

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 STUDY OF TRAINING DYNAMICS FOR MEMORY- CONSTRAINED FINE-TUNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Memory-efficient training of deep neural networks has become increasingly important as models grow larger while deployment environments impose strict resource constraints. We propose TraDy, a novel transfer learning scheme leveraging two key insights: layer importance for updates is architecture-dependent and determinable a priori, while dynamic stochastic channel selection provides superior gradient approximation compared to static approaches. We introduce a dynamic channel selection approach that stochastically resamples channels between epochs within preselected layers. Extensive experiments demonstrate TraDy achieves state-of-the-art performance across various downstream tasks and architectures while maintaining strict memory constraints, achieving up to 99% activation sparsity, 95% weight derivative sparsity, and 97% reduction in FLOPs for weight derivative computation.

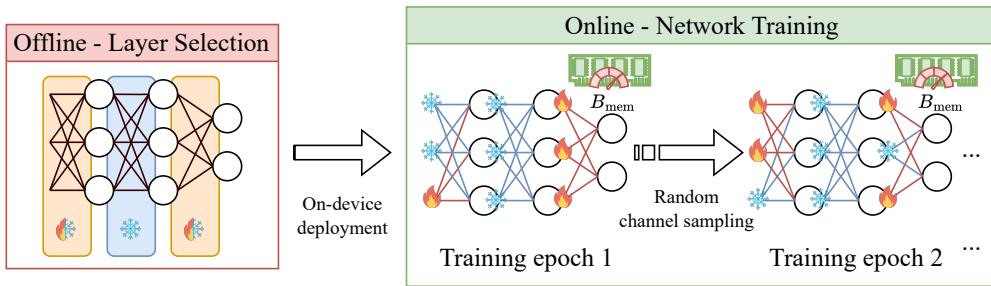


Figure 1: TRady dynamically reselects the subgraph to update within the memory budget B_{mem} .

1 INTRODUCTION

In the span of a decade, machine and deep learning have become key technologies in the computer science landscape. They have found a wide variety of practical applications in fields such as Natural Language Processing Vaswani et al. (2017); Tenney et al. (2019), Computer Vision Krizhevsky et al. (2012); Simonyan & Zisserman (2014); Minaee et al. (2021), or Speech Recognition Deng et al. (2013); Nassif et al. (2019). This surge in popularity can be largely explained by the ever-increasing performances of new architectures, intimately linked to hardware innovations Baji (2018). The design of better-performing parallel computing units (such as GPUs and TPUs) allows the training of large neural networks that feature increasing overparameterization compared to their predecessors Sevilla et al. (2022). If this trend further demonstrates deep learning principles' innate generalization potential, it raises ecological and technical concerns. Training and exploitation of these architectures require very high energy consumption, and their deployment in real-world environments is impossible without extensive compression, leading to performance worsening.

The research field of efficient neural network compression, consequently, has gained a surge of interest in recent years. The main pillars of this research area are quantization, low-rank compression, efficient design of compact models, knowledge distillation, and network sparsification (also known as pruning) Cheng et al. (2018); Deng et al. (2020). These methods aim to optimize the trade-off between memory/energy consumption and the inference accuracy of models in resource-constrained environments. However, inference is only part of the life cycle of a deep neural network, and these works do not provide solutions to perform memory-efficient training. As such, compressed models

054 trained offline and deployed on-device suffer from a phenomenon called *data drift* Sahiner et al.
 055 (2023) which results in performance degradation over time. Alternatively, enabling on-device learning
 056 would improve the viability and efficiency of embedded AI through several use cases, including user
 057 adaptivity or lifelong learning Incel & Bursa (2023).

