Towards Understanding Generalization of Graph Neural Networks

Huayi Tang'? Yong Liu'2"

Abstract

Graph neural networks (GNNs) are widely used
in machine learning for graph-structured data.
Even though GNNs have achieved remarkable
success in real-world applications, understand-
ing their working mechanism in theory is still on
primary stage. In this paper, we move towards
this goal from the perspective of generalization.
Specifically, with consideration of stochastic op-
timization, we establish high probability bounds
of generalization gap and gradients for transduc-
tive learning algorithms. After that, we provide
high probability bounds of generalization gap for
popular GNNs and analyze the factors affecting
their generalization capability. These theoreti-
cal results reveal how the network architecture
impacts the generalization gap. Experiments on
benchmark datasets validate the theoretical find-
ings. Our results provide new insights into under-
standing generalization of GNNs.

1. Introduction

Graph-structured data (Zhu et al., 2021) exists widely in
real-world applications. As one of the most effective mod-
els to process graph-structured data, graph neural networks
(GNNSs) (Gori et al., 2005; Scarselli et al., 2009) have been
widely adopted in computer vision (Qi et al., 2017; Johnson
et al., 2018; Landrieu & Simonovsky, 2018; Satorras & Es-
trach, 2018), natural language processing (Bastings et al.,
2017; Beck et al., 2018; Song et al., 2018), recommendation
systems (Ying et al., 2018; Fan et al., 2019; He et al., 2020;
Deng et al., 2022), and Al for science (Sanchez-Gonzalez
et al., 2020; Pfaff et al., 2021; Shen et al., 2021; Han et al.,
2022), among other areas. There are two main ways to view
modern GNNss: spatial domain perspective (Kipf & Welling,

“Corresponding author 'Gaoling School of Artificial Intel-
ligence, Renmin University of China, Beijing, China *Beijing
Key Laboratory of Big Data Management and Analysis Meth-
ods, Beijing, China. Correspondence to: Huayi Tang <huayi-
tang@ruc.edu.cn>, Yong Liu <liuyonggsai@ruc.edu.cn>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

2017; Hamilton et al., 2017; Velickovié et al., 2018; Xu
et al., 2019) and spectral domain perspective (Defferrard
et al., 2016; Gasteiger et al., 2019; Liao et al., 2019; Chien
etal., 2021; He et al., 2021). The former regards GNNs as
processes of combining and updating features based on ad-
jacent relationships, while the latter treats GNNGs as filtering
functions applied to graph spectrum. Recent developments
of GNNs are summarized in (Zhou et al., 2020; Wu et al.,
2021; Zhang et al., 2022).

Despite the empirical success of GNNSs, establishing theo-
ries to explain their behaviors is still in its infancy. Recent
studies towards this direction include understanding over-
smoothing (Li et al., 2018; Zhao & Akoglu, 2020; Oono
& Suzuki, 2020a; Rong et al., 2020), interpretability (Ying
et al., 2019; Luo et al., 2020; Vu & Thai, 2020; Yuan et al.,
2020; 2021), expressiveness (Xu et al., 2019; Chen et al.,
2019; Maron et al., 2019; Dehmamy et al., 2019; Feng et al.,
2022), and generalization (Scarselli et al., 2018; Du et al.,
2019; Verma & Zhang, 2019; Garg et al., 2020; Zhang et al.,
2020; Oono & Suzuki, 2020b; Lv, 2021; Liao et al., 2021;
Esser et al., 2021; Cong et al., 2021). In this work we
focus on the last branch. Some prior works have used clas-
sical techniques such as Vapnik-Chervonenkis dimension
(Scarselli et al., 2018), Rademacher complexity (Garg et al.,
2020; Lv, 2021) and algorithm stability (Verma & Zhang,
2019) to provide generalization bounds for GCN (Kipf &
Welling, 2017) and MPNN (Gilmer et al., 2017). However,
these studies have to split the original graph into subgraphs
composed of central nodes and their neighbors, which are
then treated as independent instances. This setting signifi-
cantly differs from real-world implementations (Yang et al.,
2016; Kipf & Welling, 2017), where training nodes are sam-
pled without replacement from the full set of nodes and test
nodes are visible during training, leading to a gap between
theory and practice.

To this end, recent studies (Oono & Suzuki, 2020b; Esser
etal., 2021; Cong et al., 2021) have incorporated the learn-
ing schema of GNNss into the category of transductive learn-
ing and yielded more realistic results. However, these stud-
ies still suffer from some limitations. Firstly, the analysis
in (Oono & Suzuki, 2020b) focuses on multi-scale GNNs,
whose network architecture differs a lot from modern GNNss.
Besides, their analysis is oriented to the AdaBoost-like op-
timization procedure, and it is unclear whether the tech-

Towards Understanding Generalization of Graph Neural Networks

nique can be applied to general optimization algorithms
such as stochastic gradient descent (SGD). Secondly, the
upper bound provided in (Esser et al., 2021) is of slow order
and is inadequate for providing meaningful learning guaran-
tees of node classification in large-scale scenarios. Finally,
(Cong et al., 2021) only considers spectral-based GNNs
with fixed coefficients, leaving spectral-based GNNs with
learnable coefficients (Chien et al., 2021) unexplored.

Motivated by the aforementioned challenges, under trans-
ductive setting, we study the generalization gap of GNNs
for node classification task with consideration of stochastic
optimization. First, we establish high probability bounds
of generalization gap and gradients under transductive set-
ting, and derive high probability bounds of test error under
gradient dominant condition. Next, we provide a compre-
hensive analysis on popular GNNs including both linear and
non-linear models and derive the upper bound of the Lips-
chitz continuity and Holder smoothness constants, by which
we compare their generalization capability. These results
show that SGC (Wu et al., 2019) and APPNP (Gasteiger
et al., 2019) can achieve smaller generalization gap than
GCN (Kipf & Welling, 2017). Besides, the unconstrained
coefficients in GPRGNN (Chien et al., 2021) may lead to
a large generalization gap. Our results reveal the reason
why shallow models achieve comparable and even better
performance than nonlinear models from the perspective of
learning theory, and provide theoretical supports for widely
used techniques such as early stopping and DropEdge (Rong
et al., 2020). Experimental results on benchmark datasets
show that the theoretical findings are generally consistent
with practical evidences.

2. Related Work
2.1. Generalization Analysis of GNNs

Existing studies on generalization analysis of GNNs gener-
ally fall into two categories: graph classification tasks based
studies and node classification tasks based studies.

Graph Classification Tasks. (Liao et al., 2021) is the first
work to establish generalization bounds for GCN using the
PAC-Bayesian approach. The authors in (Ju et al., 2023)
further improve results in (Liao et al., 2021) and provide the
lower bound. Besides, neural tangent kernels (Jacot et al.,
2018) are also used to analyze the generalization of infinitely
wide GNNs trained by gradient descent (Du et al., 2019).
Different from these studies, we focus on more challenging
node classification task.

Node Classification Tasks. In (Scarselli et al., 2018), the
authors analyze the generalization capability of GNNs us-
ing Vapnik—Chervonenkis dimension. (Verma & Zhang,
2019) is the first work to provide generalization bounds for
one-layer GCN through algorithm stability, which is later

extended to multi-layer GCNs in (Zhou & Wang, 2021). The
work in (Garg et al., 2020) converts the graph into individual
local node-wise computation trees and establishes their gen-
eralization bound respectively via Rademacher Complexity.
The aforementioned works rely on the process of convert-
ing a graph into subgraphs, which differs significantly from
realistic implementations. Observing this, (Oono & Suzuki,
2020b) makes the first step that adopting the transductive
learning framework to analyze multi-scale GNNs. This
framework originates from (Vapnik, 1998; 2006), and is
further developed in (El-Yaniv & Pechyony, 2006; 2007).
The work most related to ours is (Cong et al., 2021) and
(Esser et al., 2021), where the authors establish general-
ization bound for GNNs and its variants by transductive
uniform stability and transductive Rademacher complexity
respectively. However, the derived bound in (Esser et al.,
2021) is of slow order, and it is still unclear whether their
technique can be applied on SGD. Different from (Cong
et al., 2021) that analyzing full-batch gradient descant, we
consider a more complex setting, namely transductive learn-
ing under SGD, due to the involvement of randomness in
optimization. Besides, there are some works orthogonal
to ours, such as analyzing the generalization capability of
GNN:ss training with topology-sampling (Li et al., 2022a) or
on large random graphs (Keriven et al., 2020).

2.2. Out-of-Distribution (OOD) Generalization on
Graphs

Recently, much effort has been devoted to the study of OOD
generalization on graphs (Li et al., 2022b), due to the oc-
currence of distribution shifts in real-world scenarios. An
adversarial learning schema (Wu et al., 2022) is proposed
to minimize the mean and variance of risks from multiple
environments. The authors propose a two-stage training
schema to tackle distribution shift on molecular graphs in
(Yang et al., 2022). Energy-based message passing schema
is shown to be effective in enhancing the OOD detection
performance of GNNs (Wu et al., 2023). The current work
shows that the spurious performance of GNNs may come
from its intrinsic generalization capability (Yang et al., 2023)
rather than expressivity. Moreover, other recent work has
also focused on reasoning (Xu et al., 2020), extrapolation
ability (Xu et al., 2021; Bevilacqua et al., 2021), and gener-
alization from small to large graphs (Yehudai et al., 2021).

3. Preliminaries
3.1. Notations

Let G = {V, £} be an given undirected graph with n = |V)|
nodes. Each node is an instance z; = (x;, y;) containing fea-
ture x; and label y; from some space Z = X x). Let X be
the feature matrix where the i-th row X, is the node feature
x;. Let A and D be the adjacency matrix and the diagonal

Towards Understanding Generalization of Graph Neural Networks

degree matrix respectively, where D;; = 2?21 A;;. De-

noteby A = (D+1,,)"2(A+1,)(D+1,)" % the normal-
ized adjacency matrix with self-loops and \/m the number
of categories. We focus on the transductive learning setting
where all features together with the randomly sampled la-
bels are constructed as training set. Let S = {x;,y; }-1"
be the set of instances where m + u = n. Without loss of
generality (W.l.o.g.), let {y; }!™, be the selected labels our
task is to predict the labels of examples {x;}/"f". | by a
learner (model) trained on {x; }." " | J{y;}/™,. This setting
is widely adopted in node classification task (Yang et al.,
2016; Kipf & Welling, 2017) where the training and test
nodes are determined by a random partition.

Now we consider a more concrete case, namely the model
is set to a given GNN with learnable parameters { W, }/Z .
Since RP*4 and RP? are isomorphic, the analysis in this
work is oriented to the vector space. To this end, we use a
unified vector w = [vec [W1] ;... ; vec [W g]] to represent
the collection of {W,}/_ |, where vec|] is the vectoriza-
tion operator that transforms a given matrix into vector,
namely vec [W] = [W,q;--- ; W] for W € RP*?. Here
‘W, is the i-th column of W. For w € W, the training
and test error is defined as R,,(w) = L3 ((w;2;)
and R,(w) = 1 E:"t:“ {(w; z;) respectively, where
0:W X Z— R+ is the loss function. In this work, we
follow previous studies (El-Yaniv & Pechyony, 2007; Oono
& Suzuki, 2020b; Esser et al., 2021) and define the trans-
ductive generalization gap by |R,,(w) — R, (w)|. Since
the label of test examples are not available, the optimization
process is to find parameters to minimize the the training
error R, (w). Much efforts (Duchi et al., 2011; Kingma &
Ba, 2015) are devoted to solving this stochastic optimiza-
tion problem, and we mainly focus on SGD (Summarized
in Algorithm 1) in this work.

We close this part by introducing additional notations used
in our analysis. Denote by || - ||, and || - || the 2-norm of vec-
tor and spectral norm of matrix, respectively. Let w(!) be
the initialization weight of the model. We focus on the space
W = B(w;r),r > 1 in this work, where B(w!);r) £
{w:||w —w®]|, <r} is the ball with radius r. Denote
by V/(+; z) the gradient of ¢ with respective to (w.r.t.) the
first argument. Denote by b, = sup,cz HV€ (w); ||
the supermum of gradient w1th initialed weight and bg
sup,¢ z |((w(V); 2)|, the supermum of loss value with ini-
tialed weight. Let W € argminy, ¢y R, (W) be the param-
eters of training error minimizer. We denote by o(-) the
activation function.

3.2. Assumptions

In this part, we present some assumptions used in this paper.

Assumption 3.1. Assume that there exists a constant cx >
0 such that ||x||2 < ¢x holds for all x € X.

Algorithm 1 SGD for Transductive Learning

Input: Initial parameter w(!), learning rates {7, }, train-
ing set {x;}75" U {y)2,
fort =1to T do
Randomly draw j; from the uniform distribution over
the set {j : j € [m]}.
Update parameters by
witth) = w® —, ve(w®; z;,).
end for

Assumption 3.2. Assume that there exists a constant cy >
0 such that [W || < cw, h € [H] forw € B(w); 7).

Remark 3.3. Assumption 3.1 requires that input features are
bounded (Verma & Zhang, 2019). This assumption can be
met by applying normalization on features. Assumption 3.2
means that the spectral norm of each learnable parameter
‘W, (components of w) is bounded during the training pro-
cess, which is a common assumption in the generalization
analysis of GNNs (Garg et al., 2020; Liao et al., 2021; Cong
et al., 2021; Esser et al., 2021). These two assumptions are
necessary to analyze the Lipschitz continuity and Holder
smoothness of the objective ¢ w.r.t. w.

Assumption 3.4. Assume that the activation function o (-) is
a-Holder smooth. Concretely, there exist constants P > (
and a € (0, 1], for all u, v € R%:

lo’(0) = o’ (v)ll2 < Pllu—v3. M

Remark 3.5. Assumption 3.4 implies Lipschitz continuity
of the activation function if & = 0. Moreover, it implies the
smoothness of the activation function if o« = 1. Therefore,
Assumption 3.4 is much milder than the assumption in previ-
ous work (Verma & Zhang, 2019; Cong et al., 2021), which
requires the smoothness of activation function. For the con-
venience of analysis while not yielding a large gap between
theory and practice, we construct a modified ReLU function
(see Appendix A) with hyperparameter ¢ € (1, 2] that satis-
fies Assumption 3.4 and has a tolerable approximate error
to the vanilla ReLU function.

Assumption 3.6. Assume that there exists a constant G > 0
such that for all z € S,

Ve [[VE(wi; 2)

holds V ¢ € N, where {n; }1_, is learning rates.

Remark 3.7. The formal definition of V{(w;z) can be
found in Lemma A.4 in the Appendix. Assumption 3.6
(Lei & Tang, 2021; Li & Liu, 2021) means that the product
of gradient norm and square root of learning rate is bounded,
which is milder than the widely used bounded gradient as-
sumption (Hardt et al., 2016; Kuzborskij & Lampert, 2018),
since the learning rate tends to zero during the iteration.

<G @)

Towards Understanding Generalization of Graph Neural Networks

Assumption 3.8. Assume that there exists a constant oy >
0 such that for ¥ ¢ € N, the following inequality holds

Ej, [IV€(we;2;,) = VRm(wo)ll3] <05 3)

Remark 3.9. Assumption 3.8 requires the boundness of
variances of stochastic gradients, which is a standard as-
sumption in stochastic optimization studies (Kuzborskij &
Lampert, 2018; Lei & Tang, 2021; Li & Liu, 2021).

4. Theoretical Results

In this section, we first present the high probability bounds
of generalization gap and gradients for general transductive
learner trained by SGD. Afterwards, we turn to specific
examples and provide results of some popular GNNs. Com-
plete proofs can be found in the Appendix.

4.1. General Results of Transductive SGD

We first analyze properties of the objective function £ and
provide the following proposition.

Proposition 4.1 (Informal). Suppose Assumptions 3.1, 3.2,
and 3.4 hold. Denote by F a specific GNN, for any w,w' €
W and z € S, the objective {(w; z) satisfies

[l(w;2) — b(w';2)| < Lz|lw—w|2, 4)
and

IVel(w; 2) — VEW'; 2)]|2 5

<Prmax {[|w — w'|[3, [w — w'|2},

with network dependent constants L and Pr.

Remark 4.2. We provide a more detailed analysis of L
and Pr in Subsection 4.2. Both L and Pr depend on the
specific network architecture 7 of GNNs. Thus, the upper
bound of generalization gap varies by the architecture.

Our first main result is high probability bounds of transduc-
tive generalization gap, as presented in Theorem 4.3.

Theorem 4.3. Suppose Assumptions 3.1, 3.2, 3.4, 3.6, and
3.8 hold. Suppose that the learning rate {n;} satisfies n; =

ﬁ such that to > max{(2P)"/* 1}. For any 6 € (0,1),

with probability 1 — 4,
(a). If a € (0, 3), we have
RH(W(T+1)) _ Rm(w(T+1))
H 20
—0 < LR o ()T og <1)>
mu)
(b). Ifa = %, we have

Ru(W(TJrl)) —R,, (W(T+1))

jw

(m +u)

00y (1))

~o(L

(c). If o € (%, 1], we have

Ru(W(TJrl)) . Rm(w(T+1))
-0 (L}_(m—f—u)z log? (T) log <1>>
mu 0

Remark 4.4. Theorem 4.3 shows that the transductive
generalization gap depends on the training data size
m, test data size m/u, network architecture depen-
dent Lipschitz continuity constant Ly, and the num-
ber of iterations 7. Our upper bounds are of order
O ((£ + L)y/m+u), which is much sharper than the
bound O ((5 + L)(m +u) +log(m + u)) in previous
work (Esser et al., 2021). Note that as the size m + u in-
crease, the bound in (Esser et al., 2021) become increasing
larger and fail to provide a reasonable generalization guar-
antee. This seriously restricts its application in large-scale
node classification scenarios where the order of m+u is usu-
ally in the millions. Our results can address this drawback
and provide more applicable learning guarantees. Besides,
the bound provided in (Esser et al., 2021) does not consider
the specific optimization and has difficulty in revealing the
influence of T" on generalization gap. Our results show that
the generalization gap becomes larger when the number of
T increases, resulting in the over-fitting phenomenon. Thus,
early stopping may be beneficial for yielding a smaller gen-
eralization gap, which is widely adopted in implementation
of modern GNNss (Kipf & Welling, 2017; Chen et al., 2020).
It can be seen that the generalization gap is positively re-
lated to the Lipschitz continuity constant L » determined by
specific network architecture F. Thus, larger L leads to
larger upper bounds of generalization gap, showing that the
network architecture of GNN also have a significant influ-
ence on the generalization gap (see Subsection 4.2). The
upper bound of generalization gap in (Cong et al., 2021)
also increases with 7" when the objective is optimized by
full-batch gradient descent. This is not surprise since it can
be seen as a special case of SGD where the batch size is
equal to the size of training examples.

