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Abstract

Designing NLP models that produce predic-
tions by first extracting a set of relevant in-
put sentences (i.e., rationales), is gaining im-
portance as a means to improving model in-
terpretability and to producing supporting ev-
idence for users. Current unsupervised ap-
proaches are trained to extract rationales that
maximize prediction accuracy, which is invari-
ably obtained by exploiting spurious correla-
tions in datasets, and leads to unconvincing
rationales. In this paper, we introduce un-
supervised generative models to extract dual-
purpose rationales, which must not only be
able to support a subsequent answer predic-
tion, but also support a reproduction of the in-
put query. We show that such models can pro-
duce more meaningful rationales, that are less
influenced by dataset artifacts, and as a result,
also achieve the state-of-the-art on rationale
extraction metrics on four datasets from the
ERASER benchmark, significantly improving
upon previous unsupervised methods.

1 Introduction

While large pre-trained transformer models (De-
vlin et al., 2019; Raffel et al., 2019) have achieved
state-of-the-art results on many question answer-
ing (QA) tasks, the process by which they generate
their predictions is opaque. Therefore, to shed light
on the prediction process and to increase user trust,
training models to additionally present portions of
the input i.e. rationales, as supporting evidence,
has emerged as an effective solution (Lei et al.,
2016; Yang et al., 2018). However, current ap-
proaches (Paranjape et al., 2020a) are trained to
select rationales that optimize prediction accuracy,
which is invariably achieved by exploiting dataset
artifacts, and consequentially, results in unconvinc-
ing rationales. To alleviate these shortcomings, we
introduce a generative approach to produce dual-
purpose rationales, that are required to indepen-
dently support a reproduction of the input query

Q: Is there a congestion charge in London on Sunday ?
Ans: False.
LONDON CONGESTION CHARGE The London con-

gestion charge is a fee charged on most motor vehicles

operating within the Congestion Charge Zone ( CCZ ) in
Central London between 07:00 and 18:00 Mondays to Fri-
days . It is not charged on weekends , public holidays or
between Christmas Day and New Year ’s Day ( inclusive )
... The charge aims to reduce high traffic flow and pollution
in the central area and raise investment funds for Lon-
don ’s transport system . ... REFERENCES FURTHER
READING EXTERNAL LINKS * Transport for London ’s
congestion charge homepage * Pay the congestion charge
online .

Figure 1: An example from the BoolQ data set in the
ERASER benchmark (DeYoung et al., 2020), with hu-
man annotated rationales highlighted in yellow. Ratio-
nales predicted by a supervised BERT-based pipeline
method (DeYoung et al., 2020) is shown underlined.

in addition to improving model prediction, thereby
necessitating more meaningful rationales.

We focus on developing QA models that gener-
ate an answer based on a question and a (poten-
tially long) passage, together with NL rationales.
In this case, a rationale (or explanation) is defined
as a minimal subset of passage sentences that is
sufficient to answer the question. We present exam-
ple questions, passages, answers from the BoolQ
dataset (Clark et al., 2019) with human annotated
rationales from the ERASER benchmark (DeYoung
et al., 2020) in Figure 1. Supervised rationalization
models for this task typically require large amount
of expensive annotations, making unsupervised
methods attractive. State-of-the-art unsupervised
methods take a pipelined approach (Lehman et al.,
2019; Paranjape et al., 2020a) where an extractor
model classifies each sentence in the passage to
be relevant or irrelevant to answering the question,
while a separate model predicts the answer from



the chosen relevant sentences. No parameters are
shared between the two models to ensure faithful-
ness, i.e., the predicted answer relies only on the
selected rationale sentences. Unsupervised meth-
ods also incorporate additional sparsity constraints
(for example, adding sparsity inducing norms), to
encourage the selection of a small number of sen-
tences as rationales.

