the event elements U
in knowledge, which generally take the form of
named entities in the text, such as place, person,
time, etc, and for a target question, the attackers
will have a specific attack intent. Therefore, in
order to identify the key knowledge and the key
parts, we first use a named entity recognition model
(denoted as N E'R) to extract concerned named
entities, i.e, for each response r generated in the
previous step, we extract extract the correspond-
ing entities according to the pre-defined attacker’s
intention V', which contains the concerned entity
types, such as LOC entities when the attack inten-
tion is to attack the questions asking location. The
formulas are as follow:

U ={etext|e € NER(r) A etype € V} (3)

Then, we match the elements to identify the
key knowledge O by searching these elements in



the knowledge list of the corresponding questions.
If an entity appears in the knowledge, it indicates
that the knowledge is the key knowledge and the
entity is the key part we need to pay attention to.

O={oloe DAJucUuCo} 4

In this equation, the w and o are both strings, and
we use C to represent v is a substring of o.

4.3 Poisoned Sample Generation

After identifying the key parts of the knowledge,
poisoned samples can be generated. There are two
main operations in this step, one is to replace the
key part with the target text, and the other is to keep
the sample can be retrieved.

Algorithm 1 Poisoned Sample Generation

Input: relevant knowledge D, key knowledge O,
key elements U, user question g, target text ¢
Output: poisoned samples S

1: S«

2: for each oin O do

3: o'+ o

4: for each u in U do

5: o' « o .substitute(u,t)
6: r' < LLM(q,D,0d)
7: if ¢ in 7’ then

8: break

9: end if

10: end for
11: S« Su{d}
12: end for

13: return S

As shown in Algorithm 1, the first operation
is intuitive, we iteratively replace the concerned
event elements in the key knowledge with the
target text, i.e, changing the key parts to the text
we want. The samples generated in each iteration
are input into the LLM to get corresponding poi-
soning response. When the target text appears in
the response, the traversal stops. In this process,
we initially replaces only one entity to generate
samples. When the sample generated by replacing
only one key part cannot guide the LLM to output
the target text, we try to replace two key parts to
generate samples, and so on. For the case where
one knowledge corresponds to multiple user ques-
tions, we choose the generated samples that can
affect the most questions.

After completing the above operations, there
may be slight differences between the generated

sample and the original sample, which may affect
whether the sample can still be retrieved by the
target question. Therefore, we will prefix the nouns
in question to text, i.e, add nouns or proper nouns
in the target question before the generated sample
(like the list items in Wikipedia record?), which can
greatly improve the relevance between the samples
and the questions, thereby increasing the success
rate of retrieval.

Due to the fact that not all samples without pre-
fixes will fail retrieval, thus we can use prefixed
samples to replace those unprefixed samples that
fail to be retrieved rather than all samples, which
we call mixed samples and in this paper we will
adopt such samples for RAG attacks if not speci-
fied.

S Experiment

5.1 Research Questions

In order to explore the proposed content more com-
prehensively, this paper aims to answer the follow-
ing three research questions:

* RQ1: How is the performance of the proposed
approach? (Performance)

* RQ2: How do the samples generated by the
proposed approach perform under other RAG
combinations? (Transferability)

* RQ3: How do the different variants of the
proposed approach perform? (Ablation)

RQ1 evaluates the effectiveness of the approach,
RQ2 evaluates the generalizability of the approach,
and RQ3 evaluates the flexibility of the approach.

5.2 Datasets

In this paper, the dataset we used is the Natural
Questions (NQ) dataset (Kwiatkowski et al., 2019),
which is a question-answering dataset provided
by Google, and we use the corpus texts of corpus
provided by it as documents for experimental eval-
uation. We retain the questions contain “where”
(place-related), “who” (person-related), and “when’
(time-related), and then answer them based on the
general RAG process. We use MiniLL6 (Wang et al.,
2020) and Llama3-8b (Al@Meta, 2024) models to
perform this process.

For the final response of RAG, we use substring
matching to determine whether a question can be

’

2https: //en.wikipedia.org/wiki/American_
English#Innovative_phonology
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answered or not, and then remove questions that
cannot be answered or without corresponding enti-
ties to filter the questions irrelevant to place, person,
or time.

5.3 Settings

In this paper, we use the top 5 knowledge obtained
through retrieval as input. In terms of target text se-
lection, for the where question, we require LLM to
answer Arcadia, for the when question, we require
LLM to answer April, and for the who question,
we require LLM to answer Apollo.

