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Abstract

Designing NLP models that produce predic-001
tions by first extracting a set of relevant in-002
put sentences (i.e., rationales), is gaining im-003
portance as a means to improving model in-004
terpretability and to producing supporting ev-005
idence for users. Current unsupervised ap-006
proaches are trained to extract rationales that007
maximize prediction accuracy, which is invari-008
ably obtained by exploiting spurious correla-009
tions in datasets, and leads to unconvincing010
rationales. In this paper, we introduce un-011
supervised generative models to extract dual-012
purpose rationales, which must not only be013
able to support a subsequent answer predic-014
tion, but also support a reproduction of the in-015
put query. We show that such models can pro-016
duce more meaningful rationales, that are less017
influenced by dataset artifacts, and as a result,018
also achieve the state-of-the-art on rationale019
extraction metrics on four datasets from the020
ERASER benchmark, significantly improving021
upon previous unsupervised methods.022

1 Introduction023

While large pre-trained transformer models (De-024

vlin et al., 2019; Raffel et al., 2019) have achieved025

state-of-the-art results on many question answer-026

ing (QA) tasks, the process by which they generate027

their predictions is opaque. Therefore, to shed light028

on the prediction process and to increase user trust,029

training models to additionally present portions of030

the input i.e. rationales, as supporting evidence,031

has emerged as an effective solution (Lei et al.,032

2016; Yang et al., 2018). However, current ap-033

proaches (Paranjape et al., 2020a) are trained to034

select rationales that optimize prediction accuracy,035

which is invariably achieved by exploiting dataset036

artifacts, and consequentially, results in unconvinc-037

ing rationales. To alleviate these shortcomings, we038

introduce a generative approach to produce dual-039

purpose rationales, that are required to indepen-040

dently support a reproduction of the input query041

Q: Is there a congestion charge in London on Sunday ?

Ans: False.

LONDON CONGESTION CHARGE The London con-

gestion charge is a fee charged on most motor vehicles

operating within the Congestion Charge Zone ( CCZ ) in

Central London between 07:00 and 18:00 Mondays to Fri-

days . It is not charged on weekends , public holidays or

between Christmas Day and New Year ’s Day ( inclusive )

... The charge aims to reduce high traffic flow and pollution

in the central area and raise investment funds for Lon-

don ’s transport system . ... REFERENCES FURTHER

READING EXTERNAL LINKS * Transport for London ’s

congestion charge homepage * Pay the congestion charge

online .

Figure 1: An example from the BoolQ data set in the
ERASER benchmark (DeYoung et al., 2020), with hu-
man annotated rationales highlighted in yellow. Ratio-
nales predicted by a supervised BERT-based pipeline
method (DeYoung et al., 2020) is shown underlined.

in addition to improving model prediction, thereby 042

necessitating more meaningful rationales. 043

We focus on developing QA models that gener- 044

ate an answer based on a question and a (poten- 045

tially long) passage, together with NL rationales. 046

In this case, a rationale (or explanation) is defined 047

as a minimal subset of passage sentences that is 048

sufficient to answer the question. We present exam- 049

ple questions, passages, answers from the BoolQ 050

dataset (Clark et al., 2019) with human annotated 051

rationales from the ERASER benchmark (DeYoung 052

et al., 2020) in Figure 1. Supervised rationalization 053

models for this task typically require large amount 054

of expensive annotations, making unsupervised 055

methods attractive. State-of-the-art unsupervised 056

methods take a pipelined approach (Lehman et al., 057

2019; Paranjape et al., 2020a) where an extractor 058

model classifies each sentence in the passage to 059

be relevant or irrelevant to answering the question, 060

while a separate model predicts the answer from 061
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the chosen relevant sentences. No parameters are062