However, unsupervised pipelined approaches
suffer from two main shortcomings. The first is
that, their memory-intensive use of two separate
models restrict them to making use of only base
pre-trained models, making it difficult to scale to
larger versions of pre-trained transformer models
that significantly improve QA answer generation
performance. Furthermore, they only use half the
total capacity of the full (pipelined) neural network
for answer prediction. Secondly, the sole objective
for extracting rationales is answer prediction accu-
racy, which is invariably optimized by exploiting
spurious correlations and dataset artifacts. As a
result, the extracted rationales may explain dataset
biases rather than present evidence for answering
the question, resulting in unconvincing explana-
tions.

Our contributions We propose a method for
generating faithful explanations for query based
tasks using a single model by adding a rationale
selection module between the encoder and decoder
of a Transformer model. We identify two key
conceptual problems with existing rationalization
schemes: reliance on spurious correlations, and
lack of comprehensiveness constraints — a key
metric for ensuring faithfulness of rationales. To
address these, we propose a multi-task learning
objective where we train our model jointly on a for-
ward objective that predicts the answer given the
question and passages, and a backward objective
that predicts the question from the passage. We
call our model trained using this forward-backward
objective: QUASER-FB. We show that such joint
training improves both answer accuracy and ratio-
nale selection performance while also improving
faithfulness.

* Specifically, on four QA data sets in the
ERASER (DeYoung et al.,, 2020) explain-
ability benchmark, QUASER-FB, when ini-
tialized with T5-base (Raffel et al., 2019),
achieves on an average 10.4% absolute im-
provement for answer generation and 7.8%
absolute improvement for rationale selection

over the previous unsupervised state of the
art (Paranjape et al., 2020b). Lastly, our
method achieves an average absolute improve-
ment of 8.9% for answer generation over the
supervised BERT-based pipeline model of
DeYoung et al. (2020) on three out of four
ERASER datasets.

* We show that augmenting our model with the
question generation objective produces ratio-
nales that are 11.4% more comprehensive on
two datasets in which comprehensiveness can
be measured.

* Our method is scalable to large pre-trained
transformer models (Vaswani et al., 2017) and
achieves state-of-the-art performance while
having roughly the same number of parame-
ters as existing BERT-based supervised and
unsupervised pipeline methods.

Finally, we show that the quality of rationales gen-
erated by our method are more correlated with an-
swer accuracy than baselines, thereby making them
more suitable to verify answer correctness (Lipton,
2018).

2 Preliminaries

Answer EM Rationale IOU F1

Dataset | Qs. + Psg. ‘ Psg. only | Qs. + Psg. ‘ Psg. only
BoolQ 63 61 30 29
MultiRC 60 57 45 16

Table 1: Performance of BERT-based pipeline model of
DeYoung et al. (2020) on two QA datasets under two
settings: (a) Qs. + Psg.: where the model is trained
to produce the answer given the question and passage,
and (b) Psg. only: where the model has to generate the
answer from the passage only.

In this section, we formally define the problem
of faithful selective rationalization in question an-
swering and describe some of the ways in which
existing approaches can rely on spurious correla-
tions to select rationales.

Question Answering tasks involve generating an
answer Y given a question ) and a passage X =
(X1,...,X5). Each sentence X, and the question
@, in-turn contain multiple tokens belonging to a
vocabulary V/, of size k. In this paper, we consider
the setting where the answer belongs to a small
finite set ) of size c. In the datasets that we evaluate
our method on the answers are all binary (¢ =



Figure 2: A generative
model for QA where X»
denotes the true rationales
while X; and X3 denote
sentences that are corre-
lated with the question and
answer respectively.

rationale

2). A faithful extractive rationale is a subset S C
{1,...,n} of sentences in the passage that is used

by the model to generate the answer!.