Our second main result is high probability bounds of the
gradients on training and test data.

Theorem 4.5. Suppose Assumptions 3.1, 3.2, 3.4, 3.6, and
3.8 hold. Suppose that the learning rate {n;} satisfies n; =

ﬁ such that to > max{(2P)"/* 1}. Forany § € (0,1),

with probability 1 — 6,

(a). If a € (0, 3), we have

HVRm(w<T+1>) - VRu(w<T+1>)H

oz

2

log% (T)Tlfzm log (;)) .

e

Towards Understanding Generalization of Graph Neural Networks

(b). Ifa = %, we have

HVRm(w<T+1>) - VRu(w(T“))H

o o (1)),

2

o7y e 7|

=0 (W log? (T) log (;)) .

Remark 4.6. Theorem 4.5 provides high probability bounds
for the gap of gradients on training examples and test exam-
ples under transductive setting. Overall, the generalization
gap we derive is still of order O ((% + %)\/m + u). Be-
sides, the generalization gap of gradients increases with the
increase of 7', showing that a smaller number of iterations
helps achieving a smaller gap of gradients.

2

Since the generalization performance (often measured by
test error) is determined by both training error and gener-
alization gap, we further provide a upper bound of the test
error under a special case that the objective satisfies the
following PL condition.

Assumption 4.7. Suppose that there exists a constant
such that for all w € W,

1
Bon(w) = B (W7) < 52 IVR.(W)ll5, (6

holds for the given set S from Z.

Remark 4.8. Assumption 4.7 is also named as gradient dom-
inance condition in learning theory studies, indicating that
the difference between current training error and the optimal
training error can be upper bounded by the quadratic func-
tion of the gradient on training instances. This assumption
is widely adopted in nonconvex learning (Zhou et al., 2018;
Xu & Zeevi, 2020; Lei & Tang, 2021; Li & Liu, 2021), and
has been verified in over-parameterized systems including
wide neural networks (Liu et al., 2020). This assumption
only appears in Corollary 4.9.

Corollary 4.9. Suppose Assumptions 3.1, 3.2, 3.4, 3.6, 3.8,
and 4.7 hold. Suppose that the learning rate {n} satisfies
N = m such that ty > max{%(QP)%, 1}. For any
§ € (0,1), with probability 1 — §,

(a). If a € (0, 3), we have

Ru(w Tty — R, (w™)

[

1 1-2a 1
log2 (T)T = log(l/é)ﬂ-ﬁ),

(b). Ifa = %, we have

Ru(w Tty = R, (w™)

=0 <L]:% log(T) log (1/6) + %)

(c). Ifa € (%, 1), we have

Ru(w) = R, (w™)

—0 (LF% log® (T log(1/5) + %)

(d). If a =1, we have

Ry (w'Tt) — R, (w")
3
2

-0 (Lf L;;)

Remark 4.10. Theorem 4.9 shows that under Assump-
tion 4.7, the test error are determined by the minimal train-
ing error, optimization error and generalization gap. The
minimal training error R,, (w*) reflects how well the model
fits the data, which is a measure of the model’s expressive
ability. The first and the second term in the slack terms
are generalization gap and optimization error, respectively.
With the increase of T, the generalization gap increase while
the optimization error decrease. Therefore, it is necessary
to carefully choose a proper number of iterations in order to
balance the trade-off between optimization and generaliza-
tion. In the implementation of most GNNs studies (Kipf &
Welling, 2017; Velickovié et al., 2018; Chien et al., 2021; He
et al., 2021), early stopping is adopted and 7T’ is determined
by the performance of model on validation set. Thus, our
results are consistent with real implementations.

log () log(1/3) + 128D 1og”(1/6)) .

T

The above analysis can be applied to any model trained with
SGD in a transductive learning context. In the next part, we
will narrow our focus to several popular GNN models.

4.2. Case Studies of Popular GNNs

We have established high probability bounds of transductive
generalization gap in Theorem 4.3. In this part, we analyze
the upper bounds of architecture dependent constant L r
and Pz, with that the upper bound of generalization gap
can be determined. We select five representative GNNs for
case study: GCN, GCNII, SGC, APPNP, and GPRGNN.
We assume that / is cross-entropy loss and denote by Y the
prediction. For concise, we do not consider the bias term,
since it can be verified that (w,x) 4+ b = (W, X) holds with
w = [w;b] and X = [x; 1].

GCN. The authors in (Kipf & Welling, 2017) introduce the
renormalization trick and propose to aggregate features from

Towards Understanding Generalization of Graph Neural Networks

one-hop neighbor nodes. The feature propagation process
of a two-layer GCN model is

Y = Softmax(Ac(AXW;)Ws),)

where W, € R¥*" W, € R"*IY are parameters.

Proposition 4.11. Suppose Assumptions 3.1, 3.2, and 3.4
hold, then the objective {(w; z) satisfies Egs. (4, 5) with
w = [vec [W1]; vec [W1]]. Concretely, the Lipschitz conti-
KHQ .

nuity constant L is Laon = QCch‘

Due to the tedious formulation, the concrete value of Pr is
provided in the Appendix. Proposition 4.11 demonstrates
that Lgcn depends on factors HAHOC, cx, and cyy. Let
deg,.i, and deg,, .. be the minimum and maximum node
degree, respectively, ;&Hoo can be further bounded by

' degmax+1
N ®)

It can be found that the generalization gap decreases with
the decrease of the maximum node degree, which could
be achieved by removing edges. This explains why the
DropEdge (Rong et al., 2020) technique is beneficial for
alleviating the over-fitting problem from the perspective
of learning theory. Besides, for GCN trained on sam-
pled sub-graphs {G;}" ,, the Lipschitz continuity con-

stant is Lgon = 2¢x ¢ Maxe[y) H‘IXMH;’ where Al
is the normalized adjacency matrix with self-loop of G;.
Since only a portion of neighboring nodes are preserved
during sub-graphs sampling (Hamilton et al., 2017; Zeng
et al., 2020; 2021), the maximum node degree of each
sub-graph is smaller than that of initial graph, implying
max;e] HAM HOO < ||A||OO holds. Thus, Proposition 4.11
shows that training on sampled sub-graphs are beneficial
to achieve smaller generalization gap. Lastly, the spectral
norm of learning parameters also has an effect on the gener-
alization gap. Thus, the commonly used Ly regularization
technique is beneficial to reduce the generalization gap.

GCNIL. The authors in (Chen et al., 2020) propose to relieve
over-smoothing by initial residual and identity mapping.
Denote by H(®) = ¢(XW)) the initial representation. The
forward propagation of a two-layer GCNII model is

HO) = o (B, HO)W (1, W)),
H(Q) = 0'<(I)(O(2, H(l))\II(BQ’W2))7 (9)

Y = Softmax(H®W3),

where ®(a, H) = (1 — «)AH + oH©® and ¥(3, W) =
(]. —ﬁ)I-l—BW Here Wy € RdXh, W, W, e R"*h and
W3 € RP¥IVI are parameters.

Proposition 4.12. Suppose Assumptions 3.1, 3.2, and 3.4
hold, then the objective {(w; z) satisfies Egs. (4, 5) with

w = [vec[Wy];vec[Wi];vec[Wa];vec[W3]]. Con-
cretely, denote by By = cxcw and
Co=1— B¢+ Becw,
(10)

By = ((1 — Oég)Bz,1||AHOO + OéeCXCW)Cg,

then the Lipschitz continuity constant Lx is Lgon =

v L1+ Lo, where

2 2
L1:2(2+CW§2)B§7
C3

~ o (B2C2
Ly =2(1— az)zﬁfe%vHAHi(7)

Y

Proposition 4.12 shows that Lgcnir is a function of {a; }2_;
and {g; 12:1~ Finding the optimal value of Lgcnyr is a
quadratic programming problem with constrains vy, as €
[0,1] and 31, B2 € [0, 1]. Now we discuss a special case that
a1 = ag = 0and 8y = B2 = 0. In this case, we have L =
403(0%4,“1&”; and Lo = 0, which implies that Lgoni =
Lgcen- Note that the optimal value of Lgentr is no larger
than any value of objective function over the feasible region.
Therefore, we conclude that Loont < Lgen holds when
{a;}2_; and {3;}2_, take their optimal values. This result
is not surprise, since GCN is a special GCNII under this
setting. For proper value of {a;}7_, and {3;}2_,, GCNII
could achieve smaller generalization gap than GCN. As
GCNII can achieve lower training error by relieving the over-
smoothing problem, Proposition 4.12 indicates that GCNII
can achieve superior performance when hyperparameters
are set properly. Due to the involve of {a; }7_; and {S3;}7_,,
the growth rate of Lgonir is much smaller than Lgon when
propagation depth increases, which makes GCNII maintain
generalization capability and achieve stable performance.

SGC. The work (Wu et al., 2019) proposes to remove all
nonlinear activations in GCN. To facilitate comparison with
GCN, we consider a two layers SGC model, whose propa-
gation is given by

Y = Softmax(A2XW,; W), (12)

where W, € R¥" and W, € R"*IYI are parameters.

Proposition 4.13. Suppose Assumption 3.1, 3.2, and 3.4
hold, then the objective {(w; z) satisfies Egs. (4, 5) with
w = [vec [W1]; vec [W]]. Concretely, the Lipschitz conti-
nuity constant L is Lsac = 2cxcw HX2 ||oo

Since ||_/12H00 < H:&Hio, we have Lggc < Lacen. Surpris-
ingly, this simple linear model can achieve better smaller
generalization gap than nonlinear models (Kipf & Welling,
2017; Velickovi¢ et al., 2018), even though its representa-
tion ability is inferior than them. Note that the performance

Towards Understanding Generalization of Graph Neural Networks

on test examples is determined by both training error and
generalization gap. If linear GNNs can achieve a small train-
ing error, it is natural that they can achieve comparable and
even better performance than nonlinear GNNs on test exam-
ples. Therefore, Proposition 4.13 reveals why linear GNNs
achieve better performance than nonlinear GNNs from learn-
ing theory, as observed in recent works (Zhu & Koniusz,
2021; Wang et al., 2021). Considering the efficiency and
scalability of linear GNNs on large-scale datasets, we be-
lieve that they have much potential to be exploited.

APPNP. Multi-scale features are aggregated via personal-
ized PageRank schema in (Gasteiger et al., 2019). Formally,
the feature propagation process is formulated as

Y = Softmax(g(A)o(c(XW1)W2)), (13)

where g(A) = Yr Y (1—7)F AR+ (1-7)KAK. W, €
R4" and Wy € R"*IYI are parameters.

Proposition 4.14. Suppose Assumption 3.1, 3.2, and 3.4
hold, then the objective {(w; z) satisfies Eqs. (4, 5) with
w = [vec [W1]; vec [W3]]. Concretely, the Lipschitz conti-
nuity constant Lx is Lappnp = 2cXcWHg(./~X) HOO

L appnp in Proposition 4.14 is positively related to the infin-
ity matrix norm of the polynomial spectral filter. According
to (Gasteiger et al., 2019), the value Qf v is commonly set to
be a small number, resulting in ||g(A)||__ < ||A]|__ holds.
Therefore, the Lipschitz continuity constant of APPNP can
be smaller than that of GCN for proper value of -y, indicating
that APPNP may achieve smaller generalization gap than
GCN. Besides, K also affects the value of ||g(A)]||, and a
larger K may yield a larger generalization gap. Therefore,
K is usually set as a proper value to achieve a trade-off
between expressiveness and generalization performance.

GPRGNN. Compared with APPNP, the fixed coefficients
are replaced by learnable weights in (Chien et al., 2021), in
order to adaptively simulate both high-pass and low-pass
graph filters. The feature propagation process is

Y = (9(A, 7)o (c(XW1)W2)), (14)

where g(.&,'y) = ZszofykAk. W, € R¥>*h W, ¢
R"*VI and 4 € RE+1 are parameters.

Proposition 4.15. Suppose Assumption 3.1, 3.2, and 3.4
hold, then the objective {(w; z) satisfies Egs. (4, 5) with
w = [vec [W1];vec[Wa];~]. Concretely, the Lipschitz
continuity constant Lz is Lapr = \/L? + L3, where

1

2

K
Ly :ﬂCXC%’V<kZ:()“Ak”oo> ; (15)

Ly = 2CXCWH9(;*7"/)HO<>'

Table 1. Loss gap comparison of different baseline models on Cora,
Citeseer and Pubmed.

Cora Citeseer Pubmed
GCN 0.304+0.03 0.77+£0.04 0.034+0.01
GCN* 0.91£0.18 2.12+0.16 0.054+0.01
GAT 0.2940.03 0.65+0.02 0.0340.01
GCNII 0.194£0.03 0.43+0.02 0.0240.01
GCNII* 0.164+0.03 0.43+0.03 0.0240.01
SGC 0.124£0.03 0.28+0.02 0.01£0.00
APPNP 0.164+0.03 0.25+0.02 0.0140.00
GPRGNN 0.24+0.03 0.554+0.02 0.02+0.00

Table 2. Accuracy gap comparison of different baseline models on
Cora, Citeseer and Pubmed.

Cora Citeseer Pubmed
GCN 9.76£1.15 22.11£1.26 1.084+0.52
GCN* 13.454+1.28 26.48+1.21 1.49+0.63
GAT 11.00+0.75 22.691+0.84 1.52+0.43
GCNII 7.69+1.48 14.854+0.80 0.8840.52
GCNII* 6.24+1.59 13.49+1.39 0.8040.50
SGC 5.33£1.58 11.50+£1.09 0.734+0.54
APPNP 7.72+1.54 9.99+1.17 0.854+0.46
GPRGNN 8.9041.22 19.08+0.95 0.96+0.49

Note that Lz has similar form with Lappnp and the only

difference is that g(A)) is replaced by g(A,«y). Assume that
g(A,~) = g(A) and note that Lapr = /L2 + L2 > Lo,
we have Lapr > Lappnp. Besides, since there is no con-
straint on 7, the value of ||g(A,~)||__ may be larger when
the norm of ~ is large, resulting in larger generalization
gap than APPNP. Therefore, adopting regularization tech-
nique on the learnable coefficients to restrict the value of
|9(A,7)||. is necessary.

To summarize, L and Pr are determined by the feature
propagation process and graph-structured data. Estimating
these constants precisely is challenging (Virmaux & Sca-
man, 2018; Fazlyab et al., 2019), and the upper bounds we
provided are sufficient to reflect the realistic generalization
gap of these models (see Section 5 for more detail). Besides,
we have to emphasize that results for GCN and GCNII with
more than two layers can be derived by similar techniques,
yet it requires more tedious computation. Exploring new
techniques to estimate these constants conveniently and pre-
cisely are left for future work.

S. Experiments

Experimental Setup. We conduct experiments on widely
adopted benchmark datasets, including Cora, Citeseer, and
Pubmed (Sen et al., 2008; Yang et al., 2016). The accuracy
and loss gap (i.e., the absolute value of difference between

Towards Understanding Generalization of Graph Neural Networks

200 Cora Citeseer Pubmed
’ N —— Train 1.75° —— Train —— Train
1.75 h Test Test 1.0 Test
1.50
1.50
3 o o
S12s %1.25 208
> > >
» 1.00 » 1.00 >
3 3 3
=075 =075 0.6
0.50 0.50
0.25 0.25 0.4
1 60 120 180 240 300 1 60 120 180 240 300 1 60 120 180 240 300

Iteration

Iteration

Iteration

Figure 1. The loss value of GCN on training and test examples with the increase of iterations.

Table 3. Test accuracy comparison of different baseline models on
Cora, Citeseer and Pubmed.

Cora Citeseer Pubmed
GCN 85.91£0.53 71.78+0.72 85.2940.19
GCN* 82.49+0.59 66.74+£1.07 84.21+0.26
GAT 86.10£0.51 72.90+0.65 85.45+0.26
GCNII 82.85£2.17 73.61+£0.64 84.70+0.24
GCNII* 82.85+£2.44 72.89+0.96 83.67+0.46
SGC 82.394+2.48 74.37+£0.56 82.00%0.27
APPNP 79.1443.17 74.12+£0.62 82.86+0.29
GPRGNN 87.244+0.71 73.79£0.67 85.07+0.34

Table 4. Loss gap, accuracy gap and test accuracy comparison of
baseline models on ogbn-arxiv.

