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ABSTRACT

Human beings use compositionality to generalise from past to novel experiences,
assuming that past experiences can be decomposed into fundamental atomic com-
ponents that can be recombined in novel ways. We frame this as the ability to learn
to generalise compositionally, and refer to behaviours making use of this ability as
compositional learning behaviours (CLBs). Learning CLBs requires the resolution
of a binding problem (BP). While it is another feat of intelligence that human beings
perform with ease, it is not the case for artificial agents. Thus, in order to build arti-
ficial agents able to collaborate with human beings, we develop a novel benchmark
to investigate agents’ abilities to exhibit CLBs by solving a domain-agnostic ver-
sion of the BP. Taking inspiration from the Emergent Communication, we propose
a meta-learning extension of referential games, entitled Meta-Referential Games,
to support our benchmark, the Symbolic Behaviour Benchmark (S2B). Baseline
results and error analysis show that the S2B is a compelling challenge that we hope
will spur the research community to develop more capable artificial agents.

1 INTRODUCTION

Defining compositional behaviours (CBs) as "the ability to generalise from combinations of trained-
on atomic components to novel re-combinations of those very same components", we can define
compositional learning behaviours (CLBs) as "the ability to generalise in an online fashion from a
few combinations of never-before-seen atomic components to novel re-combinations of those very
same components”. We employ the term online here to imply a few-shot learning context (Vinyals
et al., 2016; Mishra et al., 2018) that demands that agents learn from, and then leverage some novel
information, both over the course of a single lifespan, or episode, in our case of few-shot meta-RL
(see Beck et al. (2023) for a review of meta-RL). Thus, in this paper, we investigate artificial agents’
abilities for CLBs, which involve a few-shot learning aspect that is not present in CBs. For an
intuitive comparison, benchmarks that tests for CBs alone ask whether trained-and-now-frozen agents
can generalise to novel combinations of those same familiar atomic components they have been
training on. This is different from what a benchmark testing for CLBs would ask, to wit, whether
trained-and-now-frozen agents can generalise to novel combinations of never-before-seen atomic
components, provided some warm-up exposition rounds to those novel atomic components. Such
a benchmark instantiates a meta-learning challenge where tested agents can only be successful if
they have learned to learn to generalise compositionally, whereas CB-testing benchmark, like
SCAN (Lake & Baroni, 2018) and gSCAN (Ruis et al., 2020), can be solved by agents that have only
learned to generalise compositionally. Thus, in order to prompt agents to acquire the skill of learning
to generalise compositionaIly, we rely on the instantiation of a theoretically-infinite distribution
of different atomic components, and the underlying semantic structure they belong to, so that at
each training episode our agents are prompted with novel atomic components and novel underlying
semantic structure.

Compositional Learning Behaviours as Symbolic Behaviours. Santoro et al. (2021) states that
a symbolic entity does not exist in an objective sense but solely in relation to an “interpreter who
treats it as such”, and it ensues that there exists a set of behaviours, i.e. symbolic behaviours, that
are consequences of agents engaging with symbols. Thus, in order to evaluate artificial agents in
terms of their ability to collaborate with humans, we can use the presence or absence of symbolic
behaviours. Among the different characteristic of symbolic behaviours, this work will primarily focus
on the receptivity and constructivity aspects. Receptivity aspects amount to the ability to receive
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new symbolic conventions in an online fashion. For instance, when a child introduces an adult to
their toys’ names, the adults are able to discriminate between those new names upon the next usage.
Constructivity aspects amount to the ability to form new symbolic conventions in an online fashion.
For instance, when facing novel situations that require collaborations, two human teammates can
come up with novel referring expressions to easily discriminate between different events occurring.
Both aspects refer to abilities that support collaboration. Thus, this paper develops a benchmark to
evaluate agents’ abilities in receptive and constructive behaviours, with a primary focus on CLBs.

Binding Problem & Meta-Learning. Following Greff et al. (2020), we refer to the binding problem
(BP) as the challenges in “dynamically and flexibly bind[/re-use] information that is distributed
throughout the [architecture]” of some artificial agents (modelled with artificial neural networks here).
We note that there is an inherent BP that requires solving for agents to exhibit CLBs. Indeed, over
the course of a single episode (as opposed to a whole training process, in the case of CBs), agents
must dynamically identify/segregate the component values from the observation of multiple stimuli,
timestep after timestep, and then bind/(re-)use/(re-)combine this information (hopefully stored in
some memory component of their architecture) in order to respond correctly to novel stimuli.Solving
the BP instantiated in such a context, i.e. re-using previously-acquired information in ways that
serve the current situation, is another feat of intelligence that human beings perform with ease,
on the contrary to current state-of-the-art artificial agents. Thus, our benchmark must emphasise
testing agents’ abilities to exhibit CLBs by solving a version of the BP. Moreover, we argue for a
domain-agnostic BP, i.e. not grounded in a specific modality such as vision or audio, as doing so
would limit the external validity of the test. We aim for as few assumptions as possible to be made
about the nature of the BP we instantiate (Chollet, 2019). This is crucial to motivate the form of the
stimuli we employ, and we will further detail this in Section 3.2.

Language Grounding & Emergence. In order to test the quality of some symbolic behaviours, our
proposed benchmark needs to query the semantics that agents (the interpreters) may extract from
their experience, and it must be able to do so in a referential fashion (e.g. being able to query to
what extent a given experience is referred to as, for instance, ‘the sight of a red tomato’), similarly
to most language grounding benchmarks. Subsequently, acknowledging that the simplest form of
collaboration is maybe the exchange of information, i.e. communication, via a given code, or language,
we argue that the benchmark must therefore also allow agents to manipulate this code/language
that they use to communicate. This property is known as the metalinguistic/reflexive function of
languages (Jakobson, 1960). It is mainly investigated in the current deep learning era within the
field of Emergent Communication ( Lazaridou & Baroni (2020), and see Brandizzi (2023) and
Denamganaï & Walker (2020a) for further reviews), via the use of variants of the referential games
(RGs) (Lewis, 1969). Thus, we take inspiration from the RG framework, where (i) the language
domain represents a semantic domain that can be probed and queried, and (ii) the reflexive function of
language is indeed addressed. Then, in order to instantiate different BPs at each episode, we propose
a meta-learning extension to RGs, entitled Meta-Referential Games, and use this framework to build
our benchmark. It results in our proposed Symbolic Behaviour Benchmark (S2B), which has the
potential to test for many aspects of symbolic behaviours.

After review of the background (Section 2) , we will present our contributions as follows: we propose
the Symbolic Behaviour Benchmark to enables evaluation of symbolic behaviours in Section 3,
presenting the Symbolic Continuous Stimulus (SCS) representation scheme which is able to instantiate
a BP, on the contrary to common symbolic representations (Section 3.2), and our Meta-Referential
Games framework, a meta-learning extension to RGs (Section 3.1) ; then we provide baseline results
and error analysis in Section 4 for state-of-the-art RL agents and Large Language Models (LLMs -
Brown et al. (2020), showing that our benchmark is a compelling challenge that we hope will spur
the research community.

2 BACKGROUND

The first instance of an environment with a primary focus on efficient communication is the signaling
game or referential game (RG) by Lewis (1969), where a speaker agent is asked to send a message
to the listener agent, based on the state/stimulus of the world that it observed. The listener agent
then acts upon the observed message by choosing one of the actions available to it. Both players’
goals are aligned (it features pure coordination/common interests), with the aim of performing the
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‘best’ action given the observed state. In the recent deep learning era, many variants of the RG
have appeared (Lazaridou & Baroni, 2020). Following the nomenclature proposed in Denamganaï
& Walker (2020b), Figure 1 illustrates in the general case a discriminative 2-players / L-signal /
N -round / K-distractors / descriptive / object-centric variant, where the speaker receives a stimulus
and communicates with the listener (up to N back-and-forth using messages of at most L tokens
each), who additionally receives a set of K + 1 stimuli (potentially including a semantically-similar
stimulus as the speaker, referred to as an object-centric stimulus). The task is for the listener
to determine, via communication with the speaker, whether any of its observed stimuli match the
speaker’s. We highlight here features of RGs that will be relevant to how S2B is built, and then provide
formalism used throughout the paper. The number of communication rounds N characterises
(i) whether the listener agent can send messages back to the speaker agent and (ii) how many
communication rounds can be expected before the listener agent is finally tasked to decide on an action.

Figure 1: Illustration of a discriminative 2-players /
L-signal / N -round variant of a RG.

The basic (discriminative) RG is stimulus-
centric, which assumes that both agents
would be somehow embodied in the same
body, and they are tasked to discriminate
between given stimuli, that are the results
of one single perception ‘system’. On
the other hand, Choi et al. (2018) intro-
duced an object-centric variant which in-
corporates the issues that stem from the
difference of embodiment (which has been
later re-introduced under the name Concept
game by Mu & Goodman (2021)). The
agents must discriminate between objects
(or scenes) independently of the viewpoint
from which they may experience them. In the object-centric variant, the game is more about bridging
the gap between each other’s cognition rather than just finding a common language. The adjective
‘object-centric’ is used to qualify a stimulus that is different from another but actually present the
same meaning (e.g. same object, but seen under a different viewpoint). Following the last communi-
cation round, the listener outputs a decision (DL

i in Figure 2) about whether any of the stimulus it
is observing matches the one (or a semantically similar one, in object-centric RGs) experienced by
the speaker, and if so its action index must represent the index of the stimulus it identifies as being
the same. The descriptive variant allows for none of the stimuli to be the same as the target one,
therefore the action of index 0 is required for success. The agent’s ability to make the correct decision
over multiple RGs is referred to as RG accuracy.

