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ABSTRACT

This paper introduces a novel task and approach for one-shot medical video ob-
ject segmentation using static image datasets. We address the critical challenge
of limited annotated video data in medical imaging by proposing a framework
that leverages readily available labeled static images to segment objects in med-
ical videos with minimal annotation—specifically, a ground truth mask for only
the first frame. Our method comprises training a one-shot segmentation model
exclusively on images, followed by adapting it to medical videos through a test-
time training strategy. This strategy incorporates a memory mechanism to utilize
spatiotemporal context and employs self-distillation to maintain generalization ca-
pabilities. To facilitate research in this domain, we present OS-I2V-Seg, a com-
prehensive dataset comprising 28 categories in images and 4 categories in videos,
totaling 68,416 image/frame-mask pairs. Extensive experiments demonstrate the
efficacy of our approach in this extremely low-data regime for video object seg-
mentation, establishing baseline performance on OS-I2V-Seg. The code and data
will be made publicly available.

1 INTRODUCTION

Medical image segmentation plays a crucial role in various clinical applications, including diagno-
sis, treatment planning, and surgical guidance. In recent years, few-shot segmentation has gained
significant attention due to its ability to learn and segment new classes with minimal annotated ex-
amples. This approach is particularly valuable in medical imaging, where obtaining large-scale,
annotated datasets can be challenging and resource-intensive.

Few-shot semantic image segmentation has been extensively studied in computer vision, yielding
a plethora of innovative methods. These approaches can be broadly categorized into two main
paradigms: prototype learning (Snell et al., 2017; Li et al., 2021; Wang et al., 2024a) and matching-
based approaches (Vinyals et al., 2016; Lu et al., 2021; Peng et al., 2023). Notably, prototypical
networks have gained substantial traction in the medical domain, demonstrating particular efficacy
in tasks such as organ and lesion segmentation (Roy et al., 2020; Li et al., 2023).

From image to video, recent works (Chen et al., 2021; Yan et al., 2023) explore segmenting objects
of novel categories in query videos using only a few annotated support frames. Nevertheless, these
approaches still necessitate densely annotated frames for training, which does not fully address the
fundamental issue of annotation costs. This limitation is particularly pronounced in the medical
field, where videos are not routinely recorded or stored, making them scarce. The relative paucity
of publicly available medical video datasets poses significant hurdles for developing robust medical
video object segmentation algorithms.

In light of these constraints, we propose a novel task: one-shot medical video object segmentation
using static image datasets. Our goal is to segment a medical video with minimal annotation—
specifically, a ground truth mask for the first frame—along with a corpus of labeled static images.
This task setting represents an extremely low-data regime for video object segmentation, minimiz-
ing the need for costly pixel-level video annotations while maximizing the utility of more readily
available image data. To achieve this, we propose a straightforward yet powerful framework. Our
approach begins with training a one-shot segmentation model using labeled images. We then freeze
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this model and adapt a copy of it by incorporating our proposed memory mechanism, enabling the
utilization of spatiotemporal context in the target domain of medical videos. In addition, we intro-
duce a self-distillation method to ensure that the adapted model does not deviate significantly from
the original image model. This preserves generalization capabilities acquired from the diverse image
dataset while allowing for domain-specific adaptations.

To facilitate research in one-shot image-to-video segmentation in medical imaging, we compile OS-
I2V-Seg, a comprehensive collection of open-access medical image and video datasets with diverse
classes. It includes 28 categories in images and 4 categories in videos, comprising a total of 68,416
image/frame-mask pairs.

Our contributions are summarized as follows:

• We introduce one-shot image-to-video segmentation, addressing the critical need for effi-
cient segmentation methods in low-data video regimes.

• To tackle this challenge, we propose a test-time training method that incorporates a memory
mechanism and self-distilled regularization.

• We conduct thorough experiments to validate our approach and establish baseline perfor-
mance on OS-I2V-Seg.