shared between the two models to ensure faithful-063

ness, i.e., the predicted answer relies only on the064

selected rationale sentences. Unsupervised meth-065

ods also incorporate additional sparsity constraints066

(for example, adding sparsity inducing norms), to067

encourage the selection of a small number of sen-068

tences as rationales.069

However, unsupervised pipelined approaches070

suffer from two main shortcomings. The first is071

that, their memory-intensive use of two separate072

models restrict them to making use of only base073

pre-trained models, making it difficult to scale to074

larger versions of pre-trained transformer models075

that significantly improve QA answer generation076

performance. Furthermore, they only use half the077

total capacity of the full (pipelined) neural network078

for answer prediction. Secondly, the sole objective079

for extracting rationales is answer prediction accu-080

racy, which is invariably optimized by exploiting081

spurious correlations and dataset artifacts. As a082

result, the extracted rationales may explain dataset083

biases rather than present evidence for answering084

the question, resulting in unconvincing explana-085

tions.086

Our contributions We propose a method for087

generating faithful explanations for query based088

tasks using a single model by adding a rationale089

selection module between the encoder and decoder090

of a Transformer model. We identify two key091

conceptual problems with existing rationalization092

schemes: reliance on spurious correlations, and093

lack of comprehensiveness constraints — a key094

metric for ensuring faithfulness of rationales. To095

address these, we propose a multi-task learning096

objective where we train our model jointly on a for-097

ward objective that predicts the answer given the098

question and passages, and a backward objective099

that predicts the question from the passage. We100

call our model trained using this forward-backward101

objective: QUASER-FB. We show that such joint102

training improves both answer accuracy and ratio-103

nale selection performance while also improving104

faithfulness.105

• Specifically, on four QA data sets in the106

ERASER (DeYoung et al., 2020) explain-107

ability benchmark, QUASER-FB, when ini-108

tialized with T5-base (Raffel et al., 2019),109

achieves on an average 10.4% absolute im-110

provement for answer generation and 7.8%111

absolute improvement for rationale selection112

over the previous unsupervised state of the 113

art (Paranjape et al., 2020b). Lastly, our 114

method achieves an average absolute improve- 115

ment of 8.9% for answer generation over the 116

supervised BERT-based pipeline model of 117

DeYoung et al. (2020) on three out of four 118

ERASER datasets. 119

• We show that augmenting our model with the 120

question generation objective produces ratio- 121

nales that are 11.4% more comprehensive on 122

two datasets in which comprehensiveness can 123

be measured. 124

• Our method is scalable to large pre-trained 125

transformer models (Vaswani et al., 2017) and 126

achieves state-of-the-art performance while 127

having roughly the same number of parame- 128

ters as existing BERT-based supervised and 129

unsupervised pipeline methods. 130

Finally, we show that the quality of rationales gen- 131

erated by our method are more correlated with an- 132

swer accuracy than baselines, thereby making them 133

more suitable to verify answer correctness (Lipton, 134

2018). 135

2 Preliminaries 136

Answer EM Rationale IOU F1
Dataset Qs. + Psg. Psg. only Qs. + Psg. Psg. only

BoolQ 63 61 30 29
MultiRC 60 57 45 16

Table 1: Performance of BERT-based pipeline model of
DeYoung et al. (2020) on two QA datasets under two
settings: (a) Qs. + Psg.: where the model is trained
to produce the answer given the question and passage,
and (b) Psg. only: where the model has to generate the
answer from the passage only.

In this section, we formally define the problem 137

of faithful selective rationalization in question an- 138

swering and describe some of the ways in which 139

existing approaches can rely on spurious correla- 140

tions to select rationales. 141

Question Answering tasks involve generating an 142

answer Y given a question Q and a passage X = 143

(X1, . . . , Xn). Each sentence Xi, and the question 144

Q, in-turn contain multiple tokens belonging to a 145

vocabulary V , of size k. In this paper, we consider 146

the setting where the answer belongs to a small 147

finite setY of size c. In the datasets that we evaluate 148

our method on the answers are all binary (c = 149
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X1 X2 X3

Q A

rationale
Figure 2: A generative
model for QA where X2

denotes the true rationales
while X1 and X3 denote
sentences that are corre-
lated with the question and
answer respectively.

