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Abstract

The disentanglement of StyleGAN latent space has paved the way for realistic and con-
trollable image editing, but does StyleGAN know anything about temporal motion, as it
was only trained on static images? To study the motion features in the latent space of
StyleGAN, in this paper, we hypothesize and demonstrate that a series of meaningful, natu-
ral, and versatile small, local movements (referred to as “micromotion”, such as expression,
head movement, and aging effect) can be represented in low-rank spaces extracted from the
latent space of a conventionally pre-trained StyleGAN-v2 model for face generation, with
the guidance of proper “anchors” in the form of either short text or video clips. Starting
from one target face image, with the editing direction decoded from the low-rank space,
its micromotion features can be represented as simple as an affine transformation over its
latent feature. Perhaps more surprisingly, such micromotion subspace, even learned from
just single target face, can be painlessly transferred to other unseen face images, even those
from vastly different domains (such as oil painting, cartoon, and sculpture faces). It demon-
strates that the local feature geometry corresponding to one type of micromotion is aligned
across different face subjects, and hence that StyleGAN-v2 is indeed “secretly” aware of
the subject-disentangled feature variations caused by that micromotion. We present various
successful examples of applying our low-dimensional micromotion subspace technique to di-
rectly and effortlessly manipulate faces. Compared with previous methods, our framework
shows high robustness, low computational overhead, and impressive domain transferability.
Our code will be released upon acceptance.

1 Introduction

In recent years, the StyleGAN and its variants (Karras et al.| 2018} 2021} 20195 20205 [Sauer et al., |2022) have
achieved state-of-the-art performance in controllable image synthesis. These high qualities and fine-grained
controls of the synthesized images are largely associated with the expressive latent space of StyleGAN.
Previous research has revealed that the learned latent space of StyleGAN can be smooth and interpretable
(Abdal et al.| 2019; |2020; Wu et al., |2021; |Zhu et al., |2020). Furthermore, previous studies (Karras et al.|
2019; [2020) have shown that by feature manipulations and interpolations in the latent space, the style-
based GANs can generate a variety of intriguing images with desired changes. These findings have led
to many downstream applications such as face manipulation (Wei et al., [2021; |Alaluf et al., |2021a)), style
transfer (Abdal et al., |2019; [Kwon & Ye| 2021)), general image editing (Gu et al., [2020; [Park et al., |2020;
Suzuki et al., [2018]), and even video generation (Chu et al., [2020; [Fox et al., |2021; Skorokhodov et al., 2021}
Zhang & Pollett) 2021)).

Given this phenomenal result, many try to further understand the potential in the latent space of Style-
GAN. Particularly, rather than per-image editing methods, people wonder whether it is possible to directly
locate a series of latent codes that correspond to sample-agnostic semantically meaningful attributes (e.g.
smiling, aging on human faces). These attempts to disentangle meaningful editing directions can be roughly
categorized into supervised methods and unsupervised methods. The supervised approaches (Shen et al.|
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Figure 1: Representative examples created by the proposed method. The original images are edited
using a simple linear scaling with the discovered universal editing directions on various transformations.
These three rows correspond to eye-opening, aging, and head rotation.

[2020b; [Yang et al., [2021}; |Goetschalckx et al., |2019) typically sample a series of latent codes, labeling the
latent codes with pretrained attributes predictors, and finally learning classifiers for each desired attribute
in the latent space. On the other hand, the unsupervised approach (Shen & Zhou, [2021} [Harkénen et al.,
explores the principal components of the sampled latent codes and observes if these codes correspond
to semantically meaningful editing directions. However, as will be shown later, the editing directions found
by these methods are shown to be still entangled with other attributes. When applying these discovered
editing directions, the result images suffer from undesired changes in identity and other attributes. This
leads to the following question: whether this sub-optimal entanglement is due to the intrinsic limits of the
entangled latent space, or it is because previous methods do not fully reveal the potentials of the StyleGAN?

To answer the question, in this paper, we propose in-depth investigations on the StyleGAN-v2’s latent space
trained on face generations. In particular, we hypothesize that from the StyleGAN’s high dimensional latent
space, a low-rank feature space can be extracted where universal editing directions can be reconstructed for
various facial style transformations including changes in expressions/emotions, head movements, and aging
effects, which we refer to as a series of micromotions. Thanks to the highly disentangled essence of the
decoded editing directions, for any given input, linear scaling along the same found direction will make the
image change its style smoothly. Furthermore, to find such a directional vector we leverage the guidance
of proper “anchors” in the form of either short texts or a reference video clip and show the directional
vector can be efficiently found via simple subtractions using a robustly learned linear subspace projection.
Surprisingly, such latent subspace can be extracted using only a single query image, and then the resulting
editing direction can be used for any unseen face image, even for those from vastly different domains including
oil painting, cartoon, sculpture, etc. Figure [l|shows the generated images for multiple style transformations
and face types. The contributions of our paper are three-fold:

o Leveraging the low-dimensional feature space hypothesis, we demonstrate the properties of StyleGAN’s
latent space from a global and universal viewpoint, using “micromotions” as the subject.

o We demonstrate that by using text/video-based anchors, low-dimensional micromotion subspace along
with universal and highly disentangled editing directions can be consistently discovered using the same
robust subspace projection technique for a large range of micromotion-style facial transformations.
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e We show the editing direction can be found using a single query face input and then directly applied to
other faces, even from vastly different domains (e.g., oil painting, cartoon, and sculpture faces), in an
easily controllable way as simple as linear scaling along the discovered subspace.