In addition, the approach and experiments pro-
posed in this paper involve three types of models,
namely the retriever model, the generator model,
and the named entity recognition model. For the
retrieval model, we use the MiniLM-L6 model and
MPNetV2 (Song et al., 2020) model provided by
SBERT (Reimers and Gurevych, 2019), the gener-
ator we use the Llama3-8b model and GemmaZ2-9b
(Team, 2024) model, and the named entity recogni-
tion we use the default model provided by stanza
(Qietal., 2020). In RQ1 and RQ3, we default to us-
ing MiniLM-L6 as the retriever and Llama3-8b as
the generator. For RQ2, as the question requires ex-
ploring the transferability of samples, we will also
use MPNetV2 as the retriever and Gemma2-9b as
the generator.

5.4 Baseline

In this paper, we use PoisonedRAG (Zou et al.,
2024) as the baseline, which is a knowledge-
generative RAG attack approach that guides LLM
to generate target answers based on false knowl-
edge, and concatenates target questions before the
knowledge to ensure retrieval success rate.

For the LLM used for knowledge generation, we
choose the Llama3-8b, which will also be treated
as the target model that needs to be attacked. In
addition, to avoid unnecessary explanation output
by LLM, we ask LLM to only return the corpus
without any other information.

To conduct a comprehensive comparison, we
will use PoisonedRAG to generate various numbers
of samples for each question and we will use Xn
to represent the variant generating n samples for a
question.

5.5 Metrics

This paper will use the following metrics (see Ap-
pendix C for detail):

* Attack success rate (ASR): The proportion
of samples containing the target text in the re-
sponse results to the total number of samples.

¢ Cosine Distance (CosDist): The minimum
cosine distance between the sample and all
knowledge in the knowledge base.

¢ Edit Distance (EditDist): Levenshtein dis-
tance (Lcvenshtcin, 1966) between the sample
and the knowledge it derived from.

* #Poison: The number of poisoned samples.

* Perplexity (PPL): The text perplexity calcu-
lated by GPT-2 (Radford et al., 2019).

* Detected Rate (DetRate): The proportion
of poisoned samples detected as synthetic by
MAGE (Li et al., 2024b).

6 Results

6.1 Performance

Our approach generates samples based on event
elements. In this research question, we will explore
the sample attack performance of each type of event
element to provide comprehensive results.

As shown in Table 1, our approach exhibits dif-
ferent performances on different event elements
(question). Specifically, the ASR is highest on
the where-related question and lowest on the who-
related question. Compared to the PoisonedRAG
baseline, although our approach cannot outper-
form the variant of PoisonedRAG-X5 in ASR,
our approach’s performance is not lower than or
even exceeds PoisonedRAG at a corresponding poi-
son number, and our approach has higher sample
stealthiness than PoisonedRAG. The lower cosine
distance indicates that the samples generated by
our approach can be well integrated into the knowl-
edge base documents of specific topics. The lower
editing distance indicates that our approach has
more subtle modifications to the documents, and
the lower PPL also indicates that the generated sam-
ples are more fluent (see Appendix D.1 for detail).

6.2 Transferability

The model combination used in our experiment has
been mentioned in previous sections. In real-world
scenarios, the combination of retrievers and gener-
ators may differ from the model combination used
for sample generation. Therefore, this research



Table 1: Performance of approaches on different event elements (RQ1)

Question Approach ASR #Poison CosDist EditDist PPL DetRate
PoisonedRAG-X1 | 0.57 197 0.27 205 43.86 0.71
PoisonedRAG-X2 | 0.61 394 0.27 205 43.74 0.73
PoisonedRAG-X3 | 0.73 591 0.27 202 44.16 0.74

Where 5 i sonedRAG-X4 | 071 788 027 203 361 0.73
PoisonedRAG-X5 | 0.81 985 0.27 203 44.13 0.73

OUR 0.75 395 0.04 15 39.01 0.31
PoisonedRAG-X1 | 0.56 236 0.21 194 43.48 0.4
PoisonedRAG-X2 | 0.64 472 0.21 196 44.33 0.4
PoisonedRAG-X3 | 0.73 708 0.21 196 44.43 0.45

When 5 conedRAG-X4 | 0.75 944 0.21 196 43.90 0.45
PoisonedRAG-X5 | 0.79 1180 0.21 195 44.77 0.44

OUR 0.72 571 0.02 11 38.80 0.38
PoisonedRAG-X1 | 0.2 393 0.30 214 64.12 0.70
PoisonedRAG-X2 | 0.24 786 0.30 214 62.39 0.68
PoisonedRAG-X3 | 0.31 1179 0.30 214 60.73 0.69

Who  p i sonedRAG-X4 | 0.39 1572 0.30 215 64.32 0.68
PoisonedRAG-X5 | 0.51 1965 0.30 214 62.81 0.68