Compositionality, Disentanglement & Systematicity. Compositionality is a phenomenon that
human beings are able to identify and leverage thanks to the assumption that reality can be decomposed
over a set of “disentangle[d,] underlying factors of variations” (Bengio, 2012), and our experience
is a noisy, entangled translation of this factorised reality. This assumption is critical to the field
of unsupervised learning of disentangled representations (Locatello et al., 2020) that aims to find
“manifold learning algorithms” (Bengio, 2012), such as variational autoencoders (VAEs (Kingma &
Welling, 2013)), with the particularity that the latent encoding space would consist of disentangled
latent variables (see Higgins et al. (2018) for a formal definition). As a concept, compositionality
has been the focus of many definition attempts. For instance, it can be defined as “the algebraic
capacity to understand and produce novel combinations from known components”(Loula et al. (2018)
referring to Montague (1970)) or as the property according to which “the meaning of a complex
expression is a function of the meaning of its immediate syntactic parts and the way in which they are
combined” (Krifka, 2001). Although difficult to define, the commmunity seems to agree on the fact
that it would enable learning agents to exhibit systematic generalisation abilities (also referred to as
combinatorial generalisation (Battaglia et al., 2018)). While often studied in relation to languages, it is
usually defined with a focus on behaviours. In this paper, we will refer to (linguistic) compositionality
when considering languages, and interchangeably compositional behaviours or systematicity to refer
to “the ability to entertain a given thought implies the ability to entertain thoughts with semantically
related contents”(Fodor & Pylyshyn, 1988).

Compositionality can be difficult to measure. Brighton & Kirby (2006)’s topographic similarity
(topsim) which is acknowledged by the research community as the main quantitative metric (Lazari-
dou et al., 2018; Guo et al., 2019; Słowik et al., 2020; Chaabouni et al., 2020; Ren et al., 2020).
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Recently, taking inspiration from disentanglement metrics, Chaabouni et al. (2020) proposed the
posdis (positional disentanglement) and bosdis (bag-of-symbols disentanglement) metrics, that
have been shown to be differently ‘opinionated’ when it comes to what kind of compositionality
they capture. As hinted at by Choi et al. (2018); Chaabouni et al. (2020) and Dessi et al. (2021),
compositionality and disentanglement appears to be two sides of the same coin, in as much as
emergent languages are discrete and sequentially-constrained unsupervisedly-learned representations.
In Section 3.2, we bridge further compositional language emergence and unsupervised learning of
disentangled representations by asking what would an ideally-disentangled latent space look like? to
build our proposed benchmark.

Richness of the Stimuli & Systematicity. Chaabouni et al. (2020) found that compositionality is not
necessary to bring about systematicity, as shown by the fact that non-compositional languages wielded
by symbolic (generative) RG players were enough to support success in zero-shot compositional
tests (ZSCTs). They found that the emergence of a posdis-compositional language was a sufficient
condition for systematicity to emerge. Finally, they found a necessary condition to foster systematicity,
that we will refer to as richness of stimuli condition (Chaa-RSC). It was framed as (i) having a large
stimulus space |I| = ival

iattr , where iattr is the number of attributes/factor dimensions, and ival
is the number of possible values on each attribute/factor dimension, and (ii) making sure that it
is densely sampled during training, in order to guarantee that different values on different factor
dimensions have been experienced together. In a similar fashion, Hill et al. (2019) also propose a
richness of stimuli condition (Hill-RSC) that was framed as a data augmentation-like regularizer
caused by the egocentric viewpoint of the studied embodied agent. In effect, the diversity of viewpoint
allowing the embodied agent to observe over many perspectives the same and unique semantical
meaning allows a form of contrastive learning that promotes the agent’s systematicity.

3 SYMBOLIC BEHAVIOUR BENCHMARK

We present a version of the S2B that focuses on evaluating receptive and constructive behaviour traits1.
This evaluation relies on a single task built around 2-players multi-agent RL (MARL) episodes. Each
episode consists of a series of RGs (cf. lines 11 and 17 in Alg. 5 calling Alg. 3). We denote one such
episode as a meta-RG and detail it in Section 3.1. Each RG in a meta-RG follows the formalism
laid out in Section 2. The only difference is that both players speak simultaneously, rather than
turn-by-turn. Consequently, they observe their partner’s message upon the next RL step. Each RG
consists of N + 2 RL steps, where N is the number of communication rounds available to the players
(cf. Section 2).

At each RL step, each player observe a stimulus and a message coming from their partner. Throughout
the first N + 1 steps, these stimuli remain constant. They are object-centric, and may be similar or
different from one player to the other. We recall that the common goal of RG players is to figure
out whether they observe similar stimuli or not. Stimuli are represented using the the Symbolic
Continuous Stimulus (SCS) representation, which we detail in Section 3.2.

From those observations, each player acts from different actions spaces. Each player’s action space is
dependent on their role in the RG, as the speaker or the listener. In the first N steps, both players’
action space only allow them to send messages to their partner. Then, at step N + 1, the listener
player must decide whether they observe a similar stimulus than the speaker. Thus, the listener’s
action space only allows the decision-related actions. And, the speaker’s action space only allows
a no-operation (NO-OP) action. In practice, the environment provides the players with masks that
identify valid actions. If the players still choose invalid actions, the environment simply ignores them.

Finally, after the listener has provided their decision, step N + 2 provides feedback to the listener
player. This feedback consist of two elements. First, the environment reward is non-null. And,
secondly, the listener’s stimulus is the same that the speaker was observing throughout the current
RG (cf. line 12 and 18 in Alg. 5). Note, that it is the exact stimulus rather than an object-centric
sample. In Figure 4, we present SCS-represented stimuli, observed by a speaker over the course of a
typical episode.

1HIDDEN_FOR_REVIEW_PURPOSE
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Figure 2: Left: Sampling of the necessary components to create the i-th RG (RGi) of a meta-RG.
The target stimulus (red) and the object-centric target stimulus (purple) are both sampled from
the Target Distribution TDi, a set of O different stimuli representing the same latent semantic
meaning. The latter set and a set of K distractor stimuli (orange) are both sampled from a dataset of
SCS-represented stimuli (Dataset), which is instantiated from the current episode’s symbolic space,
whose semantic structure is sampled out of the meta-distribution of available semantic structure
over Ndim-dimensioned symbolic spaces. Right: Illustration of the resulting meta-RG with a focus
on the i-th RG RGi. The speaker agent receives at each step the target stimulus si0 and distractor
stimuli (sik)k∈[1;K], while the listener agent receives an object-centric version of the target stimulus
s′

i
0 or a distractor stimulus (randomly sampled), and other distractor stimuli (sik)k∈[1;K], with the

exception of the Listener Feedback step where the listener agent receives feedback in the form
of the exact target stimulus si0. The Listener Feedback step takes place after the listener agent has
provided a decision DL

i about whether the target meaning is observed or not and in which stimuli is
it instantiated, guided by the vocabulary-permutated message MS

i from the speaker agent.

3.1 META-REFERENTIAL GAMES

A Meta-RG consists of a series of RGs, played over specific stimuli. These stimuli are sampled from
a given Ndim-dimensioned symbolic space. To be successful, players must learn to communicate
about stimuli using initially-ungrounded symbols. They must ground symbols into the symbolic
space they observe. But each new episode brings about a new communication channel and a new
symbolic space. The symbolic space is renewed by changing its semantic structure, which we detail
further in Section 3.2. And the communication channel has its symbols being randomly permutated,
as detailed below. Players of a Meta-RG must learn to adapt to new stimuli and new communication
channels. This renewal mechanism, in a meta-learning way, defines a distribution of adaptation tasks.
Each meta-RG evaluates the ability of the players to adapt.

The series of RGs that a Meta-RG consists of can be separated over two phases: a supporting
and querying/ZSCT phase. The supporting phase helps players learn the new semantics of the
symbolic space. Players must also agree on communication conventions by grounding the newly
randomized symbols. They prepare for the querying/ZSCT phase, during which ZSCT-purposed RGs
are played. They rely on target stimuli consisting of new combinations of the supporting stimuli’s
atomic components. Focusing on novel combinations of never-before-seen components, prior to the
current episode, is the main advantage of Meta-RGs over RGs. Indeed, this focus allows evaluation
of players’ ability to learn to generalise compositionally.

Players that mastered the skill of learning to generalise compositionally will exhibit high RG
accuracy during the querying/ZSCT phase. But those who lacks the (meta-)learning/adaptation part
will not. Algorithms 4 and 5 (in Appendix A) contrast how a common RG differ from a meta-RG.
Indeed, the supporting phase of a Meta-RG does not involve updating the parameters/weights of
the learning agents. This is in keeping with the meta-learning framework of the few-shot learning
kind. Its instantiation in the context of Meta-RG becomes striking when comparing the positions and
dependencies of lines 21 in Alg. 5 and 6 in Alg. 4.