2). A faithful extractive rationale is a subset S ⊆150

{1, . . . , n} of sentences in the passage that is used151

by the model to generate the answer1.152

2.1 Faithful rationale selection153

Yu et al. (2019) define three main desiderata for154

selecting faithful rationales: (a) sufficiency: the ra-155

tionales should be sufficient to generate the answer156

Y , (b) comprehensiveness: all sentences which157

are useful for predicting the answer should be in-158

cluded in the rationales, and (c) compactness: the159

rationales should contain a small number of sen-160

tences. More formally, sufficiency entails selecting161

rationales S that maximize I(Y,XS | Q), where162

I( · , ·) denotes mutual information and XS de-163

notes the rationale. However, a model can trivially164

achieve sufficiency by choosing S = {1, . . . , n}.165

Therefore, compactness ensures that rationales are166

succinct and interpretable. Lastly, Yu et al. (2019)167

define comprehensiveness as selecting rationales168

S such that H(Y | XSc , Q)−H(Y | XS , Q) ≥ h169

for some constant h, where H( ·) denotes Shannon170

entropy and Sc denotes the complement of S. The171

constant h can be interpreted as a margin constraint172

with a large margin implying more comprehensive173

rationale selection with XSc containing very little174

information about Y . This in turn encourages the175

model to select rationales based on robust features176

as opposed to relying on spurious correlations.177

3 Motivation178

We motivate the problems with current extractive179

rationalization schemes through a simplified proba-180

bilistic model. Fig. 2 shows a potential generative181

model for question answering, which is a causal182

partially directed acyclic graph (Pearl, 2009), with183

directed edges showing causal relationships. Given184

a question Q a function selects the relevant sen-185

tences from the passages which in this case is de-186

noted by X2. Then given the relevant sentences187

1We consider the setting where rationales are selected at
the sentence level, although our method can also generate
token level rationales.

and the question another function produces the an- 188

swer. There are additionally sentences that are only 189

spuriously corrleated with the answer (X3) and the 190

question (X1) — for instance, an overwhelming 191

majority of the annotated rationales, and subse- 192

quently the correct answer, in BoolQ are at the 193

very beginning of the passages. To verify the exis- 194

tence of sentences or tokens that are only correlated 195

with the answer, we performed a quick experiment 196

where we train the BERT-based pipeline model of 197

DeYoung et al. (2020) to predict the answer from 198

the passage only. Results of the experiments are 199

shown in Table 1. Given access to the passage only, 200

the model suffers a minimal (∼ 2-3%) drop in an- 201

swer generation performance while still achieving 202

significant rationale selection performance 2. Simi- 203

lar results have also been reported by Kaushik and 204

Lipton (2018) on other benchmarks. 205

Spurious correlations The first problem with 206

current approaches is that they do not preclude se- 207

lection of sentences that are spuriously correlated 208

with the answer. For instance, in Figure 2 given 209

the question Q, X3 is not independent of A, i.e. 210

X3 6⊥⊥A | Q. Therefore, there is nothing prevent- 211

ing the model from selecting X3 as a rationale for 212

predicting A. Furthermore, stringent compactness 213

constraints can result in the true rationale X2 being 214

excluded if the causal strength between the ratio- 215

nale and the answer is weak (figuratively denoted 216

by a lighter colored edge). Since large pre-trained 217

language models are known to store knowledge 218

within their parameters (Roberts et al., 2020), they 219

can predict the answer correctly just from the ques- 220

tion. In the unsupervised setting where even the 221

average size of rationales for a dataset is unknown, 222

how to set the right compactness constraints is a 223

challenging problem. 224

Lack of comprehensiveness constraints Sec- 225

ond, existing approaches do not optimize for com- 226

prehensiveness. Selecting rationales that max- 227

imize answer accuracy (equivalently minimize 228

H(Y | XS , Q)) can result in reduced compre- 229

hensiveness of rationales. To see this observe 230

that H(Y | XS , Q) ≤ H(Y ) = log c which is 231

fairly small to begin with and large neural networks 232

2Note that MultiRC is a multiple choice QA task which has
been converted to a binary QA task by appending the choice
to the question and asking the model to predict if the choice is
correct or wrong. Therefore, in the passage only experiments
the model does not have access to the choice and only predicts
True or False from the passage.
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Encoder

Encoder

mask

Decoder

Sentence 
Selector

(shared) ⊙

Q X1 X2 ... Xn

...

