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Abstract

We consider multi-draft speculative sampling,
where the proposal sequences are sampled inde-
pendently from the same underlying draft model.
At each step, a token-level draft selection scheme
takes a list of valid tokens as input and produces
an output token whose distribution matches that
of the target model. Previous works have demon-
strated that the optimal scheme (which maximizes
the probability of accepting one of the input to-
kens) can be cast as a solution to a linear program.
In this work we show that the optimal scheme
can be decomposed into a two-step solution: in
the first step an importance sampling (IS) type
scheme is used to select one intermediate token;
in the second step (single-draft) speculative sam-
pling is applied to generate the output token. Ap-
plying our decomposition result to the case of
two drafts we 1) establish a necessary and suffi-
cient condition on the distributions of the target
and draft models for the acceptance probability
to equal one and 2) provide an explicit expres-
sion for the optimal acceptance probability. Our
theoretical analysis also motives a new class of
token-level selection scheme based on weighted
importance sampling. We study the performance
of such schemes via experiments involving Llama
2-7B chat model for a natural language task and
demonstrate improvements over prior approaches.

1. Introduction

The transformer architecture (Vaswani et al., 2017) has revo-
lutionized the field of natural language processing and deep
learning. One of the key factors contributing to the success
story of transformers, as opposed to prior recurrent-based ar-
chitectures (Hochreiter & Schmidhuber, 1997; Chung et al.,
2014), is their inherent train-time parallelization due to the
attention mechanism. This allows for massive scaling and
lead to the development of state-of-the-art Large Language
Models (LLMs) (Touvron et al., 2023; Achiam et al., 2023;
Brown et al., 2020; Chowdhery et al., 2023) which have
demonstrated remarkable performance across a wide range
of tasks. Despite their parallelizable training, LLM infer-

ence is sequential, owing to their auto-regressive nature.
This limits their text-generation to one token per one for-
ward pass, which is known to be memory-bound (Shazeer,
2019).

To alleviate the memory-bound nature of auto-regressive
decoding of LLMs, speculative decoding (Chen et al., 2023;
Leviathan et al., 2023) leverages an arbitrary smaller lan-
guage model (draft model) that generates multiple candi-
date tokens in an auto-regressive manner. The LLM (target
model) is then used to score all the tokens in the draft in
parallel, and the draft tokens are verified through a sequence
of token-level rejection sampling which guarantees that the
final sequence follows the same distribution as that of the
target model. In order for speculative decoding to be benefi-
cial, the combined cost of auto-regressively sampling from
the draft model and parallel verification via the target model
should be smaller than auto-regressively sampling from the
target model. Intuitively, this requires that the draft model
distribution resembles that of the target model, which can
be measured via the acceptance rate of the speculative de-
coding process, i.e., the rate at which we accept/reject draft
tokens.

A large number of works on speculative decoding (Sun
et al., 2024b; Jeon et al., 2024; Miao et al., 2024; Sun et al.,
2024a) have emerged recently in an effort to further improve
decoding efficiency. The authors in (Sun et al., 2024b) pro-
pose SpecTr, a multi-draft extension where the draft model
generates K candidate token sequences (which could be
sampled in a batch) for each time-step (as opposed to one).
The authors consider a token-level selection scheme with
the objective of maximizing the probability of accepting
some token in the set of available tokens. They demonstrate
that this problem can be cast into the framework of opti-
mal transport and solved using a linear program. However
due to complexity reasons, the authors instead propose a
modified sequential rejection sampling scheme. We provide
additional literature survey in the related works section.

1.1. Main Contributions

We revisit the optimal transport framework introduced
in (Sun et al., 2024b) and introduce an architectural result.
We demonstrate that the optimal acceptance probability can
be achieved by a two-step scheme: the first step involves
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selecting a token from the available list using a type of
importance sampling; the second step involves speculative
sampling using the selected token and the target distribution.
We also provide an analytical expression for the optimal
acceptance probability for the case of K = 2 drafts, thus
generalizing a result known previously for the case when
K = 1. We also establish a necessary and sufficient condi-
tion for the acceptance probability to equal one in the case
of K = 2 drafts. We propose a new class of token-selection
schemes based on weighted importance sampling. To enable
a faster implementation, we consider three approaches: 1)
truncating the linear program 2) truncating the vocabulary
set and 3) hybrid combination with other baseline schemes.
We present some experimental results using Llama 2-7B
as the target model and a smaller draft model with 115m
parameters. We compare the performance of our proposed
schemes with baselines on the XSum task.

2. Token-Level Optimal Draft Selection:
Theoretical Analysis

We focus on token-level optimal draft selection frame-
work introduced in (Sun et al., 2024b). We assume that
Q = {1,2,...,n} denotes the vocabulary of tokens and
at a given step, say t, S = {Xi,..., Xk}, denotes the
K valid tokens under consideration. Each of these to-
kens is generated in an i.i.d. fashion from a distribution
p(+) determined by the underlying draft model and the
context sequence u’ € QF i.e, for each y € €, we have
p(y) = M (y|u'), where M denotes the distribution gen-
erated by the small (draft) model. In a similar fashion we
let g(+) be the distribution over € associated with the large
model i.e., ¢(y) = My (y|u') where M, denotes the distri-
bution generated by the large model. Note that we do not
explicitly indicate the sequence u’ when discussing p(-) and
q(+), as it is fixed and common to both models throughout
our analysis.

Given an input & ~ Hfil p(X;) consisting of K can-
didate tokens (X1, ..., Xk), a token-level selection rule
(TLSR) is a conditional distribution P(-|S) over Q. A
valid TLSR must satisfy the constraint that for each z € €,
> s P(2|S)p(S) = q(z). A natural metric to optimize for
TLSR is the probability that one of the tokens is accepted
i.e., if Z ~ P(-|S) denotes the output of the TLSR, then we
wish to maximize Pr(Z € S).

Problem 1 (Optimal Token Level Selection Rule). Given
distributions p(-) and q(-) find a valid TLSR that maximizes
the probability of acceptance: P(acc) = Pr(Z € S) and
let P*(acc) be the optimal value.

Problem 1 was studied in (Sun et al., 2024b) and shown
to be an instance of optimal transport, which can be cast
as a linear program. The authors used this framework to

establish the optimality of speculative sampling (Chen et al.,
2023; Leviathan et al., 2023) in the case of a single draft i.e.,
K = 1. For K > 1 the authors established an information
theoretic upper bond on P*(acc). In this work, we revisit
Problem 1 and develop new insights into the structure of
the optimal solution. In fact, we establish that the optimal
solution in the case of multiple drafts has a natural connec-
tion to importance sampling (Tokdar & Kass, 2010). For the
case of K = 2 drafts we exactly characterize P*(acc) and
state necessary and sufficient conditions on p(-) and ¢(-) for
P*(acc) to equal 1.

We begin by defining a family of schemes that we will refer
to as importance weighted sampling.

Definition 1 (Importance Weighted Sampling). An impor-
tance weighted sampling scheme takes as input the set of
candidate tokens S = {X1, ..., Xk} and outputs a token
Y: € S defined by the conditional distribution:

Pr(Y; = y|X1.xk = 21.x) =
{ﬂy(xl,... yE{a:l,..
0,

y & {x1,..
where Eyegﬁy(xl,...,m;() = 1 for each z1.x € QX
and 0 < By(z1,...,2x) <1

'amK}
'axK}

7IK)7
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Note that instead of considering the probability over the
value of the selected token in (1), one can instead consider
the probability of selecting an index i between {1, ..., K}
ie.,, Pr(I = i|X1.x = 1.x). Such a distribution maps
to (1) by simply summing over all indices where x; = y.
‘We note that the form in (1) will be more convenient in the
sequel. Also note that the classical importance sampling
scheme (Tokdar & Kass, 2010) corresponds to the case
where Pr(I = i| X} = x1.x) o q(2;)/p(x;). However the
family of schemes in Definition 1 is not restricted to such a
choice and we treat 3, (x1, ...,z k) as free parameters that
can be optimized. Our first result is a decomposition for the
optimal token level selection rule that establishes a connec-
tion to the importance weighted sampling in Definition 1.
The proof is in Appendix D.

Theorem 1. Let P*(acc) be the acceptance probability for
the optimal token level selection rule in Problem 1. Then
we have

P*(acc) = max
{ﬁy(zHK)}
K
Z min | ¢(y), Z By(@1:x) - HP(IL)
yEQ T1,..., LK EN =1

@)

where the maximum is over By(xi.x) for each
{z1,...,2k,y} € Q such that 0 < By(z1.x) < 1,
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and
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and furthermore By (z1.x) =0, y ¢ {x1,...,2x}.. In
addition, if { B, (z1.1c) } denotes the parameters that achieve
the maximum in (17), then P*(acc) can be attained by a two
step approach as follows: in the first step, given the list of
input tokens {x1, ...,z }, we apply Importance Weighted
Sampling in Definition 1 with parameters 3, (1, ..., 7K)
to output an intermediate token y € {x1,...,xk}, in the
second step we apply a single-draft speculative sampling
scheme (Chen et al., 2023; Leviathan et al., 2023) on the
selected token y to generate the final output token.

Figure 1 illustrates the proposed two step scheme in The-
orem 1, where the first step involves importance weighted
sampling to output an intermediate token and the second
step involves speculative sampling. This approach requires
computing the optimal ﬂ;(x;l; K )- In practice one can use
sub-optimal choices that are faster to compute, as will be
discussed in the sequel. Note that the speculative sampling
block in the second step guarantees that the output token
Z will follow the target distribution even when such sub-
optimal choices for (3, (z1.x ) are used. It is also straightfor-
ward to extend Theorem 1 when the distributions of the K
tokens are not identical i.e., S ~ Hfil pi(X;), as discussed
in Section D.1 in the supplementary material. We next build
upon Theorem 1 to establish new analytical results for the
optimal acceptance probability involving K = 2 drafts. Our
first result is a characterization of the necessary and suffi-
cient condition on the draft and target distributions p(-) and
q(+) respectively that leads to P*(accept) = 1.