2 RELATED WORK

Few-Shot Semantic Segmentation. Few-shot segmentation addresses the scarcity of pixel-wise
annotations by enabling the segmentation of unseen classes with limited labeled data. Dong & Xing
(2018) pioneer this approach by generating a single prototype vector per class from support images
for comparison with query features. Subsequent studies extend this concept (Zhang et al., 2019; Liu
et al., 2020; Du et al., 2022) and adapt it for medical image segmentation (Roy et al., 2020; Feng
et al., 2021; Quan et al., 2022). Some approaches (Lu et al., 2021; Min et al., 2021) explore learning
dense correspondences between query and support images. To address poor performance due to
significant appearance changes, Peng et al. (2023) introduce a hierarchically decoupled matching
network. Recently, Zhu et al. (2024) leverage large language models for improved results. However,
the majority of existing few-shot semantic segmentation approaches assume that base and novel
classes are sampled from the same domain. This assumption may lead to diminished performance
when training and test data originate from different domains, a scenario particularly relevant to our
work where we seek to generalize models trained on static images to videos.

Cross-Domain Few-Shot Segmentation. Cross-domain few-shot segmentation tackles a more re-
alistic scenario where test examples differ in data distribution and label space from training data.
Lei et al. (2022) introduce a feature transformation layer to map query and support features into a
domain-agnostic space. Huang et al. (2023) focus on preserving intra-domain knowledge, while Su
et al. (2024) propose learning rectification parameters for effective domain adaptation. We compare
our approach with these cross-domain few-shot segmentation methods in Section 4.2.

Domain Generalization. Domain generalization aims to generalize models to diverse target do-
mains without access to target domain data during training. Data augmentation strategies, including
image transformations, feature enhancement, and generative approaches (Zhou et al., 2021; Xu &
Zhao, 2023; Zheng et al., 2024), play a crucial role. Meta learning and adversarial learning (Chen &
Shuai, 2021; Choi et al., 2021; Gokhale et al., 2023; Wang et al., 2024b) are also employed to tackle
the challenge of domain generalization. Nevertheless, domain generalization methods encounter
significant challenges when confronted with few-shot scenarios in novel domains. The scarcity of
labeled samples and the presence of previously unseen categories severely test the models’ capacities
for effective generalization.

Test-Time Training. Test-time training or adaptation focuses on updating a trained model using
unlabeled test samples to enhance its robustness to distribution shifts. Schneider et al. (2020) pro-
pose replacing trained statistics of normalization layers with test sample estimates. Sun et al. (2020)
develop a Y-shape model with an auxiliary head for fine-tuning during inference by predicting ro-
tation degrees. Wang et al. (2021) adapt normalization layers through test entropy minimization.
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Figure 1: Our proposed temporal-aware test-time training framework for one-shot image-to-video
segmentation in medical imaging. We employ a duplicated architecture of a pre-trained one-shot
image segmentation model and incorporate a memory mechanism to exploit spatiotemporal context
for medical video segmentation. The model is optimized using a self-distillation approach, ensuring
that the adapted model does not deviate significantly from the original image model. This strategy
preserves generalization capabilities acquired from diverse images while enabling domain-specific
adaptations.

Gandelsman et al. (2022) introduce image reconstruction using masked autoencoders for model
adaptation, while Gao et al. (2023) employ diffusion models to project target domain data into the
source domain during testing. In this paper, we propose a temporal-aware test-time training method
to perform one-shot image-to-video segmentation.

3 METHOD

3.1 PROBLEM SETTING

In the task of one-shot image-to-video segmentation, distinct datasets are utilized for training and
testing. Specifically, the training dataset, denoted as (XI ,YI), solely contains images, while the test
dataset, (XV ,YV ), comprises videos. Here, X and Y represent input and label spaces across both
datasets, which are non-overlapping, i.e., XI ̸= XV and YI ∩ YV = ∅.

To manage the one-shot scenario, we implement the episodic paradigm (Vinyals et al., 2016), orga-
nizing both the training and test datasets into episodes. Each episode comprises a support set and a
query set from a specific class, consisting of examples and their corresponding ground-truth labels
(x,y) ∈ X ×Y . A model is trained to predict masks for multiple query images after being provided
with one annotated image from the support set. During testing, the model’s performance is evaluated
based on its ability to segment video frames following the initially annotated frame.