FiD

Y

Q X1 X2 ... Xn

Figure 3: Model architecture. The two encoders rep-
resents the same encoder invoked twice. In the sec-
ond invocation the sentence mask produced by the sen-
tence selector is used for encoder side self-attention and
encoder-decoder cross-attention to mask out sentences
that are not part of the rationale. The red arrow denotes
an unidirectional arrow along which gradients are not
back-propagated during training.

are expressive enough to drive H(Y | XS , Q) to233

0 during training by exploiting spurious correla-234

tions. Lewis and Fan (2019) intuitively refer to235

this as loss saturation. Therefore, the constraint236

H(Y | XSc , Q)−H(Y | XS , Q) ≥ h is satisfied237

for a small margin h thereby resulting in reduced238

comprehensiveness.239

Note that these two issues are complimentary. In-240

corporating explicit comprehensiveness constraints241

like those in (Yu et al., 2019) for answer generation242

is insufficient for excluding spuriously correlated243

sentences in rationales.244

4 Method245

The main idea behind our method is to select ra-246

tionales that are simultaneously useful for generat-247

ing both the question and the answer. Unlike (Yu248

et al., 2019), which requires an additional margin249

hyper-parameter h, we do not explicitly optimize250

for comprehensiveness but we demonstrate that251

augmenting our method with a question generation252

objective implicitly improves comprehensiveness.253

Like previous work, we represent rationales by a254

binary mask over sentences. We have a sentence255

selector m that takes as input a passage X (and256

optionally the question Q) and produces a binary257

mask m(X) ∈ {0, 1}n. Rationale selection is then258

denoted by X �m(X) where � denotes element-259

wise multiplication. For a question, passage, and260

answer triple (q, x, y), we learn a rationale selector261

m( ·) by minimizing the following objective. 262

l(q, x, y) = −pY (y | q, x�m(q, x)) 263

− pQ(q | x�m(x)) 264

+ λ1(‖m(x)‖1 + ‖m(x, q)‖1) (1) 265

The above loss is averaged over all observed triples 266

in the dataset to compute the training loss. We 267

compute the likelihood of the answer pY (y | 268

q,m(q, x)) and the likelihood of the observed ques- 269

tion pQ(q | x�m(x)) using the same sequence-to- 270

sequence (seq2seq) model. In Eq. (1) λ1 controls 271

the compactness of the generated rationales. In our 272

experiments we do not tune λ1 and set it to a very 273

small value. Note that two sets of masks m(q, x) 274

and m(x) are different to allow for different sets of 275

rationales for predicting the answer and question 276

respectively. We do not add any (norm) constraints 277

to the objective to encourage overlap between these 278

two sets of rationales since that would introduce 279

another hyperparameter. However, we observe that 280

merely sharing the same sentence selector between 281

the question and answer generation stages encour- 282

ages sharing of rationales. 283

The above objective improves comprehensive- 284

ness and potentially robustness of the produced 285

rationales due to the following reason. First, the 286

objective encourages discovery of rationales that 287

are jointly useful for generating the question and 288

the answer making them less susceptible to be 289

correlated with the answer alone. Next, the sec- 290

ond term in (1) minimizes H(Q | X � m(X)). 291

Since H(Q) can be as large as |Q| log |V | where 292

|Q| is the number of tokens in Q, it can be dif- 293

ficult even for large pre-trained models to mini- 294

mize H(Q | X � m(X)) from the knowledge 295

encoded in their parameters or selecting a few 296

sentences in m(X) that are spuriously correlated 297

with Q. Lastly, since the (parameters of) sen- 298

tence selector m( ·) is shared between question 299

and answer generation stages, this encourages the 300

answer generation mask m(Q,X) and question 301

generation mask m(X) to be close to each other. 302

Therefore, with the inclusion of more causally rele- 303

vant sentences inm(Q,X), the comprehensiveness 304

constraint H(Y | Q,X � ¬m(Q,X)) − H(Y | 305

Q,X�m(Q,X))+h is implicitly satisfied with a 306

large margin h since ¬m(Q,X) now contains very 307

little information about Y . 308

Model Figure 3 shows our overall approach to 309

generating faithful rationales for QA tasks. We 310
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modify the fusion-in-decoder (FiD) model of Izac-311