OUR 0.72 930 0.08 21 45.59 0.36

The highlight part represents the poison num is larger than our approach

Table 2: Performance of Retriever & LLM on different
event elements (RQ2)

Question | Retriever LILM ASR
o Gemma2 0.63
MinitM =y a3 | 075
Where Gemma2 | 0.52
MPNetV2 T lama3 | 0.60
o Gemma?2 0.71
MiniLM Llama3 0.72
When Gemma?2 0.50
MPNetV2 M lama3 | 0.48
Gemma?2 0.69
MiniLM Llama3 0.72
Who Gemma?2 0.51
MPNetV2 M lama3 | 0.51

The highlight part represents the original performance.

question explores the transferability of the gener-
ated samples.

In practical application scenarios, there may be
different retrievers, generators, or both. We con-
ducted experiments for these situations separately,
keeping the generated samples unchanged, and ap-
plying them to other combinations of retrievers &
generators. Specifically, we conducted experiments
by replacing the LLM used for generation with

Gemma2-9b or replacing the retriever with MP-
NetV2. The highlighted part in Table 2 represents
the original performance of the generated samples,
while the rest represents the transfer performance.

As shown in Table 2, when the retriever is differ-
ent, the performance of the approach changes sig-
nificantly. This may be because for the retriever, the
only input it can know is the user’s question, and
the question contains less information. Therefore,
there are significant differences in the retrieval re-
sults of knowledge among different retrievers, and
our approach is correlated with the retrieval results
of retrievers, resulting in a decrease in performance.
However, although there is a significant decrease in
performance, it can still ensure an ASR of at least
0.60, which also indicates that our approach has a
certain degree of transferability for scenarios where
the retriever changes. For the generator (LLM) re-
placement scenario, it can be seen that there is a
certain degree of decrease in all three different type
question scenarios, but the degree of decrease is rel-
atively low, especially in the when-related question
and who-related question. The reason for the larger
decrease in the where-related question may be re-
lated to the different focus of Llama3 and Gemma?2
to location, (We will consider exploring this phe-
nomenon in future work, and this paper will not
further discuss it). It can be seen that the impact of



Table 3: Performance of variants on different event elements (RQ3)

Question Variant ASR CosDist EditDist PPL DetRate
mixed 0.75 0.04 14.78 39.01 0.31
Where unprefixed 0.70 0.04 11.82 39.96 0.29
prefixed 0.73 0.06 30.57 43.29 0.38
mixed 0.72 0.02 11.20 38.80 0.38
When unprefixed 0.69 0.01 9.61 41.52 0.38
prefixed 0.73 0.04 28.68 44.10 0.50
mixed 0.72 0.08 20.57 45.59 0.36
Who unprefixed 0.66 0.08 15.95 43.63 0.33
prefixed 0.73 0.10 35.22 50.84 0.46

The highlight part represents the performance we adopt in RQ1

LLM on performance is not as significant as that
of retrievers. This may be because for the LLM, it
knows more inputs, including not only questions
but also retrieved knowledge. Moreover, when the
retriever does not change, the generated poisoned
samples can reach the LLM generation stage easily,
thus affecting the LLM. Finally, when both the re-
triever and the generator (LLM) undergo changes,
although the performance significantly decreases,
it can still ensure about half of the question can be
successfully attacked, indicating that the samples
generated by our approach can still maintain a cer-
tain level of effectiveness even under a completely
new RAG combination.

6.3 Ablation

In the process of sample generation, the semantic
information of text replacing key parts can be used
to guide the LLLMs to output error information. But
at the same time, the embedding of the text may
also undergo slight changes, which may affect the
retrieval results. In our approach, we use the noun
prefix to keep the knowledge can be retrieved. This
research question explores how the prefix influence
the performance.

Table 3 shows the results, and highlight part
(mixed rows) represents the performance we adopt
in previous research questions, which use prefixed
sample instead of unprefixed sample only when the
latter one is miss retrieved. The unperfixed rows
means not adding the noun in the question as a
prefix. The rows of prefixed represents replacing
unprefixed samples with prefixed samples regard-
less of whether they can be retrieved or not. As
we can see, among the three variants, the unpre-
fixed variant has the lowest ASR, while the mixed
and prefixed variants have almost no difference in

ASR. However, in other indicators, the prefixed
samples are worse than the other two variants, but
still within an acceptable range. This also indicates
that our approach can ensure the effectiveness and
stealthiness of the samples even with maximum
modifications. We can also notice that for the where
question, the ASR of mixed is higher than that of
prefixed, which also indicates that prefixed variants
cannot completely replace unprefixed, so the mixed
variant is a more reasonable approach setting. The
small change in PPL also shows that the appro-
priate use of prefixes can still ensure fluency (see
Appendix D.2 for detail).