Theorem 2. With K = 2 drafts, a necessary and suffi-
cient condition for P*(acc) = 1 in the Definition 1 is the
following:

> aqlz) > (Zp(w)) , ¥SCcQ. @

€S €S

Note that the acceptance probability can equal 1 even when
p(-) and g(-) are not identical. Thus when the distribution
of the draft model is close to the target model but not equal
the acceptance probability can equal 1. This is in contrast
to the case of K = 1, where it is known that the acceptance
probability can only equal 1 when p(-) and ¢(-) are iden-
tical distributions (Sun et al., 2024b). Furthermore to the
best of our knowledge, previously proposed schemes for the
multi-draft setting, such as SpecTr (Sun et al., 2024b) and
SpecInfer (Miao et al., 2024) based on modified rejection
sampling also require p(-) = ¢(+) for the acceptance proba-
bility to be 1. Theorem 1 is interesting in the context of our
two-step architecture in Fig. 1. In this case, the output of

importance weighted sampling block Y matches the target
distribution ¢(+) and the second step involving speculative
sampling is not needed.

Example 1. Consider Q2 = {1,2} and let the draft and
target distributions be given by p = (p1,p2) and q =
(g1, q2) respectively. We assume K = 2 drafts. In this
case (4) reduces to q; > p% and qs > p%. Ifp1 = p2=0.5
then it follows that P*(acc) = 1 if and only if 0.25 < q1 <
0.75. In contrast for the optimal scheme for K = 1 draft
we have P*(acc) = 1 only when ¢; = g2 = 0.5.

The proof of Theorem 2 in Appendix E involves analyzing
the output distribution p;(-) of the Importance Weighted
Sampling Scheme in Theorem 1 and demonstrating that a
feasible choice of 5, (1, z2) exists and sets pr(-) = ¢(-)
when the condition (4) is satisfied. The proof is based on
the Fourier-Motzkin (FM) elimination technique (Ziegler,
2012). However a direct application of such a technique to
satisfy the constraints ¢(i) = p;(¢) for each i € Q becomes
intractable. Our key idea is to demonstrate that instead
considering a relaxation of the form ¢(i) > p;(4) leads to
the same solution as the equality constraints and is amenable
to analysis using Fourier-Motzkin elimination. We explain
this further with an example involving Q@ = {1,2,3} in
Appendix E.

The problem of determining whether a system of linear
equations has a non-negative solution has been studied previ-
ously in the literature, with (Chernikova, 1964; Dines, 1926)
providing an algorithm. In Appendix F we also discuss a
geometric viewpoint involving polyhedral cones. We ex-
plain how the double-description method (Fukuda & Prodon,
1995) for finding dual representations of polyhedral cones
can be used to numerically verify the necessary and suffi-
cient condition for the acceptance probability to equal 1. In
fact this approach was used to verify analogous conditions
to Theorem 2 for up to K = 6 drafts and all alphabets of
size || < 14 although we only provide an analytical proof
of the condition for K = 2 drafts in this paper. Our final
result is an explicit expression for the optimal acceptance
probability for the case of K = 2 drafts.

Theorem 3. For K = 2 drafts and for a draft distribution
p(+) and target distribution q(-) and arbitrary token alpha-
bet Q, the acceptance probability P*(acc) for the optimal
token level selection rule is given by:

2
P*(acc) = ‘Isnglg { Zq(s) + (Z p(s)) +

s€S seSe

(5 (0]} o

where S¢ = Q\ S is the complement of S.

To the best of our knowledge the result in Theorem 3 was
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Figure 1. Optimal Approach for Multi-Draft Speculative Sampling
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Figure 2. Numerical evaluation of Pr(accept) for the optimal
scheme (Theorem 3) as well as two baseline schemes - SpecTr (Sun
et al., 2024b) and SpecInfer (Miao et al., 2024). For sake of illus-
tration we select alphabet Q@ = {1,2,3} and p = [1/3,1/3,1/3].
The left plot sets q = [1/3, g2,2/3 — g2] while the right plot sets
q =[1/6,q2,5/6 — q2] where g2 is varied on the x-axis.

not known before. Upper bounds on P*(acc) are presented
in (Sun et al., 2024b), which are not necessarily tight. In
contrast (5) provides an exact expression for the acceptance
probability for the case of K = 2 drafts when X; and X5
are independently sampled from p(-). Also it can be eas-
ily verified that the result in Theorem 3 implies the result
in Theorem 2. The proof of Theorem 3, presented in Ap-
pendix G, applies the Fourier-Motzkin elimination to the
linear program presented in Theorem 1 to characterize an
analytical solution in the case of K = 2 drafts. The proof
builds upon the proof of Theorem 2 but requires elimination
of additional variables.

We provide numerical evaluation of the optimal acceptance
probability in Fig. 2. For sake of illustration we assume
that  is of size three, and assume p = [1/3,1/3,1/3].
We consider q = [1/3,¢2,2/3 — g2 in the left plot and
q = [1/6,¢2,5/6 — ¢2] in the right plot. The value of ¢o
is varied on the x-axis. We compare the optimal accep-
tance probability in Theorem 3 with two baseline schemes
SpecTr (Sun et al., 2024b) and SpecInfer (Miao et al., 2024).
We observe that the optimal acceptance probability can
equal 1 for a wide range of ¢». This is consistent with The-
orem 2. In contrast the baseline schemes seem to achieve
an acceptance probability of 1 only in the special case when
g2 =1/3sothatq = [1/3,1/3,1/3].

Although we have only focused on the case of K = 2
drafts in this section, we believe natural counterparts can be
developed for the case of K > 2, albeit with more involved

notations. We also believe that analogous results can be
established when the K drafts have different distributions.

3. Experimental Results

Setup. We conduct experiments using an instance of A100
GPU with 80GB memory and use the Llama2-chat, 7B
model as the target model (Touvron et al., 2023), and a
custom Llama-chat 115m model as the draft model (trained
following (Goel et al., 2024)). Our method and baselines
are evaluated on the XSum task (Narayan et al., 2018). The
details of the experimental setting can be found at C.

Table 1. Comparison of Block Efficiency, Token Rate and ROUGE-
2 for different schemes using the XSUM task dataset, averaged
over 5 random seeds.

Scheme EfficiencyToken RateROUGE-2
Auto-Regressive 1.0 36.26

SpecTr 2.36 42.70 0.2187
SpeclInfer 2.36 42.90 0.2191
Stand-Alone IS 2.38 41.17 0.2210
Hybrid IS + SpecTr 2.37 43.34 0.2178
Hybrid IS + SpecInfer 2.39 43.59 0.2163

In Table 1 we present the results on the block efficiency,
token rate and ROUGE-2 scores for different schemes. We
consider K = 2 draft models and generate L = 5 draft
tokens in each call. In general our proposed Stand-Alone IS
provides competitive performance, achieving better block
efficiency than SpecTr and SpecInfer. The Stand-Alone
IS is based on a truncated version of linear program (see
Appendix B.1) where we set s = 5. Furthermore, schemes
that are a hybrid between importance sampling and baseline
schemes (see Section B.3) achieve superior block efficiency
and token rate over the baseline schemes and thus seem to be
a promising avenue for improving them. In our implementa-
tion if the effective alphabet size of the of either the target
or the draft model is at-most 2, we perform weighted IS.
As expected, the ROUGE-2 scores are similar between the
different schemes, as all methods perform exact sampling
of the target model.
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A. Background and Related Works

Auto-regressive sampling from LLMs is inherently sequential and memory-bound (Shazeer, 2019). Several approaches
have been proposed in the literature to accelerate LLM inference (Shazeer, 2019; Jaszczur et al., 2021; Frantar et al., 2022;
Frantar & Alistarh, 2023; Stern et al., 2018; Chen et al., 2023; Leviathan et al., 2023; Jeon et al., 2024; Sun et al., 2024b;
Miao et al., 2024). Model compression techniques, such as quantization (Frantar et al., 2022; Bondarenko et al., 2024) and
sparsification (Jaszczur et al., 2021; Frantar & Alistarh, 2023) have been shown to reduce the overall complexity of LLMs at
the expense of some degradation in decoding quality.

For lossless LLM inference acceleration, speculative decoding (Chen et al., 2023; Leviathan et al., 2023; Stern et al.,
2018) has emerged as a promising and orthogonal alternative. Earlier works on greedy decoding can draft and predict
multiple tokens by augmenting the base LLM (Stern et al., 2018) or aggressive decoding (Ge et al., 2022). However, LLM
text-generation often requires sampling with non-zero temperature from the generated logits. To that end, speculative
decoding (Chen et al., 2023; Leviathan et al., 2023) was proposed. In speculative decoding, auto-regressive sampling is
delegated to a smaller language model (draft model) that generates multiple candidate tokens. The LLM (target model) is
then used to score all the tokens in the draft in parallel, and the draft tokens are verified through a sequence of token-level
rejection sampling. Speculative decoding guarantees that the final sequence follows the same distribution as that of the
target model. The performance of speculative methods highly depends on the choice of the draft model. Zhou et al. (2023)
use knowledge distillation (Hinton et al., 2015) to better align the draft and target models which results in higher token
acceptance rates.

More recently, the works of (Sun et al., 2024b; Miao et al., 2024; Jeon et al., 2024) extend speculative decoding to the
multi-draft setting where the draft model(s) generate multiple token sequences per time-step. Specifically, Sun et al. (2024b)
formulate the token-level draft selection problem as a discrete optimal transport problem with membership cost and propose
SpecTr: a new decoding algorithm that allows for multiple candidates for each token in the draft. A related setting is also
studied in (Miao et al., 2024; Jeon et al., 2024) where the authors consider a token tree based construction for improving the
draft sequences as well as a token-level selection method different form (Sun et al., 2024b) . Instead of using a dedicated
draft model, Cai et al. (2024) propose augmenting the target model with extra decoding heads that can concurrently draft
multiple tokens. The extra heads are fine-tuned using parameter-efficient methods, and can be added to any pre-trained target
model. Orthogonally, Sun et al. (2024a) study block-level verification in the single-draft setting as a block-level optimal
transport problem. They propose a computationally-efficient algorithm that optimally solves the block-level transport
problem, and report speedups over prior token-level verification (Leviathan et al., 2023).

