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Abstract

This paper presents a novel approach to address
contextual bandit problems with partially observ-
able, delayed feedback by introducing an approx-
imate Thompson sampling technique. This is a
common setting, with applications ranging from
online marketing to vaccine trials. Leveraging
Bootstrapped Thompson sampling (BTS), we ob-
tain an approximate posterior distribution over
delay distributions and conversion probabilities,
thereby extending an Expectation-Maximisation
(EM) model to the Bayesian domain. Unlike prior
methodologies, our approach does not overlook un-
certainty on delays. Within the EM framework, we
employ the Kaplan-Meier estimator to place no re-
striction on delay distributions. Through extensive
benchmarking against state-of-the-art techniques,
our approach demonstrates superior performance
across the majority of tested environments, with
comparable performance in the remaining cases.
Furthermore, our method offers practical imple-
mentation using off-the-shelf libraries, facilitating
broader adoption. Our technique lays a founda-
tion for extending to other bandit settings, such as
non-contextual bandits or action-dependent delay
distributions, promising wider applicability and
versatility in real-world applications.

1 INTRODUCTION

Stochastic Multi-armed Bandits (MABs) constitute a highly
effective framework for sequential decision making in the
presence of uncertainty. The stochastic MAB problem can
be seen as a special case of Reinforcement Learning, in
which the actions of the agent do not modify the environ-
ment in which it acts [Sutton and Barto, 2018].

The simplifying assumption that the actions available to the

agent, and consequent rewards, are not affected by past de-
cisions, has proven very effective in a host of real-world ap-
plications; among many others, landmark application areas
include clinical trials [Wu and Wager, 2022a] and, in an
industry setting, experimentation for the optimisation of
website content [Wang et al., 2022] and digital advertising
campaigns [Vernade et al., 2020a].

In all these settings there is the need to balance exploration
and exploitation: the agent in charge of decisions must con-
tinuously decide between dedicating resources to gathering
more data (exploration) and sticking to the choice that has
proven the best so far (exploitation). Collecting more data
allows making sharper decisions, but it comes at a cost.

In this paper we will focus on contextual bandits. As the
name suggests, they allow leveraging contextual inform-
ation to aid in the learning and decision processes. They
are particularly appealing in the mentioned settings, where
features representing patients (e.g., age, blood pressure) and
web surfers (such as demographic features and interests) can
be encoded in numerical vectors. For bandit algorithms in
general, and contextual bandits in particular, the interested
reader is referred to the introduction by Slivkins [2019].

Among the strategies to tackle the exploration-exploitation
dilemma in the bandit setting, one stands out owing to its
generality, conceptual simplicity and good practical per-
formance: Thompson sampling [Thompson, 1933, Russo
et al., 2017]. The agent holds a posterior distribution over the
space of parameters governing the data generation process
and updates said posterior as new data become available.
When facing a choice between different actions, the agent
draws a sample from the posterior distribution, and selects
the action which is best according to the drawn sample.

An intrinsic facet of the cited application domains is that of
delayed feedback. In clinical settings, both intended and side
effects often do not surface immediately after treatment. In
the online marketing setting, both when optimising website
content and advertising campaigns, the goal is most often
to maximise customer contacts or, if at all possible, sales,
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rather than the number of clicks, as the latter is a sub-optimal
proxy; while a click usually occurs within minutes since
the user is shown content, the delay between first click and
contact or sale (two events that can be collectively called
conversions) can reach several weeks and cannot be ignored.

Among the rich literature on delayed rewards in stochastic
bandits, the context of online marketing stands out, in that
the feedback is only partially observable. As remarked
by Chapelle [2014], while positive feedback (purchase de-
cisions) becomes accessible to the agent after some delay,
negative feedback is never explicitly observed; in other
words, the agent cannot distinguish between users who do
not convert and those who have not converted yet, but will
do so in the future. Clinical trials of vaccines, too, can be
affected by the same problem [Wu and Wager, 2022a]. Also
challenging is the fact that delay distributions are often
heavy-tailed [Diemert et al., 2017] and poorly modelled by
parametric distributions.

1.1 CONTRIBUTIONS

In this paper, we introduce a novel approximate Thompson
sampling technique to treat contextual bandits with par-
tially observable, delayed feedback. This technique lever-
ages Bootstrapped Thompson sampling (BTS) [Osband and
Van Roy, 2015] to build an approximate posterior distribu-
tion over delay distributions and probabilities of conversion,
thus extending an Expectation-Maximisation (EM) model
[Chapelle, 2014] to the Bayesian domain. In doing so, we
treat on the same footing uncertainty on delays and on con-
versions: in previous attempts, the uncertainty on delays
is ignored [Wang et al., 2022]. BTS has the advantage of
requiring minimal assumptions and being way faster than
Markov chain Monte Carlo. To the best of our knowledge,
this is the first time BTS is used in conjunction with EM. To
treat non-parametric delay distributions, the underlying EM
model is used with the Kaplan-Meier estimator (a standard
Maximum Likelihood non-parametric estimator for time
distributions) for the first time.

The proposed approach is benchmarked against the state
of the art [Vernade et al., 2020a] on a host of delay dis-
tributions and is found performing significantly better in
the vast majority of cases, behaving comparably in the re-
maining ones. As another advantage, the proposed approach
can be readily implemented with off-the-shelf libraries, as
shown below. Finally, the technique can be easily general-
ised to other bandit settings (e.g., non-contextual bandits or
action-dependent delay distributions).