2 Related Works

2.1 StyleGAN: Models and Characteristics

The StyleGAN (Karras et al., 2021} [2019; |2020) is a style-based generator architecture targeting image syn-
thesis tasks. Leveraging a mapping network and affine transformation to render abstract style information,
StyleGAN is able to control the image synthesis in a scale-specific fashion. Particularly, by augmenting the
learned feature space and hierarchically feeding latent codes at each layer of the generator architecture, the
StyleGAN has demonstrated surprising image synthesis performance with controls from coarse properties to
fine-grained characteristics (Karras et al.l2019). Also, when trained on a high-resolution facial dataset (e.g.,
FFHQ (Karras et al.} |2019))), the StyleGAN is able to generate high-quality human faces with good fidelity.

2.2 StyleGAN-based Editing

Leveraging the expressive latent space by StyleGAN, recent studies consider interpolating and mixing the la-
tent style codes to achieve specific attribute editing without impairing other attributes (e.g. person identity).
(Hou et al.,|2022; [Shen et al.,|2020a} [Tewari et al., [2020ajb; [Wu et al., [2021)) focus on searching latent space
to find latent codes corresponding to global meaningful manipulations, while (Chong et al., |2021) utilizes
semantic segmentation maps to locate and mix certain positions of style codes to achieve editing goals.

To achieve zero-shot and open-vocabulary editing, recent works set their sights on using pretrained multi-
modality models as guidance. With the aligned image-text representation learned by CLIP, a few works (Wei
et al.; [2021; |Patashnik et al.,|2021)) use text to extract the latent edit directions with textual defined semantic
meanings for separate input images. These works focus on extracting latent directions using contrastive CLIP
loss to conduct image manipulation tasks such as face editing (Patashnik et al., [2021; [Wei et al., 2021)), cars
editing (Abdal et al.,[2021a)). Besides, a few recent works manipulate the images with visual guidance (Lewis
et al., 2021; |[Kim et al., 2021)). In these works, image editing is done by inverting the referential images into
corresponding latent codes, and interpolating the latent codes to generate mixed-style images. However,
these works focus on per-example image editing. In other words, for each individual image input, they
have to compute corresponding manipulations in the latent space separately. With the help of disentangled
latent space, it is interesting to ask whether we can decode universal latent manipulations and conduct
sample-agnostic feature transformations.

2.3 Feature Disentanglement in Latent Space of StyleGAN

Feature disentanglement in StyleGAN latent space refers to decomposing latent vector components corre-
sponding to interpretable attributes. Previous studies on StyleGAN latent space disentanglement can be
roughly categorized into supervised and unsupervised methods. In supervised methods (Shen et al.| [2020b;
Yang et al.| [2021; |Goetschalckx et al., [2019), they typically leverage auxiliary classifiers or assessors to find
the editing directions. To be more specific, [Shen et al. (2020b) first sample a series of latent codes from
the latent space and render corresponding images. Then, they train an SVM to learn the mapping between
sampled latent codes and corresponding attributes, where the labeled attributes are supervised by the aux-
iliary classifiers. Finally, the normal direction of the hyperplane is the found editing direction. |Goetschalckx
et al. (2019) directly optimize the editing direction based on an auxiliary classifier. On the other hand, the
unsupervised methods typically explore the principal components of sampled latent codes, while they manu-
ally check if these components correspond to semantically meaningful attributes. However, as will be shown
later, the editing directions found by these methods are shown to be still entangled with other attributes. In
this work, leveraging a stronger low-rank latent space hypothesis, we find highly-disentangled latent codes
and show that sample-agnostic editing directions can be consistently found in StyleGAN’s latent space.
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Figure 2: A tensor illustration of our hypothesis. In the StyleGAN latent space, we hypothesize the
same type of micromotion, at different quantitative levels but for the same identity, can be approximated
by a low-rank subspace. We further hypothesize that subspaces for the same type of micromotion found at
different identities are extremely similar to each other, and can hence be transferred across identities.

3 Method

In this section, we first present the problem of decoding micromotion in a pre-trained StyleGAN latent space,
and we define the notations involved in this paper. We then articulate the low-rank micromotion subspace
hypothesis in Sec. proposing that the locally low-dimensional geometry corresponding to one type of
micromotion is consistently aligned across different face subjects, which serves as the key to decode universal
micromotion from even a single identity. Finally, based on the hypothesis, we demonstrate a simple workflow
to decode micromotions and seamlessly apply them to various in-domain and out-domain identities, incurring
clear desired facial micromotions.

3.1 Problem Setting

Micromotions are reflected as smooth transitions in continuous video frames. In a general facial-style micro-
motion synthesis problem, given an arbitrary input image Iy and a desired micromotion (e.g. smile), the goal
is to design an identity-agnostic workflow to synthesize temporal frames {I1, Io, ..., I}, which constitute a
consecutive video with the desired micromotion.

Synthesizing images with StyleGAN requires finding proper latent codes in its feature space. We use G
and E to denote the pre-trained StyleGAN synthesis network and StyleGAN encoder respectively. Given
a latent code V.€ Wt the pre-trained generator G maps it to the image space by I = G(V). Inversely,
the encoder maps the image I back to the latent space W7, or V=E (I). Leveraging the StyleGAN latent
space, finding consecutive video frames turns out to be a task of finding a series of latent codes {V7, Va,
..., Vi} corresponding to the micromotion.