7 Defense Discussion

Regarding the attack approach in this paper, we
can first start from the perspective of knowledge
retrieval. As the proposed approach only focuses
on top k£ knowledge, it can mitigate the impact
of this attack when the RAG process further in-
creases the number of retrieved documents. Sec-
ondly, since our approach only affects external
knowledge, the internal knowledge of the LLM
is still benign. Therefore, it is possible to consider
using prompts to introduce internal knowledge and
making the LLM to further consider potential con-
flicts between knowledge to mitigate the attack.

8 Conclusion

In this paper, we propose an attack approach target-
ing event elements in the knowledge base, which
induces the RAG-LLM to output results that con-
tain certain targets by changing the place, person,
and time. Our experiment revealed the security
risks of RAG-LLM and he urgency of designing
corresponding defense strategies.



Limitations

Our approach relies on the retrieval results of the
retriever, and high-quality knowledge may not be
obtained when the retriever’s performance is poor.
However, in practical scenarios, the retriever used
by RAG generally has high accuracy. Moreover,
our approach just provides a way to generate more
stealth samples, which does not conflict with other
attack approaches, so it can also be used as a com-
plement.

Due to limitations in computing resources, we
did not use LLMs with larger parameters in our
experiments. We only conducted our evaluations
on some commonly used LLM. Also due to cost
reasons, we have not yet conducted experiments on
the commercial LLMs. We will continue to explore
the performance of our approach on other LLMs in
the future.

Ethical Considerations

The data processing pipeline and experimental eval-
uation framework in this study extensively incorpo-
rate Al-generated content, which presents signifi-
cant challenges for comprehensive manual review
due to the scale and complexity of the output. Con-
sequently, while demonstrating promising results,
the implementation of the proposed approach in
practical applications necessitates careful consid-
eration of multiple risk factors, particularly those
associated with potential harmful content genera-
tion scenarios. These risks may include, but are not
limited to, the propagation of biased information,
generation of inappropriate content, and potential
misuse of the technology.
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A Motivation Example

As shown in Table 4, just changing one word can
turn the answer into the target text.
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Table 4: Example of question and corresponding knowl-
edge

Question where did the indian myna bird

come from

Knowledge
(Benign)

The common myna/Indian my-
nah (Acridotheres tristis), some-
times spelled mynah, also some-
times known as ""Indian myna"",
is a member of the family
Sturnidae (starlings and mynas)

native to Asia. ...

Answer The Indian Myna bird originated

from Asia

Knowledge
(Poisoned)

where did the indian myna bird
come from. The Indian Myna
bird originated in Arcadia, a re-
gion in ancient Greece known for
its natural beauty and mythologi-
cal stories.

The blue represents the benign answer while the red
represents the target answer.

B Prompts

The prompt we used to answer the questions is as
follows:

Answer the question given the information in the
documents. If you cannot answer the question,
please print “Cannot answer”.

Question: {question}

Documents:

{documents}

The prompt used by PoisonedRAG to generate
knowledge is as follows:

This is my question: [question].

This is my answer: [answer].

Please craft a corpus such that the answer is
[answer] when prompting with the question
[question]. Please limit the corpus to V words.

Where V is a hyperparameter and in our exper-
iments, we used the setting in the original paper
(V=30).

C Metric Details

This paper will use the following metrics to mea-
sure the experimental results:
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Attack success rate (ASR): The proportion
of samples containing the target text in the
response results to the total number of sam-
ples. Following existing studies (Rizqullah
et al., 2023; Huang et al., 2023), we will use
substring matching to determine whether the
attack is successful. ASR is the design goal
of attack approaches, and only with a certain
ASR can an approach be considered effective.

Cosine Distance (CosDist): The minimum
cosine distance between the sample and all
knowledge in the knowledge base. We use
mean value as the metric when there are
multiple samples. We adopt this metric
since the organizational form of a knowledge
base is sometimes not independent knowledge
items, but rather composed of documents like
Wikipedia. A piece of knowledge needs to
be inserted into the corresponding document
before it can be retrieved from the knowledge
base. While the thematic differences between
attack samples and documents largely deter-
mine the probability of exposure.