ard and Grave (2020) to generate rationales as fol-312

lows. The FiD model has the standard Transformer313

architecture (Vaswani et al., 2017) consisting of314

an encoder and decoder. We first pass the inputs315

through the encoder and compute representations316

of the tokens in the inputs. A sentence selector317

then uses the token representations to mask out318

irrelevant sentences. Then we take the relevant sen-319

tences (rationales) and pass them through the en-320

coder again to compute token representations that321

do not use sentences not in the rationales. These322

token representations are then passed through the323

decoder to compute the likelihood of the output.324

During training, we repeat this process twice to325

compute the likelihood of the answer given the326

question and passage as input and then compute327

the likelihood of the question given the passage.328

The final loss is the sum of the negative likelihoods329

of the question and answer as given in (1). Next, we330

describe each of the model components in detail.331

Input representation In FiD, to effectively deal332

with long passages, each passage is broken down333

into multiple chunks or contexts and the question334

is concatenated with each chunk. Each context is335

then passed through the encoder of the transformer336

architecture to compute question-contextualized337

chunk representations. These representations are338

then concatenated and passed to the decoder which339

uses them to produce the answer. We modify this340

procedure by adding CLS tokens at the beginning341

and end of each sentence. For each sentence, the342

two CLS token embeddings are concatenated to343

compute the sentence representation which is used344

for sentence selection as described next.345

Sentence selector Our main modification to FiD346

introduces a sentence selector that produces a bi-347

nary mask over sentences from the sentence repre-348

sentations. Our sentence selector has the same ar-349

chitecture as that of (Paranjape et al., 2020b) which350

we describe here for completeness. Given sentence351

representations vi ∈ R2d, for 1 ≤ i ≤ n, which are352

obtained by concatenating the CLS token represen-353

tations at the beginning and end of each sentence,354

the sentence selector computes the probability pi355

of the i-th sentence being as rationale as follows:356

ui = dropout(ReLU(Wvi))pi = sigmoid(w>ui)357

The dropout parameter is set to 0.2 while W ∈358

R2d×d and w ∈ Rd are the parameters of the sen-359

tence selector. Since sampling a binary mask from360

the distribution mi ∼ Bernoulli(pi) would break 361

differentiablity of our model, we use the Gumbel- 362

sigmoid reparameterization trick to sample a dif- 363

ferentiable soft-mask mi ∈ (0, 1) as follows: 364

g ∼ Gumbel(0, 1),mi = sigmoid((log pi+g)/τ), 365

where τ is a temperature parameter that we set to 366

0.7. 367

4.1 Comparison with pipeline models 368

Apart from differences in training objective, choice 369

of base model (FiD), and pre-trained representa- 370

tions (T5), a key conceptual difference between our 371

model and those of existing pipelined approaches 372

is the use of single model with some shared pa- 373

rameters. While pipelined models have no shared 374

parameters between the rationale extractor and the 375

answer generator, the embedding layer is shared be- 376

tween the encoder and decoder in our model. This 377

obviously has consequences for faithfulness. Dur- 378

ing inference, however, the encoder and decoder 379

only rely on the rationales extracted by the sentence 380

selector to generate the answer, in addition to the 381

knowledge stored in their parameters. Note that 382

even in pipelined models the answer generator can 383

get exposed to information stored in different sen- 384

tences during the course of training that are not part 385

of eventual rationales, which the generator can use 386

to answer questions during inference thereby affect- 387

ing faithfulness. A key architectural choice that we 388

make to improve faithfulness is not updating the 389

encoder from the sentence selector during training. 390

This also has the effect of improving the memory 391

requirement of our model, since after the sentence 392

masks are computed, the sentence representations 393

can be discarded. 394

5 Experiments 395

Datasets We evaluate our method on four text 396

classification tasks in the ERASER benchmark 397

(DeYoung et al., 2020) which have been adapted as 398

QA tasks: BoolQ (Clark et al., 2019), MultiRC 399

(Khashabi et al., 2018), FEVER (Thorne et al., 400

2018), and Evidence Inference (Lehman et al., 401

2019). BoolQ and MultiRC are standard machine 402

reading comprehension tasks involving boolean 403

and multiple choice answers respectively. FEVER 404

is a fact extraction and verification task adapted as 405

a QA task in ERASER where the goal is to classify 406

whether the given evidence (passage) supports or 407

refutes the claim (question). Lastly, the Evidence 408
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Inference dataset entails determining whether an in-409