B. Faster Importance Weighted Speculative Sampling

In practice the distribution of the target and draft model is often concentrated over a small number of tokens. It has also
been observed that sampling from a high probability set (such as the top-k highest probability tokens) or the top-p set (the
set of high probability tokens with aggregate probability exceeding a threshold) leads to more coherent outputs (Meister
et al., 2023). After such top-p sampling the effective alphabet size, i.e., the number of tokens with non-zero probability is
generally small. In Fig. 3 we show the histogram of effective alphabet size for a Llama 7B target model and Llama 115m
draft model in an experiment involving 100 random prompts from the XSUM task dataset (Conover, Mike and Hayes and
others, 2023). This motivates us to develop some approaches for speeding up our proposed solution by reducing the number
of variables required in optimization.

We focus on the case of K = 2 drafts and explain how to extend the approach to the general case. Let X; and X5 denote
the input tokens and Y denote the selected token. When X; = X3 = ¢ we have that §;(4,4) = 1. Furthermore as discussed
previously, due to symmetry we have 8, (4, j) = B,(4,¢). It is more convenient to introduce a new set of variables w; ;
which are defined as:

wi_,j :PI‘(}/:’L|{)(1,)(2}:{’6,]})7 (6)

i.e., w; ; denotes the probability that the output token is ¢ given that we see the pair {7, j} at the input in any order. For any
given choice of w; ; the distribution of Y can be computed as follows:

pr(k) =Pr(Y =k) =pi+ Y 2pipswix %)
i=1,i#k
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Figure 3. Histogram of Effective Alphabet Size (Number of Tokens with non-zero probability) after top-p sampling with p = 0.95. The
left plot shows the histogram for the draft model, while the right plot shows the histogram of the target model. We use the XSUM task
dataset (Conover, Mike and Hayes and others, 2023) and Llama 2 7B target model (chat version) and a custom Llama 115m draft model
following (Goel et al., 2024).

where we use p = (p1, ..., pn) as the probability vector for the draft model and q = (q1, - . ., ¢») as the probability vector
for the target model. Our aim is to maximize the following objective » ., min (p;(i), ;) over the variables w; ; that
satisfy 0 < w; ; < 1 and w; ; + w;j; = 1. This optimization can be cast as a linear programming problem with O(n?)
variables which may be slow in practice. With this formulation as a starting point we discuss two approaches to reduce the
number of variables needed to optimize.

B.1. Truncated LP

The idea behind the proposed fruncated LP scheme is that the linear programming solution will not be sensitive to most
choices of w; ; when the target and draft distributions are concentrated over a few values. As a result one can heuristically
set most of the variables. Assume that the vocabulary = {1,2,...,n} has the tokens sorted in decreasing order i.e.,
@ —P? > qa —p3... > qn — p2. We partition €2 into two sets 1 = {1,2,...,s}and Qs = {s+1,...,n}, where s is a
free parameter to select. We fix a subset of weights as follows:

{17 i €01, €D
wij:

, . o ®)
1, l6927]€Q27Z<3

while we leave the weights w; ; for ¢ < j and 4, j € €y as free parameters. The intuition behind the choice of weights in (8)
is that in these cases we prefer token i over token j to increase py (%) further so as to decrease the difference between ¢; and
pr(7). Note that:
pi(k) = D Dy ik 2PiPE Wik + D 2pipk, k€ ©)
P+ 2 2DiDk ke Q,

The objective to maximize reduces to Y, _, min(p;(k), gi) over the variables w;_ ;. Thus the number of variables is reduced
to O(s?). We further show in Appendix H that if P* (acc) is the optimal acceptance probability associated by applying the
linear program over all O(n?) weight variables and P(acc) is the acceptance probability for the truncated program then:

P(acc) > P*(acc) — Z (q(z) — pz(yc))+ (10)

€N

Thus if 25 is selected so that the penalty term is small then the decrease in the acceptance probability can be kept small. In
the experiments we observed that for well-trained target models the drop in accuracy is negligible even for small values of
s. Thus by appropriately truncating the number of variables to optimize in the linear program we expect to have a faster
implementation.
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Algorithm 1 Truncated LP

1: Imput: Threshold s, Input tokens X, X5 sampled independently from p(-)
Output: Selected token Y7, output distribution py(+).
Order vocabulary 2 = {1,2,...,n}, sorted in decreasing order with (¢; — p?).
SetQy ={1,...,s}and Q2 = {s+1,...,n}.
Fori,j € Qpori € 2y and j € 5 set w; ; in (8)
For i, j € Q;, compute w; ; as a solution to a linear program:

ANDAR

* Maximize: Y _;_, min(g;, ps(i)), where pr(i) is defined in (9)
* Constraints: w; j > 0, w; ; +w;; =1

7: Compute p;(+) according to (9).
8: if X1 = X2 then

9:  SetY; = X;.

10: else
11:  Let{X;, X2} ={i,j}andi < j.

12:  Set Y7 = 4 with probability w; ;, and Y; = j otherwise.
13: end if

B.2. Truncated Vocabulary

Let 2 C © be a high probability subset of 2 and let ¢(£29) = 1 — &, and p(2yp) = 1 — £,. One way of selecting €y is to
select the K most likely tokens of {2 under the p and q distributions and taking their union. Let p(+) and ¢(-) be obtained by
truncating p(-) and ¢(-) to €y and re-normalizing them.

We modify our proposed importance weighted sampling scheme as follows. Given an input S = {X, X5}, we remove
tokens that do not belong to €2 and let S C S be the resulting set. The input tokens after this filtering operation belong to
Qo and have a distribution of p(-). We perform Importance Weighted Sampling over S followed by speculative sampling as
in Fig. 1.

The complexity of the proposed scheme is dictated by the size of €2o. In practice if the distributions p and q are concentrated
over a few values we can set {2 to be small. Furthermore we show in the Appendix I that if P(acc) denotes the acceptance
probability of the proposed scheme and P*(acc) denotes the acceptance probability of the optimal scheme over €2 then we
have:

P(acc) > (1 —2¢,) (P*(acc) —gq) - (11)

Note that we can combine both the truncated vocabulary and truncated LP schemes. Thus given an alphabet €2, we first
consider a truncated vocabulary 25. We then apply the truncated LP as discussed in Section B.1 and follow with speculative
sampling as using the target distribution ¢(-).

Remark 1. Although our discussion has focused on the case when both samples are drawn from the same draft distribution
p(+), our approach can also be extended to the case when they are sampled from a different distribution, as outlined in the
supplementary material.

Remark 2. 7o tackle the case of K > 2 drafts we propose to group the input tokens into groups of size 2 and then apply the
two-draft importance sampling scheme in a multi-stage manner. For example if S = {X1, Xo, X3} and K = 3 we first
apply the fast importance weighted sampling to the group { X1, Xa2} to output an intermediate token Yy with distribution
say p1(-). Then we apply importance weighted sampling to the input (Y1, X3), where the tokens now have non-identical
distributions, and produce an output token Y to which speculative sampling is applied.

B.3. Hybrid Schemes

The weighted importance sampling scheme can be naturally combined with other baselines to combine the strengths of
both approaches. In particular, when top-p truncation is applied the effective vocabulary size (i.e., the number of non-zero
probability tokens) can be small (see Fig. 3). In such cases, the parameters in our linear programming framework can be

9
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Algorithm 2 Truncated Vocabulary

1: Input: Top-K parameter: K and Input tokens: X; and X, sampled independently form p(-)
: Output: Selected token Y7, output distribution py(-).

2y Tr(Q), Qg + Tr(Q2) {Tx(-) denotes the top-K function}

1 Qo = 9, UQ, denotes high probability set

: p(+) < Truncg, (p(+)), G(+) < Truncg, (¢(+)) {Truncq, (-) denotes truncation operator }

: For,j € Qp, compute w; ; as a solution to a linear program:

AN AW

* Maximize: ), min(g;, pr(i)),
* Constraints: w; ; > 0, w; j + wj; =1

7: Compute pr(-) according to (9) with p(-) < p(-).
:8=8NQy
9: Sample Y from S using the weights w; ;

o]

efficiently computed and can achieve an improved acceptance probability. On the other hand, in cases when the effective
vocabulary size is larger, it is more beneficial to perform fast decoding using one of the existing baselines. We explore the
benefits of such approach in the experimental section next.

C. Experimental setup

In our experiments we consider top-p sampling with p = 0.95. We use a temperature of 0.9 for the target model and a
temperature of 0.3 for the draft model. The different temperatures generate limited misalignment between the logits so
that the differences between different schemes become evident. Note that the temperature scaling is performed after top-p
selection. In the experiments, our first proposed scheme, dubbed as Stand-Alone IS, is a fast version of importance weighted
sampling. We generate a high probability alphabet 2y, by selecting the N = 5 highest probability tokens for the draft and
target distribution and taking the union over these. We also consider a truncated linear program where we set the threshold
(see Sec. B) to s = 5. Nevertheless we note this implementation has not been optimized for run-time efficiency so the token
rate is not a fair metric. We also consider two baseline schemes — SpecTr and SpecInfer (Miao et al., 2024) which have
been proposed in the context of multi-draft sampling. In addition we consider a hybrid between our importance weighted
sampling and the baselines. In particular our scheme defaults to the baselines if after following top-p sampling, both draft
and target models have more than ¢ = 2 tokens with non-zero probability. Otherwise we use importance sampling and an
analytical solution for the importance weights.

D. Proof of Theorem 1

We will consider the case when there are K draftsi.e., X;,..., Xk are sampled i.i.d. from a draft model with distribution
p(+), while the target model has a distribution of ¢(-). We assume the alphabet 2 = {1,2,..., M} for some arbitrary M.

Analysis of Importance Weighted Sampling Scheme: We first consider the family of importance sampling schemes
followed by speculative sampling and derive the acceptance probability. Assuming Y denotes the selected sample in
importance sampling, let':

ﬁy(x{()7 ye{xla“-ﬂtK}

12
0, y ¢ {r, .. TK} 12

Pr(Y = y|XE = k) = {

where Zu By(w1,...,2x) = 1foreach zf € Q¥ and 0 < B, (21,...,2x) < 1.