The supporting phase lasts until all possible atomic component values on each latent dimension have
been shown for at least S shots (cf. lines 3− 7 in Alg. 5). Thus, it will amount to at least S different
target stimuli being shown. That is to say at least S supporting-phase RGs. And, at most, there will
actually be less supporting-phase RGs than the number of possible supporting-purposed stimuli in
the current episode’s symbolic space/dataset. This is due to the focus on familiarising players with
atomic component values rather than stimuli themselves. On the otherhand, the querying/ZSCT phase
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will present all the testing-purposed stimuli. We emphasise again that all RGs from both phases are
played without the agents’ parameters changing in-between. Indeed, learning CLBs involve agents
adapting in an online/few-shot learning setting. The semantic structure of the symbolic space is
randomly sampled at the beginning of each episode (cf. lines 2− 3 in Alg. 5). The reward function
proposed to both agents is null except on the N + 2-th step. It will be +1 if the listener decided
correctly or, during the querying phase only, −2 if incorrect (cf. line 21 in Alg. 5).

Stimulus Representation. Meta-RG players must be able to deal with stimuli from Ndim-
dimensioned symbolic spaces of varying semantic structures. Thus, it is necessary that stimulus
representation shapes remain constant from one semantic structure to another. This is not the case
for the common one-/multi-hot-encoded representation scheme. Thus, we propose the Symbolic
Continuous Stimulus (SCS) representation scheme, detailed in Section 3.2. Thanks to its shape
invariance property, once a number of latent/factor dimension Ndim is choosen, it allows generation
of many different semantically structured symbolic spaces while maintaining a consistent stimulus
representation shape. Figure 2 highlights the structure of an episode, and its reliance on differently
semantically structured Ndim-dimensioned symbolic spaces.

Vocabulary Permutation. We remark that only changing the semantic structure of the symbolic
space is not sufficient to force MARL agents to adapt in each episode. Indeed, they can learn to cheat
by relying on an episode-invariant (and therefore independent of the instantiated semantic structure)
emergent language (EL). This cheating EL consists of encoding the continuous values of the SCS
representation like an analog-to-digital converter would. It would map a fine-enough partition of
the SCS range onto a fixed vocabulary in a bijective fashion (see Appendix D for more details).
Therefore, to prevent the MARL agents from relying on such a cheating EL, we employ a vocabulary
permutation scheme (Cope & Schoots, 2021) that samples at the beginning of each episode a random
permutation of the vocabulary symbols (cf. line 1 in Alg. 2). This approach is bears some similarity
with the Other-Play algorithm from Hu et al. (2020).

Richness of the Stimulus. We further bridge the gap between Hill-RSC and Chaa-RSC by allowing
the number of object-centric samples O and the number of shots S to be parameterized in the
benchmark. S represents the minimal number of times any given atomic component value may be
observed throughout the course of an episode. Intuitively, throughout their lifespan, an embodied
observer may only observe a given component a limited number of times (e.g. considering the value
‘blue’, on the latent/factor dimension ‘color’, being observed once within a ‘blue car’ stimulus, and
another time within a ‘blue cup’ stimulus). These parameters allow experimenters to account for both
the Chaa-RSC’s sampling density of the different stimulus components and Hill-RSC’s diversity of
viewpoints.

3.2 SYMBOLIC CONTINUOUS STIMULUS REPRESENTATION

Figure 3: OHE/MHE and SCS represen-
tations of example latent stimuli for two
differently-structured symbolic spaces with
Ndim = 3, i.e. on the left for d(0) = 4,
d(1) = 2, d(2) = 3, and on the right for
d(0) = 3, d(1) = 3, d(2) = 3. Note the
shape invariance property of the SCS repre-
sentation, as its shape remains unchanged by
the change in semantic structure of the sym-
bolic space, on the contrary to the OHE/MHE
representations.

Building about successes of the field of unsuper-
vised learning of disentangled representations (Hig-
gins et al., 2018), to the question what would an
ideally-disentangled latent space look like?, we pro-
pose the Symbolic Continuous Stimulus (SCS) rep-
resentation and provide numerical evidence of it in
Appendix E.2. It is continuous and relying on Gaus-
sian kernels, and it has the particularity of enabling
the representation of stimuli sampled from differently
semantically structured symbolic spaces while main-
taining the same representation shape (later referred
as the shape invariance property), as opposed to the
one-/multi-hot encoded (OHE/MHE) vector represen-
tation commonly used when dealing with symbolic
spaces.

While the SCS representation is inspired by vectors
sampled from VAE’s latent spaces, this representation
is not learned and is not aimed to help the agent performing its task. It is solely meant to make it
possible to define a distribution over infinitely many semantic/symbolic spaces, while instantiating
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a BP for the agent to resolve. Indeed, contrary to OHE/MHE representation, observation of one
stimulus is not sufficient to derive the nature of the underlying semantic space that the current episode
instantiates (cf. Figure 3 for comparison). Rather, it is only via a kernel density estimation on multiple
samples (over multiple timesteps) that the semantic space’s nature can be inferred, thus requiring the
agent to segregated and (re)combine information that is distributed over multiple observations. In
other words, the benchmark instantiates a domain-agnostic BP. We provide in Appendix E.1 some
numerical evidence to the fact that the SCS representation differentiates itself from the OHE/MHE
representation because it instantiates a BP. Deriving the SCS representation from an idealised VAE’s
latent encoding of stimuli of any domain makes it a domain-agnostic representation, which is an
advantage compared to previous benchmark because domain-specific information can therefore not
be leveraged to solve the benchmark.

Figure 4: Visualisation of the SCS-
represented stimuli (column) observed by the
speaker agent at each RG over the course of
one meta-RG, with Ndim = 3 and d(0) = 5,
d(1) = 5, d(2) = 3. The supporting phase
lasted for 19 RGs. For each factor dimen-
sion i ∈ [0; 2], we present on the right side
of each plot the kernel density estimations of
the Gaussian kernels N (µl(i), σl(i)) of each
latent value available on that factor dimen-
sion l(i) ∈ [1; d(i)]. Colours of dots, used to
represent the sampled value gl(i), imply the la-
tent value l(i)’s Gaussian kernel from which
said continuous value was sampled. For each
factor dimension, there is no overlap between
the different latent values’ Gaussian kernels.

In details, the semantic structure of an Ndim-
dimensioned symbolic space is the tuple
(d(i))i∈[1;Ndim] where Ndim is the number of
latent/factor dimensions, d(i) is the number of possi-
ble symbolic values for each latent/factor dimension
i. Stimuli in the SCS representation are vectors
sampled from the continuous space [−1,+1]Ndim . In
comparison, stimuli in the OHE/MHE representation
are vectors from the discrete space {0, 1}dOHE

where dOHE = ΣNdim
i=1 d(i) depends on the d(i)’s.

Note that SCS-represented stimuli have a shape that
does not depend on the d(i)’s values, this is the
shape invariance property of the SCS representation
(see Figure 3 for illustration).

In the SCS representation, the d(i)’s do not shape the
stimuli but only the semantic structure, i.e. represen-
tation and semantics are disentangled from each other.
The d(i)’s shape the semantic by enforcing, for each
factor dimension i, a partitionaing of the [−1,+1]
range into d(i) value sections. Each partition corre-
sponds to one of the d(i) symbolic values available
on the i-th factor dimension. Having explained how
to build the SCS representation sampling space, we
now describe how to sample stimuli from it. It starts
with instantiating a specific latent meaning/symbol,
embodied by latent values l(i) on each factor dimen-
sion i, such that l(i) ∈ [1; d(i)]. Then, the i-th entry
of the stimulus is populated with a sample from a
corresponding Gaussian distribution over the l(i)-
th partition of the [−1,+1 range. It is denoted as
gl(i) ∼ N (µl(i), σl(i)), where µl(i) is the mean of
the Gaussian distribution, uniformly sampled to fall
within the range of the l(i)-th partition, and σl(i) is
the standard deviation of the Gaussian distribution,
uniformly sampled over the range [ 2

12d(i) ,
2

6d(i) ]. µl(i)

and σl(i) are sampled in order to guarantee (i) that
the scale of the Gaussian distribution is large enough,
but (ii) not larger than the size of the partition section
it should fit in. Figure 4 shows an example of such
instantiation of the different Gaussian distributions
over each factor dimensions’ [−1,+1] range.

4 EXPERIMENTS

Agent Architecture. The architectures of the RL agents that we consider are detailed in Appendix C.
Optimization is performed via an R2D2 algorithm(Kapturowski et al., 2018) augmented with both the
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Value Decomposition Network (Sunehag et al., 2017) and the Simplified Action Decoder approach (Hu
& Foerster, 2019). As preliminary results showed poor performance, we follow Hill et al. (2020) and
add an auxiliary reconstruction task to promote agents learning to use their core memory module. It
consists of a mean squared-error between the stimuli observed at a given time step and a prediction
conditioned on the current state of the core memory module after processing the current stimuli.