1.2 RELATED WORK

There is a rich literature on stochastic MABs with delayed
feedback: after the foundational works [Chapelle and Li,
2011, Dudík et al., 2011, Joulani et al., 2013, Mandel et al.,

2015], effort has concentrated on specific streams such as
Gaussian Process bandits with batch updates, aggregated
anonymous feedback, generalised-linear bandits and deal-
ing with intermediate feedback: see respectively the works
by Verma et al. [2022], Wang et al. [2021], Howson et al.
[2023] and McDonald et al. [2023] for recent pointers to the
literature.

In this paper, we focus on linear contextual bandits with par-
tially observable, delayed feedback, i.e., the setting studied
by Vernade et al. [2020a]. Their approach presents room
for improvement, since it ignores data about the magnitude
of the delays: when available, this added information can
increase performance. Moreover, their proposed method in-
volves setting beforehand a number of rounds m beyond
which the reward is labelled as negative. While conceivably
such window parameter may be externally imposed, in all
other cases it is not clear how it could be tuned, without
knowledge of the distribution of delays. Additionally, be-
sides maximising the number of conversions, practitioners
are often interested in the estimate of the probability of
conversion itself [Wang et al., 2022], while in their work
this estimate is biased by design. Finally, their approach
requires carefully deriving Upper Confidence Bounds: it is
non-trivial to extend it to other bandit settings (e.g., non-
linear contextual). While they also present a sampling ap-
proach, it is an ansatz based on the same bounds.

The closest approach to the one here proposed is given by
Wang et al. [2022], which present a TS-like technique. Start-
ing from the EM model of Chapelle [2014], they re-weight
observations in view of the learned distribution of delays.
In this way, the problem is mapped to a standard Bernoulli
bandit, and TS is carried out through a Beta-Bernoulli con-
jugate pair. This means, however, that they only consider
(via a Beta posterior) uncertainty on the distribution of re-
wards, ignoring uncertainty on the learned distribution of
delays: this could lead to insufficient exploration. Moreover,
they consider finite-armed bandits, while we aim at contex-
tual bandits. Furthermore, while their model is derived for
a general delay distribution, they then use an exponential
distribution in experiments; we aim at handling a generic
distribution, since in some practical cases the distribution of
delays is far from exponential [Diemert et al., 2017].

The context of the work by Lancewicki et al. [2021] presents
some similarities with ours: they consider the case of reward-
dependent delays, in which realised delays may depend on
the stochastic rewards. Partially observable rewards can be
in fact alternatively formulated in terms of a non-factorised
probability distribution p(C,D) over conversions C and
delays D; with a slight abuse of notation, p(D|C = 0) =
δ(D −∞), the Dirac delta concentrated at positive infinity.
However, the authors assume full observability instead: if
one tries and apply their approach to this rather extreme case
of delay-reward dependence, one gets a degenerate model:
the empirical mean of observed rewards is identically equal



to one for all available actions.

Both Lancewicki et al. [2021] and Wu and Wager [2022b]
stress the importance of being able to handle heavy-tailed
distributions. On the other hand, also the work by Wu and
Wager [2022b] cannot be readily applied to our setting, as
the authors explicitly exclude reward-delay dependence, and
pure TS was empirically proven suboptimal in the partially
observable setting by Wang et al. [2022].

The feedback structure investigated by Wu and Wager
[2022a] in the context of vaccine trials is similar to
ours, since only negative feedback is observed (infections).
However, they concentrate on being able to handle time-
dependent risk: they do so at the expense of being able to
model the dependence of risk on the time since exposure
(to the vaccine in their case, to the advert in online market-
ing). In other words, they restrict the space of possible delay
distributions: if baseline risk were constant, this would cor-
respond to exponential distributions. Moreover they too, as
Lancewicki et al. [2021] and Wu and Wager [2022b], work
in the discrete case (bandits with a finite number of arms).

Han and Arndt [2021] deal with delayed conversions substi-
tuting missing rewards with surrogate rewards, generated as
follows. Several models are trained to predict the probability
of conversion before fixed time-horizons. A (properly re-
scaled) logistic regression is then trained on the predictions
of these models, to extrapolate to times other than the fixed
time-horizons: the predictions of this meta model are the
surrogate rewards fed to the agent of the bandit problem.
Although non-standard, this procedure effectively estimates
the dependence on time of the Cumulative Density Function
(CDF) of rewards. However, as was the case for the work
by Wang et al. [2022], the Bayesian uncertainty of this es-
timated CDF is not taken into account when applying TS
downstream. Moreover, the use of logistic regression places
a strong assumption on the distribution of delays (logistic
distribution). In what follows, we will properly treat the
estimation of the probability of conversion over time as a
Survival Analysis problem.

2 SEMI-PARAMETRIC MODEL FOR
DELAYED CONVERSIONS

2.1 PROBLEM SETUP

In this section we describe the data generation mechanism
for a contextual bandit with partially observable, delayed
feedback. We focus on the website optimisation setting for
concreteness, but the concepts hereby exposed can be easily
mapped to the other settings mentioned in section 1.

Whenever a new user comes to the website, a new round of
the optimisation begins: the agent must decide among K
page variants, which constitute the available set of actions

for that round. We assume the agent observes a context
xA ∈ Rd for every action A = 1, . . . ,K, prior to choosing
the action. These contexts describe the page variants and,
optionally, the user itself.