3.2 LEARNING ONE-SHOT SEGMENTATION WITH IMAGES

Our approach begins with training a one-shot segmentation model exclusively on images. This
model consists of four key components: a backbone network, a prior mask generation module, a
multi-scale feature enhancement module, and a segmentation head.

Images from both the support and query sets are fed into a shared backbone network to extract mid-
and high-level features. For this work, we utilize a ResNet-50 (He et al., 2016), pre-trained on
ImageNet, as our backbone. The prior mask generation module employs a correlation mechanism

3
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to process high-level feature representations of support and query images, conditioned on support
masks. This generates prior masks indicating pixel probabilities of belonging to target classes, as
discussed by (Peng et al., 2023). These prior masks, concatenated with mid-level features, are then
fed into the multi-scale feature enhancement module (Jiang et al., 2022). This module enriches
semantic representations of the query images and produces final features. The segmentation head,
comprising a 3×3 convolutional layer followed by a 1×1 convolution with softmax, predicts binary
segmentation masks based on these enhanced feature representations.

3.3 TEMPORAL-AWARE TEST-TIME TRAINING VIA SELF-DISTILLATION

While the aforementioned one-shot segmentation model, trained on static images, can be applied
to video sequences by utilizing the annotated initial frame as support data and treating subsequent
frames as individual query inputs, this approach disregards temporal correlations inherent in video
content. Neglecting inter-frame dependencies may lead to inconsistent segmentations across the
video. Although techniques such as adapters (Pan et al., 2022) can enable pre-trained image mod-
els to incorporate spatio-temporal reasoning capabilities, these methods typically require additional
labeled videos, contradicting our goal of minimizing annotation dependence. To address this chal-
lenge, we propose a temporal-aware test-time training approach (cf. Figure 1). Our method du-
plicates the architecture and weights of the pre-trained one-shot image segmentation model and
incorporates a memory mechanism. This mechanism carries long-term historical guidance to en-
hance the segmentation of the current frame. Through our proposed self-distillation, we optimize
this augmented network without the need for extra labeled data.

Memory Mechanism. Instead of using a category-specific memory bank (Gong et al., 2022; Yu
et al., 2024), we build a category-agnostic memory bank compatible with the one-shot segmentation
setting. The memory bank is initialized with the first frame of a given video as the initial memory
frame. Subsequently, we uniformly sample every fourth frame from the query set (i.e., the remaining
frames) as additional memory frames. For each memory frame, we store two items: a memory
key kM(t) and a memory value vM(t), where t represents the index of memory frames within the
memory bank. All memory frames, except the first, follow a first-in, first-out principle.

For each query frame, we first extract high-level features as detailed in Section 3.2, denoted as q.
Note that the memory key kM(t) is directly reused from the corresponding q, without extra computa-
tion. The memory value vM(t) represents the enhanced feature representations of the corresponding
query frame, derived before the segmentation head.

For memory reading, given a query frame and T memory frames, we compute a pairwise affinity
matrix S that quantifies the similarity between the query and each memory key:

S
(t)
ij = −

∥qi − k
M(t)
j ∥2

√
C

, (1)

where t = 1, 2, . . . , T , qi denotes the feature vector at the i-th spatial position, with i indexing over
all spatial locations. Similarly, kM(t)

j represents the feature vector at the j-th position of the t-th
memory key. Following standard practice (Vaswani et al., 2017), we normalize the matrix by

√
C,

where C is the channel dimension. To mitigate noise in memory values, we filter the affinities by
retaining only top-k entries. Subsequently, we employ softmax normalization on these top-k entries
to obtain a normalized affinity matrix W for the query:

W
(t)
ij =


exp(S

(t)
ij )∑

n∈top-k exp(S
(t)
in )

, if S(t)
ij ∈ top-k of S(t)

i ,

0 , otherwise .
(2)