4.1 LEARNING CLBS IS OUT-OF-REACH TO STATE-OF-THE-ART MARL

Table 1: Meta-RG ZSCT and Ease-of-Acquisition
(EoA) ZSCT accuracies and linguistic compositionality
measures (%± s.t.d.) for the multi-agent context after
a sampling budget of 500k. The last column shows lin-
guist results when evaluating the Posdis-Speaker (PS).

Shots PS

Metric S = 1 S = 2

AccZSCT ↑ 53.6± 4.7 51.6± 2.2 N/A
AccEoA ↑ 50.6± 8.8 50.6± 5.8 N/A
topsim ↑ 29.6± 16.8 21.3± 16.6 96.7± 0
posdis ↑ 23.7± 20.8 13.8± 12.8 92.0± 0
bosdis ↑ 25.6± 22.9 19.1± 17.5 11.6± 0

Playing a meta-RG, the speaker aims at
each episode to make emerge a new lan-
guage (constructivity) and the listener aims
to acquire it (receptivity) as fast as possible,
before the querying-phase of the episode
comes around. Critically, we assume that
both agents must perform in accordance
with the principles of CLBs as it is the
only resolution approach. Indeed, there
is no success without a generalizing and
easy-to-learn EL, or, in other words, a (lin-
guistically) compositional EL (Brighton &
Kirby, 2001; Brighton, 2002). Thus, we
investigate whether agents are able to co-
ordinate to learn to perform CLBs from
scratch, which is tantamount to learning receptivity and constructivity aspects of CLBs in parallel.

Evaluation & Results. We report the performance and compositionality of the behaviours in the multi-
agent context in Table 1, on 3 random seeds of an LSTM-based model in the task with Ndim = 3,
Vmin = 2, Vmax = 5, O = 4, and S = 1 or 2. As we assume no success without emergence of a
(linguistically) compositional language, we measure the linguistic compositionality profile of the
emerging languages by, firstly, freezing the speaker agent’s internal state (i.e. LSTM’s hidden and
cell states) at the end of an episode and query what would be its subsequent utterances for all stimuli
in the latest episode’s dataset (see Figure 2), and then compute the different compositionality metrics
on this collection of utterances. We compare the compositionality profile of the ELs to that of a
compositional language, in the sense of the posdis compositionality metric (Chaabouni et al., 2020)
(see Figure 7 and Table 6 in Appendix C.2). This language is produced by a fixed, rule-based agent
that we will refer to as the Posdis-Speaker (PS). Similarly, after the latest episode ends and the speaker
agent’s internal state is frozen, we evaluate the EoA of the emerging languages by training a new,
non-meta/common listener agent for 512 epochs on the latest episode’s dataset with the frozen
speaker agent using a descriptive-only/object-centric common RG and report its ZSCT accuracy (see
Algorithm 3).Table 1 shows AccZSCT being around chance-level (50%), thus the meta-RL agents fail
to coordinate together, despite the simplicity of the setting, meaning that learning CLBs from scratch
is currently out-of-reach to state-of-the-art MARL agents, and therefore show the importance of our
benchmark. As the linguistic compositionality measures are very low compared to the PS agent, and
since the chance-leveled AccEoA implies that the emerging languages are not easy to learn, it leads us
to think that the poor MARL performance is due to the lack of compositional language emergence.

4.2 SINGLE-AGENT LISTENER-FOCUSED RL CONTEXT

Seeing that the multi-agent benchmark is out of reach to state-of-the-art cooperative MARL agents,
we investigate a simplification along two axises. Firstly, we simplify to a single-agent RL problem
by instantiating a fixed, rule-based agent as the speaker, which should remove any issues related
to agents learning in parallel to coordinate. Secondly, we use the Posdis-Speaker agent, which
should remove any issues related to the emergence of assumed-necessary compositional languages,
which corresponds to the constructivity aspects of CLBs. These simplifications allow us to focus our
investigation on the receptivity aspects of CLBs, which relates to the ability from the listener agent to
acquire and leverage a newly-encountered compositional language at each episode.

4.2.1 SYMBOL-MANIPULATION INDUCTION BIASES ARE VALUABLE
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Table 2: Meta-RG ZSCT accuracies (%± s.t.d.).

LSTM ESBN DCEM

AccZSCT ↑ 86.0± 0.1 89.4± 2.8 81.9± 0.6

Firstly, in the simplest setting of O = 1 and S =
1, we hypothesise that symbol-manipulation bi-
ases, such as efficient memory-addressing mech-
anism (e.g. attention) and greater algorithm-
learning abilities (e.g. explicit memory), should
improve performance, and propose to test the Emergent Symbol Binding Network (ESBN) (Webb
et al., 2020), the Dual-Coding Episodic Memory (DCEM) (Hill et al., 2020) and compare to baseline
LSTM (Hochreiter & Schmidhuber, 1997).

Evaluation & Results. We report in Table 2 the final ZSCT accuracies in the setting of Ndim = 3,
Vmin = 2, Vmax = 3, with a sampling budget of 10M observations and 3 random seeds per
architecture. LSTM performing better than DCEM is presumably due to the difficulty of the latter
in learning to use its complex memory scheme (preliminary experiments involving a Differentiable
Neural Computer (DNC - Graves et al. (2016)), on which the DCEM is built, show it struggling
to learn to use its memory compared to LSTM - cf Appendix E.3). On the other hand, we interpret
the best performance of the ESBN as being due to it being built over the LSTM, thus allowing its
complex memory scheme to be bypassed until it becomes useful. We validate our hypothesis but
carry on experimenting with the simpler LSTM model in order to facilitate analysis.

4.3 RECEPTIVITY ASPECTS OF CLBS CAN BE LEARNED SUB-OPTIMALLY

Table 3: Meta-RG ZSCT accuracies (%± s.t.d.).

Shots

Samples S = 1 S = 2 S = 4

O = 1 62.2± 3.7 73.5± 2.4 75.0± 2.3
O = 4 62.8± 0.8 62.6± 1.7 60.2± 2.2
O = 16 64.9± 1.7 62.0± 2.0 61.8± 2.1

Hypotheses. The SCS representation instanti-
ates a BP even when O = 1 (cf. Appendix E.1),
and we suppose that when O increases the BP’s
complexity increases.Thus, it would stand to
reason to expect performance to decrease when
O increases (Hyp. 1). On the other hand, we
would expect that increasing S would provide
the learning agent with a denser sampling (in
order to fulfill Chaa-RSC (ii)) , and thus perfor-
mance is expected to increase as S increases (Hyp. 2). Indeed, increasing S amounts to giving more
opportunities for the agents to estimate each Gaussian, thus relaxing the instantiated BP’s complexity.

Evaluation & Results. We report in table 3 ZSCT accuracies on LSTM-based models (6 random
seeds per settings) with Ndim = 3 and Vmin = 2, Vmax = 5. The chance threshold is 50%. When
S = 1, increasing O is surprisingly correlated with non-significant increases in performance/sys-
tematicity. On the otherhand, when S > 1, accuracy distributions stay similar or decrease while O
increases. Thus, overall, Hyp. 1 tends to be validated. Regarding Hyp. 2, when O = 1, increasing
S (and with it the density of the sampling of the input space, i.e. Chaa-RSC (ii)) correlates with
increases in systematicity. Thus, despite the difference of settings between common RG, in Chaabouni
et al. (2020), and meta-RG here, we retrieve a similar result that Chaa-RSC promotes systematicity.
On the other hand, our results show a statistically significant distinction between BPs of complexity
associated with O > 1 and those associated with O = 1. Indeed, when O > 1, our results contradict
Hyp.2 since accuracy distributions remain the same or decrease when S increases. Acknowledging
the LSTMs’ notorious difficulty with integrating/binding information from past to present inputs
over long dependencies, we explain these results based on the fact that increasing S also increases
the length of each RL episode, thus the ‘algorithm’ learned by LSTM-based agents might fail to
adequately estimate Gaussian kernel densities associated with each component value.

4.4 LLMS PERFORM BELOW CHANCE-LEVEL ON S2B AS LISTENER

Hypotheses. With LLMs being trained on curated human conversations, we investigate whether they
have acquired skills in terms of receptivity aspects of CLBs. Thus, we test them without fine-tuning in
the same listener-focused RL setting as in Section 4.3, with the same set of hypotheses. Our prompts
are presented in Appendix B, but note that in this experiment we only make use of the listener prompt,
as the speaker agent is played by our PS rule-based agent.

Evaluation & Results. We report in table 4 ZSCT accuracies on Mixtral-8x7B-Instruct-v0.1 (Mixtral)
and OpenAI GPT-4o-mini (GPT) models, with Ndim = 3 and Vmin = 2, Vmax = 5. Over all contexts
(O = 1 or 4 and S = 1 or 2), we observe poor performance (below chance level at 50%) from both

9
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tested LLMs, thus providing very clear signal that the benchmark is challenging, even in this simpler
listener-focused RL setting, with low (and therefore simpler) values of (Ndim, Vmin, Vmax).