We assume that, right after the agent shows a page to the user,
two latent variables are generated: the reward, a Boolean
variable C, which indicates whether the user does convert
or not, irrespective of when (see section 1 for examples of
conversions); a latent time variable D, the delay between
being shown the page and the conversion (undefined or
infinite if C = 0). Under this setting the goal of the agent is
maximising the number of conversions.

After a time δ has passed since the agent-user interaction,
the conversion may or may not have happened already: we
thus introduce a Boolean variable Y , which indicates if a
conversion has been observed by the agent after the elapsed
time δ.

We also introduce a time variable T which aims at capturing
all the information available on the time between a past
decision (showing a web page) and user’s feedback, if any:

T =

{
δ if Y = 0

D if Y = 1

If feedback was received (the user has converted), the agent
records this time (T = D); if there is no feedback yet, the
agent records the tightest lower bound available (the time
between the action and the current round, T = δ).

To fix the notation, let us call ϑ the parameters that charac-
terise the probability of conversion p(C|x, ϑ) and η the ones
characterising the distribution of delays p(D|x, η). Our goal
is estimating η and especially ϑ given the available data.
We are not making here any assumption about the shape
of η: it could be anything from the rate parameter of an
exponential distribution to the list of discrete hazards of a
non-parametric Kaplan-Meier estimator; we leave it unspe-
cified, as this technique can be used “plug and play” with
the estimator of choice, depending on the experimenter’s
belief (or lack thereof) on the shape of the delay distribution.

2.2 EXPECTATION-MAXIMISATION TECHNIQUE

The EM technique [Dempster et al., 1977] is an iterative
procedure, which starts from rough estimates ϑ0, η0 of ϑ
and η and yields gradually refined estimates ϑk, ηk as the
iteration index k grows. We follow loosely the derivation
by Chapelle [2014], but maintain the treatment general with
respect to delay distributions and dependency on covariates,
so that we will be able to extend the technique to include the
non-parametric Kaplan-Meier estimator. In what follows,
the dependency on x, ϑ and η will be omitted for simplicity.

Iteration k is split between an expectation step and a max-
imisation step. In the expectation step, we calculate the



expected value of the log-likelihood l(Y, T, C):

Q(k) = l(Y, T,C = 1)p(k)(C = 1|Y, T )
+ l(Y, T, C = 0)p(k)(C = 0|Y, T ),

where p(k)(C|Y, T ) is calculated using the current estimates
(at step k) of the parameters ϑ and η, starting with a guess
at step k = 0. In the maximisation step, we maximise the
sum of Q(k) over all data points. In this section we focus
on the expectation step, while section 2.3 is devoted to the
maximisation step.

We start from the calculation of p(k)(C|Y, T ): we omit the
index k to avoid burdening the notation. If we calculate
w(Y, T ) = p(C = 1|Y, T ), then p(C = 0|Y, T ) can be
readily obtained, since they sum to one. We first note that
w(1, T ) is trivially equal to one. Applying Bayes’ theorem,
we then get:

w(0, T ) =
p(Y = 0|C = 1, T )p(C = 1)

p(Y = 0|T )
.

By the law of total probability, the denominator becomes

p(Y = 0|T ) = p(Y = 0|C = 1, T )p(C = 1)

+ p(Y = 0|C = 0, T )p(C = 0).

The probability p(Y = 0|C = 1, T ) is just the survival
function S(T ) of the distribution of delays (i.e., the comple-
ment to 1 of its CDF), while p(Y = 0|C = 0, T ) trivially
equals one. We finally call p1 = p(C = 1) and obtain:

w(Y, T ) = Y + (1− Y )
p1S(T )

1− p1 + p1S(T )
. (1)

We now turn to calculating the log-likelihood. The likeli-
hood of observations for which C = 0 is just 1 − p1, the
probability of not converting. When C = 1 instead, we get
the standard survival analysis likelihood [Harrell, 2015],
weighted by p1. If we denote by f(t) the probability density
of delays at time t, taking the logarithm and re-arranging
terms we finally get:

Q = w(Y, T ) [(1− Y ) logS(T ) + Y log f(T )]︸ ︷︷ ︸
weighted survival log-likelihood

+ w(Y, T ) log p1 + (1− w(Y, T )) log(1− p1)︸ ︷︷ ︸
weighted classifier log-likelihood

. (2)

We have thus proven that the quantity we want to maximise
at step k is composed of two terms: one has the shape of
a weighted classifier log-likelihood, while the other is the
weighted log-likelihood of a Survival Analysis problem.
Note that the two log-likelihoods are decoupled: we can
maximise the former with respect to p1 (our next estimate
of the probability of conversion), and the latter with respect
to S(t) (our next estimate of the survival function of delays).

We also note that the two weighted log-likelihoods have a
transparent interpretation. In the survival one, users which
did not convert are weighted by our current belief that they
will convert in the future, while users that did convert enter
fully in the estimation of the distribution of delays. Simil-
arly, in the binary cross-entropy, users that did not convert
contribute partially to the component with positive label,
and partially to the component with zero label.

Finally, we again remark that we made no assumptions re-
garding the dependency of p1 and S(t) on covariates x.
As such, depending on the problem at hand, this formula-
tion can handle univariate models (i.e., no covariates are
included), the division of the population into groups (with
multiple univariate models, one for each group), and regres-
sion models, both linear and non-linear.