058 One major obstacle to making on-device learning practical is the computational and memory burden
 059 of backpropagation. For embedded devices, limited memory and computational capacity create
 060 hard constraints that cannot be exceeded. Some methods attempt to address memory limitations by
 061 exploring alternatives to backpropagation, like hyperdimensional computing for tasks like image
 062 segmentation Yang et al. (2023a), the Forward-Forward algorithm Hinton (2022), and PEPITA Pau
 063 & Aymone (2023). Although these strategies are promising, they generally don't match the perfor-
 064 mance of backpropagation-based techniques. One direct approach attempting to solve memory and
 065 computation issues was proposed by Lin et al. (2022), where a static subnetwork is updated for any
 066 downstream task. Orthogonally, Yang et al. (2023b) and more recently Nguyen et al. (2024) reduce
 067 memory consumption by compressing the elements to store for backpropagation. Each approach,
 068 however, comes with its own limitations—either compromising accuracy or introducing additional
 069 latency.

070 We propose **Training Dynamics** (TraDy) for memory-constrained transfer learning. Given a pre-
 071 trained network, we make three key propositions regarding the training dynamics when performing
 072 memory-constrained transfer learning on a downstream task. Building on top of these, we design a
 073 dynamic channel selection algorithm for efficient transfer learning under memory constraints (Fig. 1).
 Our main contributions can be summarized as follows.

- 074 • We show that stochastic gradients exhibit heavy-tailed behavior during transfer learning,
 075 creating natural sparsity patterns that facilitate efficient gradient pruning (Sec. 3.2).
- 076 • We show that the relative importance of network layers remains consistent across downstream
 077 tasks and primarily depends on network architecture rather than task specifics, enabling a
 078 *a priori* layer selection (Sec. 3.3).
- 079 • We establish that channel importance distributions within layers are task-dependent and
 080 cannot be predetermined without task data, while calculating importance metrics for all
 081 channels contradicts on-device memory constraints (Prop. 3.2 and Sec. 4.1).
- 082 • We introduce TraDy, a dynamic stochastic channel selection approach that resamples chan-
 083 nels between epochs within pre-selected layers, effectively approximating the full gradient
 084 while maintaining strict memory constraints (Sec. 3.4).
- 085 • Our experiments illustrate that TraDy achieves state-of-the-art performance in various
 086 downstream tasks and network architectures while respecting memory limitations through
 087 high levels of both weight and activation sparsities alongside reduced FLOPs, validating our
 088 theoretical insights (Sec. 4.2).

091 2 RELATED WORKS

092 **Gradient Pruning.** Sub-network selection for training, whether static or dynamic, can be referred
 093 to as gradient pruning. Unlike classical pruning, gradient pruning preserves the complete network
 094 during inference, only modifying the backpropagation phase by selectively computing gradients
 095 based on specific criteria. While gradient pruning in on-device learning primarily addresses memory
 096 constraints, other applications focus on accelerating training with minimal accuracy impact Zhang
 097 et al. (2024); Bragagnolo et al. (2022); Li et al. (2023); Ye et al. (2020); McDanel et al. (2022).
 098 Particularly relevant to our fine-tuning approach is Lee et al. (2022), who explore gradient pruning as
 099 a regularization technique. They demonstrate that network blocks can contribute either positively or
 100 negatively to downstream task performance, creating task-specific optimal configurations for selective
 101 updating. Their work shows that the ratio of gradient norm to parameter norm effectively predicts
 102 which blocks should be updated or frozen for optimal transfer learning performance.

103 **On-Device Learning.** Our work draws inspiration from three key contributions in the on-device
 104 learning domain, where memory and energy constraints necessitate efficient fine-tuning of pre-trained
 105 models rather than training from scratch.

106 Lin et al. (2022) introduced Sparse Update (SU) schemes, a selective parameter updating strategy
 107 that enables fine-tuning on extreme edge devices along with operator reordering and quantization-
 aware scaling. Their approach demonstrated that memory-efficient subnetworks can yield acceptable

108 performance on downstream tasks. However, finding adequate SU schemes requires heavy pre-
 109 computation through offline accuracy contribution analysis, followed by evolutionary search for
 110 each network and memory budget. Additionally, SU applies uniformly across all downstream tasks,
 111 implicitly assuming that selected layers and channels are optimal for each individual task and should
 112 remain fixed throughout training.