tervention significantly increases, decreases, or has410

no effect, on an outcome with respect to a compara-411

tor of interest from clinical trial articles (passage).412

The intervention, outcome, and comparator triple413

are concatenated to form the query. We ignore414

datasets in the benchmark which have very short415

passages (between 1-2 sentences) like CoS-E and416

e-SNLI. We also do not consider the movie reviews417

dataset which is a sentiment classification task and418

has no query.419

Baselines We compare our proposed meth-420

ods (QUASER and QUASER-FB) against the421

information-bottleneck (IB) approach of Paran-422

jape et al. (2020b) who report state-of-the-art un-423

supervised rationale extraction performance on the424

ERASER benchmark. Theirs is an unsupervised425

BERT based pipeline model with a sparsity induc-426

ing prior over masks. It is important to note that427

their method is not fully unsupervised as they use428

rationale metrics computed on the validation set for429

tuning conciseness of rationales and performing430

model selection. Whereas our method is fully unsu-431

pervised where we perform model selection purely432

based on answer generation performance and do433

not tune the sparsity controlling hyperparameter434

(λ1) which we set to 0.01 for all our experiments435

as was done in (DeYoung et al., 2020). Further-436

more, to deal with long passages in BoolQ and437

Evidence Inference which frequently exceed the438

maximum input length of 512 tokens for Trans-439

former models, Paranjape et al. (2020b) use TF-440

IDF to extract a subset of the passage that has the441

highest overlap with the question, while we per-442

form no such pre-processing. We also compare443

our method against the supervised BERT-based444

pipeline method (BERT-BERT) of DeYoung et al.445

(2020) which independently trains the rationale ex-446

tractor to predict whether a sentence is a rationale447

or not on annotated gold rationales and then trains448

the classifier to predict the answer from the ratio-449

nales. Lastly, we also report the performance of450

the baseline (full) that uses the entire passage451

to generate the output. The full baseline uses452

the same passage representation (i.e., number of453

contexts and maximum passage length) as our best454

performing model QUASER-FB. All methods have455

the same total number of parameters (≈ 220M).456

We do not compare against the method of (Yu et al.,457

2019) since their use of three separate models in458

a three player game does not scale to using pre-459

trained models like BERT. 460

Metrics Following previous work, we use exact 461

match for answer accuracy, and use intersection- 462

over-union F1 score (IOU) and token F1 (TF1) 463

score for evaluating rationale quality. IOU is com- 464

puted by matching each predicted rationale with a 465

gold rationale and computing the F1 score, where a 466

match is considered positive if the overlap between 467

the predicted and gold rationale exceeds a certain 468

threshold. Like (Paranjape et al., 2020b) we use a 469

threshold of 0.1. Token F1 score (TF1) simply com- 470

putes the F1 score between the predicted and gold 471

rationale at the token level and is not sensitive to 472

the choice of the threshold. Since comprehensive 473

rationales have been annotated for MultiRC and 474

FEVER and rationale IOU recall directly measures 475

comprehensiveness on these datasets (DeYoung 476

et al., 2020), we will evaluate comprehensiveness 477

using recall. 478

Training details As previously stated, FiD han- 479

dles long passages by diving them into chunks of 480

a certain maximum length. The number of chunks 481

and the maximum length of chunks are hyperparam- 482

eters in our model. We experiment with number of 483

chunks in {4, 8, 10} and maximum passage length 484

of either 128 or 256 tokens. More details can be 485

found in Appendix A. 486

6 Results 487

Table 2 shows the performance of our proposed 488

methods vis-à-vis different baselines. The answer 489

accuracy of our base model (QUASER) is uniformly 490

better than the previous state-of-the-art unsuper- 491

vised method (IB) of Paranjape et al. (2020b) 492

across all four datasets, with QUASER achieving 493

an average absolute improvement of 6.7% over IB. 494

These gains come partly from using state-of-the-art 495

base model (FiD) and pre-trained representations 496

(T5-base). Even though our base model has al- 497

most the same number of parameters (≈220M) as 498

the BERT-based pipeline model of Paranjape et al. 499

(2020b), we are able to use all the parameters for 500

sentence selection and answer generation, whereas 501

IB uses only half the parameters for answer gener- 502

ation. Using a larger pre-trained model can reduce 503

faithfulness which we observe as an average drop 504

of 2.2% rationale IOU performance of our base 505

model across four datasets. However, it should be 506

noted that IB is not a fully unsupervised method 507

since they tune the sparsity hyper-parameter and 508
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Method
BoolQ MultiRC FEVER Evi. Inf.