Loss Gap Accuracy Gap Test Accuracy
GCN 0.04+£0.01 2.39+0.48 66.92+0.57
GCNII 0.03+0.01 1.47+0.57 67.35£0.58
SGC 0.01£0.00 1.8940.15 66.89£0.16
APPNP 0.03£0.00 1.26£0.25 68.20£0.22
GPRGNN 0.03+0.00 1.3440.30 69.30£0.30

the loss (accuracy) on training and test instances) are used
to estimate the generalization gap. Following the standard
transductive learning setting, in each run, 30% sampled
nodes determined by a random seed are used as training set
and the rest nodes are treated as test set. The number of
iterations is fixed to 7" = 300. Moreover, we also conduct
experiments on large-scale dataset ogbn-arxiv (Hu et al.,
2020). We set T' = 700 and adopt the standard split. We
independently repeat the experiments 10 times and report
the mean value and standard deviations of all runs. Please
refer to Appendix C for more detailed settings.

Experimental Results. The loss and accuracy comparisons
are presented in Table 1 and Table 2, respectively. The
test accuracy of baseline models are shown in Table 3. We
have the following observations: (1) SGC and APPNP have
smaller loss and accuracy gap than other models including

GCN, which is consistent with the analysis in Subsection 4.2.
Besides, the test accuracy of SGC surpass GCN on Cite-
seer. Therefore, the reason why linear models sometimes
perform better than non-linear models is that their smaller
Lipschitz continuity constants. (2) Compared with GCN,
GCNII achieves smaller loss and accuracy gap with the same
number of layers. We further estimate the generalization
performance of GCN and GCNII with six layers (denoted as
GCN* and GCNII*). Interestingly, with the increase of the
number of hidden layers, the generalization gap of GCN de-
creases sharply. On the contrary, the loss and accuracy gap
of GCNII remain unchanged. The test accuracy of GCNII
also remain unchanged or only drops slightly. Therefore, the
superior performance of GCNII comes from two perspec-
tives: the first is learning non-degenerated representations
by relieving over-smoothing and the second is robust gener-
alization gap against the increase of the number of layers.
(3) Although GPRGNN achieve a competitive test accuracy,
it has higher accuracy and loss gap than APPNP. Therefore,
the unconstrained learning coefficients improve the fitting
ability but also weaken generalization capability. Designing
coefficients learning schema to balance the expressive and
generalization could be a direction for spectral-based GNNs.
(4) The accuracy gap of GAT is slightly inferior to that of
GCN. Since GAT is designed for inductive learning while
our experimental setting is transducive, the superiority of
GAT is not so obvious.

The results on ogbn-arxiv are presented in Table 4 and
are generally consistent with those of Cora, Citeseer, and
Pubmed. Additionally, loss values of GCN on training and
test examples over iterations are presented in Figure 1. The
loss gap increases with the increase of iterations, as demon-
strated by Theorem 4.3. Overall, the theoretical results align
with the experimental results. Note that our analysis is solely
focused on the generalization gap. A smaller generalization
gap does not necessarily mean better generalization abil-
ity, since the performance on test examples are determined
by both training error and generalization gap. Estimating
the training error need to consider the optimization process,
which is a promising direction for future study.

Towards Understanding Generalization of Graph Neural Networks

6. Discussion and Conclusion

In this paper, we establish high probability learning guaran-
tees for transductive SGD, and then derive the upper bound
of generalization gap for some popular GNNs. We con-
duct experiments on benchmark datasets, and the results
support the theoretical results. This work sheds light on un-
derstanding generalization of GNNs and provides insights
into designing new GNN architecture with both expressive
and generalization capabilities.

Although we have made efforts in generalization theory of
GNN:gs, there are still some limitations in our analysis: (1)
The complexity-based technique makes the dimension of
parameters appear in the bounds. Further research should
focus on establishing dimension-independent bounds un-
der milder assumption and deriving the lower bound that
matches the upper bound. (2) We only analyze vanilla SGD
in terms of optimization algorithms. Extending our results
to SGD with momentum and adaptive learning rates is worth
exploring. (3) Our analysis does not explicitly consider the
heterophily of graphs. Establishing heterophily-dependent
generalization bounds is an interesting direction.

Acknowledgements

We sincerely appreciate the anonymous reviewers for their
helpful suggestions and constructive comments. This work
is supported by the National Natural Science Foundation of
China (NO.62076234); the Beijing Natural Science Founda-
tion (NO.4222029); the Intelligent Social Governance Inter-
disciplinary Platform, Major Innovation & Planning Inter-
disciplinary Platform for the “Double First Class” Initiative,
Renmin University of China; the Beijing Outstanding Young
Scientist Program (NO.BJJWZYJH012019100020098); the
Public Computing Cloud, Renmin University of China; the
Fundamental Research Funds for the Central Universities,
and the Research Funds of Renmin University of China
(NO.2021030199); the Huawei-Renmin University joint
program on Information Retrieval; the Unicom Innovation
Ecological Cooperation Plan; the CCF Huawei Populus
Grove Fund; and the National Key Research and Develop-
ment Project (NO.2022YFB2703102).

References

Bastings, J., Titov, 1., Aziz, W., Marcheggiani, D., and
Sima’an, K. Graph convolutional encoders for syntax-
aware neural machine translation. In Conference on Em-
pirical Methods in Natural Language Processing, pp.
1957-1967, 2017.

Beck, D., Haffari, G., and Cohn, T. Graph-to-sequence
learning using gated graph neural networks. In Proceed-
ings of the 56th Annual Meeting of the Association for

Computational Linguistics, pp. 273-283, 2018.

Bevilacqua, B., Zhou, Y., and Ribeiro, B. Size-invariant
graph representations for graph classification extrapola-
tions. In Proceedings of the 38th International Confer-
ence on Machine Learning, pp. 837-851, 2021.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple
and deep graph convolutional networks. In Proceedings of
the 37th International Conference on Machine Learning,
Proceedings of Machine Learning Research, pp. 1725—
1735, 2020.

Chen, Z., Villar, S., Chen, L., and Bruna, J. On the equiv-
alence between graph isomorphism testing and function
approximation with gnns. In Advances in Neural Infor-
mation Processing Systems, pp. 15868-15876, 2019.

Chien, E., Peng, J., Li, P., and Milenkovic, O. Adaptive
universal generalized pagerank graph neural network. In
International Conference on Learning Representations,
2021.

Cong, W., Ramezani, M., and Mahdavi, M. On provable
benefits of depth in training graph convolutional networks.
In Advances in Neural Information Processing Systems,
2021.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In Advances in Neural Information
Processing Systems, 2016.

Dehmamy, N., Barabasi, A.-L., and Yu, R. Understand-
ing the representation power of graph neural networks in
learning graph topology. In Advances in Neural Informa-
tion Processing Systems, 2019.

Deng, L., Lian, D., Wu, C., and Chen, E. Graph convolution
network based recommender systems: Learning guaran-
tee and item mixture powered strategy. In Advances in
Neural Information Processing Systems, 2022.

Devroye, L., Gyorfi, L., and Lugosi, G. A Probablistic
Theory of Pattern Recognition. Springer, 1996.

Du, S. S., Hou, K., Salakhutdinov, R., P6czos, B., Wang,
R., and Xu, K. Graph neural tangent kernel: Fusing
graph neural networks with graph kernels. In Advances
in Neural Information Processing Systems, 2019.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradi-
ent methods for online learning and stochastic optimiza-
tion. Journal of Machine Learning Research, 12(61):
2121-2159, 2011.

El-Yaniv, R. and Pechyony, D. Stable transductive learning.
In Conference on Learning Theory, pp. 35-49, 2006.

Towards Understanding Generalization of Graph Neural Networks

El-Yaniv, R. and Pechyony, D. Transductive rademacher
complexity and its applications. In Conference on Learn-
ing Theory, pp. 157-171, 2007.

Esser, P. M., Vankadara, L. C., and Ghoshdastidar, D. Learn-
ing theory can (sometimes) explain generalisation in
graph neural networks. In Advances in Neural Infor-
mation Processing Systems, pp. 27043-27056, 2021.

Fan, W.,Ma, Y., Li, Q., He, Y., Zhao, Y. E., Tang, J., and Yin,
D. Graph neural networks for social recommendation. In
The World Wide Web Conference, pp. 417-426, 2019.

Fazlyab, M., Robey, A., Hassani, H., Morari, M., and Pap-
pas, G. Efficient and accurate estimation of lipschitz
constants for deep neural networks. In Advances in Neu-
ral Information Processing Systems, 2019.

Federer, H. Geometric Measure Theory. Springer, 1969.

Feng, J., Chen, Y., Li, F., Sarkar, A., and Zhang, M. How
powerful are k-hop message passing graph neural net-
works. In Advances in Neural Information Processing
Systems, 2022.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with pytorch geometric. In International Conference on
Learning Representations, 2019.

Garg, V., Jegelka, S., and Jaakkola, T. Generalization and
representational limits of graph neural networks. In Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, pp. 3419-3430, 2020.

Gasteiger, J., Bojchevski, A., and Giinnemann, S. Predict
then propagate: Graph neural networks meet personal-
ized pagerank. In International Conference on Learning
Representations, 2019.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proceedings of the 34th International Conference
on Machine Learning, volume 70, pp. 1263-1272, 2017.

Giné, E. and Pefia, V. H. Decoupling: From Dependence to
Independence. Springer, 1999.

Gori, M., Monfardini, G., and Scarselli, F. A new model
for learning in graph domains. In Proceedings. 2005
IEEE International Joint Conference on Neural Networks,
2005., pp. 729-734, 2005.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in Neural
Information Processing Systems, 2017.

Han, J., Huang, W., Ma, H., Li, J., Tenenbaum, J. B., and
Gan, C. Learning physical dynamics with subequivariant
graph neural networks. In Advances in Neural Informa-
tion Processing Systems, 2022.

10

Hardt, M., Recht, B., and Singer, Y. Train faster, gener-
alize better: Stability of stochastic gradient descent. In
Proceedings of the 33nd International Conference on
Machine Learning, pp. 1225-1234, 2016.

He, M., Wei, Z., Huang, Z., and Xu, H. Bernnet: Learn-
ing arbitrary graph spectral filters via bernstein approxi-
mation. In Advances in Neural Information Processing
Systems, 2021.

He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., and Wang,
M. Lightgen: Simplifying and powering graph convolu-
tion network for recommendation. In Proceedings of the
43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 639-648,
2020.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. In Advances in
Neural Information Processing Systems, volume 33, pp.

22118-22133, 2020.

Jacot, A., Gabriel, F.,, and Hongler, C. Neural tangent ker-
nel: Convergence and generalization in neural networks.
In Advances in Neural Information Processing Systems,
2018.

Johnson, J., Gupta, A., and Fei-Fei, L. Image generation
from scene graphs. In Conference on Computer Vision
and Pattern Recognition, pp. 1219-1228, 2018.

Ju, H., Li, D., Sharma, A., and Zhang, H. R. Generalization
in graph neural networks: Improved pac-bayesian bounds
on graph diffusion. In Proceedings of The 26th Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 6314-6341, 2023.

Keriven, N., Bietti, A., and Vaiter, S. Convergence and
stability of graph convolutional networks on large random
graphs. In Advances in Neural Information Processing
Systems, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations, 2017.

Kuzborskij, I. and Lampert, C. Data-dependent stability
of stochastic gradient descent. In Proceedings of the
35th International Conference on Machine Learning, pp.
2815-2824, 2018.

Towards Understanding Generalization of Graph Neural Networks

Landrieu, L. and Simonovsky, M. Large-scale point cloud
semantic segmentation with superpoint graphs. In Con-
ference on Computer Vision and Pattern Recognition, pp.
45584567, 2018.

Latata, R. and Oleszkiewicz, K. On the best constant in the
khinchin-kahane inequality. Studia Mathematica, 109(1):
101-104, 1994.

Lei, Y. and Tang, K. Learning rates for stochastic gradient
descent with nonconvex objectives. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 43(12):
4505-4511, 2021.

Li, H., Wang, M., Liu, S., Chen, P,, and Xiong, J. Generaliza-
tion guarantee of training graph convolutional networks
with graph topology sampling. In Proceedings of The
39th International Conference on Machine Learning, pp.
13014-13051, 2022a.

Li, H., Wang, X., Zhang, Z., and Zhu, W. Out-of-distribution
generalization on graphs: A survey. arXiv preprint
arXiv:2202.07987, 2022b.

Li, Q., Han, Z., and Wu, X. Deeper insights into graph
convolutional networks for semi-supervised learning. In
Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, pp. 3538-3545, 2018.

Li, S. and Liu, Y. Improved learning rates for stochastic
optimization: Two theoretical viewpoints. arXiv preprint
arXiv:2107.08686, 2021.

Liao, R., Zhao, Z., Urtasun, R., and Zemel, R. Lanczos-
net: Multi-scale deep graph convolutional networks. In

International Conference on Learning Representations,
2019.

Liao, R., Urtasun, R., and Zemel, R. A PAC-bayesian
approach to generalization bounds for graph neural net-
works. In International Conference on Learning Repre-
sentations, 2021.

Liu, C., Zhu, L., and Belkin, M. Toward a theory of op-
timization for over-parameterized systems of non-linear
equations: the lessons of deep learning. arXiv preprint
arXiv:2003.00307, 2020.

Luo, D., Cheng, W., Xu, D., Yu, W., Zong, B., Chen, H.,
and Zhang, X. Parameterized explainer for graph neural
network. In Advances in Neural Information Processing
Systems, 2020.

Lv, S. Generalization bounds for graph convolutional neural
networks via rademacher complexity. arXiv preprint
arXiv:2102.10234, 2021.

11

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y.
Invariant and equivariant graph networks. In International
Conference on Learning Representations, 2019.

Oono, K. and Suzuki, T. Graph neural networks exponen-
tially lose expressive power for node classification. In
International Conference on Learning Representations,
2020a.

Oono, K. and Suzuki, T. Optimization and generalization
analysis of transduction through gradient boosting and
application to multi-scale graph neural networks. In Ad-
vances in Neural Information Processing Systems, 2020D.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. W. Learning mesh-based simulation with
graph networks. In International Conference on Learning
Representations, 2021.

Pisier, G. The Volume of Convex Bodies and Banach Space
Geometry. Cambridge Tracts in Mathematics. Cambridge
University Press, 1989.

Qi, X., Liao, R., Jia, J., Fidler, S., and Urtasun, R. 3d graph
neural networks for RGBD semantic segmentation. In
International Conference on Computer Vision, pp. 5209—
5218, 2017.

Rong, Y., Huang, W., Xu, T., and Huang, J. Dropedge:
Towards deep graph convolutional networks on node clas-
sification. In International Conference on Learning Rep-
resentations, 2020.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. W. Learning to simulate
complex physics with graph networks. In Proceedings of

the 37th International Conference on Machine Learning,
volume 119, pp. 8459-8468, 2020.

Satorras, V. G. and Estrach, J. B. Few-shot learning with
graph neural networks. In International Conference on
Learning Representations, 2018.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. /IEEE
Transactions on Neural Networks, 20(1):61-80, 2009.

Scarselli, F., Tsoi, A. C., and Hagenbuchner, M. The vap-
nik—chervonenkis dimension of graph and recursive neu-
ral networks. Neural Networks, 108:248-259, 2018.

Sen, P, Namata, G., Bilgic, M., Getoor, L., Gallagher, B.,
and Eliassi-Rad, T. Collective classification in network
data. Al magazine, 29(3):93-106, 2008.

Shen, Z.-A., Luo, T., Zhou, Y.-K., Yu, H., and Du, P.-F.
Npi-gnn: Predicting ncrna-protein interactions with deep
graph neural networks. Briefings in bioinformatics, 2021.

Towards Understanding Generalization of Graph Neural Networks

Song, L., Zhang, Y., Wang, Z., and Gildea, D. A graph-to-
sequence model for amr-to-text generation. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics, pp. 16161626, 2018.

Vapnik, V. Statistical learning theory. Wiley, 1998.

Vapnik, V. Estimation of Dependences Based on Empirical
Data, Second Editiontion. Springer, 2006.

Velickovié, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P, and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018.

Verma, S. and Zhang, Z.-L. Stability and generalization
of graph convolutional neural networks. In Proceedings
of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1539-1548,
2019.

Virmaux, A. and Scaman, K. Lipschitz regularity of deep
neural networks: analysis and efficient estimation. In Ad-
vances in Neural Information Processing Systems, 2018.

Vu, M. and Thai, M. T. Pgm-explainer: Probabilistic graph-
ical model explanations for graph neural networks. In
Advances in Neural Information Processing Systems, pp.
12225-12235, 2020.

Wang, Y., Wang, Y., Yang, J., and Lin, Z. Dissecting the
diffusion process in linear graph convolutional networks.
In Advances in Neural Information Processing Systems,
2021.

Wu, F, Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Simplifying graph convolutional networks.
In Proceedings of the 36th International Conference on
Machine Learning, pp. 6861-6871, 2019.

Wu, Q., Zhang, H., Yan, J., and Wipf, D. Handling distri-
bution shifts on graphs: An invariance perspective. In
International Conference on Learning Representations,
2022.

Wu, Q., Chen, Y., Yang, C., and Yan, J. Energy-based
out-of-distribution detection for graph neural networks.
In The Eleventh International Conference on Learning
Representations, 2023.

Wu, Z., Pan, S., Chen, F,, Long, G., Zhang, C., and Yu, P. S.
A comprehensive survey on graph neural networks. /EEE
Transactions on Neural Networks and Learning Systems,
32(1):4-24, 2021.

Xu, K., Hu, W,, Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019.

12

Xu, K., Li, J., Zhang, M., Du, S. S., ichi Kawarabayashi, K.,
and Jegelka, S. What can neural networks reason about?
In International Conference on Learning Representations,
2020.