With W , we compute a readout feature representation for the query frame as a weighted sum of
memory values using an efficient matrix multiplication:

vR = vMW . (3)

This memory mechanism enables the integration of temporal context from memory frames into the
current query frame’s representation, enhancing the model’s ability to leverage inter-frame depen-
dencies in video segmentation tasks.
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Self-Distilled Regularization. Having integrated temporal cues into the one-shot segmentation
model trained exclusively on static images, we now face the challenge of optimizing this new model.
We introduce a self-distilled regularization strategy. This approach involves freezing the original
one-shot segmentation model to serve as a guide for the new model, ensuring that its features and
outputs do not significantly deviate from those of the original network while accommodating tem-
poral information.

For feature alignment, we encourage similar feature representations for the same frames in the latent
spaces of both networks, thereby increasing the reliability of the adapted model’s training. This
necessitates the selection of appropriate layers for alignment. Given that features preceding the
segmentation head are stored as memory values in the memory bank, we focus on aligning these
features to mitigate the risk of error accumulation. Formally, we match features from the frozen
original network (fA) with those of the adapted network (fB). To quantify the similarity between
these feature distributions, we employ the Kullback-Leibler (KL) divergence, which is formulated
as follows:

DKL

(
σ(fB)∥σ(fA)

)
=

∑
j

σ(fB)j log
σ(fB)j
σ(fA)j

, (4)

where σ(·) denotes the softmax function applied to the feature vector at each spatial position, and j
indexes the feature vector at the j-th spatial position.

For output alignment, we minimize the discrepancy between segmentation masks predicted by the
two models. For a given query frame, we concatenate fB and vR along the channel dimension to ob-
tain a fused feature representation. This fused representation is then fed into the segmentation head
of the adapted network to generate a segmentation mask, ŷ. Concurrently, the query frame is input
into the original network to produce another segmentation mask, ỹ. To ensure output consistency,
we employ a bootstrapped cross-entropy method:

Lo = {ŷ < η}H(ỹ, ŷ) , (5)

where H(·) denotes the cross-entropy loss. To prevent overfitting on easily samples, we calculate
the loss only for pixels with probabilities below a threshold η.

The overall objective function can be formulated as:

L = αLo − λDKL

(
σ(fA)∥σ(fB)

)
, (6)

where α and λ are coefficients that balance the two loss terms.

Through this self-distillation process, we optimize the memory-augmented model for one-shot video
object segmentation while preserving the prior well-trained segmentation capability.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. For training the one-shot image segmentation model, we compile a diverse set of med-
ical image datasets: the Breast Ultrasound Images (BUSI) dataset (Al-Dhabyani et al., 2020),
the TN3K dataset (Gong et al., 2023), the Multi-Modality Ovarian Tumor Ultrasound (MMOTU)
dataset (Zhao et al., 2022), the Laryngeal Endoscopic dataset (Laves et al., 2019), the Brain Tumor
Segmentation dataset1, the QaTa-COV19 dataset2, the COVID-19 CT Scan Lesion Segmentation
dataset3, the Digital Retinal Images for Vessel Extraction (DRIVE) dataset (Staal et al., 2004),
the Structured Analysis of the Retina (STARE) dataset (Hoover et al., 2000), the CHASE DB1
dataset (Fraz et al., 2012), and the ISIC Challenge datasets4,5. These datasets encompass vari-
ous organs and lesions, including breast nodules, thyroid nodules, ovarian tumors, larynx, brain

1https://www.kaggle.com/datasets/nikhilroxtomar/brain-tumor-segmentatio
n

2https://www.kaggle.com/datasets/aysendegerli/qatacov19-dataset
3https://www.kaggle.com/datasets/maedemaftouni/covid19-ct-scan-lesion-s

egmentation-dataset
4https://challenge.isic-archive.com/data/#2017
5https://challenge.isic-archive.com/data/#2018
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HMC-QU ASU-Mayo CAMUS
LVENDO LVEPI LA

Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU

One-Shot Segmentation

PANet 60.98 44.54 49.72 37.56 54.19 39.68 55.81 40.43 56.00 41.39
HSNet 70.44 55.17 58.53 46.05 63.16 49.52 63.85 50.22 65.34 51.20
DCAMA 67.44 51.58 53.27 42.86 60.80 46.14 61.63 46.85 62.08 47.71
VAT 68.05 54.46 51.29 39.15 61.37 48.43 62.15 49.18 62.61 50.22
SSP 72.38 58.13 54.02 42.24 64.47 52.19 65.25 52.50 67.01 54.03
AFA 78.86 65.39 59.17 46.11 70.10 58.71 71.07 59.12 73.08 60.54
SCCAN 73.81 59.67 54.36 42.79 65.33 52.96 66.31 53.72 67.49 55.04
DCP 78.44 64.71 57.70 43.48 70.38 57.91 70.62 58.31 71.91 59.98

Cross-Domain One-Shot Segmentation

PATNet 69.05 57.54 57.78 44.43 62.00 52.28 62.54 52.75 64.38 54.29
RestNet 74.25 61.87 55.08 42.40 67.50 57.01 67.09 56.65 68.36 57.68
DRA 76.07 61.84 56.42 43.91 67.84 54.85 68.67 55.98 70.60 57.51

Test-Time Training

Tent 81.14 67.02 60.67 46.78 71.19 59.04 71.39 60.16 73.06 62.42
RBN 77.01 64.40 58.58 44.87 68.18 56.52 68.76 58.00 69.97 59.02
InTEnt 80.41 67.39 59.22 45.44 72.52 60.84 70.06 59.94 74.05 63.22
Ours 82.37 69.02 61.90 47.45 73.20 61.86 74.43 62.36 76.14 63.77

Table 1: Comparative results of our method against various baselines on three public medical video
datasets. Note that all test-time training methods are built upon our pre-trained one-shot image
segmentation model. LVENDO: left ventricle endocardium; LVEPI: left ventricle epicardium; LA: left
atrium.

tumors, lung, retina, and skin lesions. To further enhance the performance of the one-shot segmen-
tation model, we employ a training strategy that integrates natural image datasets, such as PASCAL-
5i (Shaban et al., 2017), with the medical image datasets.

For evaluation, we utilize the following medical video datasets: the CAMUS dataset (Leclerc
et al., 2019), the HMC-QU dataset (Degerli et al., 2021), and the ASU-Mayo Clinic Colonoscopy
dataset (Tajbakhsh et al., 2016). The CAMUS dataset contains 500 patient samples, each including
apical-2-chamber (A2C) and apical-4-chamber (A4C) echocardiography videos with segmentation
masks for the endocardium and epicardium of left ventricle and left atrium wall. The HMC-QU
dataset comprises 109 A4C view echocardiography videos with left ventricle wall segmentation
masks. The ASU-Mayo dataset is a video dataset containing 38 video sequences, commonly used
to build and test real-time polyp detection systems. It is important to note that our model and com-
peting methods are trained on base image classes and evaluated on novel video classes with no class
overlap, enabling assessment of generalization to unseen data.

More detailed information on these datasets is provided in Appendix B.

Competing Methods. In our comparative analysis, we consider three distinct methodologies. The
first involves using few-shot segmentation models trained on images and directly applied to medical
videos. The second is cross-domain few-shot segmentation, which extends few-shot models to gen-
eralize from source domain to other domains. The third integrates our one-shot image segmentation
model with existing test-time training algorithms for one-shot image-to-video segmentation.

Note that in our experiments, all few-shot segmentation approaches are evaluated under the one-shot
setting, wherein a single annotated image or frame serves as the support set.