2.1 Faithful rationale selection

Yu et al. (2019) define three main desiderata for
selecting faithful rationales: (a) sufficiency: the ra-
tionales should be sufficient to generate the answer
Y, (b) comprehensiveness: all sentences which
are useful for predicting the answer should be in-
cluded in the rationales, and (c) compactness: the
rationales should contain a small number of sen-
tences. More formally, sufficiency entails selecting
rationales S that maximize (Y, Xg | @), where
I(-,-) denotes mutual information and Xg de-
notes the rationale. However, a model can trivially
achieve sufficiency by choosing S = {1,...,n}.
Therefore, compactness ensures that rationales are
succinct and interpretable. Lastly, Yu et al. (2019)
define comprehensiveness as selecting rationales
Ssuchthat H(Y | Xge,Q) — H(Y | Xs5,Q) > h
for some constant h, where H (-) denotes Shannon
entropy and S¢ denotes the complement of .S. The
constant h can be interpreted as a margin constraint
with a large margin implying more comprehensive
rationale selection with X ge containing very little
information about Y. This in turn encourages the
model to select rationales based on robust features
as opposed to relying on spurious correlations.

3 Motivation

We motivate the problems with current extractive
rationalization schemes through a simplified proba-
bilistic model. Fig. 2 shows a potential generative
model for question answering, which is a causal
partially directed acyclic graph (Pearl, 2009), with
directed edges showing causal relationships. Given
a question () a function selects the relevant sen-
tences from the passages which in this case is de-
noted by X5,. Then given the relevant sentences

"'We consider the setting where rationales are selected at
the sentence level, although our method can also generate
token level rationales.

and the question another function produces the an-
swer. There are additionally sentences that are only
spuriously corrleated with the answer (X3) and the
question (X) — for instance, an overwhelming
majority of the annotated rationales, and subse-
quently the correct answer, in BoolQ are at the
very beginning of the passages. To verify the exis-
tence of sentences or tokens that are only correlated
with the answer, we performed a quick experiment
where we train the BERT-based pipeline model of
DeYoung et al. (2020) to predict the answer from
the passage only. Results of the experiments are
shown in Table 1. Given access to the passage only,
the model suffers a minimal (~ 2-3%) drop in an-
swer generation performance while still achieving
significant rationale selection performance 2. Simi-
lar results have also been reported by Kaushik and
Lipton (2018) on other benchmarks.

Spurious correlations The first problem with
current approaches is that they do not preclude se-
lection of sentences that are spuriously correlated
with the answer. For instance, in Figure 2 given
the question ), X3 is not independent of A, i.e.
X3 L A | Q. Therefore, there is nothing prevent-
ing the model from selecting X3 as a rationale for
predicting A. Furthermore, stringent compactness
constraints can result in the true rationale X being
excluded if the causal strength between the ratio-
nale and the answer is weak (figuratively denoted
by a lighter colored edge). Since large pre-trained
language models are known to store knowledge
within their parameters (Roberts et al., 2020), they
can predict the answer correctly just from the ques-
tion. In the unsupervised setting where even the
average size of rationales for a dataset is unknown,
how to set the right compactness constraints is a
challenging problem.

Lack of comprehensiveness constraints Sec-
ond, existing approaches do not optimize for com-
prehensiveness. Selecting rationales that max-
imize answer accuracy (equivalently minimize
H(Y | Xg,Q)) can result in reduced compre-
hensiveness of rationales. To see this observe
that H(Y | Xs,Q) < H(Y) = logc which is
fairly small to begin with and large neural networks

Note that MultiRC is a multiple choice QA task which has
been converted to a binary QA task by appending the choice
to the question and asking the model to predict if the choice is
correct or wrong. Therefore, in the passage only experiments
the model does not have access to the choice and only predicts
True or False from the passage.
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Figure 3: Model architecture. The two encoders rep-
resents the same encoder invoked twice. In the sec-
ond invocation the sentence mask produced by the sen-
tence selector is used for encoder side self-attention and
encoder-decoder cross-attention to mask out sentences
that are not part of the rationale. The red arrow denotes
an unidirectional arrow along which gradients are not
back-propagated during training.