3.2 Key Hypothesis: The Low-rank Micromotion Subspace

To generate semantically meaningful and correct micromotions using StyleGAN, the key objective is to find
proper latent code series in its feature space. We hypothesize that those latent codes can be decoded by
a low-rank micromotion subspace. Specifically, we articulate the key hypothesis in this work, stated as:
The versatile facial style micromotions can be represented as low-rank subspaces within the StyleGAN latent
space, and such subspaces are subject-agnostic.
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Figure 3: Our workflow illustration. In our workflow, we first extract a low-dimensional micromotion
subspace from one identity, and then transfer it to a novel identity “Mona-lisa”.

To give a concrete illustration of the hypothesis, we plot a tensor-view illustration of a micromotion subspace,
smile, in Figure [2] The horizontal axis encodes the different face identities, and each perpendicular slice of
the vertical plane represents all variations embedded in the StyleGAN latent space for a specific identity.
We use the vertical axis to indicate the quantitative strength for a micromotion (e.g., smile from mild to
extreme). Given a sampled set of images in which a subject face changes from the beginning (e.g., neutral)
to the terminal state of a micromotion, each image can be synthesized using a latent code V. Aligning these
latent codes for one single subject formulates a micromotion matriz with dimension V' x M, where V is the
dimension of the latent codes and M is the total number of images. Eventually, different subjects could
all formulate their micromotion matrices in the same way, yielding a micromotion tensor, with dimension
P xV x M assuming a total of P identities. Our hypothesis is then stated in two parts:

¢ FEach subject’s micromotion matrix can be approximated by a “micromotion subspace” and it is inher-
ently low-rank. The micromotion “strengths” can be reduced to linearly scaling along the subspace.

e The micromotion subspaces found at different subjects are substantially similar and even mutually trans-
ferable. In other words, different subjects (approximately) share the common micromotion subspace.
That implies the existence of universal edit direction for specific micromotions regardless of identities.

If the hypothesis can be proven true, it would be immediately appealing for sample-agnostic image manip-
ulations. First, micromotion can be represented in low-dimensional disentangled spaces, and the dynamic
edit direction can be reconstructed once the space is anchored. Second, when the low-dimensional space is
found, it can immediately be applied to multiple other identities with extremely low overhead, and is highly
controllable through interpolation and extrapolation by as simple as linear scaling.

3.3 Our Workflow

With this hypothesis, we design a workflow to extract the edit direction from decomposed low-dimensional
micromotion subspace, illustrated in Figure[3] Our complete workflow can be distilled down to three simple
steps: (a) collecting anchor latent codes from a single identity; (b) enforcing robustness linear decomposition
to obtain a noise-free low-dimensional space; (c) applying the extracted edit direction from low-dimensional
space to arbitrary input identities.
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Step 1: Reference Anchoring. To find the edit direction of a specific micromotion, we first acquire a
set of latent codes corresponding to the desired action performed by the same person. Serving as anchors,
these latent codes help to disentangle desired micromotions in later steps. Here, we consider two approaches,
text-anchored and video-anchored methods, respectively.

Text-anchored Reference Generation: The StyleCLIP (Patashnik et al., |2021) has shown that expressive
phrases can successfully manipulate attributes in synthesized images. We leverage the its latent optimization
pipeline to generate the anchoring latent codes for desired micromotions. The main-idea to optimize these
latent codes is to minimize the contrastive loss between the designed input texts and the images rendered
by the codes with a few regularizations. Here, one major question is how to design the most appropriate
text template to guide the optimization. To generate images with only variance in degrees of micromotions,
a natural method is to specify the degrees in the text, where we concatenate a series of adjectives or
percentages with the micromotion description text to indicate the various strength and the stage of the
current micromotion. For example, for the micromotion “eyes closed”, we use both percentages and adjectives
to modify the micromotion by specifying “eyes greatly/slightly closed” and “eyes 10%/30% closed”. Here, we
emphasize that this is just one of the possible text prompts design options. We compare various choices of
text prompts, and the experiments of the text prompt choices will be covered in the ablation study.

Video-anchored Reference Generation: StyleCLIP relies on text guidance to optimize the latent codes, while
for abstract and complicated motions, such as a gradual head movement with various head postures, the text
might not be able to express the micromotion concisely. To overcome this issue, we leverage a reference video
demonstration to anchor the micromotion subspace instead. In the reference video-based anchoring methods,
we use frames of reference videos to decode the desired micromotions. Specifically, given a reference video
that consists of continuous frames, we invert these frames with a pre-trained StyleGAN encoder to obtain
the reference latent codes. We emphasize that different from the per-frame editing method, the goal of using
reference video frames is to anchor the low-dimensional micromotion subspace. Thus, we use much fewer
frames than per-frame editing methods, and no further video frames are used once we extract the space.

After applying either anchoring method, we obtain a set of ¢, referential latent codes denoted as {Vy1, Vg,
.., Vin}. We will use these codes to obtain a low-rank micromotion space in later steps.

Step 2: Robust space decomposition. Due to the randomness of the optimization and the complexity
of image contents (e.g., background distractors), the latent codes from the previous step could be viewed as
“noisy samples” from the underlying low-dimensional space. Therefore, based on our low-rank hypothesis, we
leverage further decomposition methods to robustify the latent codes and their shared micromotion subspace.

The first simple decomposition method we adopt is the principal component analysis (PCA), where each
anchoring latent code serves as the row vector of the data matrix. Unfortunately, merely using PCA is
insufficient for a noise-free micromotion subspace, since the outliers in latent codes degrade the quality of
the extracted space. As such, we further turn to a classical technique called robust PCA (Wright et al.,
2009)), which can recover the underlining low-rank space from the latent codes with sparse gross corruptions.
It can be formulated as a convex minimization of a nuclear norm plus an ¢; norm and solved efficiently with
alternating directions optimization (Candes et al.,[2011)). Through the principal component of the subspace,
we get a robust micromotion edit direction AV.