Xu, K., Zhang, M., Li, J., Du, S. S., Kawarabayashi, K.-1.,
and Jegelka, S. How neural networks extrapolate: From
feedforward to graph neural networks. In International
Conference on Learning Representations, 2021.

Xu, Y. and Zeevi, A. Towards optimal problem dependent
generalization error bounds in statistical learning theory.
arXiv preprint arXiv:2011.06186, 2020.

Yang, C., Wu, Q., Wang, J., and Yan, J. Graph neural
networks are inherently good generalizers: Insights by
bridging GNNs and MLPs. In The Eleventh International
Conference on Learning Representations, 2023.

Yang, N., Zeng, K., Wu, Q., Jia, X., and Yan, J. Learning
substructure invariance for out-of-distribution molecu-
lar representations. In Advances in Neural Information
Processing Systems, 2022.

Yang, Z., Cohen, W. W., and Salakhutdinov, R. Revisiting
semi-supervised learning with graph embeddings. In
Proceedings of the 33nd International Conference on
Machine Learning, pp. 4048, 2016.

Yehudai, G., Fetaya, E., Meirom, E. A., Chechik, G., and
Maron, H. From local structures to size generalization
in graph neural networks. In Proceedings of the 38th In-
ternational Conference on Machine Learning, pp. 11975—
11986, 2021.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton,
W. L., and Leskovec, J. Graph convolutional neural net-
works for web-scale recommender systems. In Proceed-
ings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 974-983,
2018.

Ying, Y. and Campbell, C. Rademacher chaos complexities
for learning the kernel problem. Neural Computation, 22
(11):2858-2886, 2010.

Ying, Z., Bourgeois, D., You, J., Zitnik, M., and Leskovec, J.
Gnnexplainer: Generating explanations for graph neural
networks. In Advances in Neural Information Processing
Systems, pp. 9240-9251, 2019.

Yuan, H., Tang, J., Hu, X., and Ji, S. Xgnn: Towards
model-level explanations of graph neural networks. In
Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp.
430-438, 2020.

Towards Understanding Generalization of Graph Neural Networks

Yuan, H., Yu, H., Wang, J., Li, K., and Ji, S. On explainabil-
ity of graph neural networks via subgraph explorations.
In Proceedings of the 38th International Conference on
Machine Learning, pp. 12241-12252, 2021.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. Graphsaint: Graph sampling based induc-
tive learning method. In International Conference on
Learning Representations, 2020.

Zeng, H., Zhang, M., Xia, Y., Srivastava, A., Malevich,
A., Kannan, R., Prasanna, V. K., Jin, L., and Chen, R.
Decoupling the depth and scope of graph neural networks.

In Advances in Neural Information Processing Systems,
pp- 19665-19679, 2021.

Zhang, S., Wang, M., Liu, S., Chen, P.-Y., and Xiong, J. Fast
learning of graph neural networks with guaranteed gener-
alizability: One-hidden-layer case. In Proceedings of the
37th International Conference on Machine Learning, pp.
11268-112717, 2020.

Zhang, Z., Cui, P., and Zhu, W. Deep learning on graphs:
A survey. IEEE Transactions on Knowledge and Data
Engineering, 34(1):249-270, 2022.

Zhao, L. and Akoglu, L. Pairnorm: Tackling oversmooth-
ing in gnns. In International Conference on Learning
Representations, 2020.

Zhou, D., Tang, Y., Yang, Z., Cao, Y., and Gu, Q. On the
convergence of adaptive gradient methods for nonconvex
optimization. arXiv preprint arXiv:1808.05671, 2018.

Zhou, J., Cui, G, Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang,
L., Li, C., and Sun, M. Graph neural networks: A review
of methods and applications. Al Open, 1:57-81, 2020.

Zhou, X. and Wang, H. The generalization error of graph
convolutional networks may enlarge with more layers.
Neurocomputing, 424:97-106, 2021.

Zhu, H. and Koniusz, P. Simple spectral graph convolution.
In International Conference on Learning Representations,
2021.

Zhu, Y., Xu, W.,, Zhang, J., Du, Y., Zhang, J., Liu, Q.,
Yang, C., and Wu, S. A survey on graph structure
learning: Progress and opportunities. arXiv preprint
arXiv:2103.03036, 2021.

13

Towards Understanding Generalization of Graph Neural Networks

A. Notations and Lemmas

In this section, we will present some notations, definitions and lemmas that will be used in subsequent analysis. Let
f: R™*™ — R be a real-value function with variable W € R"*". We stipulate that

of of of of 17

e Rmx1
oW OWma Wi OWpnn

chc[W] f =

Denote by #{W] the Jacobian matrix, we have #{W] = V;C[W} fe R*™n" Denote by W, the i-th row of matrix

W. We use ® and ® to denote Hadamard product and Kronecker product, respectively. The activation function o () in this
work is defined as
0,2 <0,

1
1)t
O'(Jj) = xq,() <x S (E) y

1 < .
(1) 1) 1)
(@)@ ()
where ¢ € (1, 2]. It can be verify that this activation is differential on R, and its derivation is
0,2 <0,

1
—1

-1 1)4¢
o' (z) = < qx? 70<93§(5) ;

1
=1
1, x> (%) .
When setting p ~ 1 (e.g., ¢ = 1.1), this activation function has tolerate approximation error to vanilla ReLU function. Now
we show some property of o (-) that used in the sequential proofs.

o |lo(u)||2 < ||ullz for any u € R We only need to show that |o(u;)| < |u;| holds for i € [d]. The case that u; €
(—00, 0] is trivial. If u; € (0, (1/¢)"/ "], since ¢ > 1 and (1/¢)"/“™Y < 1, we have |o(u;)| = u? < u; = |ug|. If
u; € ((1/g)" ™1 o0), note that (1/¢)” ™ < (1/g)"™, we have |o(us)| < u; = |us.

e ||o’(u) ® vz < ||v|2 for any u,v € R By the formulation of ¢’(x), we have |o’(z)| < 1. Then

d d
lo" (W) © vz = [D lo" (wi) Ploil? < | D Jif? = |[v]l2.
i=1 i=1

o |lo'(u) — ' (V)|2 < qd%ﬂu — v||97! for any u,v € R?. We first show that for any z,y € R, |o’(z) — o’ (y)| <
glz — y|7~* holds. The case that -,y € (—o0,0] and z,y € [(1/¢)"/ ™", 00) are trivial. If z, y € (0, (1/¢)"/7)],
we have |qz¢~! —qy?~!| < glz—y|* L Ifz € (—00,0]andy € (0, (1/q)" "], we have |qy? 1| = qy~! < qla—
Yl € (0,(1/g) "V and y € ((1/9)"/ 7V, 00), we have [qud—! — 1] < [qui~! — gyt~ < gla — y|
Ifz € (—o0,0]and y € ((1/¢)" ™Y o0), we have |0’ (z) — o’ (y)| < qy?~' < gz — y|?~". Thus,

d d
Io'(a) = o ()l =\ D lo"(ws) = 0" (w0)|2 < || D a?fus — wyf26D)
i=1 i=1

d =l /g 2—q
_2 2—gq _
) (Zl“f‘””P) (Zq”> < g fu—vlg .
=1

=1

With the above notations, we give the following lemmas.

Lemma A.1. Denote by A the normalized adjacency matrix with self-loop, we have H‘Z‘Hoo <4/ %.

14

Towards Understanding Generalization of Graph Neural Networks

Proof. By definition, A,J > 0 holds for any i, j € [n]. For any fixed i € [n], let \; be the index set of the i-th nodes’
one-hop neighbors, we have

n n

Ayj
ZA” Z\/degl 1\/dng+1

Jj=1 Jj=1

1

:\/degi—i—l \/degl—ﬁ—l Z \/degj

1 1 1
< + [—
T deg; + 1\ /deg i, +1 jgfi Vvdeg i, +1
1 deg; +1 V/deg, + deg .k +1

N \/degz + 1 \/degmin + 1 \/degmln degmin + 1 .

Lemma A.2. Denote by u € R™, v € R", we have ||lu® v|2 = |Jul2||v]2.

Proof. One can find that

m m
lu@vlla= | > lluviz = [Y w?vl3 = /lalBlvI3 = [lu]a]v].-
j=1 j=1

Lemma A.3. Denote by W1, Wy € R™*" we have

W1 — Wal| < [[vee W] — vec [Wa) ||

Proof. We have

[Wi—Ws| = sup [(Wi—Wa)ulz = [[(W1—Wa)u’|,

[lullz=1

Jj=1

—J D (Wil ur) = (W2l u%))? < $Z I[W1l;, = [Wal |3 = [[vec(W1) — vec(W2)]l2,

where the last inequality follows from the Cauchy-Schwarz inequality and ||ju*||; = 1. This finishes the proof.

Lemma A.4. Denote by {Wh}hH:1 the learnable parameters (w.l.0.g. we assume that each parameter is matrix since vector
is a special case of matrix). If for h € [H|,

(W, .. Wi, ..., Wg) = L(W1,...,. W}, ..., Wg)| < Ly, |[vec[W}] — vec[W}]|,,
and
H(Wy,...,. W) 0UW,, ... W) u ~ a
| ™~ i, = 5 [t et Wi Pl et wi

then we have|l(w) — ((w')| < L|lw — w'||, and ||Vl(w) — {(w)||2 < Prmax{||w — w||2, |w — w||$'}, where w =
[vec [W1];...;vec [Wg]] and
-5
Ea)

1

H 2 H
= <Z L,%) , P = max (Z Pf)
h=1 =1

15

(NI

H ~
+ (Z P?
i=1

Towards Understanding Generalization of Graph Neural Networks

-
Proof. The gradient of ¢ w.r.t w is V{(w) = [BVQ%NI] ey avec%vy}] . Then we have

H
o(w) = LW <D W, Wi, W) = (W, W, W)

<> Lu[[vec[Wn] — vec[W}]],

<(x) (35 et el Hif

h=1
=L|w — WIHz)

where we obtain the last inequality by Cauchy-Schwarz inequality. Similarly, we have

[Ve(w) = VW),
Haewl,.. Wy) LW, Wh)

Ovec [Wp] Ovec [Wy] 9
H H [H
Z ZP;“ |vec — vec ||2 + Z Z Py ||vec [WJ — vec [W;] Hg]
h=1 h=1 Li=1
H H [H
= ZPM [[vec[W] — vee[WH|,| + > ZPM [vec[W;] —vec[Wé]Hil
i=1 Lh=1 i=1 Lh=
H o~
=30 We] = vee W, + 3 i e W] — vec[W
i=1 i=1 (16)
H 3/ H , 3 H -3 /p , 2
< <Z Pi2> (Z [|[vec[W;] — vec[W!] ||2> + <Z Pf—a) <Z [|[vec[W;] — vec[W7] ||2>
=1) =1 L =1 =1
H 3 Ho 2
= <ZP72> [w —w'|[, + (pr_a) [w — W[,
=1 A =1 L
H 3 H o, 2
<max (pr> + <pr_“) max {[|w — w'[l,, [[w — w'[|5 }
i=1 i=1

:Pmax{”w — Wy, [|w— WIH(;} :

where we have defined P, = Zthl Py; and ﬁi = EhH 1]3;“- The third inequality is due to the Holder inequality.
Lemma A.5. Denote by v € R Let f : R% s R be f(v); =

2||lv —v/||2.

J = s je . Foranyv,v' € R we have ||[f(v) — f(v)|2 <

Proof. By (Federer, 1969), we have ||f(v) — f(v')||2 < supyepa || J(V)]|[[v — V'[|2, where J is the Jacobian. For the
aforementioned f, we have J(v) = diag (f(v)) — f(v)f(v)". Then

[T = lldiag (f(v)) = FV)F(¥) "] < [[diag (f () | + [F (V) F(0) T]- (17)
First,
i v) = s i v)wls= s 2(v);w? = max i < 1.
[diag (f(v)) | e [[diag (f(v)) w2 S Zf w7 ma f(v)i<1 (18)
Besides,
LFV)f)T = e IF)F) "Wl = [1F(v)ll2 S F(v)Twl < |f)II5 <1, (19)

16

Towards Understanding Generalization of Graph Neural Networks

where the last inequality is due to Z?Zl f(v); = 1. Plugging Eq. (18) and Eq. (19) into Eq. (17), the proof is completed.

Lemma A.6. Denote by v € R% Let f : RY — R be f(v); = —Zszl Y. log Jr, where 4, = K o

v,v' € R% we have |f(v) — f(v))| < V2|[v — V|2

For any

Proof. By the chain rule, the Jacobian is J(v) = y(v) —y. Note that [f(v) — f(v')| < supycga [[J(V)|2]|V — V/|2.
W.o.l.g, we assume that y; = 1, then

K

K
1Tl = 4| D@k —wr)? = ([(L= 002+ D G2 <\ |1+ Y57 < V2,

k=1 k=2 k=1

where the last inequality is due to Zszl g = 1.

Lemma A.7. Let F : W x Z x Z > R be a parametric function class. For w,w' € W, the empirical metric defined on F
is defined as

dsw,w) = (o5 S fwizn)~ f(Wz)P

1<i<j<n

For specific w(Y) € W, assume that sup ¢y ds(w, w)) < D and | f(w); 2;, 2;)| < Mo, i,5 € [n] hold. Then we have

1 D
U(F) = —E, | sup Z 00 f(W;2i,25) | < Mo+ 246/ (1 +log N (r, Fyy,dg)) dr,
0

n
WEW i i<n

where o is the transductive Rademacher variable.

Proof. The proof extend Theorem 2 in (Ying & Campbell, 2010) to the transductive Rademancher chaos complexity. The
1

. . . . —1\2 .
first step is to show that the following inequality holds for 1 < p < ¢ < 0co,d > 1and vy = (2%1) :

Q=

Zn 2 Z d Z 1
E T+ Ti0; + 7y TiyiyOiy Oig + -y Ti...iq041 """ Oiq 9
=1 11 <ia<n 1< <ig<n
3 N (20)
n P
p
< EHff + E Ti€; + E Tiyig€i€ip + 00+ E Tivig€in =" Cig|| |
i=1 i1 <ia<n 1< <ig<n

where ¢ and € are transductive and standard Rademacher variable, respectively. The process generally follows that of
1
Theorem 3.2.2 in (Giné & Pefia, 1999). First, consider the case that n = 1, we have to show that (E|z + yoy|?)? <
1
(E|z + ey[")? holds. This inequality naturally holds when y = 0. When 2 = 0 and y # 0, we have

1
q

1 1 1
(Elz +yoy)7| = Cpolyyl))? < (hyl)® = byl = Ele +eyl”)7|

r= =
where the inequality is due to py < % When 2 # 0and y # 0, let u = £, then

1 1 1 1
(Elz +y0y[1) 7 < (Ele +yeyl")? < (BI1+youl*)? < (E[1 + yeu|")" .

17

Towards Understanding Generalization of Graph Neural Networks

By symmetric, we only have to discuss the case that u > 0. For 0 < u < 1:

1 1
(E|1 + vyoul?)® = (po|1 + yu|? + po|l — yu|? + (1 — 2pg)) =

q k k q k. k, k
PO"’kE lpo(k>7 u +p0+,§ 1p0<k)() YU +(po)]

1
q

1
q

i 0o
= |2po+2po Y (;k) 7t (1~ 2po)]
L k=1

- 1 1
— |1+ 2pp Z (;{) 721cu2k] <1+ Z (;k) vzku%]
L k=1 k=1

(1 1 g 1
= |5t +yul+ 51— vuq} < (B[+eul’)”,

where the first inequality is due to py < % and the last inequality is from Eq. (3.2.4’) in (Giné & Pena, 1999). For v > 1,

we have |1 4= yu| < |u # 7| since u?(1 — v2) > 1 — 42. Then we have

1
(pol1 4+ ~yul? 4+ po|1 — yul* + (1 — 2pg))«
< (polul*|1 + v /ul + polul*|L — v /ul + [u|?(1 — 2po))«
1
=lu| (pol1 4+ v/ul 4+ po|l —v/ul + (1 — 2po))*

1 1 a 1 1 P 1
<tul |+l it = gt <l |G 1up 4 511 = 1/0] = B+ el

where the last inequality is obtained by applying Eq. (3.2.4°) in (Giné & Pefia, 1999) and replacing u with 1/u. Second,
consider the case where x, y are vectors. Let z; =z +y, 20 = —y, u = M

step, let k = %, we have

and v = M In the second

1 1
(Ellz +70yl*)* = [pollz + vyl + pollz = yyl|* + (1 = 2po)||2|[*]=
1

1+~ 1—7 1 1—7v 1+~ a a
< [(52 + 25200 0 (S50l + 2l) 0= el

1

= [po lu+~yv|* + po [u — yv|* + (1 — 2po) |29
1
< [po |u +~yv|* + po [u — y]? + (1 — 2po)ui]s
1
= |u| [po |1 +~v&|* + po |1 — | + (1 — 2po)]

1 1
1+ &P+ 1—klP]? lu+v|P +|u—ofP]>
< ful | - ! ,

where we use the result for the the case that n = 1 to obtain the last inequality. The second inequality is due to

1 1 1 1
Joll = 50+ + 5@ =)] < glharll + 5l =

Third, we use induction to obtain the final result. Following (Giné & Pefia, 1999), we only show n = 1 implies n = 2.