(shared) 3

are expressive enough to drive H(Y | Xg, Q) to
0 during training by exploiting spurious correla-
tions. Lewis and Fan (2019) intuitively refer to
this as loss saturation. Therefore, the constraint
H(Y | Xge,Q) — H(Y | Xg,Q) > his satisfied
for a small margin h thereby resulting in reduced
comprehensiveness.

Note that these two issues are complimentary. In-
corporating explicit comprehensiveness constraints
like those in (Yu et al., 2019) for answer generation
is insufficient for excluding spuriously correlated
sentences in rationales.

4 Method

The main idea behind our method is to select ra-
tionales that are simultaneously useful for generat-
ing both the question and the answer. Unlike (Yu
et al., 2019), which requires an additional margin
hyper-parameter h, we do not explicitly optimize
for comprehensiveness but we demonstrate that
augmenting our method with a question generation
objective implicitly improves comprehensiveness.
Like previous work, we represent rationales by a
binary mask over sentences. We have a sentence
selector m that takes as input a passage X (and
optionally the question () and produces a binary
mask m(X) € {0, 1}". Rationale selection is then
denoted by X ® m(X) where ® denotes element-
wise multiplication. For a question, passage, and
answer triple (¢, x, y), we learn a rationale selector

m(-) by minimizing the following objective.

g, z,y) = —py(y | ¢,z ©m(q, x))
—pglq | r®m(x))
+ M (lm()lly + [Im(z, @)[l;) (D)

The above loss is averaged over all observed triples
in the dataset to compute the training loss. We
compute the likelihood of the answer py(y |
q, m(q, x)) and the likelihood of the observed ques-
tion pg(q | * © m(x)) using the same sequence-to-
sequence (seq2seq) model. In Eq. (1) A; controls
the compactness of the generated rationales. In our
experiments we do not tune A; and set it to a very
small value. Note that two sets of masks m(q, x)
and m(x) are different to allow for different sets of
rationales for predicting the answer and question
respectively. We do not add any (norm) constraints
to the objective to encourage overlap between these
two sets of rationales since that would introduce
another hyperparameter. However, we observe that
merely sharing the same sentence selector between
the question and answer generation stages encour-
ages sharing of rationales.

The above objective improves comprehensive-
ness and potentially robustness of the produced
rationales due to the following reason. First, the
objective encourages discovery of rationales that
are jointly useful for generating the question and
the answer making them less susceptible to be
correlated with the answer alone. Next, the sec-
ond term in (1) minimizes H(Q | X ® m(X)).
Since H(()) can be as large as |Q| log |V| where
|Q| is the number of tokens in @), it can be dif-
ficult even for large pre-trained models to mini-
mize H(Q | X ® m(X)) from the knowledge
encoded in their parameters or selecting a few
sentences in m (X)) that are spuriously correlated
with ). Lastly, since the (parameters of) sen-
tence selector m(-) is shared between question
and answer generation stages, this encourages the
answer generation mask m(Q, X) and question
generation mask m(X) to be close to each other.
Therefore, with the inclusion of more causally rele-
vant sentences in m(Q, X ), the comprehensiveness
constraint H(Y | Q, X ©® -m(Q, X)) — H(Y |
Q, X o>m(Q, X))+ h is implicitly satisfied with a
large margin h since ~m(Q, X ) now contains very
little information about Y.

Model Figure 3 shows our overall approach to
generating faithful rationales for QA tasks. We



modify the fusion-in-decoder (FiD) model of Izac-
ard and Grave (2020) to generate rationales as fol-
lows. The FiD model has the standard Transformer
architecture (Vaswani et al., 2017) consisting of
an encoder and decoder. We first pass the inputs
through the encoder and compute representations
of the tokens in the inputs. A sentence selector
then uses the token representations to mask out
irrelevant sentences. Then we take the relevant sen-
tences (rationales) and pass them through the en-
coder again to compute token representations that
do not use sentences not in the rationales. These
token representations are then passed through the
decoder to compute the likelihood of the output.
During training, we repeat this process twice to
compute the likelihood of the answer given the
question and passage as input and then compute
the likelihood of the question given the passage.
The final loss is the sum of the negative likelihoods
of the question and answer as given in (1). Next, we
describe each of the model components in detail.