Step 3: Applying the subspace transformation. Once the edit direction is obtained, we could edit any
arbitrary input faces for the micromotion. Specifically, the editing is conducted simply through interpolation
and extrapolation along this latent direction to obtain the intermediate frames. For an arbitrary input image
Ij), we find its latent code V{, = E(I))), and the videos can be synthesized through

where « is a parameter controlling the degree of interpolation and extrapolation, ¢ corresponds to the index
of the frame, and the resulting set of frames {I;} collectively construct the desired micromotion such as
“smiling”, “eyes opening”. Combining these synthesized frames, we obtain a complete video corresponding
to the desired micromotion.
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(d) Aging Face
Figure 4: Illustrations of versatile micromotions found by text-anchored method. We decode
the micromotions across different identities, and apply them to in-domain identities. From Top to Bottom:
(a) Smiling (b) Anger (c) Opening Eyes (d) Aging Face. Best view when zoomed in. Please refer to
supplementary for complete video sequences.

4 Experiments

In the experiments, we focus on the following questions related to our hypothesis and workflow:

o Could we locate subspaces for various meaningful and highly disentangled micromotions? (Sec.
e Could we transfer decoded micromotion to other subjects in various domains? (Sec.

¢ Could we extend the micromotions to novel subjects with no computation overhead? (Sec.

e Is this framework robust towards various choices of prompts and identities? (Sec. |4.4)

In short, we want to prove two concepts in following experiments: (a) Universality: Our pipeline can
consistently find various micromotion, and the decoded micromotion can be extended to different subjects
across domains; (b) Lightweight: Transferring the micromotion only requires a small computation overhead.

To validate these concepts, we now analyze our framework by synthesizing micromotions. We mainly consider
five micromotions as examples: (a) smiling, (b) angry, (c¢) opening eyes, (d) turning head, and (e) aging face.
We also consider more editings when comparing with other methods. Following the workflow, we obtain the
edit directions for each micromotion, and then synthesize on other cross-domain images including characters
in animations, sculptures, and paintings.
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Figure 5: Illustrations of the micromotion “turning head” found by our video-anchored method.
Best view when zoomed in. Please refer to supplementary for complete video sequences.

4.1 Experiment Settings

The pre-trained models (StyleGAN-v2, StyleCLIP, and StyleGAN encoders) are all loaded from the public
repositories (Abdal et al., [2020; Alaluf et al., 2021b; Patashnik et al., 2021; Radford et al., 2021). When
optimizing the latent codes, the learning rate is 0.1 and we use Adam optimizer. For the text-anchored and
video-anchored methods, the numbers of latent codes we generate are 16 and 7. In robust PCA, 4 principal
dimensions are chosen. We also search the extrapolation scale hyperparameter o between 0.1 and 10.

For the text-anchored experiments, the original images are generated using random latent codes in StyleGAN-
v2 feature space. The text prompts we construct is in the general form of (a) “A person with {} smile”; (b)
“A person with {} angry face”; (c) “A person with eyes {} closed”; (d) “{} old person with gray hair”, which
correspond to the micromotions of smiling, angry, eyes opening and face aging. Here, the wildcard “{}”
are replaced by a combination of both qualitative adjectives set including {“no”, “a big”, “big”, “a slight”,
“slight”, “a large”, “large”, “ 7} and quantitative percentages set including {10%, ..., 90%, 100%}. We will
discuss the choice of various text templates and their outcomes in the ablation study. For the video-anchored
experiments, we consider the micromotion of turning heads. The referential frames are collected from the
Pointing04 DB dataset (Gourier et al.,2004)), and the frames we used for anchoring include a single identity

with different postures, which has the angle of {—45°,—30°, —15°,0°,15°,30°,45°}.

4.2 Micromotion Subspace Decoding

In this section, we use our anchoring methods to locate the micromotion subspace, discovering the editing
direction, and apply it to the in-domain identities to generate desired changes. Figure 4 and Figure [5] show
the generated five micromotions using text-anchored and video-anchored methods respectively. Within each
row, the five demonstrated frames are sampled from our synthesized video with the desired micromotions. As
we can see, these results illustrate continuous transitions of human faces performing micromotions smoothly,
which indicates the edit direction decoded from the micromotion subspace is semantically meaningful and
highly disentangled. Therefore, our framework successfully locates subspaces for various micromotions.

4.2.1 Quantitative Analysis

To validate if our framework can consistently produce high-quality micromotions, we further compare our
decoded micromotions with results from other baselines. We consider the following two methods: Interface-
GAN (Shen et al [2020b) and GANspace (Hérkonen et al., [2020)). InterfaceGAN is a supervised disentangle
method obtaining edit directions from trained SVMs, while GANspace is an unsupervised disentangle method
that discovers edit directions from the principal components of sampled latent codes. We obtain the edit-
ing directions from these baselines respectively, performing editings on 2,000 images, and comparing results
quantitatively via the following two analyses.
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Figure 6: Re-scoring Analysis We conduct a re-scoring analysis similar to (Shen et al., 2020b), to quan-
titatively measure if our discovered editing directions can be successfully disentangled with other irrelevant
attributes. We use the scores of a series of pre-trained attribute classifiers to measure how well different edit-
ing methods could depict the target attribute (e.g. smile, aging, glasses, etc.). We show a confusion matrix,
where in each row we run latent-space editing with each of the attributes, and in each column shows the
corresponding changes in the score by different pre-trained attribute classifiers, respectively. Higher scores
indicate larger changes. We notice a clear diagonal pattern when editing latent space using our framework,
indicating its good disentangle property.