Ans. TF1 IOU Ans. TF1 IOU Ans. TF1 IOU Ans. TF1 IOU

full 73.8 36.0 34.0 80.6 29.0 28.0 93.2 26.7 27.4 69.9 3.0 2.5

BERT-BERT 61.6 14.4 28.2 63.1 44.3 46.0 87.7 81.2 83.5 69.8 47.6 53.5

IB 65.2 12.8 16.5 62.1 24.9 24.3 84.7 42.7 45.5 46.3 6.9 10.0
QUASER 69.9 2.9 3.3 76.8 39.8 41.2 88.2 37.6 40.2 50.3 2.9 2.6
QUASER-FB 70.2 34.4 34.6 78.1 41.4 42.9 90.8 39.0 42.1 60.9 3.6 3.1

Table 2: Answer accuracy and rational token and IOU F1 on four datasets in the ERASER benchmark. IB refers
to the information-bottleneck approach of Paranjape et al. (2020b), BERT-BERT is the supervised BERT-based
pipeline model of DeYoung et al. (2020), QUASER refers to our model trained to generate the answer only, while
QUASER-FB denotes our model trained with multi-task objective of generating both the answer and the question.

perform model selection based on the development509

set rationale IOU, whereas we only use the answer510

accuracy for model selection.511

Augmenting our base model (QUASER) with the512

question generation objective further improves an-513

swer accuracy uniformly across four datasets by514

10.4% over IB while also improving rationale IOU515

by 6.6% on average across four datasets. Our fi-516

nal model QUASER-FB achieves significantly bet-517

ter rationale scores over IB on BoolQ and Mul-518

tiRC, while almost achieving parity on FEVER. All519

methods perform poorly on the Evidence Inference520

dataset. Poor performance of our method on the Ev-521

idence Inference dataset is because of the extremely522

long passages in the dataset and our passage repre-523

sentation missing out most of the annotated ratio-524

nales. The full passage representation (#contexts:525

8 and maximum passage length: 256 tokens) input526

to our model has an rationale IOU recall of only527

35.5, with QUASER-FB achieving a recall of 30.7.528

This can be partly addressed by using techniques529

in (Paranjape et al., 2020b) or using dense passage530

retrieval (Karpukhin et al., 2020) to find a smaller531

passage relevant to the question. Note that the ratio-532

nale performance of QUASER-FB is similar to the533

“full” baseline on BoolQ which might indicate that534

our method is simply selecting all the sentences535

in the passage. The full baseline achieves (IOU)536

precision and recall of 25.0 and 62.2 respectively,537

while the corresponding numbers for QUASER-FB538

is 28.9 and 43.1, indicating that QUASER-FB is539

extracting compact rationales.540

6.1 Analysis541

To understand how augmenting answer generation542

with question generation improves faithful ratio-543

nale extraction, which in turn improves answer544

accuracy, we dig further into rationale IOU met- 545

rics which are shown in Table 3. From the results 546

we can conclude that question generation improves 547

the recall (or comprehensiveness) of rationales not 548

just for question generation but also for answer 549

prediction. The recall of extracted rationales of 550

QUASER-FB for answer generation is significantly 551

better than those of QUASER while also improving 552

or almost matching the precision of rationales of 553

QUASER. Since answer accuracy also increases, 554

we can also reasonably conclude that question gen- 555

eration improves both comprehensiveness and suffi- 556

ciency and produces more robust rationales. Lastly, 557

since recall directly measures comprehensiveness 558

on the MultiRC and FEVER datasets (DeYoung 559

et al., 2020), we can quantify the average improve- 560

ment in comprehensiveness as 11.4%. 561

Figure 4 shows rationales predicted by our 562

method and those of supervised BERT based 563

pipeline model, and the unsupervised IB method. 564

The examples qualitatively demonstrate how our 565

method produces more comprehensive rationales. 566

Lastly, to test if the rationales generated by our 567

method can be used by humans to gauge the correct- 568

ness of the answer, we computed the Spearman’s 569

correlation between correctness (binary variable) 570

and the IOU of the generated rationale. The corre- 571

lation coefficient for QUASER-FB, BERT-BERT, 572

and IB were 0.1, 0.05, and -0.02 respectively, 573

thereby demonstrating that the rationales gener- 574

ated by our method were better suited for verifying 575

answer correctness. 576

7 Related Work 577

Extractive rationalization (Lei et al., 2016) methods 578

can either be supervised or unsupervised. Pruthi 579

et al. (2020) propose weakly-supervised methods 580
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IB QUASER QUASER-FB
Dataset Answer generation Answer generation Answer generation Question generation