Input representation In FiD, to effectively deal
with long passages, each passage is broken down
into multiple chunks or contexts and the question
is concatenated with each chunk. Each context is
then passed through the encoder of the transformer
architecture to compute question-contextualized
chunk representations. These representations are
then concatenated and passed to the decoder which
uses them to produce the answer. We modify this
procedure by adding CLS tokens at the beginning
and end of each sentence. For each sentence, the
two CLS token embeddings are concatenated to
compute the sentence representation which is used
for sentence selection as described next.

Sentence selector Our main modification to FiD
introduces a sentence selector that produces a bi-
nary mask over sentences from the sentence repre-
sentations. Our sentence selector has the same ar-
chitecture as that of (Paranjape et al., 2020b) which
we describe here for completeness. Given sentence
representations v; € R24 for 1 < i < n, which are
obtained by concatenating the CLS token represen-
tations at the beginning and end of each sentence,
the sentence selector computes the probability p;
of the i-th sentence being as rationale as follows:

u; = dropout(ReLU(Wu;))p; = sigmoid(w ' u;)

The dropout parameter is set to 0.2 while W &
R24%d and w € R? are the parameters of the sen-
tence selector. Since sampling a binary mask from

the distribution m; ~ Bernoulli(p;) would break
differentiablity of our model, we use the Gumbel-
sigmoid reparameterization trick to sample a dif-
ferentiable soft-mask m; € (0, 1) as follows:

g ~ Gumbel(0, 1), m; = sigmoid((logpi+9)/7),

where 7 is a temperature parameter that we set to
0.7.

4.1 Comparison with pipeline models

Apart from differences in training objective, choice
of base model (FiD), and pre-trained representa-
tions (T5), a key conceptual difference between our
model and those of existing pipelined approaches
is the use of single model with some shared pa-
rameters. While pipelined models have no shared
parameters between the rationale extractor and the
answer generator, the embedding layer is shared be-
tween the encoder and decoder in our model. This
obviously has consequences for faithfulness. Dur-
ing inference, however, the encoder and decoder
only rely on the rationales extracted by the sentence
selector to generate the answer, in addition to the
knowledge stored in their parameters. Note that
even in pipelined models the answer generator can
get exposed to information stored in different sen-
tences during the course of training that are not part
of eventual rationales, which the generator can use
to answer questions during inference thereby affect-
ing faithfulness. A key architectural choice that we
make to improve faithfulness is not updating the
encoder from the sentence selector during training.
This also has the effect of improving the memory
requirement of our model, since after the sentence
masks are computed, the sentence representations
can be discarded.

S Experiments

Datasets We evaluate our method on four text
classification tasks in the ERASER benchmark
(DeYoung et al., 2020) which have been adapted as
QA tasks: BoolQ (Clark et al., 2019), MultiRC
(Khashabi et al., 2018), FEVER (Thorne et al.,
2018), and Evidence Inference (Lehman et al.,
2019). BoolQ and MultiRC are standard machine
reading comprehension tasks involving boolean
and multiple choice answers respectively. FEVER
is a fact extraction and verification task adapted as
a QA task in ERASER where the goal is to classify
whether the given evidence (passage) supports or
refutes the claim (question). Lastly, the Evidence



Inference dataset entails determining whether an in-
tervention significantly increases, decreases, or has
no effect, on an outcome with respect to a compara-
tor of interest from clinical trial articles (passage).
The intervention, outcome, and comparator triple
are concatenated to form the query. We ignore
datasets in the benchmark which have very short
passages (between 1-2 sentences) like CoS-E and
e-SNLI. We also do not consider the movie reviews
dataset which is a sentiment classification task and
has no query.