Re-scoring Analysis We conduct a re-scoring analysis similar to (Shen et al., [2020b)), to quantitatively
measure if our discovered editing directions can be successfully disentangled with other irrelevant attributes.
In this analysis, for a target attribute (e.g. smiling), we edit the input images using the editing direction
discovered by our methods and baselines, and we use the scores of a series of pretrained classifiers (Na
to measure how the edits influence the target attribute as well as other non-target attributes. Ideally,
a well-disentangled editing direction should result in a significant change for the target attributes, while it
should have a neglectable influence on other ones.

Our resultsﬂ can be found in Figure @ In these three confusion matrices, for each row, we run latent-space
editing with each of the attributes, and each column shows the corresponding changes measured by pretrained
attribute classifiers. For example, in the matrix of InterfaceGAN, the first row means when applying the
editing direction “smile” and measuring the changes using pretrained classifiers, the score of “smile” increases
by 0.482 while the score of “age” also increases by 0.005, etc. Here, higher scores indicate larger changes.
From these results, we observe that our framework produces a clear diagonal pattern, indicating a strong
influence on desired attributes with little influence on non-target ones. On the other hand, the baseline
methods lead to significant changes in both target and non-target attributes. Therefore, our framework
demonstrates good disentangle performance compared with previous methods.

Identity-agnostic Analysis It is essential to pre- Table 1: Identity-agnostic Analysis. Each row shows

serve the identity in face editing. Following the pre-
vious work (Shen et al., 2020b), we also perform an
identity-agnostic analysis. In this analysis, we use a
pre-trained face identifier to quantitatively
evaluate if the identity is changed after the image edit-
ing for different target attributes.

We compare our framework with other editing base-
lines and demonstrate the results in Table Here,
each row shows the changes in identity score when
editing the target attributes, and a smaller score in-
dicates better identity preservation. In this table, we

the changes in identity score (the smaller the better)
when editing the attributes in latent space. Here
we want to make sure the attribute editing methods
are identity-agnostic. We observed that our method
yields the smallest changes in identity score.

Smile Age Gender Glass
InterfaceGAN  0.0515 0.1294 0.1225 0.0916
GANSspace 0.1081  0.0975  0.0507  0.1420
Ours 0.0047 0.0660 0.0491 0.0279

INotice that InterfaceGAN does not release the classifiers they used. Therefore, we use different pretrained classifiers

2021)) to conduct re-scoring analysis.
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(f) Painting: Van Gogh, Turning Head

Figure 7: Micromotions on cross-domain identities. Our micromotions generalize well when transferred
to novel domains, including anime characters, sculptures, and various genres of paintings (Van Gogh, Monet,
Da Vinci, Rembrandt). Best view when zoomed in. Please refer to supplementary for complete video.

10
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(¢) w/o Robust PCA

Figure 8: Comparison between with and without Robust PCA. For each column, from left to right,

the micromotions are “closing eyes” (for the first and third columns), “angry”, “smiling”, and “aging face”.
For conciseness, we only show the original and last frame. Best view when zoomed in.

find our method preserves identities well in different edits. Other baseline methods, however, lead to more
severe identity changes. Therefore, leveraging the strong latent space hypothesis, we find that our frame-
work is able to discover more precise editing directions and better disentangles the target attributes from
the human intrinsic identities.

4.3 Micromotion Applications on Cross-domain ldentities

Sec[4.2]decodes the micromotion from low-dimensional micromotion subspace, which verifies the first part of
the hypothesis. In this section, we further verify the second part of the hypothesis, exploring if the decoded
micromotion can be applied to arbitrary and cross-domain identities.

Figure [7] shows the result of transferring the decoded micromotions on novel identities. Within each row, we
exert the decoded micromotions on the novel identities, synthesize the desired movements, and demonstrate
sampled frames from the generated continuous videos. From these results, we observe that the sampled
frames on each new identity also depict the continuous transitions of desired micromotions. This verifies
that the decoded micromotions extracted from our workflow can be successfully transited to the out-domain
identities, generating smooth and natural transformations. Also, this shows the low-dimensional micromotion
subspace in StyleGAN is indeed not isolated nor tied to certain identities. On the contrary, leveraging the
low-rank micromotion hypothesis in StyleGAN latent space, the identity-agnostic micromotions can be found
using our framework and can be ubiquitously applied to those even out-of-domain identities.

Moreover, we emphasize that to generate dynamic micromotion on a novel identity, the entire computational
cost boils down to inverting the identity into latent space and then extrapolating along the obtained edit
direction, without the requirement of retraining the model or conducting identity-specific computations.
This leads to effortless editing of new identity images using the found direction, with little extra cost.

11
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“a woman with “a man with
{} eyes open” {} eyes open”

“a person with
{} eyes open”

Original

“a {} year “a {} old “a {} old
old person” person” woman”

Original

Figure 9: Ablation on the choice of text template for micromotion “opening eyes” and “aging
face”. For each template, we fill the wildcard “{}” using descriptive text, including {10%, 20%, ..., 100%},
{10, 20, ..., 60}, and {small, big, ...}. For conciseness, we only show the last frame of each group. Best view
when zoomed in.

4.4 Design Choices and Ablation Study

Ablation on component decomposition in micromotion subspace To verify the effectiveness of the
robust decomposition in our workflow, instead of doing robust PCA to decompose the low-rank micromotion
space, we sample two anchoring latent codes and adopt its interpolated linear space as the low-rank space.
Then, we compare the qualitative results of the decoded micromotions. Results in Figure [§| show that
synthesized videos without robust space decomposition step incur many undesired artifacts, often entangling
many noisy attributes not belonging to the original and presumably mixed from other identities. Adding a
robustness aware subspace decomposition, however, effectively extracts more stable and clearly disentangled
linear subspace dimensions in the presence of feature fluctuations and outliers.