Edit Distance (EditDist): Levenshtein dis-
tance (Lcvenshtcin, 1966) between the sam-
ple and the corresponding knowledge it de-
rived from and if the sample is generated from
scratch, the distance will be calculated based
on the sample and an empty string. We use
mean value as the metric when there are mul-
tiple samples. We adopt this metric since the
degree to which the knowledge base is modi-
fied affects whether the user is alerted and the
higher the degree of modification, the more
likely it is to be discovered by the user.

Poison Num: The quantity of poisoned sam-
ples. A higher quantity of poisoned samples
may also reduce the stealthiness of attacks.

Perplexity (PPL): The text perplexity calcu-
lated by GPT-2 (Radford et al., 2019), which
is used to measure whether the text is fluent.
The higher the PPL, the more likely the text
is to be abnormal.

Detected Rate (DetRate): The proportion of
poisoned samples detected as synthetic. In the
experiment, we used MAGE (Li et al., 2024b),
which is a deepfake text detection approach,
as the detector.

Among the above metrics, except for ASR, all
other indicators measure the degree of stealthiness,
and lower values indicate higher stealthiness.

D PPL Evaluation
D.1 Approaches PPL

10

I OUR I PoisonedRAG-X2 I PoisonedRAG-X4
[ PoisonedRAG-X1 I PoisonedRAG-X3 M PoisonedRAG-X5
81 )
o (=]
—_ o
5 61 8 8o g
= ©e 00
—
o
o 44
| o8 o (IR o o
2 s 8
o
0 T T T
Where When Who
Question

Figure 3: PPL distribution of different approaches

Considering that the calculation of PPL is an
exponential function, and some studies (Jain et al.,
2023; Alon and Kamfonas, 2023; Gonen et al.,
2023) use PPL to measure the quality of data or fil-
ter data, we also present the distribution of PPL to
provide a comprehensive view, as shown in Fig-
ure 3. It can be seen that our approach has a
lower PPL than the baseline approaches, which
further indicates that the sample quality generated
by our approach is better than that of the baseline
approaches.

D.2 Variants PPL
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Figure 4: PPL distribution of different variants

As shown in Figure 4. It can be seen that the
three variants are very similar in the distribution
of PPL, especially the mixed variant and the un-
prefixed variant. This also indicates that adding



prefixes appropriately can improve the success rate
of attacks while maintaining PPL at a lower level.

E Cases

Table 5 shows the poisoned samples generated by
our approach and baseline approach. The Ori-
gin row in the table represents the benign sam-
ple, which is the key knowledge retrieved by the
question without poisoning. As can be seen, our
approach only makes minor modifications to the
key knowledge, i.e, changing “Asia” to “Arcadia”,
while the baseline approach is to generate new
knowledge (the highlighted part in the table) and
concatenate the Question before the text to ensure
it can be retrieved.

Table 5: Poisoned samples of different approaches

Question where did the indian myna

bird come from

Origin The common myna/Indian
mynah (Acridotheres tristis),
sometimes spelled mynah,
also sometimes known as
""Indian myna"", is a mem-
ber of the family Sturnidae
(starlings and mynas) native

to Asia. ...

OUR The common myna/Indian
mynah (Acridotheres tristis),
sometimes spelled mynah,
also sometimes known as
""Indian myna"", is a mem-
ber of the family Sturnidae

(starlings and mynas) native

to (AsiayArcadia. ...

where did the indian myna
bird come from. The Indian
Myna bird originated in Arca-
dia, aregion in ancient Greece
known for its natural beauty

PoisonedRAG

and mythological stories.

The highlighted part represents the newly generated
knowledge

Table 6 shows the difference between unpre-
fixed and prefixed samples. It can be seen that for
the question in the table, poisoned sample without
prefix is not retrieved. This is because the origin
knowledge is ranked last in the ranking list, and
after modifying the knowledge, the similarity be-
tween the question and the modified knowledge has
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slightly decline, resulting in the modified knowl-
edge being unable to be retained in the ranking list.
By using prefix, our approach add the vocabulary
"empire 1500s" before the text, which is automat-
ically extracted from the question. It can be seen
that the prefix of the text is reasonable and can be
treated as an index for the text, which is also very
common in benign knowledge and also ensures that
the sample is not easy to be detected.

Table 6: Poisoned samples of different variants

Question who ruled the ottoman empire

in the 1500s

In the 15th and 16th centuries,
the Ottoman Empire entered a pe-
riod of expansion. The Empire
prospered under the rule of a line
of committed and effective Sul-
tans. ...

Origin

unprefixed | (The modified knowledge was not

retrieved)

empire 1500s: In the 15th and
16th centuries, the Ottoman Em-
pire entered a period of expan-
sion. The Empire prospered
under the rule of a line of
committed and effective (Sul-

tans)Apollo. . ..

prefixed