18

Towards Understanding Generalization of Graph Neural Networks

Denote by i the measure on the probability space, by Fubini theorem:

EUINJZ

1
T+ yx101 + YI202 + 72510120102“2} !

- i
q q
= (/ T+ yr107 -I-’YI'QO'Q+’}/2£L'12010'2H2du(0'2)) d/J(O'l):|

P
/(/ T+ yx101 + To€2 + YX1201€2)

. 1
q q r
/ (/ T+ yr101 + o€ + ")/.1'120'162H2 d,u(oﬂ) du(ez)]

1
q

IN

du<e2>)Z du(an]

IA

1
P

IA

[P
// Hx—k'yxlcn + To€g —|—$120’162H2du(61)du(62):|

=

p
= |:E61,62 T+ T101 + 2202 + 33120102‘)2} ;

where the first and the third inequality is due to the inducition hypothesis, and the second inequality is due to the Minkowski
inequality. The remaining step is similar to the proof process in (Ying & Campbell, 2010) that bound the transductive
Rademacher complexity by chaining technique. For j € N, let a, = 27%D. Denote by T} the minimal aj,-cover of Fyy
and f(w"; z, 2’)[w] the element in T}, that covers f(w; z, 2'). Specifically, since { f(w(!); z, 2/)} is a D-cover of W, we
set f(w0; 2, 2")[w] = f(w); 2, 2"). For arbitrary N € N:

1
Eo [sup — > 0i0;f(Wizi, %)

n
wew Iy i icn

1 —1,
:Ealjgpwn< Z (UZU](f(W,ZZ,Z])—f(Z“Z_] +ZUZGJ W Zlazj)[]_f(wk ,Zi,Zj)[W])

1<i<j<n
+oi0; f(wh; 2, Zj)))]

<Eo | sup (1 Z 0i0i(f(W; 2, 25) — f(WN;Zi,Zj)[W])) +Eo 1 Z oiajf(w(l);zi,zj)

n
wew 1<i<j<n 1<i<j<n

—i—ZE sup < Z Uin(f(Wk;Zi,Zj)[W]—f(Wk_l;Zij)[W]))

wew 1<i<j<n
21
For the first term, we apply Cauchy-Schwarz inequality and obtain
1
Es | sup | — Z 00 (f(W; 25, 25) — f(W 5 24, 25) [wW])
weW 1<i<j<n
} } 22
1
< | Es Z 0120]2 sup — Z (f(wv Ziy Z]) f(W Zis ZJ)[WD2 < nan
1<i<j<n wEW IV cici<n

Towards Understanding Generalization of Graph Neural Networks

For the second term, by and Jensen’s inequality and Eq. (20),

1

Es |- Z ai05 f (w2, 25)
1<i<j<n
1 1 (23)
1 21\ ° 1 i
< | Ee ’n Z eie; f(w; 2, 2)) =z Z FPwWizi,z) | < M.
1<i<j<n 1<i<j<n
Now we handle the last term. By Jensen’s inequality,
1 _
p By | sup |1 S iyt zp)w] = S| -1
weW T i Ti<n
1 _
<Bq (e d s 1S iyt)] = vt s e -1
wew I i<
<i<j<n
- (24)
1 _
—E, | sup | exp A] S oy (F(whs 21,) [w] — Fw 1;zi,zj>[w]>\ 1
Rabidd " i<ici<n
1
<|Tw||Tw—1|E max exp{ A|— oioi(f(WF: 2z, 2;) — F(wF™1 2, 2 ’ -1
AT || e X ez 1)
For any f(w"~1;2,2') € Ty_1 and f(w"; z,2') € Ty, we have
1
Eo | | exp)\‘ Z Uin(f(Wk;Zi,Zj)—f(Wk_l;Zi,Zj))‘ -1
1<i<j<n
1., 1 _ °
:ZQ)‘ Es ‘n Z 0105 (f(W"; 20, 25) — F(WF15 20, 2))
s>1 7 1<i<j<n
N (25)
1. .. _
SZ;XSS Ec|~ > ae(F(wWhizi z) — F(WF 20, 2))
s>1 7 1<i<j<n
-1\ S
1 2|
SZ eA]Eeﬁ Z eie; (f(W"; 21, 25) — F(WPh5 21, 25)))
s>1 1<i<j<n _

where the first inequality is by Eq. (20), and the second inequality is due to e~ *s® < sl. Let

1 2

]Ee’ Do ae(f(whzz) — fW Tz, 2)

n —
1<i<j<n

A= | 2e

max
FOWF=1i2,2) €Tp— 1, f (Whiz,2/) €T,

we obtain E, [(exp {)\ %Zlgz(jfn o0 (f(wF; 2z, z) — f(wh=1 2, Zg))‘} — 1)] < 1. Plugging this into Eq. (24)

20

Towards Understanding Generalization of Graph Neural Networks

yields
1 _
o | sup |2 3 a7z 2] — S5
wEW I isi<n
-) %
<2elog(1 + [Ty || Tk-1]) max Ee 1 Z e (f(Wh 25, 25) — F(WF 24, 25))
FOwktiz 2 €T f(whiz e | |0 =
_ 1
2
1
=2elog(1 + |Tk||Tk— max — wh: oz 2) — FwWwFTY 2, 20))?
BUA T2 s o B2 bz e nKZ 2)1 i)
<i<j<n
-) 1
2
1 _
=2elog(1 4 [T || Tk-1]) n Z [F(W"52i,25) = F(W3 20, 25) + F(W3 20, 25) — F(WPTh5 20, 25)]
| 1<i<j<n
B 2
1
<2elog(l + |Tie||Tie—1]) | ~ > Wz, 2) — f(wizi, %))
1<i<j<n

1 -
+2elog(L+ Tkl Tea) |~ D [f(Wizinzg) = f(W 2, 2))°
1<i<j<n

<2elog(l 4+ |Te||Tk—1|)(ar—1 + ar) = 6elog(1 + |T||Te—1]) k-

(26)
Plugging Egs. (22, 23, 26) into Eq. (21), using the facts that ay, = 2(ax — ag+1) and |T| > |Tkx—1|, we have
Bo | sup = Y cis/(wiziz)
o | Sup — 005 J\W; 2, 25
wew ity T,
N N
<My + nay + GeZIOg(l + | T ||Ti-1]) o = Mo + nay + 126210g(1 + ||| Ti-1]) (o — ag1)
k=1 k=1 27
N
<My + nay + 246210g(1 +|T%|) (o — agg1)
k=1
@ D
§M0+no<N+24e/ log(1 +N(a,fw,df))dr:M0+naN+24e/ log(1 + N (v, Fy,dr)) dr.
QN+1 QN+1
Taking the limit as N — oo we can obtain the result.
B. Proof of Main Results
In this part, we present detailed proof of the results in the main body.
B.1. Proof of Section 4.1
B.1.1. PROOF OF THEOREM 4.3
Proof. Following (El-Yaniv & Pechyony, 2007), let py = (77:177;)2, the Transductive Rademacher complexity is defined as
1 1 m—4u
R =|—+—E (W 2
o= () 2o | g 3 ot

21

Towards Understanding Generalization of Graph Neural Networks

where o; is a random variable taking value in {£1} with probability pg and 0 with probability 1 — 2p,. By Theorem 1 in
(El-Yaniv & Pechyony, 2007), with probability at least 1 — §/2,

2
Ru(w(TH)) < Rm(W(T+1)) + Rontu(W) + coQ+/min(m, u) + 4/ % log 5 (28)

A1 4 1 A m+tu A /32log(4e) . . .) .
where Q = (m + u) and S = e (=1/2(max(ma))” O = 3 is a constant. Applying Lemma 1 in (El-Yaniv
& Pechyony, 2007) with py = %, we obtain

1 1 m+u
Rpgu(w) < [— +) Ee | sup el(w;z) |, (29)
) = (G)| s 3 etz

where ¢; is the standard Rademacher random variable. Now we give an upper bound of the Transductive Rademacher

1
Complexity by Dudley’s integral technique. Denote by dy (W, W) = (LS (s 2;) — 0(W zl)]Q) * Forj €N,

m+u =1
let oij = 277 M with M = supyep,, dus(w,wd)). Denote by T; the minimal ovj-cover of Bg and £(w’; z)[w] the
element in T that covers £(w; z). Specifically, since {£(w(!); 2)} is a M-cover of Bg, we set £(w?; 2)[w] = £(w(1); 2)
(recall that w(1) is the initialization parameter and w” is the associated parameter of £ in T}). For arbitrary N € N:

r m4u
Ee | sup el(w; z;
_WGBR ; ()]
i m-+tu N ‘ .
—E, | sup (Z (eatbw; z0) = 6w™s)W)+ > eale(ws z0)w] — £(w! ™13 2:)[w]) +q€(w(1);zi)))
weEBR i— _
L 1 Jj=1 (30)
r m-4u N m+u
<E. | sup < Z € (0(w; z;) — E(WN;ZZ-)[W])) + Z]Eé sup (ei(0(w?; z)[w] — (Wit 2)[w]))
_wEBR i=1 j=1 wEBR i=1
m—+tu
+E. Z eié(w(l);zi)] .
i=1
For the first term, we apply Cauchy-Schwarz inequality and obtain
m—+tu
Ec | sup (Z € (0(w;z;) — E(WN;zi)[W]))]
wEBR \ i
€1y

m—+u % m+u %
) 5]) (sup y (£(w; zi) —f(WN;zi)[W])2> < (m+uay.

i—1 wEeBR i1

(=

By Massart’s Lemma, we have

m—+tu
sup <Z ei(0(w?; z;)[w] —E(le;zi)[w}))] <Vm+u sup dyg(wl,wih)/2log |T;||Tj—1]. (32)

wEBR i=1 weEBR

Ee

By the Minkowski inequality,

sup dyg (wj, ijl)
weBRr

weBgr \ +u i=1

m-+u %
= sup (1 > [f(wj;Zi)[W]f(W;Z)M(W;Z)f(le;Zi)[W}f)
(33)

1

< su L mz—w[ﬁ(wj-z‘)[w]ff(W'z)]z %Jr su L %[Z(W'z)—é(wfl‘z)[w]f)
wngR m+u T ’ welI;’)R m+u = ’ ’l

= sup dug(w/,w)+ sup dys(w,w/ ') <a;+aj_1 =3a;.
wEBR wEBR

22

Towards Understanding Generalization of Graph Neural Networks

Plugging Eq. (33) into Eq. (32), using facts that o;; = 2(o; — aj41) and |T};| > |11

N mAu . .
> E. [sup (S cillw 2w - e<wﬂ1;zi>[wn)

wEBR i=1

N N
§6\/m+u2aﬂ/10g|Tj\ = 12\/m+u2(aj — aj41)4/log |Tj]
Jj=1 j=1

N
=12v/m + uZ(aj — aj+1)\/log/\/(aj,HR7 dys)
i=1

, taking summation over 7,

(34)

[7s) oo
<12vVm +u Vieg N (a, Hr, dys) da < 12¢/m +u Vg N (o, Hr, dyys) da.

QAN+1 QN+1

For the last term, by Khintchine-Kahane inequality (Latata & Oleszkiewicz, 1994),

m-+u m—+tu 2
Z eié(w(l);zi)l < (Z EQ(W(l);zi)> < bpv/m + u. (35)
i=1

i=1

Ee

Taking the limit as N — oo, plugging Eq. (31), Eq. (34) and Eq. (35) into Eq. (30) and combining with Eq. (29) yield

Rm—l—u (W) § bZ

(mtu)? | gplm) / Viog N, Hgy dogy) dr, (36)
mu mu 0

where ¢; is the standard Rademacher random variable. Let Hp = {z — L(w; z) ‘w €B R} be the parametric function

space. One can verify that dg,, (¢(w;), £(W;) = max.cz |[{(w; z) — £(W;)| is a metric in H . we have

m—4u 2\ 2
1 ~
dys < (m T ;:1 [W’Wg?;zezé(w§ i) — (W Zz):l) < dyp-
By the definition of covering number, we have N (r, Hg, dy ;) < N (r,Hr, dy). Besides, applying Proposition 4.1 yields

drty, = max |[((w; 2) — (W)| < Lr|[w — W]
zE

By the definition of covering number, we have N (r,Hg,dy,) < N <i,BR,d2). According to (Pisier, 1989),
log NV (r, Bgr,d2) < dlog(3R/r) holds. Therefore, we obtain

3LrR
log N (r, Hr, dyys) < dlog < f) : (37)
Furthermore,
2 1) 1) 2 _ o
dy (W, w):m Z V(W;Zi) —U(w ;Zi)] < LFR7,
i=1
where the last inequality is due to Proposition 4.1. This implies that
0o LrR
/ Vg N (r, Hr, dy s)dr = Vg N (r, Hr, dys) dr. (38)
0 0
Combining Eq. (36), Eq. (37), and Eq. (38) yields
3 LrR
Romtu(W) §12%\/g V1og (3LzR/r)dr
s ; (39)
2
<MW g <\/10g3 + 2ﬁ> LrR.
mu

23

Towards Understanding Generalization of Graph Neural Networks

Applying Lemma 43 in (Li & Liu, 2021) to bound R in Eq. (39) and plugging in Eq. (28) with probability 1 — 6/2, we
conclude that with probability at least 1 — 4,

(’)(L;(mj;z) log? (T)T%alog(};)> Ifa e (0,1)

R, (W) = O(L;% log(T) log(})) Ifo =1
3

B.1.2. PROOF OF THEOREM 4.5

This proof extends the proof of Theorem 1 in literature (El-Yaniv & Pechyony, 2007) from scalar to vector. Let p = %,
we define the vector-valued Transductive Rademacher complexities:
2‘|

where o; is a random variable taking value in {£1} with probability py and 0 with probability 1 — 2p,. Following
(El-Yaniv & Pechyony, 2007), we introduce the pairwise Rademacher variables & = {(&;.1,5;2)}7" 4" that satisfies:

~ ~ mu ~ ~ m2
P{(Gi1,Gi2) = (570 4)} = (m+u)2, P{(Gi1,Gi2) = (3 =)} = by PLGi1,Gi2) = (=)} = e
P{(6i1,0:2) = (-2, 1)} = Tz - It can be verify that
j

Let T : [m + u] — [m + u] be a symmetric group and 7 € I" a specific permutation on examples. Denote by F},, (w; 1) £
LN VUW; 2 () an.d F,(w;m) &1 Z;Zrnuﬂ V(W3 2x(;)) the population gradient calculated on training examples
and test examples determined by 7. We have

[Eo (w5 7) = Fu(w;)l

m-+u

(% + %) Z o V(w; z;)

i=1

Rm-{-u (Wyp) =Es | sup

wew

m-+u

Z ((}i,l + &i’g)VZ(w; Zi)

i=1

Rimtu(w;p) =Egz | sup

weWw

m-+u
2 sup —ng W, ZT{'() Z ve W ZTI'(Z
wew i=m1
1 VAUW; 250 () TV (w; $ Zni(i)) ang
- p [A S - & 5 S L 52 B Tl LB v
i=1 7r€I‘z 1 7T€FL m+1 1 m+1
1 1 & 1
= su — = VUW; 2z iy) — VUW; 2rr(y)) + — VUW; 2z (y) — VWS 27
20| 22 Gt L 2 (VW3 0) = VA) + 5 3 (T) = VA >>>}2
< Z % sup e i (VUW; 2r()) — VUW; 2003))) + 1 mi':“ (VUW; 270 (5)) — VUW; 2r(3)))
n'el (m +u)l w || m i=1 Ut 9
1 m 1 m—+u
=E. Sl‘:’p E Z (Vﬁ(w, zﬂ'(l)) - Vé(w, zﬂ'/(l))) + a Z (Vé(w, ZTr’(i)) - VE(W, Z‘n’(l)))
i=1 i=m-+1 9
20(7).
By Proposition 4.1,
IVe(w; 2)ll, < [Ve(ws 2) - W(w<1>;z)H2 + Hf(w“);z)Hz < PrR+1,. (40)

where the second inequality is due to |[w — w(!||; < Rand R > 1. By Lemma 2 in (EI-Yaniv & Pechyony, 2007), with
probability at least 1 — §/2 over the random permutation 7, for w € W,

SQ 2

=5 log . (41)

[E (W) — Fu(w)|l2 < Ex[®(7)] + (PrR + by) 9

24

Towards Understanding Generalization of Graph Neural Networks

Next we discuss how to give a upper bound of E[®(7)]. To achieve this, we have to build connection between E [®(7)]
and R4, (w;p). For a given permutation 7, denote by @ € R™'* a random vectors where a; = = if i € [m]
else =1 and b € R™™™ a random vectors where b; = —-L if i € [m] else 2. To build the connection between a, b

and &, a extra distribution that conditioned on & is introduced. Denote by n{(6) £ Z:’:{u {(Gi,1,052) = (L,1)}

na(6) 2 S (51, 610) = (L, —L1)} and na(6) = S I{(64,1,642) = (—1,—2)} the random variables
conditioned on &, which indicate the number of pairs appearing in elements of 5. Let N1(&) = n1(6) + n2(a) and
N3(6) = ng(6) 4+ n3(a), we denote by 93(NN1, N2) the distribution of & conditioned on n1, 1y, and ng, which has fixed
number of pairs and the randomness comes from permutations. Thus, a@ + b and & ~ R(N;(6) = m, N2(6) = m) have

the same distribution. Then we have

Er[®(7)]
m 1 m-+u
=E, » sup Z (VUW; 2r(iy) — VUW; 2002))) + Z (VUW; 2 (3)) — VUW; 27(3)))
wew =1 u i=m-+1 2
m+u
:Eﬂ',ﬂ'/ sup Z(+ b)vg(w Zl)
wew || i 9
m—+tu
=Es~9(m,m) Sup Z (Gig + Fi2) VEW; 2;)
wew || i 4 9
Denote by
m-+u
77/}(]\7, N’) =]E&NDQ(Nl,Nz) [su}a} Z (&i,l + 5'2'72)V€(W; ZL) ,
WEWI =1 2

the Transductive Rademacher complexity where & follows SR(N, N') for given N; and N,. One can find that

Rim+u(W;p) = En, (5),32(5) [P (N1(5), N2 (a))]. (42)
Besides, one can find that E5 [N, (6)] = m and E5[N2(6)] = m hold. Therefore, we have
Er[®(7)] = ¢ (Es[N1(6)], Es [N2(a)]). (43)

The last step is to give a upper bound of ¥ (Es[N1(0)], Es[N2(F)]) — En, (5),n.(5)[¥(N1(F), N2(d))]. Recall the
definitions of (N, N3) and ¢ (N7, Ny) are:

w(NlaNQ)
m4u m—+u
=K, ~ sup fZVK W; Zr()) — —ZV@ W; 20 () + Z VUW; 2rr()) Z VUW; 2)| s
wew i=Na+1 i=Np+1 9
P(N7, N2)
m+u m-+u
=E, » sup —ZVZ W; Zr()) — —ZVE W; 20 (3)) + Z VUW; 270(3)) Z VUW; Zr(5))
wew i=Nap+1 i= N’-‘rl)
W.o.l.g., assume that N{ < Nj. Then we have
1)(N1, N2) — (N7, No)|
1 1 44
<E, sup <) Z VUW; 2x(i)) <|N1—N{|(PR+bg) <+) (44)
wew =N 41 m u
Similarly, we have
|t)(N1, Na) — 7/1(N1,N2/)|
1 1 45)

i=Nj+1

25

Towards Understanding Generalization of Graph Neural Networks

Combining Eq. (44), Eq. (45) and the inequality from (Devroye et al., 1996), we have

P, (5),N2(5) LU (N1(6), N2(6)) — (B [N1(6)], E5[N2(5)])| > €}
<P, (5),8:(6) LU (N1(6), N2(6)) — (N1, Eg[Na(a)])| = €/2}
+ Ps{|t)(N1,Es [N2(0)]) — Y (Es[N1(a)], E5[Na(a)])| > €/2}
<Py, ()N {IN2(6) = Eo[Na(6)]| (PR + bg)Q > €/2} + Po{|N1(5) — E5|[N1(5)](PR + by)Q > €/2}
<4exp{—3¢2/(32m(PR" +b,)*Q)}.