Ablation on text templates To explore the sensitivity of the micromotion subspace w.r.t the text
templates, we study various text templates that describe the same micromotion. In Figure 9 top row, we
can see that the micromotion “closing eyes” is agnostic to the choice of different text templates and generate
similar visual results. On the other hand, In Figure [9] bottom row, we observe the opposite where the
micromotion “face aging” is sensitive to different text templates, which results in diverse visual patterns.
This suggests the choice of text template may influence the performance of some micromotions, and a high-
quality text guidance based on prompts engineering or prompts learning could be interesting future work.

Ablations on number of anchors and identities In our framework, we rely on a series of latent codes
to anchor the low-rank space, and these codes are obtained from one identity performing micromotion.
Therefore, we further ask two questions for our design: (a) How would the number of latent codes influence
the editing performance? (b) Could we obtain better editing results from multiple identities? For the first
question, we hypothesize the number of latent codes would influence the quality of the discovered low-
dimensional space, therefore influencing the editing performance. For the second question, although we have
obtained high-quality micromotion editing direction from a single identity, we explore if multiple identities
decrease the correlation between micromotion and identity and lead to better disentanglement.

We use different numbers of anchoring latent codes and identities to discover the editing direction and apply
it to novel images. In the first study, multiple latent codes are used to determine the low-rank space. Notice
that when using only one anchoring latent code, the framework reduces to using StyleCLIP to find editing
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Original 1 anchor 5 anchors 10 anchors 15 anchors

Figure 10: Ablation on the number of anchoring latent codes used to find the low-rank latent
space. We use the micromotion “smiling” as an example, while applying to both in-domain (human face)
and out-of-domain (painting) images, we notice the quality of latent space editing improves proportionally
w.r.t the number of anchors until it finally saturated at around 10 anchors.

) 3 identities ) 5 identities 10 identities

Original 1 identity
Figure 11: Ablation on the number of identities used in latent-space optimization. We use the
micromotion “smiling” as an example while applying to both in-domain (human face) and out-of-domain
(painting) images. We notice there is no clear visual improvement in the quality of micromotion as the
number of identities grows, however it would result in different styles of “smile”.

direction and directly apply it to novel images. In the second study, with multiple identities, we optimize
the latent code on each identity separately and use the average latent code as the final editing direction.

Our results can be found in Fig |10 and Fig For the effects of anchoring latent codes, we observe that
fewer anchors result in noises and artifacts, indicating insufficient disentanglement. Meanwhile, we observe
the quality of latent space editing improves gradually with respect to the number of anchors. This motivates
us to use a series of anchoring latent codes for a better low-rank latent space. For the effects of identities, we
observe that although using more identities has some weak benefits (e.g. better background preservation),
there is no clear visual improvement compared with using one identity. This motivates us to stick with one
identity with better efficiency in our framework.

13
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5 Conclusions

In this work, we analyze the latent space of StyleGAN-v2, demonstrating that although trained with static
images, the StyleGAN still captures temporal micromotion representation in its feature space. We find
versatile micromotions can be represented by low-dimensional subspaces of the original StyleGAN latent
space, and such representations are disentangled and agnostic to the choice of identities. Based on this
finding, we explore and successfully decode representative micromotion subspace by two methods: text-
anchored and video-anchored reference generation, and these micromotions can be applied to arbitrary
cross-domain subjects, even for the virtual figures including oil paintings, sculptures, and anime characters.
We also explore the various design choices and their corresponding effects on our framework. Future works
may study more complex motion subspace and further explore if latent space corresponding to larger-scale
motion is also ubiquitous and can be disentangled from other attributes and identities, which could potentially
lead to many interesting applications.
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A Ablation on the identities of anchoring latent codes

In this ablation, we explore if the choice of identity influences the micromotion quality. We use photos of
different people (denoted as Identity A, B, and C) to discover editing directions, and we generalize to the
same sketch painting. The result is shown in Figure We observe that latent codes decoded from various
identities generate visually similar micromotions. Therefore, the micromotion can be decoded using different
identities and still result in semantically correct edits.

(a) Identity

Figure 12: Ablations on the identities of anchoring latent codes. The first column shows synthesized
images of three different identities generated by three latent codes. From the second column, we show
the micromotion subspace (i.e. “closing eyes") decoded from three identities in the first column, exhibiting
visually similar results, when generalized to a sketch painting in the novel domain.

B Additional examples of micromotions transferred to novel domains
In Figure we include additional visual examples to demonstrate that our micromotions generalize well

when transferred to novel domains. The additional novel domains include bronze sculptures, oil/sketch
painting, and more anime characters.

C Supplementary Video

We present a series of in-domain and out-of-domain synthesized videos to fully demonstrate the visual effects
of our method. Those videos can be found in the “video” folder of the supplementary materials.
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(f) Sketch, Smiling

Figure 13: Additional examples of micromotions transferred to novel domains. Our micromotions
generalize well when transferred to novel domains, which include anime characters, sculptures, and various
genres of paintings (oil painting, sketch). Best view when zoomed in. Please refer to supplementary for
complete video sequences.
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D Qualitative comparison with baselines

In this experiment, we qualitatively compare the performance of our method with existing editing methods.
We consider the following baselines: InterfaceGAN [Shen et al. (2020al), GANspace Harkonen et al. (2020),
StyleFlow |Abdal et al. (2021b), |Zhuang et al.| (2021), and MoCoGAN-HD [Tian et al.| (2021]).