For the first methodology, we evaluate eight representative models: PANet (Wang et al., 2019),
HSNet (Min et al., 2021), DCAMA (Shi et al., 2022), VAT (Hong et al., 2022), SSP (Fan et al.,
2022), AFA (Karimijafarbigloo et al., 2023), SCCAN (Xu et al., 2023), and DCP (Lang et al.,
2024). Furthermore, for cross-domain few-shot segmentation, we compare our proposed approach
with PATNet (Lei et al., 2022), RestNet (Huang et al., 2023), and DRA (Su et al., 2024). It is
important to note that direct comparisons with test-time training algorithms specifically developed
for videos are not feasible. These methods typically incorporate spatio-temporal modules (Lo et al.,

6
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# 1 # 4 # 6 # 10 # 12

# 1

# 1

# 1

# 3 # 8 # 13 # 18

# 17 # 73 # 81 # 113

# 2 # 8 # 14 # 18

# 1 # 3 # 17 # 27 # 42

Figure 2: Qualitative results of our one-shot image-to-video segmentation model on three medi-
cal video datasets. Row 1: HMC-QU. Rows 2-3: CAMUS. Rows 4-5: ASU-Mayo. The leftmost
column shows annotated support frames with ground truth masks (red). Subsequent columns show-
case our model’s segmentation predictions (yellow masks) on sampled query frames from videos.
Ground truth masks for the query frames are delineated in white for reference.

2023; Yi et al., 2023; Su et al., 2023), whereas our base model is pre-trained on images and lacks
temporal-aware components, precluding a fair comparison. Consequently, we consider the following
three test-time training approaches suitable for our case: Tent (Wang et al., 2021), RBN (Benz et al.,
2021), and InTEnt (Dong et al., 2024). These methods, alongside our one-shot segmentation model
pre-trained on images, are applied to medical videos.

Evaluation Metrics. Following prior works (Ouyang et al., 2022), we adopt Dice score and
foreground-background IoU as evaluation metrics to assess the performance of different models.

Implementation Details. To ensure a fair comparison, all models are trained on the same image
datasets and evaluated on the same medical video datasets. During training of the one-shot segmen-
tation model using images, the backbone’s weights are frozen except for block #4, which remains
trainable to learn more robust feature representations. The one-shot segmentation model is trained
using the Adam optimizer with a learning rate of 1e-4 for the first 5K iterations, followed by the
SGD optimizer with a learning rate of 1e-5 for subsequent iterations. We use a batch size of 8. Dur-

7
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Dice HMC-QU ASU-Mayo CAMUS-LVENDOCAMUS-LVEPICAMUS-LA

Cosine similarity 80.77 59.88 71.52 72.83 75.32
Dot product 81.51 60.79 72.14 73.59 76.27
Negative L2 distance 82.37 61.9 73.2 74.43 76.84
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Figure 3: Ablation study on the effectiveness of different similarity measure methods.

Mem.
Bank

Feat.
Align.

Pred.
Align.

HMC-QU ASU-Mayo CAMUS
LVENDO LVEPI LA

Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU

✗ ✗ ✗ 80.01 66.99 60.81 46.61 72.05 59.52 71.80 60.59 73.61 62.02
✗ ✓ ✓ 77.95 65.48 58.73 45.66 69.39 58.30 70.22 59.10 71.71 59.93
✓ ✗ ✓ 79.72 66.73 61.01 46.83 71.91 59.25 71.23 60.17 72.92 61.62
✓ ✓ ✗ 1.27 1.06 0.85 0.65 0.64 0.53 0.93 0.78 0.81 0.68
✓ ✗ ✗ 0.47 0.41 0.33 0.28 0.28 0.22 0.41 0.34 0.38 0.32
✗ ✓ ✗ 0.42 0.39 0.28 0.22 0.21 0.17 0.32 0.26 0.31 0.26
✗ ✗ ✓ 76.24 63.90 57.91 44.47 68.05 57.43 67.98 57.36 67.84 57.22
✓ ✓ ✓ 82.37 69.02 61.90 47.45 73.20 61.86 74.43 62.36 76.14 63.77

Table 2: Ablation study on the effectiveness of components in the proposed temporal-aware test-time
training approach. The first row shows results from our pre-trained one-shot image segmentation
model without test-time training. Subsequent rows present results for different combinations of
components in our temporal-aware test-time training strategy.

ing the test-time training stage, we use the SGD optimizer with a learning rate of 1e-5 and a batch
size of 4. Our method is implemented in PyTorch and runs on NVIDIA RTX 4090 GPUs.