Applying the fact from Problem 12.1 in (Devroye et al., 1996), the following inequality holds
En,(a).82(8) [0 (N1(6), Na(6)) — $(Es [N1 ()], Es [N2(a)])] < co(PR +by)Qy/min(m, u) (46)
where ¢y = M . Plugging Eqs. (42), (43) and (46) into Eq. (41), with probability at least 1 — 6/2,
[(W) = Fu(w)ll2

<EA[0(m)] + (PrR + b)) S o 2

—(Es[N1(6)], Es [Na(6)]) + (PER + by) ? log %
<En, (5),Ns(5)[¥(N1(d), N2())] + co(PrR 4 by)Q+/min(m, u) + (PrR + by) % log§

S
=Rumtu(W;p) + co(PrR + by)Q+/min(m, u) + (PrR + by) Q log 5

Till now, we have obtained the following inequality holds with probability at least 1 — 6/2:

m m-+tu
1
sup —Z (w3 2;) Z Vi(w; z;)
weBg || 2] i=m+1 9
<<1 +1)E su Z ec(VLI(w; z;)) H + ¢o(PR + by)Q+/min(m, u) + PR+b)\/S(1 1)10 1
—+ — |Es oV i 4z -
“\m wu WEER o 2'm u g6

(47)
Let Hr = {(z,2') = (Vl(w; z), Vi(w; 2'))|w € Bg} be the parametric function space, one can verify that

dy,, (W, W) = max. (Vl(w; 2), Vi(w; ")) — (VUW; 2), VI(W; 2'))]
is a metric in H . Define

1
2

st(Wv‘%) = (M Z |<V€(w, Zi),VE(W;Zj» - <v£(€v7zz)’vg(wvzj)>|2> 5

1<i<j<m+u

we have dy; s (w, W) < dyy,,. By the definition of covering number, we have N (r, Hg, dy) < N(r,Hgr,d3,). Besides,
applying Proposition 4.1 yields

(m—&-u)zd%(w,\?/)
= > (VWi z), V(W z)) — (VU3 23), V(W 25))|

1<i<j<m+4u
< Z 2|<V€(w; z;) — VU(w; z;), VE(w; zj)>|2 + 2’<V€(v~v; zi), VU(w; z;) — V(W zj)>|2
1<i<j<m+4u
~ 2 2 ~ 2 ~ 2
<Y 2| Vlwiz) = VW 2) |15 IVEws 25) 15 + 21V 20) |15 [VE(w; ;) — Vw5 2))) ;5
1<i<j<m+u

<2m + u)(m +u —) PE(PrR+ by)* max {|w — 3", |w — |3 }

26

Towards Understanding Generalization of Graph Neural Networks

By the definition of covering number, we have

r r

dy,) < i
N(r,Hr,dyy) <N | min <\/§Pf(PfR+bg)> "V2Pr(PrR +b,)

) BRa d2

According to (Pisier, 1989), log N (r, Br, d2) < dlog(3R/r) holds. Therefore, we obtain

L 1
3R(V2Pr)*(PrR+ b)) 3V2PrR(PrR+b
log N (r,HR,d#,) <max< dlog (V2Pz) (1 FR+b,) ,dlog(V2PrR(PrR + g)> (48)
ra r
Denote by ﬁEe > i<icj<miu Oi0jh(2i, z;) the transductive Rademacher chaos complexity, we have
m-+u 2
Es | su o;VEl(w; z;
(= e g mewa]]
i= 2
i m-+tu 2
<E, | sup Z o V(w; z;)
weBR =1 2
i mu (49)
=E, | sup Z 005 (VUW; 2;), VE(W; z;))
WEBR ;i1
m-+u m—+u
=E, | sup Z o? ||V€(W;zi)H§ +Es | sup Z 00 (VUW; 2;), V(W3 25))
|(WEBR ;3 WEBR,; T4
<(m +u)(PrR +bg)? + 2(m + w)lU(Hg),
Note that
(m + u)?d%(w,w)
= > (VWi z), VE(w; 2)) = (VEwD; 2), VE(wD; 25) |
1<i<j<m+u
" 2) D 2) 2
< Y 2| Vewiz) - vewOsz)|| 196wzl + 2 [ew s z)|| | wews z) - Vew iz
1<i<j<m+u 2 2 2
<2(m +u)(m + u — 1)P2R*(PrR + by)*.
By Lemma A.7, we have U(Hr) < b7 + 24e fOﬂPFR(PFRerg) log(1 + N (r,HRg, dy)) dr. Plugging in Eq. (48) yields
2P}‘R(P]—‘R+bg)
U(HR) §b§+246/0 log (1 + N(r,Hp, dug)) dr
§b§+24e/ (log2 + log N (r, HR,dy)) dr
0

=b2 + 24v/2ePrR(P£R + by) log 2 + 24ed

log dr
0 r

1
/ﬁpﬂ"ﬂ”by) 3R(V2PF)” (PrR +b,)=

Q=

V2PzR(PrR+by) 5P p b
+24ed/ log [BY2PFR(PFR+bg)
V2P (PrR+by) r

<2 + 24v/2¢Pr(PrR + b) [d log(3e® R) + dRlog(3¢) + Rlog 2] .

27

Towards Understanding Generalization of Graph Neural Networks

Applying Lemma 43 in (Li & Liu, 2021) to bound R in Eq. (39) with probability 1 — §/2 and combining it with Egs. (49),
(47), with probability at least 1 — &,

m m—+4u

%ZV (W; 2;) Z Vi(w; z;)
i=1

’L m+1

sup
weEBRr

2
O(LW log? (T)T %mg(%)) ifa € (0,2)

=1 O tog(T)los(3)) ita -4
o(<m+“> log? (T)log(})) if o e (1,1].

B.1.3. PROOF OF THEOREM 4.9

By Lemma 43 in (Li & Liu, 2021), we have

R (wTHD) — R (W*) = 2 i))hggu/(s)) iz 6(1(?,1) 50)
By Theorem 4.3,
O|Lr (m+u>2 1ogé(T)T§—alog(‘1s)> ifae(0,3)
Ry, (W) — Ry (W) = O(L;% log(T) 1Og(%)) ifo=1 (51)

3 1
O(Lr % 10g (1) log(1)) itae (4,1].
Combing Eq. (50) and Eq. (51) yields the result.
B.2. Proof of Section 4.2

B.2.1. PROOF OF PROPOSITION 4.11

We first analyze the Lipschitz continuity. Denote by Z(V) = g(A)X, HY = ¢(ZOW;) and Z(? = g(A)HW, the
forward process of GCN is given by Y = Softmax (Z(2)W2). First, we have

n n
max [H o = |0 | 3 [o(&)] X Wi || < |37 [a(A)] X, W,
i€[n] = % , = ©j , (52)
<3 oA I3 Wi, < exewlla(A)
j=1

where the first inequality is due to the definition of o (+). Similarly,

n n
1 - N _
max |22 = |3 [o(A)] Xl <3 [oB)] I, < exllg(A)o (53)
i€[n] = ij) — g
holds. Besides,
max 1Z2), = [g(A)Lj HD| < [g]) , < exewllg(A)]I%.

Towards Understanding Generalization of Graph Neural Networks

Then we analyze how ¢(W1, Wa; z;) change w.r.t. W, for fixed W1 and i € [n]:

[0(W1, W2, 2) — (W1, Wy, 2)|

<V2||2{2 (W, - W)

= o], s

2

SN

~ 112 ~ 112
<exew 2 ||gA)||_ W2 = Wall < exewv2||g(R)| " flvee W] = vee W]l

Wil < V2 [g(A)| IrelaXHH(l Iz [|W2 — W

where the first inequality is obtained by Lemma A.6, and the last inequality is obtained by Eq. (52). Then we analyze the
change of /(W1, Wy; z;) change w.r.t. W for fixed W5 and ¢ € [n]. Note that Z® and HW are function of W7 in this
case, which we denote by Z(1) (W) and H(Y) (W), respectively. Then,

[6(W1, Wa,z) — (W7, Wy, z)|
<V2 @2 (W) - 22 (W)W

<Vaew |37 [o(A)] (HE) (W) —HE) (W)

Jj=1 2
<V2 A YWy - wh)|
_\[CW;[Q()]z v —whl
<Vaew Jo(A)]| _ma |20, Wy = Wl < exew vE[[g(B)]|_llvee (W] = vec W,

~ 2
Let Ly = Ly = 2exew Hg(A)H , we conclude that |((w) — £(w')| < Lz|lw — w'||2 holds with Lr =

~ 2
2excew Hg(A) H by Lemma A.4. By the chain rule, we have

PUWL Waiz) o
5vec [Wg] B (y) ® Zz*)

OUWL, Waizi) ST % (1) "
Ovec[W,] ; [g(A)Lj ((Z w) (Vi yi)WQ) ®Zj, .

(W1, Wa;z;)

We first analyze how dvec[Wo]

change w.r.t. W and Ws. Note that

(W) —

8€W,W,zl 8£W,W,zz
H<12> (W1, Wai20) o

Ovec [Wa] Ovec [Wa]
2w - 22 (W)

2
| 19a(W) = 7 (W) 2| |24

.

CIRICARS RILA)

2

§||5’i - }’z’H2 ‘

Va+2exdy [olB)|”) 2 W) - 2w

1%k

<(
= (va s 2exd o)) |32 [oA)
<
(

Jj=1 +

Valla@)| -+ 2exch [o®)|”) 1w~ Wi ma

1€[n]

2

< (Vaex o(®)] + 2kt o)) Ivec W] = vee i

29

Towards Understanding Generalization of Graph Neural Networks

Besides,
8€(W1,W2;Zi) 8€(W1,W2;21) /
— = - (Wy)— ——— (W
H Ovec [Wo] (W2) Ovec [Wy] (W2) 5
<[[35(W2) = 3:(Wa)l|amax | 22| < 2||23) (W2 - W) | max
ze[n] 2 2 i€[n] 2

<2[Wa - W max |22 < 26k ello(A) 1 v (W] — vee [W3]

~ 2 4 ~ ~
Denote by Py; = /2cx Hg(A)H + 2c% ¢, Hg(A)H , Pyy = 2% ¢y]lg(A)||4, Po1 = P = 0, we obtain that

ob(wizi) OL(w';z)
Ovec[Wa] Ovec[Wa] 5

%W change w.r.t. W1 and Wy. Note that

86 Wl, WQ, Zz)
Ovec [WH]

8€(W1, WQ; Zi)

(W2) = Ovec [WH]

(W)

2

(('(Z0 W) =o' (20WH)) © (3: - y) WS) @ 20!
2
(al(Z;},)Wl) O ((y:i(Wy1) — S’i(Wi)))W;) 2 Z;i)
2

‘ 2

< |o(a H ~y)W3 || ma 2] o

Yi(W1) = 3i(Wh)ll

(Z0W) o' (W)

—i—cWHg(A)H max
o0 j€[n]

a ~ 112
<V2exewP|Jg(A H max z§i><w1—wa> , +2exchy [o(8)]|_max |22 (W) — 22w
oo jEN oo jen
S\/icXcWPHg(K)H W1 — W15 max Zﬁ) +2cXcWHg H max Z()(Wl)—Zg)(W'l)‘
oo j€ln] oo j€[n] 2

24«

Ve ew P o(R)] " hvee (W] — vee (WIS + 26y [}o(R)||” vee (W) — vee W1,

where we use the fact that the absolute value of each element of ¢’ (Zﬁ)Wl) is less than 1. Similarly,

(%(Wl,Wg; Zz)

(W2) = Ovec [Wa]

H(‘% Wl,Wg,zl) (W/)
2

Ovec [W1]

2

_ Z 9(A)] } (o (Z9W1) © (5 -y (Wa - W)) 208
+{D [Q(A)Lj (a’(Zﬁ)Wl) o ((3:(Wy) — yi(Wg)))wg) @ Zﬁ)
2

H(y —y) (Wa — Wg)T‘ max

<o i

OOJE[

”yz (W3) — y2(W2)H2

< (Voo bk o) e - et

Denote by ot 4
P = V2 ey P HQ(A)H ,Pry = 2ckciy HQ(A)H ’
(oo}

oo

2 5 o 4~
Pio =V2cx Hg(A)H + 2¢% ¢y Hg(A)H s Pra =0,
o0 o0

30

< 27| Py |lvec [Wy] — vec [W||, + P [[vec [W;] — vec [W/]||S2. Then we analyze how

Towards Understanding Generalization of Graph Neural Networks

. ob(w;z; ob(w';z;
we obtain ‘ 8V(£C[W1)] av:(ec[wl] Zz 1 Pri||vec [W;] — vec [W/]||, + Py |[vec [W;] — vec [W Jll5- By Lemma A 4,

we conclude that | V{(w) — V[(N2 < Prmax{||w — w'||2, |[w — w||$} where w = [vec [W1]; vec [W3]].

B.2.2. PROOF OF PROPOSITION 4.12

We first analyze the Lipschitz continuity. Denote by

HO =5 (XW,),
HY = o (1 - an)g(A)H® + 0 HO)(1 =)T+ 5W1))

H® = o (1 - a2)g(AH + 0, HO) (1= B)T + 5 W)

the forward process of GCNII is given by Y = Softmax (H(®W3). First, we have

= HelaXHO' (XixWo)lly < exew.
K2

max HHES)
i€[n]

Similarly, for £ = 1 and £ = 2, denote by Cy = (1 — 8¢) + Becw, we have

max
1€[n]

|

=max o Z (1= o) [9(&)] HITY + 0 D) (1 = BT+ 6 W)
1 n — 1]
n 2

<mac 3 (1=) [3 [o(A)] BTV = BT+ W) | 4o [HD (= 50T+ W)
j=1)

n

<max < (1 —ay) Z{ }
j=1

HY V(1= 80T+ BeWy) H +CWHH(O) 1—ﬁe)I+ﬂeWz)H2

1€[n]

€[n] 2

<(1—a0)||g(A) | _ 11 = o)1+ B Wl ma [HED|| 4o 1= 50T+ Wl ma

H)H + apexew Co.