'We use the notation X{* as a short hand for X1.x. Similarly we use z{* as a shrot hand for 1.5

10
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It follows that
K
Pr(Y =y)= > Bylet)- ][ @) (13)
T EQ =1
K
= Y By Lz, wk) - [[ () (14)
T1,..., T EQ =1
where I, (x1,...,zx) denotes the indicator function that equals 1 if y € {x1,...,2x} and equals 0 otherwise. Note

that (14) follows since By (x1,...,2x) =0ify & {z1,..., 2K }.

By applying speculative sampling to the selected sample X; the probability of acceptance is given by:

PM=1(accept = 1) Z min(q(y), Pr(X; = y)) (15)
yeN
K
= Zmin q(y), Z By (@) -1 (x1, ..., 7x) Hp(xz) (16)
ye T1,..., LK EQ =1

Thus within the proposed class of importance sampling schemes, we can formulate our objective as:

max > omin{q(y), Y Byf) e,z Hp (17

K
{By(zl )}y,zl ----- TR yeN T1,..., LK EQ

such that 0 < B, (2) < 1foreachy,z1,...,2x € Q, and

> Byaf) =1, wyeq, (18)

ek

and furthermore

By(ef) =0, yé{z,...,2x}. (19)
Analysis of Optimal Solution: We now consider the problem of optimizing the acceptance probability for any given p(-)
and q(-) in the general setting. Following the framework in (Sun et al., 2024b), we seek to find py | x, . x, (¥|71,...,7K)

for each y, x1,...,xx € ) such that we maximize
Pr(accept = 1) =Pr(Y € {X1,..., XKk}) (20)

subject to the marginal constraints on Py (+):

gly) =Pr(Y =y) =Y Pr(Y =y, X[ ==zf) me ylzf) H (). @1

=1

Next we consider:

Z Py |xkK 1/|$1 )H (1)

zh ek 1=1
K
Z pY|X{<(y|${<)Hy($17-~-a$K)HP($i)
ek i=1
K
+ > oy @ty (@, k) [ ple) (22)
zheqk i=1
K
> pyixx Wl (e, ek) [ o) (23)
zheQk i=1

11
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where I (z1,...,7x) = 1 —[,(z1,...,2x) denotes the complement of I. Now note that:
Pr(Y € {X1,...,Xx})
= ) Pr(Y e {Xy,..., Xg} | X{* = 2f)p(X[ = 2f) (24)
ek
K
= > pyxr Wl (a1, 2k) (Hp(:m)) (25)
i eQ i ye =1
K
“X X s Ol o) ([T ) 29
yEQ i ey i=1
K
=Y min {q(y), Y. pyixx@laf)L(z1,. .., 2x) <Hp(a:i>> 27)
yeN x{(EQK i=1

where we use (23) which implies that for any feasible py | x x (y|zf):

> pyixr WLy (@, zr) [ [ p(e:) < a(y) (28)

zheqk i=1

is satisfied.

Upper Bound on the optimal acceptance probability: We now establish an upper bound on (27) and show that it
coincides with the acceptance probability optimized in the importance weighted sampling scheme (17).

For each 2 € QK let us define

yeN
and furthermore with N (z1, ...,z ) denoting the number of unique elements in <,
p (ylet)
%, ye{l‘l,...,l‘]{}, D(.’L‘{()>O
~ K _ 1
Py|xx (ylzr) = m ye{r1,.. ., K}, D(zK) =0, (30)
0 y & {z1,...,zx}.
Note by construction that for each 2 € QF
> byixr (ylaf) =1 31)
yeN
and
PyixsWlzf) =0, yé¢{z1,..., 21} (32)
and furthermore:
p~Y\X1}((y|x{() : ]Iy(xh e 7$K) Z pyle((y‘l‘{() . Hy(xlﬁ s ’xK)7vy7xla TR € Q (33)

Substituting (33) into (27) we have that for any feasible py| x x (-) there exists a py| x x (-) satisfying (31) and (32) such that:

K
Pr(Y € {X1,...,Xg}) < ) min [ q(y), D Byxx@lef) (21, ... ox) <_Hp(1?i)> (34)

yeN K ey

It thus follows that that optimal acceptance probability in the general case is upper bounded by optimizing the (34) over
Py|xK (y|z¥) satisfying (31) and (32). But this problem precisely coincides with the optimization in the proposed class of
IS schemes as stated in (17)-(19), thus establishing the optimality of the latter.

12
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D.1. Extension to Non-IID Setting

The proof in Theorem 1 assumed that x1, ..., Xk are sampled form the same underlying distribution p(-). Here we provie
a natural extension when the sampled are still independently sampled from from a non-i.i.d. distribution i.e X; ~ p;(-).

Theorem 4. Let P*(acc) be the acceptance probability for the optimal token level selection rule when S ~ HZK:1 pi(X;).
Then we have

K
P*(acc) = max <> min(q(y), Y Bylzf)- [[pi@:) (35)
(EICE D Pere) T1yewK EQ i=1
where the maximum is over [, (x¥) for each {z1,...,xx,y} € Q such that 0 < B, (x¥) <1, and
Y B =1, wyeq, (36)
K eQK
and furthermore
By(zf) =0, y ¢ {z1,...,ex}. (37
Furthermore if {3 (x{*)} denotes the parameters that achieve the maximum in (35), then P*(acc) can be attained by a
two step approach as follows: in the first step, given the list of input tokens {x1, ...,z }, we apply Importance Weighted
Speculative Sampling in Definition 1 with parameters [3;(z1, . .., 2K ) to output an intermediate token y € {x1,...,TK };

in the second step we apply a single-draft speculative sampling scheme (Chen et al., 2023; Leviathan et al., 2023) on the
selected token y to generate the final output token.

The proof of Theorem 4 is identical to the proof of Theorem 1. We note that replacing the distribution of S from Hfil p(X5)
to Hfil p;(X;) does not affect any of the steps in the original proof.

E. Proof of Theorem 2

We first consider the special case of @ = {1, 2, 3} to illustrate the key ideas. We then proceed with the proof.

Example 2. Consider the case when Q) = {1,2,3} and let p = (p1,p2,p3) and q = (q1, q2, q3) denote the draft and
target model distribution for the current token of interest. We again assume K = 2 drafts. Let X1 = i and Xo = j
denote the pair of input tokens and 'Y denote the output of the importance weighted sampling scheme in step 1 in Fig. 1.
Since X1 ~ p(-) and Xo ~ p(+) it is clear the the optimal TLSR does not depend on the order of X1 and X5 but only
on the unordered set { X1, X>} and let {i, j} denote the realization. Let co; j = Pr(Y = i,{X1, X2} = {i,j}) denote
the probability of the event that the (unordered) input tokens are {i,j} and the output token is Y = i. Similarly let
aj; = Pr(Y = j,{X1, X2} = {i,j}). Note that o; ; = p? must hold, as when X1 = Xo = i, clearly Y = i in the
Importance Weighted Sampling scheme. Note that P*(acc) = 1 requires that Pr(Y = i) = g; for each i € ). This results
in the following system of linear equations:

Q1 =Dl +a12+ars, G2 = p3 + az1 + asga, g5 =Dp3+azq + s (38)

subject to o; j + oj; = 2pip; and 0 < oy ; < 2pspj. We prove that (4) provides a necessary and sufficient condition that
the above system of linear equations has a feasible solution.

Our initial attempt was to directly apply Fourer-Motzkin (FM) elimination technique (Ziegler, 2012; Dantzig & Curtis Eaves,
1973) to (38). However a direct application of FM elimination does not appear to be tractable for arbitrary sized alphabets,
as the elimination of each variable introduces a large number of inequalities. Our key observation is that (38) is equivalent
to the following relaxed set of inequalities:

Q1 > pl+aio+ars, G2 > p3 + g + ags, qs > p3+azq + s (39)

with the same conditions on «; ; as before. A solution to (38) exists if and only if a solution to the relaxation (39) exists.
Indeed as a contradiction, suppose that a solution to (39) exists with strict inequality in one of conditions. Then summing

13
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over all the inequalities and using o; j + o ; = 2p;pj gives ¢1 + g2 + g3 > (p1 +p2 + p3)?. However since p and q are
probability vectors both sides should sum to 1, leading to a contradiction. Our second key idea is to augment the system of
inequalities in (39) with the following additional inequalities:

@+ g2 > (pr+p2)® + 1,3+ 23,
q1+q3 > (p1+p3)® + a2+ asp, g2 +q3 > (p2+p3)® +as1 +asq (40)

Note that the inequalities in (40) are redundant and follow by simply adding each pair of inequalities in (39) and using
o + o = 2p;p;. However applying FM eliminations simultaneously over the expanded system of inequalities
involving (39) and (40) is surprisingly tractable. In fact we show that applying FM elimination for eliminating each c; ;
(and by extension o ;) simply involves dropping that variable in the system of inequalities (39) and (40). For example
eliminating o o (and simultaneously o 1) in the first step is equivalent to:

Q1 >pitais, @@ >ps+ass, g3 > pitasy+azs 41
G1+q2> (p1+pe)?+arz+ass, g +as>(p1+p3)°+ase, ¢2+q3 > (p2+p3)® +ass (42)

Eliminating all cv; ; in this fashion establishes that a feasible solution exists if and only if q; > p? and g +ar > (p; + )2
Sfori,j,k € Qand j # k. This is precisely the condition in (4) for an alphabet of size || = 3.

We now proceed with the proof of the result.

Setting of Linear System of Equations and its Relaxation: Following the simplified notation in the main text for the
case of K = 2 drafts, we let q = (¢1, . .., ¢n) be the target model distribution and p = (p1,. .., p,) be the draft model
distribution. Also recall that we define o; ; = Pr(Y = 4,{X;, Xo} = {7,j}) as discussed in the main text. In order
to match the output distribution Pr(Y = ) to the target distribution, we need to satisfy the following system of linear
equations:

G —pi=aip+... Fa, (43)
q2 — p% =21+ ...+ a2, (44)

(45)
qn — pi = Qn,1 +...+ Qpn n—1 (46)

where ov; ; > 0 and «; ; + o ; = 2p;p; = 2p, ; foreachi # j € {1,...,n}.