Regarding memory bank specifications: A single memory key-value pair occupies approximately
4 Mb. Given the typically brief duration of publicly available medical videos, we set the memory
bank’s length to a fixed value of 10 for efficiency, which accommodates about 2 seconds of infor-
mation. As previously mentioned, we adopt a top-k strategy to eliminate potential noise in memory
values. Additionally, to manage the computational load of the softmax operation, we consistently
select the top 20% of affinities in our experiments.

4.2 RESULTS

We present the performance of the competing methods in Table 1. Among one-shot segmentation
models, AFA achieves the highest performance with an average Dice score of 70.45% and IoU of
57.97%. Our proposed method outperforms AFA by 3.15% in Dice and 2.91% in IoU, demonstrating
its efficacy in low-data scenarios. In comparison to cross-domain one-shot segmentation models,
our approach yields substantial improvements, surpassing the best results by 5.68% in average Dice
score and 5.77% in IoU. These gains underscore our method’s superiority not only in the one-
shot setting but also in addressing cross-domain (image to video) challenges. For test-time training
competitors, our model exhibits notable enhancements, exceeding the best average results by 2.11%
in Dice and 1.52% in IoU. This indicates that our approach effectively leverages temporal cues to
refine segmentation. Figure 2 illustrates visual examples of segmentation results generated by the
proposed method for medical videos. We provide additional visual comparisons between our model
and other competitors on various medical video datasets in Appendix A.

4.3 ABLATION STUDY

Effect of Similarity Measure. The similarity measure plays a crucial role in computing the affin-
ity matrix between a query frame and memory frames. Figure 3 presents the performance of differ-
ent similarity measures—cosine similarity, dot product, and negative L2 distance—across various
datasets. Notably, the negative L2 distance consistently outperforms the others, achieving the high-
est Dice score of 82.37% and IoU of 69.02% for the HMC-QU dataset, while exhibiting lower but
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competitive scores for ASU-Mayo. In contrast, the cosine similarity and dot product show moderate
effectiveness, with the dot product performing slightly better overall. These findings underscore the
importance of selecting an appropriate similarity measure, as performance can vary significantly
based on dataset characteristics.

Effect of Temporal-Aware Test-time Training. To investigate the effectiveness of each compo-
nent in the proposed temporal-aware test-time training strategy, we conduct comprehensive ablation
studies. Table 2 reports the numerical results. We set our one-shot segmentation model pre-trained
on images as the baseline, then evaluate our adapted network under different component combina-
tion settings. The optimal configuration (all components present) achieves the highest Dice and IoU
scores, indicating a synergistic effect among these elements. Notably, configurations including the
memory bank consistently outperform those without it, while feature alignment improves outcomes
when combined with other components. Conversely, the absence of output consistency substantially
diminishes performance, underscoring its importance. Overall, the results highlight the necessity of
integrating all three components—memory bank, feature alignment, and prediction alignment—to
maximize performance in one-shot image-to-video segmentation.

5 CONCLUSION

In this work, we have presented a novel approach to one-shot image-to-video segmentation for
medical imaging, addressing the critical need for efficient segmentation methods in low-data video
regimes. The proposed two-stage framework effectively bridges the gap between static image
datasets and medical video segmentation tasks. By first training a one-shot image segmentation
model and then adapting it to videos using a memory mechanism and self-distilled regularization
during test-time training, we leverage strengths of both image and video data.

The introduction of OS-I2V-Seg, a comprehensive dataset spanning diverse medical imaging cat-
egories, provides a valuable resource for the research community to further explore and advance
this field. Our experimental results demonstrate the efficacy of our approach in leveraging lim-
ited annotations and adapting to the spatiotemporal context of medical videos. The performance
gains achieved through our method underscore the potential of utilizing readily available images to
improve video segmentation tasks, particularly in the medical domain where annotated videos are
scarce.
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APPENDIX

A ADDITIONAL QUALITATIVE RESULTS

For visual comparison, we select three top-performing methods representing different methodolog-
ical approaches: AFA, DRA, and TENT. Figures 4, 5 and 6 show segmentation results on various
datasets.
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Figure 4: Qualitative results of different models on the ASU-Mayo dataset. The leftmost column
shows annotated support frames with ground truth masks (red). Subsequent columns showcase
segmentation predictions (yellow masks) on sampled query frames from videos. Ground truth masks
for the query frames are delineated in white for reference.