<(1 —ap)Cy HQ(K)H max

oo 1€ [n]

1)

i

, we have obtain B; = cxcwCi((1 —aq) Hg(A)H + 1) and

2
Hi*

Let By = maX;¢y and By = maxX;¢y]

By =(1—a3)Cy Hg(K)H B1 + ascexcew Cay. Next, we analyze the change of H(Y) and H®) w.r.t. Wy, W, and W,
Part A. Note that

Ay 2 |HD W) -HD (W)

‘ 2

ij

n

<6 |(a-av) > o) H

HYY + o HY) (Wy - W)

2
(1—a1 o)) B o B] 1w - W
)
<1foz1 Hg H +o¢1> exew |[Wy — W1l
B
<61 (1=) [g(B)||_ +an) exew [[vee [Wi] — vee [Wi]ll, = *3}}11 Ivec [W1] — vee [W/]]l,

31

Towards Understanding Generalization of Graph Neural Networks

Similarly, we have
Ao 2 |[HY (Wo) - HY (W)
<=0 3 [o(A)] | (H (Wo) — HIZ (W) 4+ on (HL (Wo) — H (W) | (1= BT+ 5iW|
Jj=1 9
<t [0 -a)) [oA)] o)~ HY(Wh)|| +au [HY (Wo) - HE (W)
j=1
<C1 (1= an) [gB)]|+an) ex IWo = Wil = = [W - W
cw
Part B. Note that
Ay 2 |[HE (W) - HY (W)
2 (1—(12 Z[} 1)+OZH())(W2—W/2)
Jj=1
2
< (S o], 0]) iwa —w
Jj=1 “
<Bs ((1 — Qg Hg ‘ By + CYQCXCW) [[Wy — W5
<8 (1= a2) ||9(A)|| Br + asexew) [Ivec [Wa] = vec [Wll, = 52 2 [[vee [W,] — vec [W], -
Similarly,
Az 2 [HP (W) - HE (W)
2
Y 1y HO(w!
<(1—a2) 9(H; (Wh) = Hp (W) I = B2)L+ B2 W,
j=1
<(1 - a2)Ca Jg(A) | _ e |12 (W) ~ (W), < (1 an)n P2 Jo(R) | fvee (W] = vee [W],
Besides,
Aso £ |HZ (W) — HZ (W) ‘2
‘ 1(1 = B2)T+ B2 Wal|,

<) Y- [o(A)] [(Wo) B (W)
j=1
T oy HH(O) (W) — H(O) W/ ‘ (1 *BQ)IJFBQWQHQ
B.:C ~
< ((1 —an) 22 ol +a2cXcz) Ivee [Wo] — vee [Wi]ll, = 2 [[vec [Wo] — vec [W]l,

Now we are ready to analyze the Lipschitz continuity and Holder smoothness. Note that
¢{(Wo, W1,W27 W3; 2i)|

Wsll,

[{(Wo, Wi, Wy, Wg; z;)
‘ <\fmax

<fHH(2) (W5 — W)
<V2B, [[W3 — Wi|l, < V2B [|[vec [Ws] — vec [WS]||,

32

1€[n]

Towards Understanding Generalization of Graph Neural Networks

Since H® is a variable related to W, we have

[{(Wo, W1, W3, W3, z;) — {(Wo, Wi, W5, W3 2|
<V2|[(ED (W) - HE (W)W |

BaBo
Cs

<ewV20gy = ew V2 |[vec [Wa] — vec [Wh]||, .

Similarly, since H® and H® are variables related to W,

[((Wo, W1, Wy, Ws: z;) — ((Wo, Wi, Wy, Wy 2;)|
<V2 |2 W) - BE (W)W |

C
<ew V2021 = (1 — ag)Brew é,l 2 Hg(

A)| V2 llvee W] = vee [Wi],

Lastly, since H(®), H() and H(?) are variables related to W,
|5(W07W1,W2,W3;Zi) —{(W(, W1, Wy, W3 2,)|
<V2 H (H? (Wo) — H? (W) W?,H
SCW\/>A20 = fBQ ||V6C [Wo} — vec [W(/)]”Q .

Denote by

2B 262
LF‘%BSH«:@/}?QMM e T
2 1 .

by Lemma A.4, we conclude that |¢(w) — ¢(w’)| < Lx||lw — w’||2 holds. Then we discuss the smoothness. By the chain
rule, we have

0l(Wo, Wi, Wy, W3; z;) — (9 —)®H(2)

Ovec [W3)
U(Wo, Wi, Wy, Wa;z;) o 0) STl s e @
Dvec [Wa) = af20; @ H;,” + (1 — a2) B2 ; [Q(A)} y o @ Hj.,
0l(Wo, Wi, Wy W3;z;) - X (0) ~\ T A g (0)
BN k] g0+ 1o 5], 0]
(Wo, W1, Wa, Ws; 2;)
Ovec [Wo)

—as((5:((1 = B)I+ W]) o HY) @ X,

+aq Z {g(fA)} y ((6:5((1 = BT+ /W]) © Hﬁ)) © X,

n

(1 —a) 337 [o(A)] [o(A)] (050 BT+ W) © HY) @ X,

j=1k=1

where

6 =((¥:i —yi)W3)® o’(HEf)L

5ij =(1 = a2)o’ (H))) © (8i((1 = B2)W3 + BI).
We first analyze how d; and 6;; change w.r.t. Wy, W1, W5 and Wa.

33

Towards Understanding Generalization of Graph Neural Networks

Part C. For i € [n], we have
16:(W3) — 6:(W5)]l,
< H(y,» —y)(W3 - W5 T 0o'(HY) H + H 5i(Ws) = 3:i(W5))W5 00 (Hf-f))H2

<NFi = yi)(Ws = Wil + cw [[(3:(Ws) = §:(W5)ll,
SV [[Wi = Wl + 2ew [W — Wi, max [HED|| = (V2 -+ 20w Bo) [vee [Ws] — vee [W3]],

where we use the fact that the absolute value of each component in o’ (Hff)) is less than 1. Similarly, we have

10:(W2) — 6;(W3)][,
<[=y Wi © (! EE) (W) — o D) W) |+ |[((5:(Wa) = 5 W) WD) 0 o' ()|

.

[[vec [W] — vee [Walll, -

<P||(3: -y Wi |, [B (W2) - B (wy)||”

+ 26y || (W) - HE (W)

SP[CWA22+20WA22
2 52 2

=\2cy P (520152) |[vec [Wa] — vec [Wh][|5 + 2¢3,

Besides,
16:(W1) = 6:(W1)lly < V2ew PAS) + 25y Agy

:\/§CWP <(1 — ag)ﬁl B(l;’c2

o]) vec i) — v (w1115

B, C ~
20—)iy 5 [o(A)]| _ llvee [Wh] = vee W]l
18:(Wo) — 5,(W >H2 < Vaew PAG, + 26k Ay

By \“ a
=V2cy P <CV[2/) [vec [Wo] — vec [W(]|l5 + 2cw B |[vec [Wo] — vec [W(|l, .

Part D. For i € [n], we have
116 (Ws5) — 6i;(W5)ll,
(1 - a2) |0/ (HY) © ((0:(Ws) = 5:(WH) (1 = B2) W] + BD))||

<(1 = a2) [[(6:(W3) = 5:(W5)) (1 = B2)W5 + D),
<(1 = a2)Cy [|5:(W3) = 8i(W5)ll, < (1 = a2)Ca(v/2 + 21w By) |[vee [W] — vee [W]]|,

Similarly, we have
1655 (W2) — 0i5(W5)ll,
<(1 - a2) o () © ((6:(W2) = 5:(WH)(1 = 2)W5 + D))
+(1—ag)(1-) o’
(1= a2) [(5:(W2) = 6:;(W5)) (1 = B2)W3 + BaD)||, + (1 — az)(1 = B2) [|6:(W2 — W) T
(1 = a2)C2 [|(8:(W2) — 6:(W5))[l, + (1 — az)(1 = B2) |6l [[W2 — Wy

B o
P25) e (Wil - vee (W

(H)) © ((6:(W2 — Wé)T))Hz

< Hz
<

S\/§(1 — OéQ)CWpCQ <
+ (1=) (26 B2B2 + V(L= Ba)ew) [vec [Wa] = vee [W5]ll,

34

(54)

(55)

(56)

(57)

(58)

Towards Understanding Generalization of Graph Neural Networks

Besides,

1815 (W) = 8,5(WH),

<(1—ay) a’(H(-l)) © ((6:;(W1) = 6;(W))((1 = B2) W, + 521))H2
+ (1= a2) | (o (B (W) — o (D) (W) © (0,((1 = 82) WS + a1,
<(1 = a2)Calld (W) = 8,(WHla + (1 = a2)Calldi| o (B (W) — o (B (W) (59)
<(1 - a2)Cal|d:(W1) = 6:(W)l|2 + V2(1 = az)ew CP [B (W) — B (W)
< VB CaP [(1 = a3) +05 [o(B)]|” + 1 -] (B2) rec W] — v (W11
N 2
4201 - 2816y [oB)]| ZEE fvee [W1] = vec WA,
Finally,

1655 (Wo) = 6i5 (W)l
<(1 -) ||o' () © ((6:(Wo) = (W) (1 = 82) WS + 51|

+ (1) || (o' (HI) (Wo) — o' (D) (W) @ (6:((1 — 82)W3 + D)

(60)

<(1 = a2)Cl|d(Wa) = 8,(Wp)[l2 + V2(1 = ax)ew CoP |[HE) (W) — BV (W)

|
<VB1 - anCapor [(22) 4 (21)] e (Wal - vee (W5

cw

+2(1 — ag)ew B2 Cs |[vec [Wo] — vee [W(] ||,

Now we are ready to discuss each gradient term in the following four parts.

Part F. First
aE(WO,Wl,Wg,Wg;Zi) 8€(W0,W17W2,W3;Z¢) y
W;3) — A%Y%
H Ovec [W3] (Ws) Ovec [W3] (W3) 9
< mae | HE2 | 93(Ws) = 9i(WE)ll2 < 283 [[vee [Wa] — vec [W .
€|n
Similarly,

(% WQ,Wl,Wg,W3,Z1) 8€(W0,W1,W2,W3;zi) Y
Ws) — %%
H Ovec [W3] (W2) Odvec [W3] (W2)

Vi(W2) — 3:(W5)|2

gHHS)W) H? (W)] 19 — yl||2+rnaX’

(f+2CWBQ)A22 = (f+2CWB)B |Ivec [Wg] — vec [W/H|2

Similarly, we can obtain

2

0U(Wo, Wi, Wy, W3, z;) 0U(Wo, Wi, Wy, Wi 2)
H Ovec [W3] (W) Ovec [W3] (W1)

[5:(W1) = 5:(W1)ll2

‘2 lyi —yill2 + max HH

< B2 owy) - 5P (W)
102

(A)| _ lIvee [W1] = vee (Wi,

=(V2 + 2cy B2)Asy = (1 — a2)B1 (V2 + 2w Bs)

35

Towards Understanding Generalization of Graph Neural Networks

and
0{(Wo, Wi, W, W3 2;) OU(Wo, W1, Wy, W3, 2;)
Wy) — W
H Ovec [W3] (Wo) Ovec [W3] (Wo) 9
<[wo) — B2 W) | 15—yl e B2 9(Wo) — 92 (W s
B
=(V2 + 2ew Ba)Agy = (V2 + QCWB2)C—2 [[vec [Wo] — vec [Wp]||, -
w
Denote by
5 Bo C. ~
P33 =2B3, Py = (V2 + 2CWB2)BC,2 Py = (1 — 02)B1(V2 + 2cw By) Bie HQ(A)H ;
Bs
Py = (V2 + 2CWB2) , Py = P33 = P3; = Py =0,

. Ol (w;z;) ol(w';z;) / 4 D 11110
we obtain that Havec[w Dllwe || < 3oL, Pay flvec [W,) — vee W[, + S, Pa; [[vee [W] — vee [W]l5.
Part G. First,

(W, W1, Wy, W3 2;)

(W3) — (W3)

af W07 Wla WQ; W37 ZZ)
Ovec [Wa]

Ovec [Wa] 9

= 04252H§S) +(1—a2)p

H'M:

[B)] B 15(Ws) ~ (W)l

2

<(V3 4 20w By) (azﬁz max) [vee [Ws] — vee [W5]]l,

i€[n) + (1= a2)p Hg(A H max

oo i€[n]

2

<(V2+ 20w Ba) (azBaexcw + (1= az) BB ||g(A)|) lIvec [Wa] - vee W3],

=(vV2+ 2CWBQ)5 [|vec [W3] — vec [W5]||, .
Similarly,
a‘g W07W17W27W3azl) ag(WO7W17W27W3;Zi) /
Wy) — W
H Ovec [Wa] (W2) Ovec [Wa] (W2) 9
= [JooBHY + (1= 02050 3 [o(A)] HV|| [5:(W2) —6:(W3)l
j=1)
B 1+« N B 2
<V2Pcy (ﬂé 2) [vec [W] — vec [Wh]|[5 + 2¢3, (*32,22) [vec [W] — vec [Wh] |, -
Besides,
(% W07W17W27W37’ZZ) 3£(W0,W17W2,W3;2i) /
W) — W
H Ovec [Wa] (W1) Ovec [Wa] (W3) 5

3

< a2t HLY + (1= a2 3 [a(A)] HD | 10:(Wh) — 5(W)l,

Jj=1 9

1 —a8 3 [oA)] @R W) —HD W) (6],
j=1)
<VBPaw(1 - aa)57 (22)o@ 22 free (Wil - vec W1l

B8] 3 o sl

=+ (1 — OéQ)CW

36

Towards Understanding Generalization of Graph Neural Networks

Finally,

0l(Wo, Wo, W3, W3; 2;)

(Wo) - dvec [W]

(Wo)

0U(Wo, Wi, Wy, W3, 2;)
Ovec [Wa]

2
< a2t HLY + (1= a2 3 [a(A)] HLD | 10:(Wo) — 5(W),
=1
2
ma |51, + (1 = 2)8 (&) | mac] [HEY (W) — HI (W) |
9 2)P2 (|9 X 2 i 0 ix 0)

2 i€[n] oo i€[n

J
+ [|azse (B (Wo) — HE (Wo))|

B2Ba (V2 + 2Bacw) v

- Ivee [Wo] — vec W]l

<fpcw< W) 52032 Ivee [Wo) — vee [WHIS +

Denote by

B B\ 2
P23=(\/§+26W32)@, Py = 23y, (62 2) ,

CQ CZ
B B 2B
Py = (1— an)ew 18182 H H PCWBZ n \[} Py = B2Ba (V2 4 2Bacyy)
Cl CZ
~ ~ B \'t* - BiCo\“ || ~. | BB
Py =0, Pay = V2P (520 2) . Po1 = V2Pey (1 —) B¢ (é 2) HQ(A) 520 2,
2 1 oo O

B
on—\[PCW(> b2 222
cw Cs

ol(wizi) Ob(w';zi)
dvec[Wa] ~ Ovec[Wa]

we obtain that H < S Poi |lvec [Wy] — vec [W|l, + S5, Pa; [[vec [W;] — vec [W/]||5.

Part H. Since (1) H® is variable related to Wy; (2) d;; is variable related to Wy, W1, Wy, W3, we have

0U(Wo, W1, W3, W3; 2;)

(Ws) - dvec [W1]

(W3)

0(Wo, W1, Wy, W3 ;)
Ovec [W1]

2

s 3 R [,

) = 015 (W3)]l2

u

S1aa Y o) [od)] [r

<exew(1 = an)Ca (o ®)] + (1= as JoB)) (VE+ 20w Bo) Ivec[We] — vee [W,

B1B81Co
C1

i1 (W3) = 05 (W3)||2

:(1 — ag)

l9(A)|| (V2 + 201 Ba) |Ivec [Wi] — vee WS,
where we have used

2
+(1—a1)ﬁ1CXCWH9(A H _517 Hg Hoo

aifiexew HQ(A)HOO

37

Towards Understanding Generalization of Graph Neural Networks

Similarly, we have

H (W, Wi, Wy, W3 2;)

Ovec [Wq] (W2) -

s 3 oA [,

oS5],]

<V3(1 — as)ew PEZIE &) (P22 oo Wal - vee W

i1 (W2) — 0 (W5)||2

i7(Wa) = 8;5(W5)ll2

+(1-

o) _ (2688282 + VB = B)ew) lvee [Wa] — vec W],

Besides,

00(Wo, W1, W3, W3; 2;)
Ovec [WH]

H (Wi, Wi, Wy, W3 2;)

Ovec [Wq] (Wh) -

(W1)

2

s 32 R[]

I—MIZZ{), lo®],, w2,

i (W) — 05 (W1)ll2

iJ (Wl) (5”-(W'1)H2

S5
<Vaen € [(1 - 00008 [o B + 1 -an)] (Z2) R pveetwil —veerwilg
200 02)87chy T (R _vee (W] - vec (W
Finall.
o [}H 5(Wo) = 85, (W) |2
+- “”ﬁl;ﬂ;knl [g(fx{ @] (B2, 16 (Wo) — s (Wil
v almé o ®)] 1831, [wo) - B (W
+(1-a) 512) [g@ @] s, B2 owo) — mD W) |
<VA(1 - az)ew [() (2)] BB)| e (Wol = vee [

+ (1 — a2)(V2 + 2Bacw)

BB |y &) v (Wl - v [Will,-

38

Towards Understanding Generalization of Graph Neural Networks

Denote by
P35 =(1- a2)613102 H H \f—i— 2¢w Bs), P12 = (1 — a9) H)Hoo (20%4/5232 + \/5(1 - 52)CW)
Pu =201 - 02?876, P R Pra = (1 -) (V2 + 284 Wﬁlcfz Joc)|

Pi3 = 0, P, = \/5(1 —ag)ew P

ﬂ1g1102 HQ(K)H (52C§Q>a

o+ (1-az)] (/“3)+ lod)|_
o[(2 (2] 22 ..

w w

Pi1 = V26 Co P [(1 —an)te0g || g(A)

0l(w;z;) 0l(w';z;)

Bvec (W] — Bvec[W.] Zl 1 Pri ||vec [W;] — vec [W1]||, + Z?Zl Py, [[vec [W;] — vec [W]||5.

we obtain that ‘

Part I. First we have

(W3)

(W3) —

0l(Wo, W1, W3, W3; 2;) 0l(Wo, W1, W3, W3, 2;)
Ovec [Wo] Ovec [Wo]

<0 [Xeelly 15:(Ws) = 8 (W)l [[(1 = B2)T+ 5 W ||, [

2

+ oy Z [g(K)Lj X sl 11855 (W3) — 655 (W) I, [|(1 = BT+ BrW)], HHE‘Z)

n

F-an Y o], o] Xl 6 (Ws) — s (WL, 1~ 308 W), [

j=1k=1

o

< (a202 Fan(1 = an)ChCo Hg(};)H (1= an)(1 = a9)CiCo Hg(J&)Hl) Eeew

x (V2 + 2ew By) ||[vec [W] — vec [WH] |,
=cx Ba(V2 + 2¢1 By) ||vec [W3] — vec [W)] I, -

Similarly,

(W3)

(W2) —

OU(Wo, W1, Wy, W3, 2;) 0U(Wo, Wi, Wy, W3, 2;)
Ovec [Wo] Ovec [Wy]