Table 4: Meta-RG ZSCT accuracies (mean %± s.t.d.) for Mixtral-
8x7B-Instruct-v0.1 (Mixtral) and OpenAI GPT-4o-mini (GPT),
with Ndim = 3, Vmin = 2, Vmax = 5, O = 1 and S = 1 or 2.
Evaluation is performed over 5 seeds per setting and 64 Meta-
RG episodes per seed, using the HuggingFace Text-Generation
Inference API or OpenAI API, with Structured Outputs.

O = 1 O = 4

S = 1 S = 2 S = 1 S = 2

Mixtral 45.6± 10.5 49.3± 13.7 48.6± 17.6 49.9± 7.9
GPT 33.1± 11.4 36.8± 12.7 39.8± 11.6 42.9± 3.8

In more details, firstly, we ob-
serve statistically non-significant
increases of performance when
S is increased from 1 to 2, for
both tested LLMs, which com-
fort Chaa-RSC but the lack of
statistical significance prevent us
from drawing any conclusion.
Then, as O is increased from
1 to 4, we observe a surprising
increase of performance, espe-
cially marked for GPT-4o-mini,
albeit far from being statistically non-significant.

We assume that these below-chance level results are, at least in part, caused by the well-studied
limitation of LLMs when dealing with numerical values (Lee et al., 2023; Shen et al., 2023). We
leave it to future works to investigate whether enhanced embeddings of numerical data (e.g. McLeish
et al. (2024); Schwartz et al. (2024)) enable greater performance.

5 DISCUSSION

Compositional Behaviours vs CLBs. The learning of compositional behaviours (CBs) is one of
the central study in language grounding with benchmarks like SCAN (Lake & Baroni, 2018) and
gSCAN (Ruis et al., 2020), as well as in the subfield of Emergent Communication (see Brandizzi
(2023); Boldt & Mortensen (2023) for reviews), but none investigates nor allow testing for CLBs.
Thus, our benchmark aims to fill in this gap. At a high level, SCAN and gSCAN are build to
evaluate compositional behaviours (CBs) only, because the (supervised-learning) agents tackling
those benchmarks are only facing a single, fixed underlying semantic structure. Thus, they get to
learn what atomic components compose this single, fixed underlying semantic structure over multiple
‘lives’ (over multiple update iterations of the agent’s parameter weights). For an intuitive comparison,
SCAN and gSCAN benchmarks ask whether trained-and-now-frozen agents can generalise to novel
combinations of those same familiar atomic components they have been training on. This is
different from our proposed S2B, which intuitively asks whether trained-and-now-frozen agents
can generalise to novel combinations of never-before-seen atomic components, provided some
warm-up exposition rounds to those atomic components. Warm-up exposition rounds do not
involve update of the agent’s parameters. Thus, S2B instantiates meta-learning challenges where the
agents can only be successful if they have learned to learn to generalise compositionally, whereas
SCAN and gSCAN can be solved by agents that have only learned to generalise compositionally.
Indeed, S2B instantiates a theoretically-infinite distribution of different atomic components by way of
controlling the underlying semantic structure they belong to. Contrary to SCAN and gSCAN, agents
tackling the S2B are facing an infinity of always-changing underlying semantic structure. S2B is a
meta-learning benchmark, whereas SCAN and gSCAN are not, in principle.

That being said, SCAN and gSCAN can be updated to become meta-learning benchmarks, which is
what Lake (2019) and Lake & Baroni (2023) did to train their agents. Indeed, without making the
nuance, Lake (2019) and Lake & Baroni (2023) actually use CLBs as a training paradigm, where a
meta-learning extension of the sequence-to-sequence learning setting (i.e. CLB training) is shown to
enable human-like systematic CBs at test-time. Contrary to our work, they evaluate AI’s abilities
towards SCAN-specific CBs after SCAN-specific CLBs training. We propose to go further because
we propose to train for CLBs and test for CLBs too, because we argue that CBs are actually not useful
in open-ended contexts. We refer to open-ended contexts as real-world situations where agents would
encounter more diverse semantic structure than just the single one that they have been trained on. We
argue that CLBs are very useful in open-ended contexts. Moreover, even though Lake (2019) and
Lake & Baroni (2023) extended SCAN to be used as a meta-learning benchmark, we argue that there
is a missing element, which is the instantiation of a novel binding problem (BP) in each task. Indeed,
their extension made use of an OHE/MHE representation which we have argued in Section 3.2 and
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Appendix E.1 that it does not instantiate a BP, contrary to the SCS representation which we use in
our proposed S2B. Given their demonstration of the potential of CLBs, we leverage our proposed
Meta-RG framework to propose a domain-agnostic CLB-focused benchmark for evaluation of CLBs
abilities themselves, in order to address novel research questions around CLBs.

Symbolic Behaviours & Binding Problem. Following Santoro et al. (2021)’s definition of symbolic
behaviours, our benchmark is the first specifically-principled benchmark to evaluate systematically
artificial agents’s abilities towards any symbolic behaviours. Similarly, while most challenging
benchmark instantiates a version of the BP, as described by Greff et al. (2020), there is currently
no principled benchmark that specifically investigates whether BP can be solved by artificial agents.
Thus, not only does our benchmark fill that other gap, but it also instantiate a domain-agnostic version
of the BP, which is critical in order to ascertain the external validity of conclusions that may be drawn
from it. Indeed, domain-agnosticity guards us against confounders that could make the task solvable
without fully solving the BP, e.g. by gaming some domain-specific aspects (Chollet, 2019).

Limitations. Our experiments only evaluated state-of-the-art RL models and LLMs in the simplest
configuration of our benchmark. We leave it to future works to investigate more complex configura-
tions and evaluate other classes of models, such as neuro-symbolic models (Yu et al., 2023) or LLMs
augmented with prompting methods that further reasoning abilities (Wei et al., 2022) and/or abilities
to experiment (Lampinen et al., 2022) and correct themselves (Shinn et al., 2023).

In summary, we have proposed a novel benchmark to investigate artificial agents abilities at learning
CLBs, by casting the problem of learning CLBs as a meta-reinforcement learning problem. It uses
our proposed extension to RGs, entitled Meta-Referential Games, which contains an instantiation of a
domain-agnostic BP. We provided baseline results for both the multi-agent tasks and the single-agent
listener-focused tasks of learning CLBs in the context of our proposed benchmark. Our analysis
of the behaviours in the multi-agent context highlighted the complexity for the speaker agent to
invent a compositional language. But, when the language is already compositional, then a learning
listener is able to acquire it and coordinate, albeit sub-optimally, with a rule-based speaker, in some
of the simplest settings of our benchmark. Symbol-manipulation induction biases were found to
be valuable, but, overall, our results show that our proposed benchmark is currently out of reach
for current state-of-the-art artificial agents, as further exemplified by LLMs performing even below
chance-level when instantiated as a listener and paired with our rule-based speaker. Thus, we hope
our benchmark will spur the research community towards developing more capable artificial agents.
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A ON ALGORITHMIC DETAILS OF META-REFERENTIAL GAMES

In this section, we detail algorithmically how Meta-Referential Games differ from common RGs. We
start by presenting in Algorithm 4 an overview of the common RGs, taking place inside a common
supervised learning loop, where we highlight the following:

(i) preparation of the data on which the referential game is played (highlighted in green),

(ii) elements pertaining to the supervised learning loop (highlighted in red).

Helper functions are detailed in Algorithm 1, 2 and 3. Next, we can now show in greater and
contrastive details the Meta-Referential Game algorithm in Algorithm 5, where we highlight the
following:

(i) preparation of the data on which the referential game is played (highlighted in green),

(ii) elements pertaining to the meta-learning loop (highlighted in blue).

(iii) elements pertaining to setup of a Meta-Referential Game (highlighted in red).

Algorithm 1: Helper function : DataPrep
Given :

• a target stimuli s0,
• a dataset of stimuli Dataset,
• O : Number of Object-Centric samples in each Target Distribution over stimuli TD(·).
• K : Number of distractor stimuli to provide to the listener agent.
• FullObs : Boolean defining whether the speaker agent has full (or partial) observation.
• DescrRatio : Descriptive ratio in the range [0, 1] defining how often the listener agent is

observing the same semantic as the speaker agent.
s′0, D

Target ← s0, 0;
if random(0, 1) > DescrRatio then

/* Exclude target stimulus from listener’s observation: */
s′0 ∼ Dataset− TD(s0);
DTarget ← K + 1;

end
else if O > 1 then

Sample an Object-Centric distractor s′0 ∼ TD(s0);
end
Sample K distractor stimuli from Dataset− TD(s0): (si)i∈[1,K] ∼ Dataset− TD(s0);
ObsSpeaker ← {s0}; if FullObs then

ObsSpeaker ← {s0} ∪ {si|∀i ∈ [1,K]};
end
ObsListener ← {s′0} ∪ {si|∀i ∈ [1,K]};
/* Shuffle listener observations and update index of target

decision: */
ObsListener, D

Target ← Shuffle(ObsListener, D
Target);

Output : ObsSpeaker, ObsListener, D
Target;
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Algorithm 2: Helper function : MetaRGDatasetPreparation
Given :