2.3 FITTING THE MODEL

In this subsection we describe in detail how the two log-
likelihoods on the right hand side of (2) can be maximised
given a dataset. We remark that, while we did not indicate
this explicitly to avoid burdening the notation, at step k + 1
the weights w(Y, T ) in formula (2) are calculated with the
previous estimates ϑk and ηk, and are thus known. The sum
of Q over all data points is then maximised to obtain the
next estimates ϑk+1 and ηk+1.

We start from the classifier log-likelihood. From equation (2)
we see that we recover a standard classification problem
if we treat each observation in the dataset as if it were
represented by two observations, one with label y1 = 1 and
weight w1 = w(Y, T ), and another with label y0 = 0 and
weight w0 = 1− w(Y, T ):

w(Y, T ) log p1 + (1− w(Y, T )) log(1− p1)

= w1 [y1 log p1 + (1− y1) log(1− p1)]

+ w0 [y0 log p1 + (1− y0) log(1− p1)] .

Therefore, by duplicating the observations and assigning
them the appropriate weights and labels, we can utilize the
supervised learning algorithm of our choice on this equi-
valent dataset. In fact, we remark that only the unobserved
observations (i.e., those with Y = 0) need to be duplicated,
since when Y = 1 the weight (1− w(Y, T )) vanishes. We
also remark that, if p1 does not depend on a context x (e.g.,
because we are calculating the probability associated with a
given arm in a vanilla MAB, as in the work by Wang et al.
[2022]), the classifier log-likelihood is simply maximised
by the average of weights w(Y, T ).

We now turn to the weighted survival log-likelihood of (2).
Here we do not need to transform the dataset in any way:
once we choose a Survival Analysis model for S(T ) we just
need to feed it with the dataset as-is, with weights w(Y, T )
defined in (1). In simulations (see section 4) we adopted
the Kaplan-Meier estimator which, being non-parametric, is



agnostic with respect to the shape of the delay distribution:
although being a classic technique, it is still the de-facto
workhorse for non-parametric Maximum Likelihood estim-
ation of censored time data, when dealing with univariate
models (i.e., no dependency of the distribution of delays
on context). The choice fell on a non-parametric estimator
since a strength of the proposed method is being distribution-
agnostic: as we will see it works well on a wide range of
distributions, without the need to know them beforehand.
Finally, besides its theoretical underpinnings, the Kaplan-
Meier estimator has the non-negligible advantage of being
implemented in off-the-shelf Machine Learning libraries,
favouring reproducibility and adoption by practitioners.

On the other hand, the model is able to accommodate also
context-dependent delay distributions, S(T ) = S(T |x), as
in the works by Gael Manegueu et al. [2020], Lancewicki
et al. [2021], Wu and Wager [2022b], Wang et al. [2022]. To
take into account linear dependence of hazard on context,
it would suffice to substitute the Kaplan-Meier estimator
with the Cox proportional hazards model [Cox, 1972, Har-
rell, 2015], which is a semi-parametric model: it makes a
linear assumption on the effect of the features on the hazard
function, but makes no assumption regarding the nature of
the baseline hazard function itself, like the Kaplan-Meier
estimator.

As a final remark, note that the termination condition of
the EM loop is not specified on purpose: it can be set as
reaching a pre-determined number of iterations, or it can
entail checking whether the change from ϑk to ϑk+1 is
below some threshold.

3 BOOTSTRAPPED THOMPSON
SAMPLING FOR DELAYED
CONVERSIONS

After having outlined, in the previous section, the data gen-
erating process and an appropriate Maximum Likelihood
Estimator (MLE) for handling partially observable delayed
rewards, we will now cover the major contribution of this
work, a novel extension to the bandit setting.

3.1 BTS REFRESHER

For a self-contained exposition, we report here the main
ideas that power BTS in a general setting. BTS [Eckles and
Kaptein, 2014] is an effective technique for approximate
sampling from the posterior distribution, as required by
Thompson sampling. A number of approaches to BTS exist
(see for instance the introduction by Russo et al. [2017]
and the references therein). With an eye to practitioners, a
version was chosen for the present work, which does not
require further calculations besides the MLE, and is closest
in spirit to the well known Statistical Bootstrap method

[Efron, 1979, Rubin, 1981]: the approach we will follow is
an extension to our setting of the one presented by Osband
and Van Roy [2015] for the Bernoulli bandit.

Given an estimator and a dataset, the Statistical Bootstrap
yields an estimate of the uncertainty on the estimated quant-
ities (in our case, the probability function p1(x) and the
survival function S(t)) by resampling the dataset with re-
placement many times, and applying the estimator on the
resampled data. The main idea behind BTS is sampling from
the outcoming distribution of estimates, as if they represen-
ted the posterior distribution. Indeed, one can show [Rubin,
1981] that the bootstrapped distribution approximates the
posterior given a non-informative prior.

However, for this to work, the empirical distribution func-
tion of the observed data should approximate reasonably
well the population distribution: this assumption breaks
down when the size of the dataset is very small. In a bandit
problem, this is precisely what happens in the first rounds:
underestimating the uncertainty in the first few rounds leads
to exploring insufficiently, and exploiting sub-optimal ac-
tions. This was proven by Osband and Van Roy [2015] for
the Bernoulli bandit: blindly applying the Statistical Boot-
strap leads to a regret which, on average, grows linearly with
the horizon T . That work contains, however, also a simple
heuristic solution: enrich the history of played arms and
rewards with an artificial history, generated from a distribu-
tion which can be thought of as a “prior” of sorts. The way
these artificial data points are generated is problem specific,
so we will now go through the experimental setting.