Experiment Setting. All methods are tested on the StyleGAN-v2 pretrained on the FFHQ dataset, and
we follow the settings stated in Sec. We adopt the released pretrained models for most of the baselines
except Zhuang et al. and StyleFlow. For Zhuang et al., since it is only trained on 256 x 256 images, we
first attempt to train the model on 1024 x 1024 using the code released by authors for a fair comparison.
However, the model does not converge on 1024 resolution. Therefore, we perform comparisons by collecting
the source and edited images shown on their papers and using our method to perform the edit. For StyleFlow,
since the code is in Tensorflow 1.x and not supported by our machines, we also compare with the images
on their papers qualitatively. For most baselines, we compare their editing results on two representative
target attributes in the paper: “smiling” and “aging”. We choose these two attributes because these are
the common attributes explored by both our method and baselines. Finally, for MoCoGAN-HD, since it
is only trained on the “talking-head” task on FFHQ dataset, we compare the editing performance on this
task. Specifically, we apply our video-anchored method to synthesize videos of a person talking using a single
input reference video. Meanwhile, videos of MoCoGAN-HD are synthesized using their pretrained models.

Results. We first demonstrate the comparison between our method and InterfaceGAN, GANspace. The
comparison result is shown in Figure From the result, we observe that our method demonstrates compa-
rable or better performance than existing baselines. Specifically, compared with these methods, our method
faithfully preserves the identities of the edited subjects, while InterfaceGAN often changes the identities,
even genders, during edition, and GANspace usually produces minor edit towards target attributes. Also, to
see the benefits of on-demand disentanglement vs. manually picking from principal components, we demon-
strate the first 14 principal directions from GANspace in Figure We observe that (1) all of these latent
codes cannot open/close people’s eyes, meaning GANspace fails to find editing directions for this attribute
even after manually checking 14 directions in this case; (2) some of the editing directions are clustered, e.g,
attribute “glasses” is entangled with “age” in C3, and is entangled with “gender” in C9. On the other hand,
our method can find editing directions for these attributes without heuristic human choices.

Besides, we demonstrate the comparison between our method and MoCoGAN-HD in Figure[I5] In the figure,
the first six rows show synthesized videos by our methods. Starting from a single input video (1% and 4"
row), our video-anchored method inverts their frames, reconstructs the original video (24 and 5" row) and
produces the same talking actions on a new identity (3' and 6** row). The last two rows show the result of
MoCoGAN-HD. From the results, we highlight two benefits of our methods: First, videos synthesized by our
method has more significant variance than MoCoGAN-HD. Our synthesized videos show a person talking
with mouth and eyes actions, while most frames in MoCoGAN-HD resemble the first frame and have little
changes. Second, our method allows on-demand talking actions, i.e., the synthesized video resembles the
reference video at each frame. On the other hand, MoCoGAN-HD cannot control the synthesized talking
action. Besides these two benefits, we emphasize that our method only requires a single input video to
generate talking motions on novel identity, while MoCoGAN-HD requires a large training dataset (e.g.,
VoxCeleb Nagrani et al.| (2017) dataset with 22,496 clips). With these advantages, we conclude that our
method is more effective and convenient than MoCoGAN-HD in the talking-head task.

Finally, the comparison between our method and StyleFlow, Zhuang et al. are shown in Figure We
observe that our method and two baseline methods result in different styles of “smile” and “aging”, while
the quality is comparable. Besides, we emphasize that both StyleFlow and Zhuang et al. require training
auxiliary models, while our method does not need any new models, and finding editing direction using our
method can be done in a few minutes. Therefore, our method outperforms the listed baselines by providing
a more convenient editing framework.

2The original images used in our work are inverted from the corresponding input images for baselines. Therefore, the original
images are slightly different.
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Figure 14: Qualitative comparison with InterfaceGAN and GANspace. The target attributes are

“smiling”, “aging” for human faces.
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Figure 15: Qualitative comparison with MoCoGAN-HD on task “talking head”. The first six rows
show synthesized videos by our methods. Starting from single input video (1%* and 4" row), our video-
anchored method invert their frames, reconstruct the original video (24 and 5" row) and produce the same
talking actions on new identity (3' and 6" row). The last two rows show the result of MoCoGAN-HD.

MoCoGAN
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Figure 16: Qualitative comparison with StyleFlow and Zhuang et al.

E Ablation on subspace decomposition techniques

We conducted a further ablation study, by comparing different subspace decomposition techniques, including
Robust PCA, Vanilla PCA, and without PCA. In Figure we show Robust PCA yields the best visual
results, followed by Vanilla PCA, while without PCA yields results with the worst visual quality. When
comparing the results using vanilla PCA with robust PCA, we can observe the former creates more undesired
artifacts. For example, in the third column of Figure we observe vanilla PCA create an unwanted
artifact around the shoulder of the sculpture, while robust PCA provides a cleaner image. On the other
hand, micromotion subspace without PCA decomposition creates images with the worst quality. Most of
them have serve distortion and the faces are barely recognizable. The ablation demonstrates vanilla PCA is
insufficient for a noise-free micromotion subspace, while the Robust PCA is a more favorable choice.

F Ablation on different GANs

Besides the StyleGANv2 discussed in main paper, in this ablation, we further discuss if we can disentangle
from progressive GAN [Karras et al| (2018) and BigGAN Brock et al. (2018).