113 Building on this foundation, Kwon et al. (2024) improved adaptability to new architectures, datasets,
 114 and memory budgets. Their approach ranks layers by computing Fisher information on activations
 115 from downstream task samples, then applies reweighting by parameter count and MAC operations.
 116 Despite increased flexibility, computing Fisher information for all network channels requires more
 117 memory than gradient computation itself, contradicting the original memory constraints. Like SU,
 118 this approach still employs static selection that does not adapt during training.

119 Quélennec et al. (2024) propose dynamic subnetwork selection between epochs using a "velocity"
 120 metric that quantifies neuron output changes when fed with consistent data. Their results demonstrated
 121 accuracy improvements over static selection within fixed parameter budgets. While promising and
 122 flexible across networks and datasets, this method is limited by its exclusive focus on parameter
 123 count without considering activation memory, which represents an equally significant constraint in
 124 on-device scenarios Cai et al. (2020).

125 Our work builds upon these foundations by analyzing transfer learning dynamics in deep neural
 126 networks and demonstrating how a theoretically-grounded dynamic channel selection strategy can
 127 overcome limitations of previous approaches while maintaining strict memory constraints.

128 3 METHOD

130 In this section, we unfold our study towards parameter-efficient fine-tuning under extreme memory
 131 constraints. After formulating our problem in Sec. 3.1, we introduce the theoretical foundations of
 132 heavy-tailed gradient distributions and our memory-aware gradient norm metric in Sec. 3.2. This
 133 theoretical framework guides our analysis of layer behavior in Sec. 3.3, where we demonstrate the
 134 architecture-dependent nature of layer importance. Building on these insights, we introduce our
 135 dynamic channel sampling strategy in Sec. 3.4, which enables efficient transfer learning within strict
 136 memory budgets by stochastically resampling channels between epochs from pre-selected layers.

137 3.1 PROBLEM FORMULATION AND NOTATIONS

138 Our goal is to fine-tune a pre-trained neural network on a downstream task under specific memory
 139 constraints, without prior knowledge of the target task. Although the target device can execute the
 140 complete forward pass, the memory limitations prevent training all network parameters simultaneously.
 141 Therefore, we aim to strategically select which portions of the architecture to train, optimizing
 142 performance while keeping the combined weight and activation memory within the specified budget.
 143 Our analysis focuses specifically on standard 2D convolutions within Convolutional Neural Networks
 144 (CNNs), excluding bias terms.¹ The CNN then writes as a sequence of n convolutional layers:

$$146 \quad \mathcal{F}(\mathcal{X}) = (\mathcal{C}_{\mathcal{W}_n} \circ \mathcal{C}_{\mathcal{W}_{n-1}} \circ \cdots \circ \mathcal{C}_{\mathcal{W}_2} \circ \mathcal{C}_{\mathcal{W}_1})(\mathcal{X}), \quad (1)$$

147 with \mathcal{X} the input of the network and $\mathcal{W}_i \in \mathbb{R}^{C' \times C \times D \times D}$ the weight kernels, C and C' the number
 148 of input and outputs channels and D the kernel dimensions.

149 Given the i -th layer, we note $\mathcal{A}_i \in \mathbb{R}^{B \times C \times H \times W}$ and $\mathcal{A}_{i+1} \in \mathbb{R}^{B \times C' \times H' \times W'}$ as its input and output
 150 activation tensors, where B is the batch size, H and W are the width and height of the feature map.
 151 To compute the weight derivatives $\frac{\partial \mathcal{L}}{\partial \mathcal{W}_i}$, the loss \mathcal{L} is calculated at the output of the network and
 152 backpropagated to the i^{th} layer through the activation derivatives as $\frac{\partial \mathcal{L}}{\partial \mathcal{A}_{i+1}}$. We then get the weight
 153 derivatives:

$$154 \quad \left[\frac{\partial \mathcal{L}}{\partial \mathcal{W}_i} \right]_{c',c,k,l} = \sum_{b=1}^B \sum_{h'=1}^{H'} \sum_{w'=1}^{W'} [\mathcal{A}_i^p]_{b,c,h,w} \left[\frac{\partial \mathcal{L}}{\partial \mathcal{A}_{i+1}} \right]_{b,c',h',w'}, \quad (2)$$