3.2 ENVIRONMENT SETUP

Since, as seen in section 1.2, the state-of-the-art competitors
in the considered setting are the algorithms OTFLinUCB
and OTFLinTS of Vernade et al. [2020a], for a fair compar-
ison we adopted the same data generation mechanism. We
describe it here as, in section 3.3, we will specialise BTS to
this setting.

The environment is described by a vector ϑ ∈ Rd, with
∥ϑ∥2 ≤ 1. At every round, the agent receives from the
environment a context xA ∈ Rd with ∥xA∥2 ≤ 1 for each
action A = 1, . . . ,K. The scalar product with ϑ belongs to
the unit interval: xA ·ϑ ∈ [0, 1]. The reward is then sampled
from a Bernoulli distribution with mean xA · ϑ.

In their experiments, Vernade et al. [2020a] choose d =
5 and K = 10. Moreover, the environment vector ϑ is
fixed at ϑ = (1/

√
d, . . . , 1/

√
d). Finally, the contexts are

sampled independently at each round from [0, 1]d and then
normalised.

As for the delays, Vernade et al. [2020a] tested two distribu-
tions: a geometric distribution with varying mean, and an
empirical distribution fitted with a Gaussian kernel on the



dataset released by Diemert et al. [2017]. Regarding these
real data, in the code accompanying their work, Vernade
et al. [2020a] conclude that the delay distribution does not
significantly depend on the context, and we will make the
same assumption here too. We extended this set of distri-
butions to include all the IID distributions considered by
Wu and Wager [2022b] to test pure Thompson sampling
in the presence of (fully observable) delays (constant, de-
terministic delays, uniformly distributed delays over some
interval, α-Pareto distribution and packet-loss distribution)
and Student’s t distribution.

3.3 ALGORITHM DESCRIPTION

In the setting described in section 3.2, the following mech-
anism for generating the artificial history was used across
all experiments. For every round, nprior data points were
generated. Since these prior-like points have the only goal
of making the learner aware that the observed data may not
represent the whole population, nprior was kept way smaller
than the horizon T , which is greater than 1000 rounds in all
experiments: we chose nprior = 10 across all experiments.

Given the assumptions on the environment ϑ and the con-
texts xA above, the following artificial history generation
process was deemed natural: for each round, and for each
j = 1, . . . , nprior, both a ϑj and a xj were generated uni-
formly over [0, 1]d and then normalised. The reward was
then drawn from a Bernoulli distribution with mean ϑj · xj .
Finally, delays were sampled uniformly over [0, Dmax], for
a Dmax lower than the horizon. Since in all experiments
the BTS algorithm was compared with OTFLinUCB and
OTFLinTS, both of which require a time parameter m (see
section 1.2), it seemed natural to fix Dmax = m. It must
be stressed, however, that the parameter m for the OTFLi-
nUCB and OTFLinTS is an integral part of the algorithm
and, if it is not externally imposed on the algorithm for
memory reasons, it should be tuned accurately depending
on the expected delay distribution: we will see below that
the performance of these two algorithms is heavily depend-
ent on its value. On the other hand, BTS was found to be
roughly independent from the value of Dmax.

We can thus recap the BTS algorithm at round n (the pro-
posed algorithm is described in detail in Algorithm 1):

• The agent receives a dataset of n observations, each of
which contains the observable information explained
in subsection 2.1;

• The agent draws nprior artificial data points, according
to the procedure just described;

• The artificial and real data points are merged to form a
single dataset of size (n+ nprior);

• The agent samples the entire dataset once with replace-
ment;

• The model described in section 2 is fit on this sampled
dataset, yielding an estimate Ŝ(t) and p̂1(x);

• The agent plays the action A such that, among
x1, . . . , xK , the context xA maximises the estimated
reward probability (1− Ŝ(T, x))p̂1(x).

Algorithm 1 BootstrapLinTS for partially observable
delayed feedback
Input: nprior, Dmax, T , d, K.

1: Data D0 = ()
2: for n = 1, . . . , T do
3: Update data Dn with observed conversions
4: for j = 1, . . . , nprior do
5: Sample prior ϑj and xj uniformly over [0, 1]d

6: Normalise sampled ϑj and xj

7: Sample prior reward from Bernoulli(ϑj · xj)
8: Sample delays uniformly over [0, Dmax]
9: end for

10: Concatenate nprior times and rewards with Dn

11: Sample with replacement n+ nprior data points
12: Estimate Ŝ(t, x) and p̂1(x) via EM
13: Observe current contexts xA, A = 1, . . . ,K
14: for A = 1, . . . ,K do
15: Calculate probability (1− Ŝ(T, xA))p̂1(xA)
16: end for
17: Select arm argmaxi(1− Ŝ(T, xA))p̂1(xA)
18: end for

We must remark that the model described in section 2 suffers
from the identifiability issue explained by Gael Manegueu
et al. [2020]. Namely, two problem instances can produce
the same data but have strictly different parameters. As an
example, consider problem instance I1 with, at round t1,
S(t1) = 80% (i.e., 80% of conversions happen after t1)
and p1 = 90%. Consider then problem instance I2 with
S(t1) = 10% and p1 = 20%. At t1, despite having very
different parameters, these two instances produce exactly
the same data, as the probability of observing a reward
before t1 is given by the product between p1 and the CDF
of delays (1− S(t1)).