<02 Xzl 18 (W) = 8:(W) |, | (1 = BT+ By W |, [

2

o anfl Xl 10 | EIC

,[TW2 = Wa|

+ a1 Z [9(;‘;)]” Xl 11655 (W2) — 8 (W)l || (1 = BT+ BLW])|, HHEZ)

n

F-on Y o), [oR)] Xl 19 (Ws) — 3, (W, 1~ 5y

j=1k=1

ngcxcwﬁp< éBQ> [[vec [W] — vee [WH][15
2

[chcWﬂQB + VaasBackcfy + V2L = a2)(1 = B)exew By [g(A)| } Jvee W] - vee W3]l

39

Towards Understanding Generalization of Graph Neural Networks

Besides,

(W) — (W1)

0U(Wo, W1, Wy, W3; 2;) 0U(Wo, W1, Wy, W3 z;)
Ovec [Wy] Ovec [Wo]

<o [Xl 10:(W1) = 6:(W)l [[(1 = BT+ B2 W3 ||,

2

- A 0
toap Y [o(A)] 1l 5 |2 a
Jj=1

a3 [aR)] Il 185 (W) = 6, (W, 1= BT+ 5w, |2
j=1

n

F-on Y o), [oR)] Xl 5 (Wh) 3, (W, 1~ 51

j=1k=1
a x BB\ I1na
(Bz(uag C Hg Jr(lfozg)BlC'gHg(A)H)\/ichcW G) llvee[Wa) = vee [WJ[5
B1ByC ~
+(z<1_a2>ﬁ1cxcgv o 2+¢§a1(1—az)ﬁlc§<03v02> l9(R)|_ f1vee W] = vec [WH]|,

Finally,

(Wo)

(Wo) —

OU(Wo, W1, Wy, W3, 2;) 0U(Wo, Wi, Wy, W3, z;)
Ovec [Wo] Ovec [Wo]

<02 Xzl 18:(Wo) = (W) I, | (1 = BT+ B W |, [

2

a2 Xy 8:((1 = B2)T+ B W), [HLD (Wo) — L (W)

‘ 2

Fou Y [oR)] 1%l 10 (W) — 8, (Wl 1~ 31+ 3w, [
j=1

‘ 2

a3 [o(B)] 1%l 10 (1 = 801+ AW, [12 (Wo) — B (W)
j=1

n n

(=) 3030 o) [oB)] 1Kkl 165 (Wo) = 35;(Wo)ll 11— 5)

1k

<.
Il
Il

—

+ (1 70&1)

M:
NE

(o) [a®)] el 10 (1 = 1+ B WD, [(Wa) — B (W)

’ 2

1
<cx Ba(V2 + 2ew By) ||vec [Wo] — vec [W]|l

+V2exew P [Bg (§i>a 4 (1— az)0y Hg(A)HOO B, (Bl> T [vee [Wo] — vec [WA][1S .

<.
Il

ES
I

—

cw
Denote by
B
Poz = cx Ba(V2 + 2cw Bz), Po2 = 2cxciy 2~ s +V2azfB2ck iy + V2(1 — a2)(1 — B2)exew B (A)H ,
2 B1B2Cs
P01 = 2(1 — OQ)ﬁlcchT + \/ial(l - Otz)ﬂﬂ:XCWCz Hg(A)H Poo = CxBQ(\/E-F QCVVBQ)7
Pos =0, Pos = Bacxew V2P <ﬁ2082>)
2

+ (1 — ag)Blcz

(oo}

Poo = V2exew P [32 (&)a +(1—a2)Cs Hg(A)Hoo B <i>a] :

cw cw

Por = (Ba(1 - a2)°C5 [g(A)

gA)|_) vapexew (%)a,

40

Towards Understanding Generalization of Graph Neural Networks

ol(w;z; ob(w';z;
St — G|, S it Poi vee Wil = vee [Willly + i, Poi [lvec [Wi] — vee W3-

Combing the results in Part F, Part G, Part H, Part I, we conclude that | V{(w) — V(W) ||2 < Pr max{||w — w'||2, ||w —
w'[|$'} holds where w = [vec [Wq]; vec [W1]; vec [W3]; vec [W3]] by Lemma A 4.

we obtain that ’

B.2.3. PROOF OF PROPOSITION 4.13

For two layer SGC, we have g(A) = A2. Note that

W1 Wo; 2) — (W W 2)] <2 Z[B)| X Wi (W, - wy)

2
<3y ()] X5 Wi, [Wa — Wi
j=1
<exew V2 HQ(K)H [W2 — Wh|.
oo

Similarly,
W1, Waiz) = W), W)| < exew v [g(R)| W1 = Wl

Denote by Ly = Ly = cXcW\@Hg(K)H , we conclude that|/{(w) — ¢(w')| < Lz||lw — w’||2 holds with Lr =
2cxcew H g(.&) H by Lemma A.4. Then we discuss the Holder smoothness. By the chain rule, the gradients are

n

% = Z [} —yi) @ (X;. W),
j=1
mzz[B (G-)W eX,.
j=1
First,
Ol(W1, Wa; 2 OU(W1, Wy 2 /
H%W—%W 2
<3 [olA)] =30 © (% (Wa = W) + > A 1:(W) =i (Wi) © (X, W)
< (Vaex o @) _ + 26k o0&) Ivecwi] = vee Wil
Similarly,
<3 [o(A)], 1@W2) = 7i(Wh) & (X W)l < 26y ()| llvee [Wa] — vee (W]

Jj=1

- 2 2 _ -
Denote by Py; = 2cx Hg(A)H + 2c%- ¢, Hg A H Py = 2c5 3, Hg (A) H and Py; = Py = 0, we ob-

OL(w;2;) ob(w';z;)

Sl — Sroet| < ST P vee W) — vec [W, + P [vec [Wi] — vee W[5 By the same

tain that ‘

way, denote by Pi1 = Pao, P11 = PQQ and Py, = P21,P12 = P21 as well as a;; = a12 = 1, we obtain that
‘ Oltwez) _ Olw 2) || < 522 Py, |lvec [W,] — vec [W/] |, + Py [[vec [W;] — vec [W]||S. By Lemma A.4, we con-

dvec[W1] ~ Ovec[W1]
clude that | V(w) — VI(w')||2 < Prmax{||w — w’'||2, |[w — w’||$'} holds where w = [vec [W1] ; vec [W]].

41

Towards Understanding Generalization of Graph Neural Networks

B.2.4. PROOF OF PROPOSITION 4.14
We first show that the objective /(W 1, W) is Lipschitz continuous w.r.t. W7 and Ws. Note that
|€(W17 W27 ZZ) - K(W/17 W27 ZZ)‘Q

n n

V2|37 [0A)] o(o(X W W) =37 [9(B)] olo(X,. Wi)Wo)

,_ 3 i
j=1 Jj=1 9

<V2)7 | [9(A)] [I(0(X, W) — o(X,. W1)) Wal,

<V2y_ :g(JNX)_ |o(X ;s W1) — (X W) 2] Wa |

gx/iz g(fA) 11X (W1 — W) [l2][Wo|

<exew/2 Hg(fx)Hm [vec(W1) — vec(W')|.

Besides,
M(le W27 Z’L) - g(Wla W/27 Zl)|2

znj[} (0(X;. W1)W2) — o(0(X;, W1)W5))

i3 s,

By Lemma A.4, we conclude that |/(w) — {(w')| < Lx||lw — w’||2 holds with Lr = 2cxew Hg(:&) H . The gradients of
fw.rt. Wi and W, are >

2

o (X5, W) (W2 = Whz < exew V2 [g(A)| W2 — Wyl

(W1, W2z) =T %) 5
W = ; [Q(A)Lj (' HVYW,) . © (§i — yi)) ® (XW1)j,

e - 3= [sR)],, (/0XWa) © (53 =30 0 O W W) 0 s

where H) = ¢(XW). Note that

[9:(W1) = 5: (W) 2 < 2exew [[g(A)]| _ lIvee [Wi] = vee [W1]],.

19:(W2) — 3:(W5)|2 < 22

Jj=1

o (HD (W = W)z < 2exew [[g(A)]| _ Ivee [Wa] = vec [W]|,.

Similarly,

Part A. First we have

aé(Wl,Wg;zi) c’)E(Wl,Wg,zz) ’
Ovec [WQ] (W2) Ovec [Wa] (W2) 9
98] | VX, Wl (BOWa). = o' (BOW)

98] 156, W1 55 (W) = 55(W)
<VaP||g(A)|| _ ek elt vee [Wa] — vee WIS + 26kl a(A)||”_ lvee [Wa] — vee [W

42

Towards Understanding Generalization of Graph Neural Networks

Also,
LW 1, Wa; 2;) (W1, Waizi)
H Ovec [Wo] (W) - Ovec [Wo] (W1) 5
<2} [g(fm}ij\ 1%, W oo’ (HO (W) Wa) . — o (HO (W) Wa) .2
j=1
[g@]ij\ X (W1 = W) [g@]ij‘ [9:(W1) = §5 (W12 [X Wi
=1
g\@PHg(A)H e 0 [y [W] — vee [W1] IS
~ ~ 2
+ (\/icx Hg(A)HOO +2ck e, Hg(A)HOO> [vec [W1] — vec [W/] ||o.
Denote by

2

~ ~ ~ 112 ~ ~ ~
P21 = <\/§CX Hg(A)H —+ 26%{0?}[] Hg(A)H > ,P22 = 26?}(0%}[] Hg(A)H ,P21 = P22 = \/§P HQ(A)H C%{"{‘O‘C‘l/{/‘ro‘?

o0

we obtain that

ol(w; z;) oU(w'; z;)

‘ Ovec [Wo] dvec [W] Z Py; ||[vec [W;] — vec [W[|, + Pa; [[vec [W;] — vec W[5 -
Part B. We have
| e v - o,
VEexew Y 9(A)] || HOW,), — o' (HOWS);. 9(A)] W2 =W,
=1

tew Y [9B)] 1K all9:(Wa) = 5:(W3)

§\[2Pc§(+ac‘1;a

g(A)|| _[Ivec[Wa] = vec W5 |5

(exvaa@] + 2k o)) Iveclwal - veo Wi

Also, one can find that
OL(W1, Wy; 2)
Ovec [W]

0U(W1, Wa; 2;)

(W) - Ovec [W1]

(W1)

2

Sexew V23 9(A)] 110! (XW) = o (KXWl e D [9(A)] 1% llals(W) = 5:(W)ll

+cXchZ[}

o' (HO(W1)W) — o' (HO (W W) |

(HOW,) — HO (W) Wa

SCXCWP\@Z {Q(A)LJ X (W1 — W)y +CXCWP‘[Z { }
j=1

j=1
~ ~ 12
< [ew + exclit ™) PV2 [g(R)|_ llvec [Wh] = vee Wi |5 + 2% ey ||g(A)|| llvee W] = vec [WH] .
Denote by
~ 112 ~ ~ 12
P =2kl o @), P = (exva @)+ 26kt [0 @)).

1311 = [C?QCW + CXCHO‘ Png H P12 = CH_(X 1+0‘P\ng H)

43

Towards Understanding Generalization of Graph Neural Networks

we obtain that

By Lemma A.4, we conclude that |[V{(w) — Vi(w')|2 < Prmax{||w — w'||2, ||w — w'||$} holds where w =
[vec [W1]; vec [W3]].

0l(w; z;) (w'; ;)
dvec[W1] dvec[W,]

2
<th\|vec] = vec [Will, + Y P [[vec [W;] — vec [Wi]|5 .

B.2.5. PROOF OF PROPOSITION 4.15

We first show that the objective /(W 1, W,) is Lipschitz continuous w.r.t. W1, Wy and . Note that

|€(W17W277) - E(W17W277/)|

n n

<V2 |y [9(117’7)}” o(0(X;uW1)W3) = > [9(11,’7')}“ o(0(X;:W1)W2)
=1 i=1)

1
2

K
<Vaexdy <Z ||) Iy = ll-
k=0 *°
From the proof of Proposition 4.14, we have
W1, Wa,) — (W, W2,)| < Vaexew |o(A,)
W1, W2,) = (W1, W5,)| < Vaexaw ||g(A,)|

Denote by

K - 2
ey 2y (S8) ke oA
k=0

we conclude that |[{(w) — ¢(w')| < Lx|/[w — w’||2 holds. Then we discuss the smoothness of this model. The gradients of
(W1, Wa,v) wrt. Wi, Wy, and ~y are

8€(W1,W27'y7zz zn: |:

Ovec [Wa] - } ij o' (0(XW1)Wa)j © (¥i — ¥i)) ® (XW1)j,

j=1
(W1, Wa,v;2) . , T
v o] =;[] XKW, (5~ 1) © 0" (0(XW)W2))W) © X5,
3£(W1,W27’Y;Zz‘)_ 5 %0 T 1K T
5 = > %], HJ*,...,;{A Ljﬂj* :

where H = 0(0(XW71)W3). Note that

1

K 2
1957) = 3:(x)ll2 < 2excy (Z H*WL) Iy =l
k=0

44

Towards Understanding Generalization of Graph Neural Networks

Then one can find that

=)

o Wl,WQ,"‘/,Z@)(- oU(W1, Wa,7; 2i)
Ovec [Wa] v Ovec [Wa]

2

n

n

i%—% <Z [;&k]ij(o' (c(XW1)W2);. © (¥ yz))®(XW1);‘*)H
+ 2 |lod],
< (Vs zevan o]) exct (3227) Iyl

13:(7) = i (¥)2 (XW1) |2

Denote by

~ ~ 2 ~ 2
P = (Vaex oA)|+ 2kl o)) o = iy [olBim]

K 2
P23 = (\/§+ QCXcW Hg(A,"Y)H) CXC%/V <Z HAkH) ’Pgl = P22 = \/§P HQ(A,")I)H §(+ac‘1/[‘/"01, P23 = 0,
kf

we obtain that

ol(w;z;) Ol(w'; z)
Ovec[W,] dvec[W

2
< ZPQI |[vec [W;] — vec [WS]||, + Zﬁgl [vec [W;] — vec [W][|5

+ Pozlly = ~'ll2 + Paslly =I5

Besides,
[t e -)
i (T — k) (i [11’“]“ (0’ (XW1);. © (§1 — yi) © 0 (0(XW1)W>) ;.) W3) ®Xj*>
Z exen|[aE)] |15:00) - 5l
< (V2+ 2exew [|o(B 7)) exciv (ZHA’“H) Iy =l
Denote by

~ 2 ~ ~ 2
Py =2ckciy HQ(A»"/)HOO , Pry = V2cx HQ(A”)HW + 2c% ¢y Hg(A,v)Hoo :

1
K 2
Ps = (\@—i— CxCw Hg(A,'y)H) cxciy (Z HAkH)
]511 = \EP [C;‘raCW + cXcW] P12 = CH—Q 1+aP\ng Y H ?13 = O,
we obtain that

ol(w;z;) OUW'; z,
dvec[W1] dvec[W

2
< ZPM [vec [Wi] — vee [Willly + Y Py [|[vec [Wi] — vee [W]||5

+ Puslly = ~'ll2 + Puslly —'ll5-

45

Towards Understanding Generalization of Graph Neural Networks

Lastly, since

8€(W17W257;Zi) ae(wlaw2777zl) !
W,) — W
H 8’7 (2) a,y (2))
K 2
<3 —yilla, | > || Ak 0(X;:W1)W3) — 0(0 (X W1)W3))
k=0 ||j=1)
2
K n
15 (W) = 5 (Wa)ll2, | D 1D [AF]i0(0(X ;. W1) W)
k=0 || =1

2

< (\@—l— 2ex Hg(A,Py)H(X) cxew <Z HA}“H) [vec [W3] — vec [W5] ||z

Similarly, we have

0U(W1,Wa,7; %)

5 W)

(W) —

0U(W1,Wa,7; %)
Oy

2

< (V2+ 2exciy ||oB.7)|) exew (ZHAkﬂ) [vee [W] — vee [W1] |

and
Haé(wl7w2a7;zi) (7) _ 8£(W1;W27’7; Zz) (7/)
v o~ 5
K n 2 K N
<30 = 5:), | 3 |30 [AF] olo(Xp Wi Wa)|| - < 2ckely (ZHA’“H >|7—7'||2-
k=0 ||j=1) k=0 o
Denote by

1
K 2 K
P = Pra = (V2 + 205 oA) exew (Z a4) P =2, (Z a4) ,
o k=0 o k=0 o
Pyy = Pyy = Py3 = 0,

we obtain that

ol(w;z;) OU(wW's ;)
oy

2
< Z Ps; ||[vec [W;] — vec [W]||, + Z Psy; |[vec [W;] — vec [W1]||5
i1

+ P33||’Y =2+ Pssllvy =I5

By Lemma A.4, we conclude that |V{(w) — V{(w')||2 < Prmax{||w — w'|j2, |[w — w'||$} holds with w

[vec [W1]; vec [Wa] ;4.

C. Experiments Details

For GCN, GAT, SGC, APPNP and GCNII, we adopt the official PyTorch Geometric library implementations (Fey & Lenssen,
2019). For GPRGNN, we adopt the released codes ! with commit number 2507f10. Following (Cong et al., 2021), we
remove all dropout layers and adopt the Adam optimizer with default setting. The batch size is set to 512 and the number of
hidden units are set to 64 for all baseline models. K is set to 10 for APPNP and GPRGNN. For ogbn-arxiv, following the

official implementation in (Hu et al., 2020), we adopt the Adam optimizer with learning rate 0.01.

'https://github.com/jianhao2016/GPRGNN

46

https://github.com/jianhao2016/GPRGNN