• V : Vocabulary (finite set of tokens available),
• Ndim : Number of attribute/factor dimensions in the symbolic spaces,
• Vmin : Minimum number of possible values on each attribute/factor dimensions in the

symbolic spaces,
• Vmax : Maximum number of possible values on each attribute/factor dimensions in the

symbolic spaces,
Initialise random permutation of vocabulary: V ′ ← RandomPerm(V )
Sample semantic structure: (d(i))i∈[1,Ndim] ∼ U(Vmin;Vmax)

Ndim ;
Generate symbolic space/dataset D((d(i))i∈[1,Ndim]);
Split dataset into supporting set Dsupport and querying set Dquery (((d(i))i∈[1,Ndim]) is omitted for

readability);
Output : V ′, D((d(i))i∈[1,Ndim]), D

support, Dquery;

Algorithm 3: Helper function : PlayRG
Given :

• Speaker and Listener agents,
• Set of speaker observations ObsSpeaker,
• Set of listener observations ObsListener,
• N : Number of communication rounds to play,
• L : Maximum length of each message,
• V : Vocabulary (finite set of tokens available),

Compute message MS = Speaker(ObsSpeaker|∅);
Initialise Communication Channel History: CommH← [MS ];
for round = 0, N do

Compute Listener’s reply ML
round, _ = Listener(ObsListener|CommH);

CommH← CommH + [ML
round];

Compute Speaker’s reply MS
round = Speaker(ObsSpeaker|CommH);

CommH← CommH + [MS
round];

end
Compute listener decision _, DL = Listener(ObsListener|CommH);
Output : Listener’s decision DL, Communication Channel History CommH;
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Algorithm 4: Common Referential Game inside a Common Supervised Learning Loop
Given :

• a dataset of stimuli Dataset,
• a set of hyperparameters defining the RG:

– O : Number of Object-Centric samples in each Target Distribution over stimuli TD(·).
– N : Number of communication rounds to play.
– L : Maximum length of each message.
– V : Vocabulary (finite set of tokens available).
– K : Number of distractor stimuli to provide to the listener agent.
– FullObs : Boolean defining whether the speaker agent has full (or partial) observation.
– DescrRatio : Descriptive ratio in the range [0, 1] defining how often the listener agent

is observing the same semantic as the speaker agent.
– L : Loss function to use in the agents update.

Initialize :
• Speaker(·) and Listener(·) agents.

Systematically split Dataset into training and testing dataset, Dtrain and Dtest;
for epoch = 1, Nepoch do

for target stimulus s0 ∈ Dtrain do
/* Preparation of observations and target decision: */
ObsSpeaker, ObsListener, D

Target ← DataPrep(Dataset, s0, O,K,FullObs,DescrRatio)
/* Play Referential Game: */
DL, _ = PlayRG(Speaker,Listener, ObsSpeaker, ObsListener, N, L, V );
/* Supervised Learning Parameters Update on Training

Stimulus Only: */
Update both speaker and listener agents’ parameters using the loss L(DTarget, DL);

end
Initialise ZSCT accuracy: AccZSCT ← 0;
for target stimulus s0 ∈ Dtest do

/* Preparation of observations and target decision: */
ObsSpeaker, ObsListener, D

Target ← DataPrep(Dataset, s0, O,K,FullObs,DescrRatio)
/* Play Referential Game: */
DL, _ = PlayRG(Speaker,Listener, ObsSpeaker, ObsListener, N, L, V );
/* Update ZSCT Accuracy: */
AccZSCT ← Update(AccZSCT, D

Target, DL);
end

end
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Algorithm 5: Meta-Referential Game inside a Meta-Learning Loop
Given :

• Nepisode, Ndim : Number of episodes, and number of attribute/factor dimensions,
• S : Minimum number of Shots over which each possible value on each attribute/factor

dimension ought to be observed by the agents (as part of a target stimulus).
• Vmin, Vmax : Minimum and maximum number of possible values on each attribute/factor

dimensions in the symbolic spaces,
• TSS(D,S, S) : Target stimulus sampling function which samples from dataset D, given a

set of previously sampled stimuli S, while maximising the likelihood that each possible
value on each attribute/factor dimension are sampled at least S times.

• a set of hyperparameters defining the RG:
– O : Number of Object-Centric samples in each Target Distribution over stimuli TD(·).
– N : Number of communication rounds to play.
– L : Maximum length of each message.
– V : Vocabulary (finite set of tokens available).
– K : Number of distractor stimuli to provide to the listener agent.
– FullObs : Boolean defining whether the speaker agent has full (or partial) observation.
– DescrRatio : Descriptive ratio in the range [0, 1] defining how often the listener agent

is observing the same semantic as the speaker agent.
Initialize :

• Speaker(·) and Listener(·) agents.
for episode = 1, Nepisode do

/* Preparation of the symbolic space/dataset: */

V ′, Depisode, D
support
episode, D

query
episode ←MetaRGDatasetPreparation(V,Ndim, Vmin, Vmax);

Initialise set of sampled supporting stimuli: Ssupport ← ∅;
repeat

Sample training-purposed target stimulus si0 ∼ TSS(Dsupport
episode,Ssupport, S)

Ssupport ← Ssupport ∪ {si0}; i← i+ 1;
until all values on each attribute/factor dimension have been instantiated at least S times;
Initialise RG index: i← 0;
/* Supporting Phase: */
for target stimulus si0 ∈ Ssupport do

ObsiSpeaker, ObsiListener, D
Target
i ← DataPrep(Dsupport

episode, s
i
0, O,K,FullObs,DescrRatio);

DL
i , CommHi = PlayRG(Speaker,Listener, ObsiSpeaker, ObsiListener, N, L, V ′);

_, _ = Listener(ObsiSpeaker|CommHi) ; /* Listener-Feedback Step */
end
/* Querying/ZSCT Phase: */
Initialise ZSCT accuracy: AccZSCT ← 0;
for target stimulus si0 ∈ Dquery

episode do
ObsiSpeaker, ObsiListener, D

Target
i ← DataPrep(Depisode, s

i
0, O,K,FullObs,DescrRatio);

DL
i , CommHi = PlayRG(Speaker,Listener, ObsiSpeaker, ObsiListener, N, L, V ′);

_, _ = Listener(ObsiSpeaker|CommHi) ; /* Listener-Feedback Step */
/* Update ZSCT Accuracy: */

AccZSCT ← Update(AccZSCT, D
Target
i , DL

i ); i← i+ 1;
end
/* Meta-Learning Parameters Update on Whole Episode: */

Update both agents using rewards Ri =


1 if DTarget

i == DL
i

0 otherwise, during supporting phase
−2 otherwise, during querying phase

;

end
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B PROMPTS FOR LANGUAGE MODELS

Speaker & Listener - Detailed Prompt Examples
Speaker Prompt - RG #0 - Step 1

1 You and your partner are playing a sequence
↪→ of referential games. You are the speaker
↪→ .

2 In the first phase, you will get accounted
↪→ with the atomic components of the
↪→ possible observations. Then, the game
↪→ counter will restart, and you will be
↪→ tested with new observations, combining
↪→ the same atomic components in novel ways.

3 At each game, each of you observes a
↪→ stimulus, which represents a latent
↪→ meaning, and your common goal is to
↪→ figure out whether you are observing
↪→ different or similar latent meanings. You
↪→ can communicate with your partner using
↪→ the communication channel. The
↪→ communication channel is made up of 10
↪→ symbols that you can combine together to
↪→ form a sentence of maximum length 5.
↪→ Beware that symbol 0 is grounded already.
↪→ It is the end-of-message symbol. It
↪→ means that any symbol that comes after it
↪→ will be ignored and regularised into
↪→ symbol 0.

4 From one game to the next, you should aim to
↪→ be consistent so that your partner can
↪→ figure out the code that you are using to
↪→ communicate and decrypt messages towards
↪→ fulfilling your common goal.

5
6 Starting game #0, this is the new stimulus:

↪→ [-0.469 0.682 -0.532].
7
8 You are an expert in the matter. Given the

↪→ information above, answer the following
↪→ question(s) to the best of your abilities
↪→ .

9
10 Question #1: Do you think your partner

↪→ understands your messages?
11 Answer either 0.:’Yes’ or 1.:’No’.
12
13 Question #2: What message should you send to

↪→ your partner to better coordinate
↪→ together towards fulfilling your common
↪→ goal?

14 The message is made up of 5 symbols, each of
↪→ which can be filled with one of the 10
↪→ vocab symbols. For example: [0, 0, 0, 0,
↪→ 0].

15 This question corresponds to 5 implicit
↪→ questions, one for each of the 5 symbols
↪→ of the message. Thus, each possible
↪→ answer id is between 0 and 9,
↪→ corresponding to one of the 10 vocab
↪→ symbols.

Listener Prompt - RG #0 - Step 1
1You and your partner are playing a sequence

↪→ of referential games. You are the
↪→ listener.

2In the first phase, you will get accounted
↪→ with the atomic components of the
↪→ possible observations. Then, the game
↪→ counter will restart, and you will be
↪→ tested with new observations, combining
↪→ the same atomic components in novel ways.

3At each game, each of you observes a
↪→ stimulus, which represents a latent
↪→ meaning, and your common goal is to
↪→ figure out whether you are observing
↪→ different or similar latent meanings. To
↪→ help you do so, your partner can send you
↪→ messages using the communication channel
↪→ , which is made up of 10 symbols that can
↪→ be combined together to form a sentence
↪→ of maximum length 5.