Hence, the MLE described above could either output I1, I2
or any other instance which is compatible with the observed
data. Nevertheless, the product of the predicted conversion
probability p̂1(x) and the predicted CDF (1− Ŝ(t)) is the
same for all these instances: the estimated probability of con-
verting before a certain time is well-identified. This means
that the next action should be selected on the basis of this
product of probabilities. However, since we are dealing with
distributions of delays which do not depend on context,
maximising the product or just p1(x) yields the same result.
Extra care should be taken if delays depend on the context.
If one (as Wang et al. [2022]) is interested in the actual value
of the conversion rate (besides its use for the optimisation al-
gorithm), this should be intended as conversion probability



before a given time.

4 SIMULATION RESULTS

In what follows we will go through the results of the simula-
tions.1 Two settings have been treated separately. In one, the
window parameter m (see section 1.2) is externally imposed
on the algorithm: if delay exceeds m rounds, the agent never
receives feedback; we call this setting censored. In the other
setting, m is just a specific of the algorithm for OTFLinUCB
and OTFLinTS, and the proposed BTS is free to use all past
data: we call this setting uncensored. We will see that, as
expected, censoring damages the performance of BTS and,
among censored variants, the lower m is, the higher the re-
gret. On the other hand, the effect of m on the algorithms of
Vernade et al. [2020a] is harder to predict. For every setting
we will cover, BTS is among the best performing algorithms,
while OTFLinTS is among the worst. This is a reminder that
it is not just the act of sampling from a distribution, but
also the details of how the distribution is built, that make
Thompson sampling an effective technique. For this reason
and to avoid clutter, OTFLinTS will not be shown in the
following, and BTS will be compared to OTFLinUCB alone.
In the plots, we will show the average regret suffered by
each algorithm over the course of 20 simulations, together
with the standard deviation of the mean. We acknowledge
that, in some cases, the error bars overlap and this may
slightly diminish readability: due to the slow dependency
of standard deviation on the number of replications, signi-
ficantly reducing their size was incompatible with the time
constraints; nevertheless, we remain confident that the plots
effectively convey our main points.

Geometric distribution The first distribution we will con-
sider is the geometric distribution with varying average
delay. In all three cases, we see from figure 1 that BTS,
either uncensored or censored with m = 500, performs
best. On the other hand, due to the heavy censoring,
BTS with m = 100 incurs higher regret. Nevertheless,
when the average delay equals 100 rounds, its regret is
lower with respect to both instances of OTFLinUCB
for half of the rounds, and is comparable at the horizon
T = 3000. In the other two cases, it behaves signi-
ficantly better than the instance of OTFLinUCB that
has access to the same amount of information. Oddly
enough, OTFLinUCB with m = 100 behaves better,
when the average delay equals 100 rounds, with re-
spect to OTFLinUCB with m = 500, despite having
access to less information: this is due to the way m
enters the algorithm. We can thus conclude that, if m
is not externally imposed, its choice is non trivial for
OTFLinUCB. On the other hand, it is straightforward

1The code is available at https://github.com/
MarcoGigli/bootstrap-conversions.

for BTS: the higher, the better; if at all possible, it is
even better not to censor the feedback.

Fixed delays With fixed, deterministic delays, simulations
show that, whenever the censoring time is lower than
the delay, the regret grows linearly: this is of course
expected, as the agent is completely blind to feedback.
Among the other algorithm instances, BTS reaches
significantly lower regret. The regret plot is included
in the Supplementary Material.

α-Pareto distribution The α-Pareto distribution presents
polynomial tails: the smaller the parameter α is, the
heavier is the tail. This is reflected in figure 2, where
regret is generally higher for α = 0.2: learning takes
longer. Besides this, again we see that BTS performs
best for all the examined values of α. For α = 0.2
and α = 0.5, the heavily censored instance of BTS
is slightly worse than the others, as expected. On the
other hand, OTFLinUCB with m = 500 incurs much
higher regret with respect to the other algorithms (even
if it suffers a lower degree of censorship with respect
to m = 100).

Packet loss By “packet loss”, we refer to a scenario in
which feedback can be either delivered immediately
(i.e., with zero delay) or “lost” (i.e., it has infinite
delay). In particular, it is lost with probability p (we
employ a definition which is opposite to that used by
Lancewicki et al. [2021] and Wu and Wager [2022b],
as our p is their 1 − p). Also in this setting, the in-
stances of BTS behave generally better than OTFLi-
nUCB, and in particular the instance of OTFLinUCB
with m = 500 performs significantly worse. The re-
gret plot is included in the Supplementary Material.
We also note that, for high probability p of lost packet,
all algorithms are still learning upon reaching the ho-
rizon T = 3000: at p = 0.75 only one in four events
produces observable feedback. Likely, in this setting
a different data generating mechanism with respect
to that of section 2, that better captures this scenario,
could be employed with better results.

Uniform distribution The result is very similar to that of
deterministic delays. The regret plot is included in the
Supplementary Material.