155 where $h = h' \times \text{stride} + k \times \text{dilation}$, $w = w' \times \text{stride} + l \times \text{dilation}$ and \mathcal{A}_i^p is the padded input.
 156 Similar to unstructured pruning, removing individual parameters does not yield significant compu-
 157 tational and memory gains, as it creates inefficient unstructured sparse tensors. A more effective

158 ¹A similar analysis can be conducted for fully-connected layers.

162 approach involves freezing along specific weight dimensions, enabling efficient tensor operations and
 163 creating structured gradient sparsity Bragagnolo et al. (2022). When considering selective freezing,
 164 we have four potential dimensions: input channels, output channels, and the two kernel dimensions.
 165 However, these options differ significantly in their effectiveness for memory optimization. While
 166 freezing along output channels reduces memory needed for storing activation derivative tensors, these
 167 derivatives must still be fully computed to ensure accurate gradient propagation through subsequent
 168 layers. After analyzing all possibilities, freezing along the input channels dimension emerges as the
 169 only approach that simultaneously achieves both **weight sparsity** and **activation sparsity**.

170 From Eq. 2, we observe that updating an input channel c requires storing only the corresponding
 171 activation values in memory. Specifically, when freezing weight tensors along the input channel
 172 dimension, the gradient components form natural groupings that can be treated as independent units.
 173 This dual benefit eliminates both the storage requirements for the corresponding activations and the
 174 computational burden of calculating their associated weight gradients, making input channel freezing
 175 optimal for memory-constrained scenarios.

176 Based on Eq. 2, we derive analytical expressions for both memory requirements and computational
 177 complexity associated with updating a single input channel c within layer i for a single data input. Let
 178 $\mathcal{C}_c^{\mathcal{W}_i} = C' \times D \times D$ represent the weight memory cost and $\mathcal{C}_c^{\mathcal{A}_i} = H \times W$ represent the activation
 179 memory cost for channel c . The total space complexity $(\Theta_{\text{space}})_c$ and time complexity $(\Theta_{\text{time}})_c$ are:

$$(\Theta_{\text{space}})_c = \mathcal{C}_c^{\mathcal{W}_i} + \mathcal{C}_c^{\mathcal{A}_i}, \quad (3)$$

$$(\Theta_{\text{time}})_c = D^2 C' H' W'. \quad (4)$$

180 These expressions demonstrate that input channel-level selection provides fine-grained control over
 181 both memory and computational consumption while maintaining the structural coherence necessary
 182 for effectively exploiting the heavy-tailed sparsity patterns described in the following section, thus
 183 achieving the critical combination of weight and activation sparsity essential for memory-efficient
 184 fine-tuning.

185 3.2 HEAVY-TAILED THEORY AND GRADIENT NORM METRIC

186 The stochastic nature of gradient descent has significant theoretical implications for our approach. Sim-
 187 sekli et al. (2019) established that stochastic gradient noise follows a heavy-tailed distribution during
 188 training with SGD. Such distributions are characterized by a tail-index parameter $\alpha \in (0, 2]$ and
 189 exhibit power-law decay proportional to $1/|x|^{\alpha+1}$. When $\alpha = 2$, this distribution reduces to a Gaus-
 190 sian; for all other values of α , the resulting random variable has infinite variance. This heavy-tailed
 191 noise can be mathematically formulated as:

$$U_k(\mathcal{W}) = \Delta \tilde{\mathcal{W}}_k - \Delta \mathcal{W}, \quad (5)$$

192 where $\Delta \mathcal{W}$ denotes the true gradient computed using the entire dataset, $\Delta \tilde{\mathcal{W}}_k$ represents the stochastic
 193 gradient estimated from k randomly sampled data points, and U_k follows a symmetric α -stable
 194 distribution $U_k \sim \mathcal{S}\alpha\mathcal{S}(\sigma)$. In this notation, σ serves as a scale parameter controlling the distribution's
 195 spread around zero.