Experiment Setting. For both progressive GAN and BigGAN, we adopt the publicly released pretrained
models. The progressiveGAN is loaded from pytorch hub. The BigGAN is loaded from the original repository.
For the editing tasks, we choose the target attributes according to their training datasets. Specifically, for
progressive GAN, the model is trained on CelebA dataset, and we study the attributes
“smiling” and “aging” on human faces. For BigGAN, the model is trained on ImageNet [Deng et al. (2009)
dataset, we study the attributes “opening mouth” and “closing eyes” on dogs. We use the same text prompts
for the human face experiment (“A person with {} smile”, “{} old person with gray hair”). For the experiment
on dogs, the text prompts we construct are in a similar form (“A dog with eyes {} close”, “A dog with mouth

{} open”).

23



Under review as submission to TMLR

We demonstrate the editing effects of using the first
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(d) w/o PCA

Figure 18: Comparison between Vanilla PCA, Robust PCA and without PCA. For each column,

from left to right, the micromotions are “closing eyes” (for the first and third columns), “angry”, “smiling”,
and “aging face”. For conciseness, we only show the original and last frame. Best view when zoomed in.

Results. The result is shown in Figure[I9] From the figure, we observe that both GANs do not synthesize
high-quality editing images. For example, for the “opening mouth” attribute in BigGAN, the mouths of dogs
in the first two rows are larger, but both the dogs and backgrounds change drastically. This is even worse
for the target attribute “closing eyes”. Similarly, in Progressive GAN, we find slight changes toward target
attributes “smiling” and “aging”, while the identities are largely changed. This result indicates the latent
space in BigGAN and progressive GAN are not highly disentangled. There are two possible reasons: First,
the latent code dimension in BigGAN and Progressive GAN (1 x 512) is smaller than the one in StyleGANv2
(18 x 512). Second, the hierarchical structure in StyleGAN might lead to better disentanglement. Therefore,
compared with these generators, the StyleGANv2 used in the main paper is a better choice.

G Ablation on inversion methods

In this experiment, we demonstrate how different inversion methods influence editing performance. We
consider three methods: Restyle+pSp [Alaluf et al.| (2021b); [Richardson et al.| (2021)), Restyle+ede [Tov et al.
(2021)), and vanilla e4de method. The result is demonstrated in Figure We observe that using different
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(a) BigGAN (b) Progressive GAN
Figure 19: Ablation on different GANs. We demonstrate the editing results using different GANSs,

YW

including BigGAN (left) and Progressive GAN (right). The target attributes are “closing eyes”, “opening
mouth” for dogs, and “smiling”, “aging” for human faces.

inversion methods influences the editing results. Arguably, Restyle+pSp preserves the background color and
details best. Besides, we also observe that other methods produce undesired changes (e.g., images are darker
for the upper rows). Choosing a faithful inversion method helps produce high-quality edits.

H Failure case

While our method can disentangle many micromotions and transfer to novel images in different fields, we
would like to demonstrate a few limitations of our framework. First, the editing ability of our method
originates from the disentangled latent space of StyleGANv2. We have shown in section [F] that, with a
less disentangled GAN architecture, this framework cannot produce high-quality editing results. Second,
when transferring the editing directions to out-of-domain images, we first need to invert the input images
to vectors in the latent space of StyleGAN. When the input largely deviates from a photo-realistic person,
the inversion model fails to find the corresponding latent code, and therefore the editing will also fail. We
provide an example in Figure Here, the target attribute is “smiling”, and the input images are anime
characters (Mario, Chihiro). We find that the latent code produced by the encoder cannot reconstruct the
images (in the second and fifth row), and therefore the editing images have poor quality.

I Broader impact

We acknowledge that facial editing and video synthesis techniques can be harmful if misused. For example,
they can be used to forge fake videos containing offenses and misinformation. However, our method does not
try to prompt these societal consequences, but to develop a method that conveniently produces motions for
common use. To prevent misuse, our method can be combined with the idea in by adding
distinct fingerprints for synthesized videos.
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Original Restyle+psp Restyle+ede

Encode
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Figure 20: Ablation on inversion methods. We demonstrate editing results of using different inversion
methods for both in-domain and out-of-domain input image.

Original Encode Edit Original Encode Edit

Figure 21: Failure case study. The target attribute is “smiling”. We demonstrate that when the encoder
fails to encode out-of-domain images (e.g., Mario, Chihiro), using the discovered editing direction will also
synthesize incorrect image.
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Figure 22: Micromotions on wild animals. The target micromotions are “eyes close” and “mouth close”.

J  Micromotions other than human face

Finally, we provide more micromotion examples on subjects other than the human face. In this experiment,
we explore the micromotions of wild animals. The StyleGANv2 model we used is pretrained on the AFHQ-
wild dataset (Choi et al. (2020) with 512 x 512 resolution, and we consider “eyes close” and “mouth close”
as two representative micromotion examples. The results can be found in Figure From the figure, we
observe that our method can also synthesize micromotions on wild animals, while the quality is not as
good as those on human faces. We highlight two drawbacks here. First, the synthesized images change the
background as well. Second, the synthesized images sometimes do not reflect a smooth micromotion. We
provide one example in the first row. Specifically, we expect the wild animal to gradually close its eyes, while
the synthesized images demonstrate a pixel-wise interpolation from open eyes to close eyes. We hypothesize
this is due to the AFHQ-wild dataset does not contain wild animals with different eyes open degrees. As
such, interpolation on the editing direction cannot synthesize animals with eyes half-open, which is hardly
seen in the training dataset. We believe that with a high-quality dataset and better-pretrained generator,
we can expect better micromotions.
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