Student’s t distribution To test the proposed algorithm in
another heavy-tail environment besides the α-Pareto
distribution we considered Student’s t distribution,
varying both the number of degrees of freedom and the
scale: since we are dealing with positive delays, we
take the absolute value after sampling. For a fixed scale,
changing the number of degrees of freedom does not
change the results significantly, so we fixed the number
of degrees of freedom to 1 (thus reducing to the Cauchy
distribution). With a scale parameter equal to 1, OT-
FLinUCB with m = 500 performs significantly worse
than the other considered algorithmic variants, which

https://github.com/MarcoGigli/bootstrap-conversions
https://github.com/MarcoGigli/bootstrap-conversions
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Figure 1: Average cumulative regret suffered by the examined algorithms when delays distribute according to a geometric distribution.
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Figure 2: Average cumulative regret for delays distributed according to an α-Pareto distribution, with varying α.

have a comparable performance. Setting the scale to
100, censored BootstrapLinTS with m = 100 suffers
from the high degree of censorship: it is enough to
raise m to 500 to have a performance comparable to
the uncensored variant. Setting the scale to 500 yields
a similar outcome, but in this case OTFLinUCB with
m = 100 performs significantly worse than all the
other variants. The regret plot is included in the supple-
mentary material.

Criteo data As a final setting, we have tested the al-
gorithms on delays distributed according to the Criteo
dataset [Diemert et al., 2017]. This dataset contains
the recorded delays between click and conversion of
digital marketing campaigns. To provide a fair com-
parison, we used the same model for sampling these
delays used by Vernade et al. [2020a], and also the
same value of m and of the horizon T = 10000. Also
in this real-world setting, the results are strikingly in
favour of the proposed BTS (figure 3).

Sensitivity test In all the experiments described so far, we
kept the artificial dataset size nprior fixed: as explained

in section 3.3, it was chosen to be way smaller (two
orders of magnitude) than the horizon T . The logic
is that, if one and the same parameter choice yields
good performance across many environments, one can
safely take the chosen configuration as part of the al-
gorithm. On the other hand, it is interesting to see how
performance changes varying nprior: for this reason we
performed a sensitivity test in one setting (geometric
distribution of delays with average 100). At odds with
the rest of the experiments, we let ϑ vary uniformly
across experiments: one can verify that with the fixed
ϑ described in section 3.2, BootstrapLinTS is unfairly
favoured by a growing nprior. In this setup, the perform-
ance for nprior = 10 is very similar to that with a fixed
ϑ. Interestingly, performances with nprior = 1 and
nprior = 10 are very similar (we show only the former
in plots). The performance degrades for nprior = 100:
the proposed algorithm incurs lower regret with respect
to OTFLinUCB for the whole duration of the experi-
ments, but attests at comparable regret at the horizon T .
Finally, for nprior = 1000, the proposed algorithm per-



forms worse than OTFLinUCB: this is to be expected,
as the size of the artificial random dataset is compar-
able to that of the real dataset. The plots are included
in the supplementary material.
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Figure 3: Average cumulative regret for delays distributed accord-
ing to the Criteo dataset [Diemert et al., 2017].

5 CONCLUSION

5.1 SUMMARY OF THE CONTRIBUTIONS

In the present paper, we have concentrated on sequential op-
timisation for linear contextual bandits with partially observ-
able delayed rewards. This setting is particularly relevant
from an industrial and a clinical standpoint.

A technique with overall good practical performance,
Thompson sampling, has been extended to effectively tackle
this setting. This contribution is novel for several reasons:

• A proper Bayesian (albeit approximated) treatment of
the present data generation process was lacking in the
literature, meaning one had to resort to ad hoc sampling
methods, like OTFLinTS by Vernade et al. [2020a]
which, as mentioned in section 4, performed worse in
all the experiments, or to sacrifice having a posterior
on delays in order to have a closed form posterior on
conversion probabilities, as Wang et al. [2022].

• The present setting is significantly different from the
simpler ones in which BTS is commonly applied (in
particular, Bernoulli bandits): this has required combin-
ing BTS with an EM model, something which, to the
best of our knowledge, is novel. In fact, EM effectively
performs MLE without the need for a closed form for
the likelihood.

• Although the algorithm admits both parametric and
non-parametric estimators, we chose to use the latter,

in order to have a model of delays flexible enough to
accommodate heavy-tailed distributions. Even if it is
a classic technique, the Kaplan-Meier estimator was
never applied in the present setting, presumably due
to the difficulty of using it in the Bayesian domain.
This model can be used in conjunction with commonly
available Machine Learning libraries.

• The resulting algorithm was applied to linear contex-
tual bandits with partially observable rewards for the
first time.

The proposed approach was compared to a state-of-the-art
algorithm on a manifold of families of delay distributions,
letting the parameters that characterise these distributions
vary. These distributions cover a wide range of scenarios:
some are bounded (even deterministic), while others have
infinite expectation and even include +∞ among possible
realised values. The proposed approach performs signific-
antly better than the competitor in the vast majority of tested
environments, and comparably in the remaining minority.
Moreover, the competing algorithm requires some tuning
of an hyperparameter, whose best value is affected by the
distribution of delays (which is, however, unknown to the
agent): on the other hand, the proposed approach was tested
with the same configuration on all distributions, without
any tuning. Ultimately, even if the building blocks of the
present algorithm are well known, the proposed method
demonstrated superior performance with respect to previ-
ous, more “exotic” methods. In this regard, we are close in
spirit to the work by Wu and Wager [2022b], which shows
that vanilla Thompson sampling shows better performance
in dealing with delayed feedback than many techniques that
were explicitly developed for that setting.