P R F1 P R F1 P R F1 P R F1

BoolQ 15.7 63.5 25.2 8.4 2.1 3.3 28.9 43.1 34.6 22.2 62.1 32.7
MultiRC 20.1 30.7 24.3 27.9 78.3 41.2 28.8 83.7 42.9 16.4 95.9 28.0
FEVER 39.6 47.6 43.2 29.6 61.0 40.2 28.7 78.4 42.1 16.2 89.3 27.4
Evi. Inf. 5.1 11.3 7.0 1.5 8.2 2.6 1.6 30.7 3.1 1.1 34.8 2.2

Table 3: Rational IOU precision (P), recall (R), and F1 score (F1) for IB, QUASER, and QUASER-FB.

Q: do the white sox and cubs share a stadium ? Ans: False.

BERT-BERT: False. IB: False. QUASER-FB: False.

CUBS – WHITE SOX RIVALRY The Cubs – White Sox rivalry ( also known as the Crosstown Classic ... geographical
rivalry between the Chicago Cubs and the Chicago White Sox. The Cubs are a member club of MLB ’s National League
( NL ) Central division , and play their home games at Wrigley Field , located on Chicago ’s North Side . The White
Sox are a member club of MLB ’s American League ( AL ) Central division , and play their home games at Guaranteed
Rate Field , located on Chicago ’s South Side . ... The Chicago Transit Authority ’s Red Line runs north ... stopping at Wrigley

Field and Guaranteed Rate Field . ... In 1900 , Charles Comiskey moved ... In response , the team was renamed the " White

Stockings " , which had been the original name of the Cubs from 1876 to 1889 .

Q: is scottish law the same as english law ? Ans: False.

BERT-BERT: False. IB: False. QUASER-FB: False.

SCOTS LAW Scots law is the legal system of Scotland . It is a hybrid or mixed legal system ... Together with English law
and Northern Irish law , it is one of the three legal systems of the United Kingdom . ... Although there was some indirect

Roman law influence on Scots law , the direct influence of Roman law was slight up until around the 15th century . ... Legislation

affecting Scotland may be passed by the Scottish Parliament , the United Kingdom Parliament , and the European Union . Some

legislation passed by the pre-1707 Parliament of Scotland is still also valid .

Figure 4: Examples from test set of the BoolQ data set where QUASER-FB achieves the best rationale IOU. Gold
rationales are highlighted in yellow, while rationales predicted by QUASER-FB, BERT-BERT, and IB are shown
in bold, underlined, and italicized words respectively.

for extracting supporting evidence. Among unsu-581

pervised methods, the closest to ours is the work582

of Paranjape et al. (2020b) who propose a simple583

sparse prior for the rationale extractor motivated by584

information bottleneck theory, and evaluate their585

approach on the ERASER benchmark (DeYoung586

et al., 2020). However, their method only optimizes587

for two (sufficiency and compactness) out of three588

desired characteristics of faithful rationales. Our589

method is also motivated by the work of Yu et al.590

(2019) who propose a general method for faithful591

rationalization for text classification problems by592

directly optimizing for comprehensiveness, in addi-593

tion to sufficiency and compactness. However, their594

approach involves learning three different models595

within a cooperative game-theoretic framework and596

is not scalable while also requiring the need to tune597

comprehensiveness through a hyper-parameter.598

Lastly, question generation has been previously599

considered by Lewis and Fan (2019) within the con- 600

text of generative QA where they model the joint 601

distribution of the question and answer. They show 602

that question generation can increase robustness of 603

the model on adversarial inputs. 604

8 Conclusion 605

We proposed a novel and scalable extractive ra- 606

tionalization method for QA tasks using a single 607

Transformer model. By adding a question gener- 608

ation objective to our method, we showed that it 609

is possible to extract rationales that rely on robust 610

input features, thereby improving both faithfulness 611

of the extracted rationales and answer accuracy. 612

While we showed that learning an evidence ex- 613

tractor by jointly predicting the question and the 614

answer can improve rationale extraction, it is pos- 615

sible to combine the rationales extracted for the 616

question and answer in more novel ways. 617
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