We instead consider a relaxed system of inequalities:

G -piZopt. o, (47)
q2 — p% Zaz1+ ...+, (48)

: 49)
dn — pi Z Qn 1 +...+ Qp n—1 (50)

where «; ; > 0 and a; ; + a;; = 2p;p; = 2p; j foreach i # j € {1,...,n}. We note that the system of inequalities (43)-
(46) has a solution if and only if the system of inequalities (47)-(50) has a solution. Indeed, for contradiction assume
that one of the inequalities in (47)-(50) is a strict inequality. Then summing over the left and right hand sides and using
oy + o = 2p;p; we get that

n n 2
>oai> (Zm) : (51)
i=1 =1

which is a contradiction as both sides sum to 1. Thus it suffices to consider the system of linear inequalities.

14
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Augmented System of Inequalities: Instead of the original system of inequalities (47)-(50), we consider an augmented
system of inequalities defined as follows.

Lemma 1. Our original system (47)-(50) has a solution if an only if the following system has a solution:

2
qu<2ps> >3 D an YSC{l...n} (52)

seS seES seS teSe

forasy > 0and asy + oy s = 2ps g fors,t € {1,2,...,n} with s # t.

To establish this, we use (47)-(50) and sum over s € S:

Dlas—r)=d > ay (53)

seS seS j=1,j#s

=3l DILNERD Sy 4
seS \tese teS\{s}

=D > aai+ >, > e (55)
SES teSe seSteS\{s}

= Z Z Qs t + Z (as,t + at,s) (56)
sESteSe (s,t)ESXS,t>s

=3 > it Y 2 (57)
SES teSe (s,t)ESXS,t>s

It follows that:

D= i D =YY (58)

seS seS (s,t)ESXS,t>s seS teSe
2
Y- (m) ST Y 59)
seS seS SES teSe

as required. The other inclusion follows by simply setting S = {i} for each i.

Induction Argument We will prove the following by induction.

Lemma 2. Let

V= {(ilvjl)v (jla Z‘1)7 ) (iTajT)7 (jrair)} (60)

denote the indices (with iy, < ji forall k = 1,... ) of the variables eliminated after v rounds of FM elimination. Then the
remaining constraints are given by:

qu - (Z]%) > Z Z As,t - ]I((Sﬂf) ¢ Vr), VS C {1, ce ,n} (61)

s€S seS seSteSe

Remark 3. When all the variables have been eliminated the right hand side in (61) will equal 0 for any choice of
S C{1,2,...,n} and we will recover the result Theorem 2.

Note that the base case with V,. = {-} immediately follows from (52). We will assume that the variables o, 4, and o ;.

are eliminated for ¢ € {1,...,r — 1} and the associated Fourier-Motzkin (FM) conditions are given by:
2
> a - (Zps> >33 s I(s,t) € Veor), VS CH{L,...,n}. (62)
seS seS seSteSe
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At step r we eliminate the variable «;_;, and «;, ; and we will show that (61) is satisfied. In applying the FM elimination,
we only need to consider those inequalities in (62) where either «v;_;_ or o, ; appears on the right hand side. The remaining
equations will not be affected in this step of FM elimination and replacing V,._; with V,. will not have any effect there. Any
such inequality will be associated with a choice of S where either both i,. and j,. belong to S or neither i,- and j,. belong to
S. Thus we have:

qu - <Zps> = Z Z st 'H((S’t) ¢ Vr)a

seS seS seSteSe
VSC{l,....n}:i,eS&j, €Sori, ¢ S&jr ¢ S. (63)

The FM elimination will only consider those inequalities in (62) where either «;_ ;_ or o, ; appears in the right hand side.
The inequalities where «;, ;. appears on the right hand side is associated with those subsets S; of {1,...,n} where i, € S;
and j. ¢ Si. Likewise the inequalities in (62) where «;, ;, is appears on the right hand side are associated those subsets
Sy € {1,2,...,n} where j, € Sy and i, ¢ S,. Thus the FM elimination applied to variables c;, ;. and «;, ;, will consider
the following system of equations:

Z qs — (Z Ps) > Z Z Qs t ~H((S,t) ¢ V’r’fl)a

SES SE€ES s€S; teSE

VS1 C{1,...,n},i, € S1,7- ¢ Si, (64)

2

S (zps> S K ) £ V)
SES2 SES2 s€S2 teSs

VS, C{1,...,n},jr € Sa,i & Sa, (65)
i, g, + G, = 2Di, g, (66)
;5. > 0,05 4. > 0. 67)

Accounting for (67) and using the fact that V,, = V,._1 U {(ir, jr), (4r, i) } we immediately have that:

Z qs — <Z ps> > Z Z as,t']l((&t) ¢Vr)a

sES1 SEST s€S1 teST
VS C{1,...,n},i. € S, ¢ S1, (68)
2
Z s — (Z ps> > Z Z Qg t 'H((Svt) ¢ VT)’
SES2 SESs s€S2 teSS
VSy C{1,...,n},j, € Sa,ir ¢ S1. (69)

In addition the FM elimination procedure is required to combine every possible inequality in (64) with every possible
inequality in (65) and eliminate v, ;, and «;, ;. by applying (66). For a specific choice of S; and S, the inequality we
consider is of the form:

das+ Y a - (Zps>2— (Zm)Q

sES SESs seSy SESs
>3 > e I((st) EVem) + D D> s I((s.t) & Vi) (70)
s€S1 teSY SESy teSS
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We will show that this inequality is redundant as it is dominated by the set of inequalities in (63). Let R = &1 N S and
T = 81 US,. Note that i, ¢ R and j,- ¢ R. Now consider the left hand side of (70).

g+ D a— (Zm)Q (Zps>2

SEST SESy SEST SES2
2 2
= Z qs + Z QS‘FQZQS* Z PerZPs - Z ps+zps (71)
sESI\R SES\R SER s€S1\R SER SES\R SER
2 2
:ZQS+ZqS_ Z Ds _<Zps> -2 Z Ps <ZQS>
seT SER s€S1\R SER s€ESI\R SER
2 2
- > | - (Z ps> -2 > ps <Z ps> (72)
sES2\R SER sES2\R SER
2 9 2
:ZQS+ZQS_ Z Ds _<Zps> - Z Ds -2 Z Ps (qu)
seT SER s€S1\R SER s€S2\R s€S1\R SER
2
-2 Z Ps (Zps> -2 Z Ps Z DPs —2<Z}75>
s€S2\R sER SES2\R s€ESI\R SER
+2 > e[ DD b (73)
SES2\R SESI\R
2 2
= Z qs — (Z ps> + Z s — (Z ps> +2 Z Ps Z DPs (74)
seT seT SER SER s€S2\R s€SI\R

We now consider the right hand side of (70). We recall that with 7 = S§; U Sp and R. = §; N Sy the following relations
that can be easily established using Venn diagram of sets S1 and Sa:

Si=TU(S\R), T°N(S\R)={} (75)
S=TUGI\R), TN(S\R)={} (76)
RE=TUG\R)U(S:\R),  (Si\R)N(S2\ R) = {} (77)
T=RU(SI\R)U(S:\ R) (78)

Now consider the following:

Z Z as - I((s,t) & Vio1)

s€8;1 teSY
=D D W) Vi) + > D> awrI((s,t) & Viea) (79)
SESI tET® SES1 teS2\R
= > D o () EVer) + DD - I((s,1) ¢ Veoa)
SES1\RET® SERtET®
+ Y > e () EVei)+ D> D> aweI((s,t) ¢ Via) (80)
s€S1\R teS2\R SER teS2\R

where we use (75) in (79),
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In a similar fashion we can express,

Do e (st ¢ Vi)

5€S2 teSS
Z Z ase - 1((s,t) ¢ V1) + Z Z st 1((s,t) ¢ Vio1)
SES\R tET*® SERtET®
+ > e () EVei)+ D> D> aweI((s,t) ¢ Via)
SGSQ\R t€81\R SER teSl\R

Combing (80) and (81) and re-arranging terms, we get that:

SO aa I(s,t) ¢ Vo) + D > awsI((s,8) € Vo)

SEST LESS sES1 tEST
D> o W5, t) Vo) + D> w5, ) €Veo) + Y. Y ase - I(s,t) & Vioa)
SESI\RtET® SERET® SES\R tET®
+ Z Z Qs t + Z Z Qs t H((S,t) ¢ Vrfl) + Z Z Qs g - I[((Svt) ¢ V’rfl)
SERteS1\R SER teS2\R SERLET®
+ Y D e () EVe)+ Y D> aw-I((s,1) € Vea)
SESI\RESI\R s€S2\RtESI\R
- Z Z as,t : H((S,t) ¢ Vr—l) + Z Z as,t : H((S,t) ¢ vr—l)
sET teTe SER tER®
+ > > e () ¢EVer)+ Y Y s I((s,1) ¢ V1)
s€S1\RteS2\R s€S1\RteS2\R
=) s I((s, ) EVe)+ DD aesI(s,t) & Vr)
seT teTe SER tERE
+ Z Z (at7s + as,t) : H((Sat) ¢ VTfl)
SGSl\R tGSQ\R

81

(82)

(83)

(84)

where we use (77) and (78) in (83) as well as the fact that I((s, ¢) ¢ V,.—1) = 1((¢, s) ¢ V,-—1) as the pair (s, ) and (¢, s) is
eliminated simultaneously. In (84) we use the fact that 7 contains both i,. and j, while R contains neither i,, and j,_;
and hence o, j, or oy, ;. do not appear in the first two terms in (84) so that V,._; can be replaced by V,.. Combining (74)

and (84) it follows that the FM elimination for our choice of S; and Ss leads to:

Z (Zm) + Z%(Zm)g +2 Z Ps Z Ps

se€T seT SER SER s€S2\R s€eS1\R
>3 ) aa L(s,t) ¢V + DY e I((s,t) & V)
seET teTe SER tERC
+ Z Z (s +ase) - I((s,t) & Vi)
SESI\RtES\R
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Note that this condition is equivalent to:

2
- (zps> CY Y (s 0) )

seT seT SET teTe
2
+ Z qs — (Z ps> - Z Z O43,15 : H((S,t) ¢ V’!‘)
SER SER SER tERC
+92 Do pa || DD b= DL D (arstasy) I((s,t) ¢ Vea) p >0 (86)
sES2\R s€S1\R SEST\RLES\R

We now show that this condition is redundant as it is implied by other conditions. Since 7 and R satisfy the conditions
in (63) we already have that:

2
Z qs — (Zp::) > Z Z Qs t -H((S,t) ¢ V’r) 87)

seT seT SET teTe

2
> g (Z p) >3 aa - I((s,1) ¢ Vr) (88)
SER SER SER tER®

Further since the sets (S; \ R) and Sp \ R are disjoint it follows that:

2 D pe || DD )= DL D (st ans) I(s,t) ¢ Vi) (89)

teS2\R s€S1\R sESI\RtES\R

= Z Z 2pspt - Z Z (at,s + as,t) ' H((Sa t) §é VT—l) (90)
teS2\R s€S1\R SEST\RES2\R

= > D @papr— (s +asy) I(s,8) € Vea) 20 1)
teS2\R s€S1\R

where we use the fact that by construction s ; + oy s = 2psp;. It thus follows that the condition (86) is implied by other
conditions already presented in the FM elimination and is thus redundant. Since our choice S; and S is arbitrary it follows
that every combination of the form (70) is redundant and the only equations that remain upon elimination of «;,_ ;. and
v, ;,. are given by (63), (68) and (69). This completes the induction step in Lemma 2 and the proof.

F. Connection between Theorem 2 and Polyhedral Cone Representation

We consider the case of 2 = {1, 2,3} for sake of concreteness. We discuss how the characterization of P*(acc) = 1 is
related to dual representation of a polyhedral cone. Let p = (p1, p2, p3) denote the draft probability and q = (g1, g2, ¢3)
denote the target probability vector. As before we define a; ; = Pr(Y = 4,{X;, Xo} = {4,7}). We need to solve the
following system of equations:

q1 — p% =12+ Q13 92)
G2 —P3 =021 +as3 93)
g3 —P3 = az1 + s 4

subject to the conditions that a5 ; + «;; = 2p;p; and 0 < «; 5 < 2p;p;. Using the fact that ¢; +¢2 + g3 = 1 and
p1 + p2 + p3 = 1, it suffices the consider the following system of equations:

12+ a1z =q —pi 95)
az1 4 23 = q2 — P (96)
Qi+ a1 = 2pi 2 O
13+ a3 =2pi3 (98)
Qo3+ azo = 2pa3 99)
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with the additional requirement that cv; ; > 0. We will represent this system of equations in matrix form. Our variables of
interest are X = [ay 2, 1 3, 02,1, X2,3, 3.1, 0[372]T > 0. Our equality constraints can be expressed in the following form:

A -x=b, x>0 (100)
where
1,1,0,0,0,0 o a - v}
0,0,1,1,0,0 a“” ¢ — 3
A= 1,0,1,0,0,0] , X = Ofvl , b= 2pio (101)
0,1,0,0,1,0 . 2p13
0,0,0,1,0,1 1 2p2.3
3.9

Upon application of Farakas’ Lemma it follows that the system (100) has a solution if and only if every y that satisfies
yT A > 0 also satisfies y’'b > 0, where b depends on p and q as in (101). Let us define
1,0,1,0,0

) )

)

)

SO~ O
Soo+HO
SO o
= O = O O

B=AT= (102)

)

ocoocoo o~

and note that the set
B={y:By >0} (103)

denotes a polyhedral cone in R®. We need to show that for each y € B we must have that y”'b > 0. The representation (103)
is the so-called hyperplane representation of the code as each row of B defines a hyperplane. We would like to find an
equivalent generator representation of the form:

R={z:z=R\\>0} (104)

The Minikowski-Weyl Theorem (Fukuda & Prodon, 1995) guarantees that for every B in (103) there exists a R in (104)
of finite dimensions such that B = R. Furthermore the double-description method is an algorithmic way of computing R
given B and vice versa. Using the package skeleton for double description (Zny, 2018) we could show that for the B matrix
in (102) the associated R matrix is given by:

[ I ]

1 1 —-100
R'=|-1 0 1 1 0 (105)
0 -1 1 0 1
-1 -1 1 1 1

where I is a 5 x 5 identity matrix. The generator representation in (104) is convenient as in order to show that (100) has a
feasible solution, it suffices to show that R”b > 0. Indeed substitution of (105) and (101) yields

b b
a1+ @2 — (p1+ p2)? a1+ g2 — (p1+ p2)?
R™b = —q1+ P34+ 2p12+2p13 = |g2+ a3 — (p2 +p3)? (106)
—q2+ P35+ 2p12 + 2pa3 a1+ g3+ (p1 + p3)?
—q1 — @2+ pT+ P35+ 2p12+ 2p13 + 223 a3 — D3

In the last step we use the fact that 5" ¢; = Y. p; = 1. It thus follows that R”b > 0 if and only if ¢; > p? and
¢ + q; > (p; + pj)? holds as stated in Theorem 2. Thus this approach provides an alternative proof for Theorem 2 for the
case of |Q2| = 3. We did not however find a simple approach to analytically compute the generator representation R from
the hyperplane representation B3 for arbitrary dimensions. On the other hand we used the numerical implementation of the
double description method to compute B and R for the case of up-to K = 6 drafts and |{2| < 14 and demonstrate that the
natural counterpart of our result in Theorem 2 appears to be valid in all these cases
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G. Proof of Theorem 3

As in the proof of Theorem 2, we let p = [p1, . .., pn] be the distribution of the draft model and q = [q1, . . ., ¢n] be the
distribution of the target model. Our optimization problem can be expressed as follows:

n

maximize Z ti, (107)
=1
t; <min | g;,pf + Y aiy |, (108)
J#i
ij+aji=2pp;,0 <a;; < 1. (109)

In order to solve this linear program analytically we introduce an additional variable z satisfying a single inequality
z <t1+...t,. We provide the range of feasible feasible values of z and pick the maximum. Following the techniques used
in the proof of Theorem 2 we have the following Lemma:

Lemma 3. Upon applying Fourier-Motzkin elimination technique to eliminate variables o ; in (107)-(109), we have the
Sollowing system of inequalities with Q = {1,... ,n}:

ti < g0 € 0 (110)
2
D ti< (Zm) +2<Zpi> <Zpi>, ¥SC Q8 =Q\S (11
€S €S €S i€S¢
2>t (112)
=1

We will defer the proof of this lemma after the main proof. We will use (110)-(112) to establish the following step by
induction.

Lemma 4. Suppose that we apply Fourier Motzkin elimination to eliminate variables ty,...,t;_1 in (110)-(112). Let
O ={1,...,5— 1} and Qo = {j,...,n} be partition of ). Then we have

gy (n) (50 (50)

i€S i€V ieScUYe 1ESUY ieSeUVe
VS C O,V C 0S8 =0 \S,V=0\V (113)
2
doti< (Zm) +2 (Zm) (Zm), VS C Qo S°=M\S (114)
€S €S €S i€S¢C
ti<q, Vi€ (115)

Note that this results implies the main result as by setting 2; = Q and Q2 = {-} we have:
2
c<Sus (Sn) +2(50) (20) ats)
i€S i€Se i€S i€Se

We first consider the base case: j = 1. In this case 2y = {-} is the empty set and Q5 = Q. Thus S =S¢ ={-} and V C Q
and V¢ = Q\ V. In this case (113) reduces to:

stm(Zm):z(Zm) (Zm) (117

% ieye % icye
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and (114) and (115) have 25 = (2. Note that (114) and (115) are equivalent to (110) and (111). It thus suffices to show the
equivalence between (117) and (112). To show that the condition (117) implies (112) it suffices to set V = 2 and V¢ = {-}.
To show that (112) implies (117), for any V' C €, we can express:

<Y tit Y b (118)

i€V ieye
2
<Zti+<2pi> +2<sz-> (Zm) (119)
=% ieve i€V ieye
where we use (111) in the second term. This completes the proof of the base case.
For induction we assume that for some j > 0 the application of Fourier-Motzkin elimination on eliminate t1,...,%;_1
leads to (113)-(115) with Q; = {1,...,5 — 1} and Q3 = {j,...,n}. We want to show that upon applying Fourier-
Motzkin elimination to eliminate ¢;, we reduce the system of inequalities again to (113)-(115) with Q] = {1,...,;} and

O =1{j+1,...,nh.

Let us consider those V C Qg = {j,...,n} where j ¢ Vin (113). Eachsuch V C Q5 ={j +1,...,n} asj ¢ V. Since
the variable ¢; does not appear in the right hand side in (113), the Fourier-Motzkin elimination will not modify the inequality.
We can reinterpret (113) as:

pepe () (o))

i€S’ ey’ i€S’eyyre i€S'UV’ i€S’eyyre
VS C Qi ¢SV COLS=01\S,V=0,\V (120)

Next consider the case in (113) where j € V. In order to apply Fourier-Motzkin elimination, we express ¥V = {j} UV’
where V' C Q5 = {j + 1,...,n}. We explicitly consider the variable ¢; in (113) below.