Baselines We compare our proposed meth-
ods (QUASER and QUASER-FB) against the
information-bottleneck (IB) approach of Paran-
jape et al. (2020b) who report state-of-the-art un-
supervised rationale extraction performance on the
ERASER benchmark. Theirs is an unsupervised
BERT based pipeline model with a sparsity induc-
ing prior over masks. It is important to note that
their method is not fully unsupervised as they use
rationale metrics computed on the validation set for
tuning conciseness of rationales and performing
model selection. Whereas our method is fully unsu-
pervised where we perform model selection purely
based on answer generation performance and do
not tune the sparsity controlling hyperparameter
(A1) which we set to 0.01 for all our experiments
as was done in (DeYoung et al., 2020). Further-
more, to deal with long passages in BoolQ and
Evidence Inference which frequently exceed the
maximum input length of 512 tokens for Trans-
former models, Paranjape et al. (2020b) use TF-
IDF to extract a subset of the passage that has the
highest overlap with the question, while we per-
form no such pre-processing. We also compare
our method against the supervised BERT-based
pipeline method (BERT-BERT) of DeYoung et al.
(2020) which independently trains the rationale ex-
tractor to predict whether a sentence is a rationale
or not on annotated gold rationales and then trains
the classifier to predict the answer from the ratio-
nales. Lastly, we also report the performance of
the baseline (full) that uses the entire passage
to generate the output. The full baseline uses
the same passage representation (i.e., number of
contexts and maximum passage length) as our best
performing model QUASER~FB. All methods have
the same total number of parameters (= 220M).
We do not compare against the method of (Yu et al.,
2019) since their use of three separate models in
a three player game does not scale to using pre-

trained models like BERT.

Metrics Following previous work, we use exact
match for answer accuracy, and use intersection-
over-union F1 score (IOU) and token F1 (TF1)
score for evaluating rationale quality. IOU is com-
puted by matching each predicted rationale with a
gold rationale and computing the F1 score, where a
match is considered positive if the overlap between
the predicted and gold rationale exceeds a certain
threshold. Like (Paranjape et al., 2020b) we use a
threshold of 0.1. Token F1 score (TF1) simply com-
putes the F1 score between the predicted and gold
rationale at the token level and is not sensitive to
the choice of the threshold. Since comprehensive
rationales have been annotated for MultiRC and
FEVER and rationale IOU recall directly measures
comprehensiveness on these datasets (DeYoung
et al., 2020), we will evaluate comprehensiveness
using recall.

Training details As previously stated, FiD han-
dles long passages by diving them into chunks of
a certain maximum length. The number of chunks
and the maximum length of chunks are hyperparam-
eters in our model. We experiment with number of
chunks in {4, 8, 10} and maximum passage length
of either 128 or 256 tokens. More details can be
found in Appendix A.

6 Results

Table 2 shows the performance of our proposed
methods vis-a-vis different baselines. The answer
accuracy of our base model (QUASER) is uniformly
better than the previous state-of-the-art unsuper-
vised method (IB) of Paranjape et al. (2020b)
across all four datasets, with QUASER achieving
an average absolute improvement of 6.7% over 1B.
These gains come partly from using state-of-the-art
base model (FiD) and pre-trained representations
(T5-base). Even though our base model has al-
most the same number of parameters (=220M) as
the BERT-based pipeline model of Paranjape et al.
(2020b), we are able to use all the parameters for
sentence selection and answer generation, whereas
IB uses only half the parameters for answer gener-
ation. Using a larger pre-trained model can reduce
faithfulness which we observe as an average drop
of 2.2% rationale IOU performance of our base
model across four datasets. However, it should be
noted that IB is not a fully unsupervised method
since they tune the sparsity hyper-parameter and



Method BoolQ MultiRC FEVER Evi. Inf.
Ans. TF1 IOU | Ans. TFl 10U | Ans. TFl 1IOU | Ans. TFI IOU
full | 738 36.0 340|806 290 280|932 267 274]699 3.0 25
BERT-BERT| 61.6 144 282 63.1 443 460|877 812 835|698 476 535
IB 652 128 165|621 249 243|847 427 455|463 69 100
QUASER 699 29 33 |768 398 412|882 376 402|503 29 26
QUASER-FB| 702 344 346|781 414 429|908 390 421|609 3.6 3.1