B DATASET

We visualize the distribution of organs and imaging modalities across our entire dataset in Figure 7.
Below, we provide a detailed description of the training images used in our study.

BUSI: The dataset comprises breast ultrasound images collected in 2018 from 600 female patients
aged 25 to 75. It includes 780 images, each averaging 500 × 500 pixels, categorized into three
classes: normal, benign, and malignant. Ground truth images accompany the original images, facil-
itating tasks such as classification, detection, and segmentation in breast cancer diagnostics.

TN3K: The dataset consists of 3,493 ultrasound images collected from various imaging systems,
including GE Logiq E9, ARIETTA 850, and RESONA 70B, involving 2,421 patients. Samples are
selected based on the following criteria: (1) presence of at least one thyroid nodule, (2) absence of
blood signals, and (3) retention of only one representative image per perspective. Each image is
processed to grayscale and cropped to exclude non-ultrasound areas.

MMOTU: The dataset comprises 1,639 ovarian ultrasound images, including 1,469 2D images and
170 contrast-enhanced images, sourced from Beijing Shijitan Hospital, Capital Medical University.
Images feature pixel-wise and global-wise annotations, captured using the Mindray Resona8 scan-
ner. Multiple scans per patient are included, focusing on clear representations of lesion regions.

Laryngeal Endoscopic: The dataset contains 536 hand-segmented in vivo color images of the
larynx, acquired during two different resection interventions, with a resolution of 512× 512 pixels.
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Figure 5: Qualitative results of different models on the CAMUS dataset. The leftmost column
shows annotated support frames with ground truth masks (red). Subsequent columns showcase
segmentation predictions (yellow masks) on sampled query frames from videos. Ground truth masks
for the query frames are delineated in white for reference.

Brain Tumor: The dataset comprises 3,064 T1-weighted contrast-enhanced images from 233 pa-
tients, categorized into three types of brain tumors: meningioma (708 slices), glioma (1,426 slices),
and pituitary tumor (930 slices).

QaTa-COV19: The dataset comprises 9,258 COVID-19 chest X-rays, accompanied by ground-truth
segmentation masks for the COVID-19 infected regions, facilitating the segmentation task.

COVID-19 CT Scan Lesion Segmentation: This dataset consists of lung CT scans for COVID-19,
curated from seven public datasets, including three that provide COVID-19 lesion masks. It contains
2,729 image and ground truth mask pairs, with all lesion types mapped to white for consistency.

DRIVE: The dataset includes 40 photographs from a diabetic retinopathy screening program in the
Netherlands, featuring 400 diabetic subjects aged 25 to 90. Of the selected images, 33 show no signs
of diabetic retinopathy, while 7 exhibit signs of mild early diabetic retinopathy.

STARE: The dataset is designed for a semantic segmentation task in medical research, comprising
397 images with pixel-level annotations for 60 labeled objects in a single class: vessels.

CHASE DB1: The dataset includes 28 retinal images from both eyes of 14 children (8 white, 3
South Asian, 3 of other ethnic origins, mean age 10 years) recruited from a primary school in North-
East London. Each image features two ground truth vessel segmentation annotations created by
independent observers.

ISIC Challenge: This dataset aggregates over 20,000 publicly accessible dermoscopy images, col-
lected from leading clinical centers worldwide and captured using various devices.
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Figure 6: Qualitative results of different models on the CAMUS dataset. The leftmost column
shows annotated support frames with ground truth masks (red). Subsequent columns showcase
segmentation predictions (yellow masks) on sampled query frames from videos. Ground truth masks
for the query frames are delineated in white for reference.
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Figure 7: Imaging modality (left) and organ (right) distributions in the training set.
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