4Beware that symbol 0 is grounded already. It
↪→ is the end-of-message symbol. It means
↪→ that any symbol that comes after it will
↪→ be ignored and regularised into symbol 0.

5
6Starting game #0, this is the new stimulus:

↪→ [0.346 -0.524 0.868].
7
8You are an expert in the matter. Given the

↪→ information above, answer the following
↪→ question(s) to the best of your abilities
↪→ .

9
10Question #1: Are you observing a stimulus

↪→ representing the same latent meaning as
↪→ the stimulus observed by your partner?

11Answer either 0.:’Yes’ or 1.:’No’.
12
13Question #2: What message should you send

↪→ your partner to better coordinate with
↪→ them towards fulfilling your common goal?

14The message is made up of 5 symbols, each of
↪→ which can be filled with one of the 10
↪→ vocab symbols. For example: [1, 9, 2, 6,
↪→ 5].

15This question corresponds to 5 implicit
↪→ questions, one for each of the 5 symbols
↪→ of the message. Thus, each possible
↪→ answer id is between 0 and 9,
↪→ corresponding to one of the 10 vocab
↪→ symbols.

Figure 5: Detailed prompts for the speaker and listener agents at the start of a Meta-Referential Game
(RG #0), starting with an explanation of the context and the rules (lines 1-4), followed by information
about the (previous and) current game(s) (line 6 - cf. Figure 6 - RG #1 Step 1 for more details
presenting previous games). The prompt is ended (from line 8) with two multi-choice questions
referring to the two actions that agents may perform, i.e. providing a decision and a message that is
to be communicated to the other player at the next step. Note that both of those actions are not
necessary for both players, i.e. the decision is only necessary for the listener, and the message
is only necessary for the speaker in the experiments presented here. Our proposed benchmark
incorporates the setting where the listener agent is allowed to communicate back to the speaker, but
we leave investigation of this more complex setting to subsequent works. RL actions that are not
necessary are simply ignored by the benchmark RL environment.
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Speaker & Listener - Partial Prompt Examples

Speaker Prompt - RG #0 - Step 2
1 You and your partner are playing a sequence

↪→ of referential games. You are the speaker
↪→ .

2
...

3

At game #0, you are observing stimulus:
[-0.469 0.682 -0.532].
You have sent the following message: [[3,
3, 3, 3, 3]].

4
5 You are an expert in the matter. Given the

↪→ information above, answer the following
↪→ question(s) to the best of your abilities
↪→ .

6
...

Listener Prompt - RG #0 - Step 2
1You and your partner are playing a sequence

↪→ of referential games. You are the
↪→ listener.

2
...

3

At game #0, you are observing stimulus:
[0.346 -0.524 0.868].
Your partner has sent you the following
message: [9, 9, 9, 9, 9].

4
5You are an expert in the matter. Given the

↪→ information above, answer the following
↪→ question(s) to the best of your abilities
↪→ .

6
...

Speaker Prompt - RG #0 - Step 3: Listener
Feedback Step

1
...

2

At game #0, you have observed stimulus:
[-0.469 0.682 -0.532].
You have sent the following message: [[3,
3, 3, 3, 3]].
Your partner has decided that both of you
were observing different latent meanings.
This was correct. You and your partner
have won game #0.
At the end of game #0, here is a special
step where your partner is being shown the
exact stimulus that you observe.

3
...

Listener Prompt - RG #0 - Step 3: Listener
Feedback Step

1
...

2

At game #0, you have observed stimulus:
[0.346 -0.524 0.868].
Your partner had sent you the following
message: [9, 9, 9, 9, 9].
You have decided that both of you were
observing different latent meanings.
This was correct. You and your partner
have won game #0.
At the end of game #0, here is a special
step where you are given an opportunity to
sync with your partner: this is the exact
stimulus that your partner observes:
[-0.469 0.682 -0.532].

3
...

Speaker Prompt - RG #1 - Step 1
1
...

2

At game #0, you have observed stimulus:
[-0.469 0.682 -0.532].You have sent the
following message: [[3, 3, 3, 3, 3]].Your
partner has decided that both of you were
observing different latent meanings.This
was correct. You and your partner have
won game #0.
At the end of game #0, there was a special
step where your partner was being shown
the exact stimulus that you observed.

Starting game #1, this is the new stimulus:
[0.102 -0.049 0.638].

3
...

Listener Prompt - RG #1 - Step 1
1

...

2

At game #0, you have observed stimulus:
[0.346 -0.524 0.868].
Your partner had sent you the following
message: [9, 9, 9, 9, 9].
You have decided that both of you were
observing different latent meanings.
This was correct. You and your partner
have won game #0.
In game #0, this is the exact stimulus
that your partner was observing: [-0.469
0.682 -0.532].

Starting game #1, this is the new stimulus:
[0.912 -0.550 -0.091].

3
...

Figure 6: Partial prompts for the speaker and listener agents, from step 2 of RG #0 to step 1 of RG #1,
highlighting information changes from one step to the next. Note the effect of the vocabulary per-
mutation scheme transforming the message send by the speaker into a vocabulary-permutated
version of the message observed by the listener, mainly at step 2. Step 3 corresponds to the
Listener Feedback step where the listener is presented with the exact stimulus that the speaker was
observing during the current RG.
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Table 5: Hyper-parameters values used in R2D2, with LSTM or DNC as the core memory module.
All missing parameters follow the ones in Ape-X (Horgan et al., 2018).

R2D2

Number of actors 32
Actor parameter update interval 1 environment step
Sequence unroll length 20
Sequence length overlap 10
Sequence burn-in length 10
N-steps return 3
Replay buffer size 5× 104 observations
Priority exponent 0.9
Importance sampling exponent 0.6
Discount γ 0.997
Minibatch size 32
Optimizer Adam (Kingma & Ba, 2014)
Optimizer settings learning rate = 6.25× 10−5, ϵ = 10−12

Target network update interval 2500 updates
Value function rescaling None

Core Memory Module

LSTM (Hochreiter & Schmidhuber, 1997) DNC (Graves et al., 2016)

Number of layers 2 LSTM-controller settings 2 hidden layers of size 128
Hidden layer size 256, 128 Memory settings 128 slots of size 32
Activation function ReLU Read/write heads 2 reading ; 1 writing

C AGENT ARCHITECTURE & TRAINING

The baseline RL agents that we consider use a 3-layer fully-connected network with 512, 256, and
finally 128 hidden units, with ReLU activations, with the stimulus being fed as input. The output
is then concatenated with the message coming from the other agent in a OHE/MHE representation,
mainly, as well as all other information necessary for the agent to identify the current step, i.e. the
previous reward value (either +1 and 0 during the training phase or +1 and −2 during testing phase),
its previous action in one-hot encoding, an OHE/MHE-represented index of the communication
round (out of N possible values), an OHE/MHE-represented index of the agent’s role (speaker or
listener) in the current game, an OHE/MHE-represented index of the current phase (either ’training’
or ’testing’), an OHE/MHE representation of the previous RG’s result (either success or failure), the
previous RG’s reward, and an OHE/MHE mask over the action space, clarifying which actions are
available to the agent in the current step. The resulting concatenated vector is processed by another
3-layer fully-connected network with 512, 256, and 256 hidden units, and ReLU activations, and then
fed to the core memory module, which is here a 2-layers LSTM (Hochreiter & Schmidhuber, 1997)
with 256 and 128 hidden units, which feeds into the advantage and value heads of a 1-layer dueling
network (Wang et al., 2016).

Table 5 highlights the hyperparameters used for the learning agent architecture and the learning
algorithm, R2D2(Kapturowski et al., 2018). More details can be found, for reproducibility purposes,
in our open-source implementation at HIDDEN_FOR_REVIEW_PURPOSE.

Training was performed for each run on 1 NVIDIA GTX1080 Ti, and the average amount of training
time for a run is 18 hours for LSTM-based models, 40 hours for ESBN-based models, and 52 hours
for DCEM-based models.

C.1 ESBN & DCEM

The ESBN-based and DCEM-based models that we consider have the same architectures and
parameters than in their respective original work from Webb et al. (2020) and Hill et al. (2020), with
the exception of the stimuli encoding networks, which are similar to the LSTM-based model.
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C.2 RULE-BASED SPEAKER AGENT

The rule-based speaker agents used in the single-agent task, where only the listener agent is a
learning agent, speaks a compositional language in the sense of the posdis metric (Chaabouni et al.,
2020), as presented in Table 6 for Ndim = 3, a maximum sentence length of L = 4, and vocabulary
size |V | >= maxid(i) = 5, assuming a semantical space such that ∀i ∈ [1, 3], d(i) = 5.

Figure 7: Visualisation on each column of the messages sent by the posdis-compositional rule-
based speaker agent over the course of the episode presented in Figure 4. Colours are encoding the
information of the token index, as a visual cue.

D CHEATING LANGUAGE Table 6: Examples of the latent
stimulus to language utterance map-
ping of the posdis-compositional
rule-based speaker agent. Note that
token 0 is the EoS token.