196 Building on this foundation, Wan et al. (2023) demonstrated that injecting heavy-tailed noise during
 197 weight updates inherently enhances network compressibility for pruning operations. Their key insight
 198 reveals that heavy-tailed noise causes the weight matrix columns to follow multivariate heavy-tailed
 199 distributions independently of each other. Consequently, the norm distribution becomes highly
 200 skewed as a small subset of columns exhibits disproportionately large norms while most remain
 201 relatively small. This concentration means that the overall weight matrix norm is mostly determined
 202 by just a few dominant columns, creating an implicit structure that aligns perfectly with sparse update
 203 requirements.

204 In our approach, we extend this theoretical framework to the domain of gradient pruning rather
 205 than weight pruning. From (5), we can observe that gradients naturally decomposes as the sum of
 206 the stochastic gradients and a heavy-tailed noise term U_k . Applying the insights from Wan et al.,
 207 we expect that gradient norms will concentrate disproportionately in a small subset of channels.
 208 This creates a natural opportunity for selective gradient computation and parameter updating. To
 209 systematically exploit this property, we define the input channel gradient norm as:

$$\left\| \left(\frac{\partial \mathcal{L}}{\partial \mathcal{W}_i} \right)_c \right\|_2 = \sqrt{\sum_{c',k,l} \left[\frac{\partial \mathcal{L}}{\partial \mathcal{W}_i} \right]_{c',c,k,l}^2}. \quad (6)$$

216 While the raw gradient norm provides valuable information about update importance, it fails to
 217 account for the memory constraints that are central to our scenario. To address this limitation,
 218 we introduce a memory-aware metric called the Reweighted Gradient Norm (RGN). This metric
 219 incorporates both computational significance and memory efficiency by dividing the raw gradient
 220 norm by the total memory cost associated with updating that channel. Using the notation established
 221 in Sec. 3.1, we define RGN as:

$$222 \quad \text{RGN}_c = \frac{\left\| \left(\frac{\partial \mathcal{L}}{\partial \mathcal{W}_i} \right)_c \right\|_2}{C_c^{\mathcal{W}_i} + C_c^{\mathcal{A}_i}}. \quad (7)$$

223 This reweighting counteracts the bias toward channels with higher parameter counts as they naturally
 224 show larger gradient norms. By directly incorporating memory costs, RGN creates different layers
 225 and channels' order compared to the raw gradient norm. It is thus well-suited for memory-constrained
 226 settings as it optimizes update efficiency through prioritization of less memory-intensive channels
 227 when raw gradient norms are similar. This allows more parameters to be updated within the same
 228 memory budget, potentially improving performance per memory unit.

229 We use this RGN metric throughout our analysis to examine layer and channel importance across
 230 different architectures, datasets, and seeds, informing our final solution design.

233 3.3 LAYERS BEHAVIOR DURING FINE-TUNING

235 Just as heavy-tailed gradient properties create natural sparsity patterns among channels, we hypothesize
 236 that similar dynamics may govern layer-level importance. This section explores how gradient
 237 norm distribution across layers influences their relative contribution to the fine-tuning process and
 238 how this knowledge can guide our parameter selection strategy. We decide to characterize the layer
 239 reweighted gradient norm as follows:

$$240 \quad \left\| \frac{\partial \mathcal{L}}{\partial \mathcal{W}_i} \right\|_{\text{RGN}} = \sum_{c=1}^C \text{RGN}_c = \sum_{c=1}^C \frac{\left\| \left(\frac{\partial \mathcal{L}}{\partial \mathcal{W}_i} \right)_c \right\|_2}{C_c^{\mathcal{W}_i} + C_c^{\mathcal{A}_i}} = \frac{1}{(\Theta_{\text{space}})_i} \sum_{c=1}^C \left\| \left(\frac{\partial \mathcal{L}}{\partial \mathcal{W}_i} \right)_c \right\|_2. \quad (8)$$