Table 2: Answer accuracy and rational token and IOU F1 on four datasets in the ERASER benchmark. IB refers
to the information-bottleneck approach of Paranjape et al. (2020b), BERT-BERT is the supervised BERT-based
pipeline model of DeYoung et al. (2020), QUASER refers to our model trained to generate the answer only, while
QUASER-FB denotes our model trained with multi-task objective of generating both the answer and the question.

perform model selection based on the development
set rationale IOU, whereas we only use the answer
accuracy for model selection.

Augmenting our base model (QUASER) with the
question generation objective further improves an-
swer accuracy uniformly across four datasets by
10.4% over 1B while also improving rationale IOU
by 6.6% on average across four datasets. Our fi-
nal model QUASER-FB achieves significantly bet-
ter rationale scores over IB on BoolQ and Mul-
tiRC, while almost achieving parity on FEVER. All
methods perform poorly on the Evidence Inference
dataset. Poor performance of our method on the Ev-
idence Inference dataset is because of the extremely
long passages in the dataset and our passage repre-
sentation missing out most of the annotated ratio-
nales. The full passage representation (#contexts:
8 and maximum passage length: 256 tokens) input
to our model has an rationale IOU recall of only
35.5, with QUASER-FB achieving a recall of 30.7.
This can be partly addressed by using techniques
in (Paranjape et al., 2020b) or using dense passage
retrieval (Karpukhin et al., 2020) to find a smaller
passage relevant to the question. Note that the ratio-
nale performance of QUASER-FB is similar to the
“full” baseline on BoolQ which might indicate that
our method is simply selecting all the sentences
in the passage. The full baseline achieves (IOU)
precision and recall of 25.0 and 62.2 respectively,
while the corresponding numbers for QUASER-FB
is 28.9 and 43.1, indicating that QUASER-FB is
extracting compact rationales.

6.1 Analysis

To understand how augmenting answer generation
with question generation improves faithful ratio-
nale extraction, which in turn improves answer

accuracy, we dig further into rationale IOU met-
rics which are shown in Table 3. From the results
we can conclude that question generation improves
the recall (or comprehensiveness) of rationales not
just for question generation but also for answer
prediction. The recall of extracted rationales of
QUASER-FB for answer generation is significantly
better than those of QUASER while also improving
or almost matching the precision of rationales of
QUASER. Since answer accuracy also increases,
we can also reasonably conclude that question gen-
eration improves both comprehensiveness and suffi-
ciency and produces more robust rationales. Lastly,
since recall directly measures comprehensiveness
on the MultiRC and FEVER datasets (DeYoung
et al., 2020), we can quantify the average improve-
ment in comprehensiveness as 11.4%.

Figure 4 shows rationales predicted by our
method and those of supervised BERT based
pipeline model, and the unsupervised IB method.
The examples qualitatively demonstrate how our
method produces more comprehensive rationales.

Lastly, to test if the rationales generated by our
method can be used by humans to gauge the correct-
ness of the answer, we computed the Spearman’s
correlation between correctness (binary variable)
and the IOU of the generated rationale. The corre-
lation coefficient for QUASER-FB, BERT-BERT,
and IB were 0.1, 0.05, and -0.02 respectively,
thereby demonstrating that the rationales gener-
ated by our method were better suited for verifying
answer correctness.

7 Related Work

Extractive rationalization (Lei et al., 2016) methods
can either be supervised or unsupervised. Pruthi
et al. (2020) propose weakly-supervised methods



IB QUASER QUASER-FB
Dataset | Answer generation | Answer generation | Answer generation | Question generation
P R Fl1 P R F1 P R F1 P R F1
BoolQ | 157 635 252 | 84 2.1 33 | 289 431 346|222 621 327
MultiRC | 20.1 30.7 243 | 279 783 412|288 837 429|164 959 280
FEVER | 39.6 47.6 432|296 61.0 402|287 784 421|162 893 274
Evi.Inf. | 5.1 113 70 | 15 82 26 | 1.6 307 31 | 1.1 348 22

Table 3: Rational IOU precision (P), recall (R), and F1 score (F1) for IB, QUASER, and QUASER-FB.