Latent Dims Comp. Language

#1 #2 #3 Tokens

0 1 2 1, 2, 3, 0
1 3 4 2, 4, 5, 0
2 5 0 3, 6, 1, 0
3 1 2 4, 2, 3, 0
4 3 4 5, 4, 5, 0

The agents can develop a cheating language, cheating in the
sense that it could be episode/task-invariant (and thus semantic
structure invariant). This emerging cheating language would
encode the continuous values of the SCS representation like an
analog-to-digital converter would, by mapping a fine-enough
partition of the [−1,+1] range onto the vocabulary in a bijective
fashion.

For instance, for a vocabulary size ∥V ∥ = 10, each symbol can
be unequivocally mapped onto 2

10 -th increments over [−1,+1],
and, by communicating Ndim symbols (assuming Ndim ≤
L), the speaker agents can communicate to the listener the
(digitized) continuous value on each dimension i of the SCS-
represented stimulus. If maxjd(j) ≤ ∥V ∥ then the cheating language is expressive-enough for the
speaker agent to digitize all possible stimulus without solving the binding problem, i.e. without
inferring the semantic structure. Similarly, it is expressive-enough for the listener agent to convert
the spoken utterances to continuous/analog-like values over the [−1,+1] range, thus enabling the
listener agent to skirt the binding problem when trying to discriminate the target stimulus from the
different stimuli it observes.

E FURTHER EXPERIMENTS:

E.1 ON THE BP INSTANTIATED BY THE SCS REPRESENTATION

Hypothesis. The SCS representation differs from the OHE/MHE one primarily in terms of the
binding problem (Greff et al., 2020) that the former instantiates while the latter does not. Indeed,
the semantic structure can only be inferred after observing multiple SCS-represented stimuli. We
hypothesised that it is via the dynamic binding of information extracted from each observations that
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an estimation of a density distribution over each dimension i’s [−1,+1] range can be performed.
And, estimating such density distribution is tantamount to estimating the number of likely gaussian
distributions that partition each [−1,+1] range.

Evaluation. Towards highlighting that there is a binding problem taking place, we show results of
baseline RL agents (similar to main experiments in Section 4) evaluated on a simple single-agent
recall task. The Recall task structure borrows from few-shot learning tasks as it presents over 2 shots
all the stimuli of the instantiated symbolic space (not to be confused with the case for Meta-RG
where all the latent/factor dimensions’ values are being presented over S shots – Meta-RGs do not
necessarily sample the whole instantiated symbolic space at each episode, but the Recall task does).
Each shot consists of a series of recall games, one for each stimulus that can be sampled from an
Ndim = 3-dimensioned symbolic space. The semantic structure (d(i))i∈[1;Ndim] of the symbolic
space is randomly sampled at the beginning of each episode, i.e. d(i) ∼ U(2; 5), where U(2; 5) is the
uniform discrete distribution over the integers in [2; 5], and the number of object-centric samples is
O = 1, in order to remove any confounder from object-centrism.

Each recall game consists of two steps: in the first step, a stimulus is presented to the RL agent, and
only a no-operation (NO-OP) action is made available, while, on the second step, the agent is asked
to infer/recall the discrete l(i) latent value (as opposed to the representation of it that it observed,
either in the SCS or OHE/MHE form) that the previously-presented stimulus had instantiated, on
a given i-th dimension, where value i for the current game is uniformly sampled from U(1;Ndim)
at the beginning of each game. The value of i is communicated to the agent via the observation
on this second step of different stimulus that in the first step: it is a zeroed out stimulus with the
exception of a 1 on the i-th dimension on which the inference/recall must be performed when using
SCS representation, or over all the OHE/MHE dimensions that can encode a value for the i-th latent
factor/attribute when using the OHE/MHE representation. On the second step, the agent’s available
action space now consists of discrete actions over the range [1;maxjd(j)], where maxjd(j) is a
hyperparameter of the task representing the maximum number of latent values for any latent/factor
dimension. In our experiments, maxjd(j) = 5. While the agent is rewarded at each game for
recalling correctly, we only focus on the performance over the games of the second shot, i.e. on the
games where the agent has theoretically received enough information to infer the density distribution
over each dimension i’s [−1,+1] range. Indeed, observing the whole symbolic space once (on the
first shot) is sufficient (albeit not necessary, specifically in the case of the OHE/MHE representation).

Figure 8: 5-ways 2-shots accuracies
on the Recall task with different stim-
ulus representation (OHE:blue ; SCS;
orange).

Results. Figure 8 details the recall accuracy over all the
games of the second shot of our baseline RL agent through-
out learning. There is a large gap of asymptotic perfor-
mance depending on whether the Recall task is evaluated
using OHE/MHE or SCS representations. We attribute
the poor performance in the SCS context to the instantia-
tion of a BP. We note again that during those experiments
the number of object-centric samples was kept at O = 1,
thus emphasising that the BP is solely depending on the
use of the SCS representation and does not require object-
centrism.

E.2 ON THE IDEALLY-DISENTANGLED-NESS OF THE
SCS REPRESENTATION

In this section, we verify our hypothesis that the SCS representation yields ideally-disentangled
stimuli. We report on the FactorVAE Score Kim & Mnih (2018), the Mutual Information Gap
(MIG) Chen et al. (2018), and the Modularity Score Ridgeway & Mozer (2018) as they have been
shown to be part of the metrics that correlate the least among each other (Locatello et al., 2020),
thus representing different desiderata/definitions for disentanglement. We report on the Ndim = 3-
dimensioned symbolic spaces with ∀j, d(j) = 5 and O = 5. The measurements are of 100.0%, 94.8,
and 98.9% for, respectivily, the FactorVAE Score, the MIG, and the Modularity Score, thus validating
our design hypothesis about the SCS representation. We remark that the MIG and Modularity
Score are sensitive to the number of object-centric samples O, which can be seen decreasing the
measurements as low as 64.4% and 66.6% for O = 1. The FactorVAE Score is not affected, possibly
due to its reliance on a deterministic classifier.
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E.3 AUXILIARY RECONSTRUCTION LOSS

In the following, we investigate and compare the performance when using an LSTM (Hochreiter
& Schmidhuber, 1997) or a Differentiable Neural Computer (DNC) (Graves et al., 2016) as core
memory module, with or without the auxiliary reconstruction loss inspired from Hill et al. (2020).

In the case of the LSTM, the prediction network of the reconstruction loss takes as input the LSTM
hidden states, while in the case of the DNC, the input is the memory. Figure 9b shows the stimulus
reconstruction accuracies for both architectures, highlighting a greater data-efficiency (and resulting
asymptotic performance in the current observation budget) of the LSTM-based architecture, compared
to the DNC-based one.

Figure 9a shows the 4-ways (3 distractors descriptive meta-RGs) ZSCT accuracies of the different
agents throughout learning. The ZSCT accuracy is the accuracy over querying-/testing-purpose
stimuli only, after the agent has observed for two consecutive times (i.e. S = 2) the supportive
training-purpose stimuli for the current episode. The DNC-based architecture has difficulty learning
how to use its memory, even with the use of the auxiliary reconstruction loss, and therefore it utterly
fails to reach better-than-chance ZSCT accuracies. On the otherhand, the LSTM-based architecture is
fairly successful on the auxiliary reconstruction task, but it is not sufficient for training on the main
task to really take-off. As expected from the fact that the benchmark instantiates a binding problem
that requires relational responding, our results hint at the fact that the ability to use memory towards
deriving valuable relations between stimuli seen at different time-steps is primordial. Indeed, only the
agent that has the ability to use its memory element towards recalling stimuli starts to perform at a
better-than-chance level. Thus, the auxiliary reconstruction loss is an important element to drive some
success on the task, but it is also clearly not sufficient, and the rather poor results that we achieved
using these baseline agents indicates that new inductive biases must be investigated to be able to
solve the problem posed in our proposed benchmark.

F BROADER IMPACT

No technology is safe from being used for malicious purposes, which equally applies to our research.
However, aiming to develop artificial agents that relies on the same symbolic behaviours and the same
social assumptions (e.g. using CLBs) than human beings is aiming to reduce misunderstanding be-
tween human and machines. Thus, the current work is targeting benevolent applications. Subsequent
works around the benchmark that we propose are prompted to focus on emerging protocols in general
(not just posdis-compositional languages), while still aiming to provide a better understanding of
artificial agent’s symbolic behaviour biases and differences, especially when compared to human
beings, thus aiming to guard against possible misunderstandings and misaligned behaviours. The
current state of this work does not allow discussion of potential negative societal impact.

(a) (b)

Figure 9: (a): 4-ways (3 distractors) zero-shot compositional test accuracies of different architectures.
5 seeds for architectures with DNC and LSTM, and 2 seeds for runs with DNC+Rec and LSTM+Rec,
where the auxiliary reconstruction loss is used. (b): Stimulus reconstruction accuracies for the
architectures augmented with the auxiliary reconstruction task. Accuracies are computed on binary
values corresponding to each stimulus’ latent dimension’s reconstructed value being close enough to
the ground truth value, with a threshold of 0.05 on each dimension, which correspond to a deviation
tolerance of 2.5% since the range in which SCS stimuli are instantiated is [−1, 1].
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