ZSZqi+Zti+tj+< > pi>2+2<z m)( > p) (121)

i€S % i€eSeUye iESUY ieESeUYe

We first combine (121) with the inequality t; < ¢; and introduce Q = @, U {j}, Q) = Q2 \ {j}, &' = SU{j} and
Sc=0\S,V =V\{j} CQand V' =Q, \ V' to have:

ZSZqH—ZtH—( > pi>2+2< > pi>< > pi>>

€S’ %4 1€8/eUy’e 1€S'UYV/ 1€8/eUy’e
VS C QeSS V CQS =\8 Ve=,\V (122)

Note that (120) and (122) recover all the upper bounds on z in the induction step for (113). We further need to show that
the Fourier-Motzkin elimination does not introduce any further inequalities during the elimination of ¢;. In particular with
7 €V consider combining:

2
zﬁZquZtmL( > pi> +2<Zpi>< > pi>, (123)
ics Py ieScuve i€SLUY ieSeuVe
with the inequality:

2
Yot < (Z]%) +2<ZP¢> <Z pz‘) (124)

i€EW i€EW i€EW ieWwWe
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where W C Qg = {j,...,n} and j € W. Defining W; =W\ Vand Y = W NV we have:

Ztiz<Zpi+2pi>2+2<2pi+2pi> > b (125)

ieW 1EW1 icU i€EW1 icU 1€EQ\W

-(50) <(59) () (57)

+2 < > p1> > | +2 (Zm) > b (126)
1EW1 1€EQ\W icU 1€EQ\W
2 2
=<ZP¢> +< Pi) +2<Zpi> S+ > pi
1EW1 ieU 1EW1 icU 1€Q\W
+ (Zm) ( pi (127)
€U IEQ\W

:(Zpi>2+<ieupi>2+2<zpi> Sowi) 2| D w <ZP> (128)

€Wy i€EWL PEQ\W, IEQ\W ieu

Next we consider (123):

zSZqH—ZtH—Zh—i—( > pi>2

€S i€V €U ieSeuUye

+2< > p)( > pi>+2<2pi>< > p) (129)
ieESUV, i€ESCUVe €U ieESeUVe

where we use the fact that V = V; UU. Adding (129) to (128) and eliminating ¢; where ¢ € U, we get:

z4 ZtiSZqiﬁ-Zti—F( > pi>2

i€W1 i€S i€V ieSeuye

+<Z pi) +(Zpi> +2<Z pi> R AETIDIN. (Zpi> (130)

1EWL icU 1€EW1 1€Q\W, 1€EQ\W ieU’
2
ZZQi+Zti+< Z prf—ZPz‘)
= i€V ieSeuve =0
+z< 5 pi> ( 5 p> oY s (m)
iESUV, ieSeuUVe IEQ\W ieu

() (5 (5

1€EWL 1EWL 1€EQ\Wr
(131)

Next note that S U V; C Q \ W. This follows since 2 = ; UQy and S C Qo, V1, W C Q5 and V; UW = - by definition
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as V; = V' \ W. Thus the application of Fourier-Motzkin elimination with V{ = V¢ U U gives:

2 Y <Y G+ > i+ | Y +2<Z m) Y b

€W = i€V, ieSeuvs ieSUV, i€SCUVE

+<Zpi>2+2<2pi> > pi (132)

1EWL 1EWL 1EQ\Wr

However the above inequality is a consequence of the following:

<Y G+ Y Lt Y m +2<Z p,) > wi

€S IS %1 1€SeUVY 1€ESUV, 1€S°UVY

st(Zpi)Qw(Zpi) > b (133)

1EW, 1€EWL 1EW, 1€EQ\Wq

where Vi C Qo, V§ = Q3 \ V1, S C Q7 and §¢ C O \ S and Wy C Q5. which are already implied in the induction step.
Thus we conclude that each combination of the form (123) and (124) is redundant and need not be included in the next step
of the Fourier-Motzkin elimination. This concludes the analysis of the upper bound on z in (113).

It remains to establish the induction for (114) and (115) i.e., upon elimination of ¢; results in

2
> ti< (Zm) +2<Zpi> (Zpi>, VSC @, ST=M,)\S (134)

i€S i€S i€S i€Se

ti<q, VieQ (135)
where Q) = {j + 1,...,n}. Naturally every inequality (134) and (135) is already contained in (114) and (115) where
j ¢ S. So we only need to show that the application of Fourier-Motzkin elimination to remove any other inequality does not

result in any additional inequality. Note that the elimination of ¢; simply involves combining each inequality with ¢; > 0.
Thus any inequality in (114) where S C €2, with j € S reduces to:

s el ol (5

1€S\{j} i€S i€S i€S®
We show that (136) is weaker than
2
o< D m| 2| D m > b (137)
i€S\{j} i€S\{j} i€S\{j} ieseu{j}

which is already contained in (114) and hence redundant. In particular consider the right hand side of (136):

2

S opi+pi | 42 > pitops (Zm) (138)

€5\ (s} i€5\(s} iese
2
>pi2p | Y. |+ D w42 D p <Zpi> (139)
i€5\(5} i€8\(5} i€5\(5) iese

2

> > ] 2 D om > ni, (140)

ieS\{j} ieS\{j} i€S°U{j}
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which implies that (136) is indeed weaker.

Thus we have completed the induction step. Continuing the induction to eliminate all variables ¢4, .. ., t,, results in
2
<Y as (Tn) +2(Tn) (Tn). wen aan
€S €8¢ i€S eS¢

as claimed. It now only remains to establish the proof of Lemma 3 which we will do. As we are considering the elimination
of oy ; it suffices to consider the following inequalities:

ti<pit > iy i=12...n (142)
j=1,j#1
Qi j + Qi = 2pipj, 0<a;; <1 (143)

We will show the following by induction. Suppose that at step r >= 1 let
V’r — {(ilvjl)v (jl; Z.1)7 ey (irflajrfl)a (j'rfly Z'7’71)} (144)

denotes the indices (with ¢;, < ji) of variables that are eliminated using the Fourier-Motzkin elimination. Then the resulting
system of inequalities is given by:

Zts S (Zp:;) + Z Z Qs t ~H((S,t) ¢ Vr) + Z Z 2pspt : H((S,t) € Vr) (145)

seS sES seStese seStese

forall S C Q = {1,2,...,n}. For the base case, consider the case whenr = 1i.e., V,, = {-}. The condition in (145)
reduces to:

2
St < <Zps> +3 D as ¥ScQ (146)

sES sES seSteSe

We show that (146) is equivalent to (142). Indeed setting S = {i} in (145) and using s, = 2psp; recovers (142) for each
i=1,2,...,n. We will show that the conditions (142) and (143) also imply (145). Note that for any S C 2:

DSy PIAY D s (147)

sES sES seSi=1,i#s

= sz + Z Z Qs g + Z Qs g (148)
seS seS \ieSe €S\ {s}

=Y PAY D acit Y D (149)
s€S sES ieS*® s€SieS\{s}

=32 D anit D> (awitai) (150)
seS sESieST (5,0)ESXS,i>s

=24 S e+ DD 2 (151)
seS seSieSe (5,0)ESXS,i>s

2
sES sES ieS*®

We thus recover (146) from (142). This establishes the base case.

For the induction step, let us assume that we have eliminated all «; ; where the indices (7, j) are in the set V. and that (142)
is satisfied. We consider elimination of indices (i, j.) and (j,, %) associated with c;, ;_ and o, ;

S < (m) EY S K €V - Y Y 2 19 € V) 153

seS seS seSieSe seSieSe
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We need to show that upon elimination of ¢, ;, and «;,_; using Fourier-Motzkin elimination the resulting system of
inequalities is given by:

2
>t < <Zps> +D 0> i T((s,4) € Vern) D Y 2pepi - 1((s,1) € Vi), (154)

seS seS seSieSe seSieSe

with
VT+1 = {(ibjl)? (jlai1)7 ey (iT7jT)7 (jrviT)} . (155)

We note that in the Fourier-Motzkin elimination step we have to only consider those inequalities where either «;, ;. or
«j, 5, appears on the right hand side of (153). This is equivalent to having ¢, € S and j, € S¢or j, € S and i, € S°.
For those S that do not satisfy either condition, we immediately have (154). If the selected S follow either of these cases,
combining (153) with o;_ ;. < 2p; p;. and o, ;. < 2p; p;,., we reduce to (154). At this point all the equations in (154)
have been recovered. Nevertheless Fourier-Motzkin elimination requires us to also consider all pairwise equations where
51,852 C Qi € Sy and j, ¢ Sy and i, ¢ S and j, € Sa:

Zt8—<2ps> —ZZO‘“ $,1) € Vr) +222p5p1 1) €Vy) (156)

SES1 SES1 s€S1 1€SY s€81 1€SY
2
I PN IED o) WNETTISNS vh oL A E (N IS SR
SES2 SES2 s€ES2 i€ESS s€S2 i€SS
The Fourier-Motzkin elimination step requires us to combine (156) and (157) and use oy, ;. + ;.. = 2p;.Dpj.,

Q. 4., 0, ;. > 0to eliminate o, ;. and ¢, ;, in the induction step.

> - (Zps>2+ >t - (Zm)g

sESy SES SES3 SES,
ZZO{SZ SZ ¢V +222p5p1 GV)
s€S1 1€SY s€S1 1€SY
+ 3 and((sd) V) + Y Y 2papi - L((s,1) € Vy) (158)
s€S2 1€SS 5€82 1€SS

We will show that each such inequality is redundant and already implied by the set of equations already established in (154).