Q: do the white sox and cubs share a stadium ? Ans: False.
BERT-BERT: False. IB: False. QUASER-FB: False.

CUBS - WHITE SOX RIVALRY The Cubs — White Sox rivalry ( also known as the Crosstown Classic ... geographical
rivalry between the Chicago Cubs and the Chicago White Sox. The Cubs are a member club of MLB ’s National League

(NL ) Central division , and play their home games at Wrigley Field , located on Chicago ’s North Side . The White
Sox are a member club of MLB ’s American League ( AL ) Central division , and play their home games at Guaranteed
Rate Field , located on Chicago ’s South Side . ... The Chicago Transit Authority ’s Red Line runs north ... stopping at Wrigley
Field and Guaranteed Rate Field . ... In 1900, Charles Comiskey moved ... In response , the team was renamed the " White
Stockings ", which had been the original name of the Cubs from 1876 to 1889 .

Q: is scottish law the same as english law ? Ans: False.
BERT-BERT: False. IB: False. QUASER-FB: False.

SCOTS LAW Scots law is the legal system of Scotland . It is a hybrid or mixed legal system ... Together with English law

and Northern Irish law , it is one of the three legal systems of the United Kingdom . ... Although there was some indirect
Roman law influence on Scots law , the direct influence of Roman law was slight up until around the 15th century . ... Legislation
affecting Scotland may be passed by the Scottish Parliament , the United Kingdom Parliament , and the European Union . Some
legislation passed by the pre-1707 Parliament of Scotland is still also valid .

Figure 4: Examples from test set of the BoolQ data set where QUASER-FB achieves the best rationale IOU. Gold
rationales are highlighted in yellow, while rationales predicted by QUASER-FB, BERT-BERT, and IB are shown
in bold, underlined, and italicized words respectively.

for extracting supporting evidence. Among unsu-
pervised methods, the closest to ours is the work
of Paranjape et al. (2020b) who propose a simple
sparse prior for the rationale extractor motivated by
information bottleneck theory, and evaluate their
approach on the ERASER benchmark (DeYoung
etal., 2020). However, their method only optimizes
for two (sufficiency and compactness) out of three
desired characteristics of faithful rationales. Our
method is also motivated by the work of Yu et al.
(2019) who propose a general method for faithful
rationalization for text classification problems by
directly optimizing for comprehensiveness, in addi-
tion to sufficiency and compactness. However, their
approach involves learning three different models
within a cooperative game-theoretic framework and
is not scalable while also requiring the need to tune
comprehensiveness through a hyper-parameter.

Lastly, question generation has been previously

considered by Lewis and Fan (2019) within the con-
text of generative QA where they model the joint
distribution of the question and answer. They show
that question generation can increase robustness of
the model on adversarial inputs.

8 Conclusion

We proposed a novel and scalable extractive ra-
tionalization method for QA tasks using a single
Transformer model. By adding a question gener-
ation objective to our method, we showed that it
is possible to extract rationales that rely on robust
input features, thereby improving both faithfulness
of the extracted rationales and answer accuracy.

While we showed that learning an evidence ex-
tractor by jointly predicting the question and the
answer can improve rationale extraction, it is pos-
sible to combine the rationales extracted for the
question and answer in more novel ways.
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A Training details.

We use the Adam optimizer (Kingma and Ba, 2015)
with default parameters and learning rate of 1le=*
with linear decay to train all our models for a maxi-
mum of 20000 steps. We perform validation every
500 steps and select the model with the best vali-
dation set answer accuracy. All hyperparameters
were tuned for answer accuracy on the validation
set. We ran all our experiments on machines with
8 32GB GPUs.
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