5.2 LIMITATIONS

While reaching significantly lower regret than the state of
the art in most studied settings, its execution is admittedly
slower, as the EM algorithm requires fitting two MLEs for
several iterations before reaching convergence. Depending
on the application, this may or may not constitute a problem.
Nevertheless, it would be interesting to study an incremental
variant of the proposed algorithm, adapting the Ensemble
sampling technique of Lu and Van Roy [2017].

Moreover, the model was tested assuming that delays are
independent of the context/arm. Note, however, that the de-
rivation of the model itself makes no restricting assumption
on the dependence of delays on context: it is only when
specialising it to the Kaplan-Meier estimator that this choice
is made. As seen above, besides delay-context dependence,
the model can be easily generalised to tackle non-contextual
bandits and contextual non-linear bandits.

The agnostic aspect of the Kaplan-Meier estimator was
leveraged to accommodate delay distributions that are very



different among each other. However, this expressiveness
could prove detrimental for performance if the experimenter
can place strong assumptions on the delay distribution. In
these cases, using the given model with a parametric family
of distributions could prove more rewarding. Again, due to
the general nature of the EM model, this should entail no
additional effort.

Finally, this approach makes heavy use of the times between
action and observed reward. If these times are not available,
this approach would require significant modifications.

5.3 FUTURE DIRECTIONS

Besides the extensions mentioned in the previous section,
some promising avenues of research emerged, which will
be addressed in future work. The first stream regards non-
stationarity of the distribution of rewards. Non-stationarity
can be retroactively taken into account using a sliding win-
dow, beyond which old data points are discarded. However,
in the presence of delays, this would effectively induce cen-
soring on delays that exceed the window size, and as seen in
simulations censoring can be detrimental for performances,
if the window size is too small. This suggests several com-
pelling streams of research. One is adapting, to this partially
observable setting, the techniques introduced by Vernade
et al. [2020b] and McDonald et al. [2023], that account for
the multiple touch points in the marketing funnel. Another
is studying whether the approach of Wu and Wager [2022a],
which takes into account a non-stationary baseline hazard,
can be extended to the present setting. Moreover, as noted
also by Vernade et al. [2020b], it would be worth exploring
non-stationary bandit techniques besides the sliding window,
like an adaptive window size that takes into account how
fast the environment changes.

As seen in section 1.2, a number of different approaches
exists [Gael Manegueu et al., 2020, Wu and Wager, 2022a,
Wang et al., 2022] to treat finite-armed bandits with partially
observable delayed rewards. It would thus be of interest to
test the approach hereby proposed also in the finite-armed
setting comparing it to the other available methods.

Finally, an intriguing setting is that of aggregated, anonym-
ous feedback of Wang et al. [2021]. In a sense, this setting
brings the partial observability of conversions to the extreme:
an EM approach, using and then eliminating unobserved
variables, could prove beneficial also in this harder setting.
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A ADDITIONAL SIMULATION RESULTS

Here we report additional plots depicting the results, in terms of regret, of the simulations that compare our proposed
algorithm with the state of the art. In particular, figure 4 refers to simulations in the presence of fixed, deterministic delays;
figure 5 refers to the possibility of never being able to observing the feedback, for varying probability p; figure 6 refers
to delays distributed uniformly on a bounded interval; figure 7 refers to delays distributed according to the Student’s t
distribution; figure 8 represents a sensitivity test varying the size nprior of the artificial dataset. Each setting is commented
upon in section 4.
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(a) Fixed delay = 100 rounds
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(b) Fixed delay = 500 rounds
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(c) Fixed delay = 1000 rounds

Figure 4: Average cumulative regret suffered by the examined algorithms when delays are fixed.
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(a) plost = 0.25
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(b) plost = 0.50
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(c) plost = 0.75

Figure 5: Average cumulative regret suffered by the examined algorithms when delays are distributed according to a packet loss
distribution, with varying probability p of losing the packet (i.e. of having infinite delay).
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Figure 6: Average cumulative regret suffered by the examined algorithms when delays are uniformly distributed.
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(a) Scale = 1 rounds
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(b) Scale = 100 rounds

0 500 1000 1500 2000 2500
Round

0

50

100

150

200

250

300

350

Cu
m

ul
at

iv
e 

re
gr

et

Student's t, dof=1, scale=500
BootstrapLinTS cens. m=100
OTFLinUCB m=100
BootstrapLinTS cens. m=500
OTFLinUCB m=500
BootstrapLinTS uncens.

(c) Scale = 1000 rounds

Figure 7: Average cumulative regret suffered by the examined algorithms when delays are distributed according to a Student’s t
distribution, with varying scale and fixed number of degrees of freedom.
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(a) nprior = 1
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(b) nprior = 100

0 500 1000 1500 2000 2500
Round

0

50

100

150

200

Cu
m

ul
at

iv
e 

re
gr

et

Geom. avg.=100, n_prior=1000

BootstrapLinTS cens. m=500
OTFLinUCB m=500
BootstrapLinTS uncens.

(c) nprior = 1000

Figure 8: Average cumulative regret suffered by the examined algorithms for geometrically distributed delays with average 100, letting
nprior vary.
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