Let R =8 NSz and T = &1 US,. Note that i, ¢ R and j, ¢ R. First following the same steps leading to (74) we can
show that:

>t <2p5>2+ > ta- (Zm)Q

SES sESL SES> SES2

Zm—(Zps)Q + Zu—(Zps)z +20 D || DD pe ) (159)

seT seT SER SER SES2\R s€S1\R
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Next, following the steps leading to (80) we have that:

SN i I((s,0) & Vi) + 2peps - 1((s,7) € V)

s€S1 1E€SY
= Z Z s - 1((s,7) € V) + 2pspi - 1((s,4) € V)
sES i€Te
—|—Z Z asi - 1((s,7) € Vi) + 2pspi - 1((s,7) € V) (160)

s€81i€S\R

Z Za“' (s,9) € Vi) + 2pspi - 1((s,2) € V)

s€ESI\RIET*®

JrZ ZO‘M' 5,1) & Vi) + 2pspi - 1((s,4) € Vy)

SERET®

+ Z Z Olsz' S'L %V)—Fstpi'H((S,i)EVr)

s€ES1\R1€S2\R

D D i I(s0) € Vo) + 20pi - 1((s,4) € V) (161)

SERIES\R

and, likewise,

Z Zas,- 5,1) & V) + 2pspi - 1((s,4) € Vr)

5€82 1€SS
Z Zasz' 5,1 ¢V)+2pspi'ﬂ((57i)evr)
SESQ\R i€Te

+ YD g 1((s,4) € Vr) + 2pps - 1((s,4) € V)
SERIET

+ Z Z s - 1((s,7) € Vy)) + 2psp; - 1((s, 1) € Vy)
SES\RIES1\R

+3 00D i I((s,d) ¢ Vi) + 2papi - 1((s,8) € Vi) (162)
SERIESI\R
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Next we combine the terms to get:

Z Zo‘sz' $,4) & Vr) + 2pspi - 1((s,1) € Vr)

s€Sy i€SY

+ 305 s W(s.d) ¢ Vi) + 2popi - 1((s,4) € V)

s€ES2 i€ESS

{ oY e I(s,i) ¢ Vi) + 2p,p; - 1((s,) € V)

s€S1\RIET*®

+ 3037 o I(s.9) & V) + 2api - 1((5,0) € Vy)

SERIETC

+ Z Zasf 8,0 %V)+2pspi'ﬂ((3’i)evr)}

SES\RIET*®

{Z Z as,i - 1((s,7) & Vi) + 2pspi - 1((s,4) € Vr)

SER €52\ R

+Zzaéz' 5,1) & Vi) + 2pspi - 1((s,4) € Vy)

SERIET®

+Z Z asz' SZ ¢V)+2pspi~ﬂ((s,i)€)}r)}

SERIESI\R

+ Z Z Olsz' S'L %V)—Fstpi'H((S,i)EVr)

€S\ RIE€ES2\R

+ Z Z O‘él' S'L %V))J'_Zpspi'ﬂ((sai)evr)

SES\RIE€EST\R

=Y > i I(s,4) ¢ Vo) + 25pi - 1((s,7) € V)

SET i€T®

303 i T(s,0) & V) + 2pepi - 1((5,) € V)

SER IERC

+ > (et ais) - I(s,0) € Vi) + dpeps - 1((s,4) € Vy)

SESI\RI€S\R

=503 i I(s.d) ¢ Vi) + 2pepi - I((s.4) € V)

seT ieT*e

3703 i T((s,8) € Vi) + 2papi - 1((s,4) € V)

SER IERC

+ D D 2pepi 4+ 2pepi - 1((s,8) € V)

€S\ RIE€ES\R
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Thus the resulting inequality from Fourier-Motzkin elimination is given by:

Zts—<2ps>2 + Zts—<2ps>2 +2 > b

> b

seT seT SER SER SES\R s€S1\R
<ZzasL' SZ ¢V)+2p5pz]l((s7l)ev7)
seT ieTe
—I—Z Z asi-1((s,9) & V) + 2psp; - 1((s,1) € V)
sERi€R”
+ >0 > 2ppi + 2pepi - 1(s,i) € V) (168)
s€S1\RI€ES2\R
Next note that since (i,, j) € T and (ir, jr) ¢ R, the inequalities:
St < <2p5> 305 g I(s,0) & Vi) + 2001 - I((s,1) € V)
seT seT SER i€ER®
Zts < (Zps> + Z Z as,i - 1((s,9) € Vi) + 2pspi - 1((s,7) € V) (169)
SER SER SER IER®
are already constructed in the induction step. Also clearly (168) is implied by these since:
21 > pa || DD b= D) D 2pp (170)

s€S2\R s€S1\R sES1\RIES\R

is an identity since S; \ ¢R and S, \ R are disjoint. Thus each such inequality form the Fourier-Motzkin elimination is

redundant and we have completed the induction step and in turn established Lemma 3.

H. Proof of Equation (10)

First we consider the non-truncated program and let w; ; be the variables for 4, j € Q with <

Z min(g;, pr(i))

where

n
pr(i) = p; + Z 2pipjwi,;
=1,

Note that we have

(acc) me (qi,p1(3)) < Zmln (qi,pr(i Z qi

=1 1=s+1
For the truncated linear program we have for each i € {1,2,...,s}:
S n
=pi + Z 2pipjwi; Z 2pip;
j=1,j#i j=s+1

and for ¢ > s:

pr(i) = p} + Z 2pip;

j=i+1
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We consider a potentially sub-optimal choice of weights w; ; = w; ; for¢,j € {1, ..., s} for the truncated linear program.
Note that
pr(i) > pr(i), Vi<s (176)
and
pr(i) > pj,  Vi>s. (177)

As aresult, using (173) we have:

P(acc) > Y " min(g;, (i) (178)
=1
> “min(gi, pr(i) + > min(g;,p}) (179)
i=1 i=s+1
> P*(acc) — Z ¢+ Z min(g;, p?) (180)
i=s+1 i=s+1
= P*(acc) = > (¢ —p})* (181)
1=s+1

I. Proof of Equation (11)

Recall that Q@ = {1,...,n} denotes the full vocabulary and €2y C 2 is a high probability set of tokens selected so that
q(20) =1 —¢c and p(Qy) = 1 — p.. Recall that p(-) and G(-) denote the distributions over () obtained by truncating p(-)
and ¢(+) to 2o and re-normalizing them.

Given the set of input tokens S = {X1,..., Xk} we select a subset S C S by discarding any tokens in S that do not
belong to §2. Let {X1,..., Xk} denote the tokens in .S, which are effectively sampled from the distribution j(-) i.e.,
Pr(X; = z) = p(x) if z € Q.

We then perform importance weighted sampling over the input tokens Sto generate output token Y ~ p;(-). We then
perform speculative sampling using target distribution ¢(-) and output the resulting token Z ~ ¢(-).

Let Pgo(acc) be the acceptance probability of the proposed truncated alphabet scheme and P*(acc) be the optimal
acceptance probability without truncation of the alphabet.

Without loss of generality assume Qg = {1,2,...,6} and @ = {1,2,...,n}. Also assume p(€2) = 1 — p. and
q(Qo) =1 —¢q.. Let S = { X3, X5} denote the input tokens and S denote the tokens that are in {2o.

We consider the following:

Po,(acc| S =8) = Z min(g;, pr(7)) (182)
1€Qo
where
5
pi(i) = p; + Z 2pipjwi j (183)
Jj=1,g#i

where w,, ,, are the associated variables as discussed in our formulation.

When truncation is not used, let w; ; be the associated variables for ¢, 7 € 2 and 7 # j such that

pr(i) =pi+ Y 2pipjwi; (184)
J=Liti
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achieves the optimal acceptance probability:
(acc) me pr(i),q;) < me pr(i),qi) + qe (185)

In the optimization program (183), we consider a potentially sub-optimal choice:: w; ; = w; ; for i < j. Also note that due
to truncation, p; = p;/p(o) > p; foreachi = 1,2,..., 4. Thus it follows that

pr(i) > pr(i), Vie Qo (186)

It thus follows that:

B

P*(acc) < > min(pr(i), ¢;) + ge (187)
< p*(acqé:i S) +q. (188)
and:
P*(acc) > Pr(S = 8) - P*(acc|S = S) (189)
ﬁP(Xi € S)Pr(S =S8)- P*(acc|S = S) (190)
Zj(l —p=)* (P*(acc) — qc) (191)
> (1= 2pc) (P*(acc) — ¢c)) (192)

J. LP and Fast LP version for non-identical draft distributions, X = 2

For the case of K = 2 drafts we explain how the importance weighted sampling scheme and its faster variants can be
extended when the two tokens are sampled independently but from different distribution i.e. X7 ~ p;1(-) and X ~ pa(-).
Weletp1 = (p11,.-.,P1,n) and pa = (p2,1, - - - , P2,,) denote the distributions of the draft models to sample X; and Xo.
We letq = (¢1,- - -, ¢n) denote the target distribution.

The order of the tokens matters and accordingly for ¢ < j, we define:

Wi ; = PI"(Y = Z|X1 = 7;7X2 = j),ﬂ)i’j =1- ws 5 = PT(Y = _]|X1 = ’i,XQ = j) (193)
wj i = PI‘(Y = Z|X1 = j, X2 = Z'),’Lf)jﬂ' =1- Wy = PI‘(Y = j|X1 = j,XQ = Z) (194)

If Y denotes the selected token, then considering all cases where token ¢ appears as one of the input tokens, we have:

i—1 i—1

pbr ( ) P1,iP2,i + Zpl 1p2,_]wz,] + Z P1,iP2,; W4 5 + Zpl,yp? zw], + Z DP1,jP2,iWj 4 (195)
j=1 j=i+1 j=1 j=i+1

We need to find w; ; and w;,; that maximizes Y., min(g;, pr(¢)). This is a linear program in variables w; ; satisfying
0 < w; ; < 1. The truncated version of LP is obtained by sorting the tokens in {2 based on g; — p1 ;p2,; again considering
sets 1 = {1,2,...,s}and Qy = {s +1,...,n}. We treat w; ; as variables that need to be optimized if 7,j € Q. If
1€ Qandj € Qy wesetw; ; = 1. If bothi,j € Qp wesetw; ; = 1if i < jand 0if > j. The resulting distribution is
given as follows. Fori € {1,...,s}:

i—1 1—1

ﬁ () plzP21+ZP11p23wzg+ Z p11p2gw1j+zp1]p27.wj1
j=1 Jj=i+1 j=1

n n
+ Z P1,5P2,iWj,i + Z (p1,P2,i + P1,iP2,5) (196)
J=i+1 j=s+1
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and fori = s+ 1,...,n, we have:

n

pr(i) =pripai+ », (prjp2i + prip2) 197
je=it1

Upon following the sequence of steps leading to (181) we can show that

P(acc) > P*(acc) — Z (¢i — p1.ip2.i) ™" (198)
S

The truncated alphabet scheme can be applied in a similar fashion by considering a high probability subset 2y C 2 and

only keeping those input tokens that belong to {2g. We generate truncated distributions 1 () and po(+) and apply the linear
program on these followed by speculative sampling using the target distribution ¢(-).
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