244 **Proposition 3.1.** *The relative ranking of layers to their reweighted gradient norm remains largely
 245 invariant over time during training and across different downstream tasks. This ranking is primarily
 246 determined by the network architecture rather than dataset-specific characteristics.*

247 Based on neural network architecture, certain layers consistently exhibit higher gradient norms than
 248 others. This architectural dependency is particularly evident in networks with residual connections.
 249 Skip connections mitigate gradient vanishing by effectively reducing the virtual depth of the network
 250 for certain computational paths. As a result, we typically observe a characteristic pattern in the
 251 distribution of gradient norms: the first layer of each residual block generally displays a significantly
 252 higher gradient norm than subsequent layers within the same block.

253 We provide a detailed analysis of this phenomenon in the appendix, Sec. C and empirically validate
 254 such behavior in Sec. 4.1.

255 Based on these observations, we can strategically restrict parameter updates to the subset of layers
 256 that naturally receive higher gradients. Recent literature supports this approach, with multiple studies
 257 demonstrating that selectively updating certain layers provides significant contributions to model
 258 optimization on downstream tasks Kaplan et al. (2023); Zhang & Bottou (2024); Lee et al. (2022). The
 259 practical implication is substantial: depending on the similarity between pre-training and downstream
 260 tasks, updating only a carefully selected subset of layers can maintain performance comparable to
 261 full fine-tuning while significantly reducing memory requirements.

262 3.4 DYNAMIC CHANNEL SAMPLING

264 After analyzing layer-level behavior, we now focus on individual input channels within selected
 265 layers.

266 **Proposition 3.2.** *The distribution of channel gradient norms varies between datasets.*

268 From the weight derivative in (2), two key components emerge: activation maps reflecting network
 269 feature extraction and activation derivatives shaping the task-specific loss landscape. Both are
 270 fundamentally task-dependent, justifying that channel gradient norms vary between downstream

270 **Algorithm 1** TraDy

271 **Input:** Pre-trained backbone weights \mathcal{W} , number of epochs n , train data D_{train} , test data D_{test} ,
 272 memory budget B_{mem} , set of relevant layers $\{L_K\}$.
 273 **Function:**
 274 **for** epochs = 1 **to** n **do**
 275 Randomly sample channels $\{C^t\}$ within the set of relevant layers $\{L_K\}$ along uniform
 276 probability distribution until the memory budget B_{mem} is met.
 277 Update weights of the selected channels using D_{train} .
 278 **end for**
 279 Evaluate the fine-tuned backbone using D_{test} .

282 tasks. We provide empirical validation in Sec. 4.1.

283 While Sec. 3.3 establishes that layers can be predetermined architecturally, static channel selection
 284 proves inadequate since RGN distributions are task-dependent. In real-world scenarios where
 285 downstream data is unavailable offline and memory constraints prevent full gradient computation,
 286 directly estimating channel RGN distributions introduces overhead contradicting our efficiency goals.
 287 Instead, we propose TraDy, a dynamic sampling strategy operating within memory constraints. Our
 288 approach randomly selects input channels to update from the predetermined layers, resampling
 289 between epochs while maintaining strict memory budget compliance throughout training. This
 290 strategy ensures that the combined activation and weight memory consumption remains strictly below
 291 the specified memory budget throughout the training process, effectively balancing exploration of the
 292 channel space with the practical constraints of edge devices.

293 Leveraging layer selection from Sec. 3.3, most gradient information concentrates in selected layers,
 294 as predicted by heavy-tailed theory (Sec. 3.2). Random channel selection changing dynamically
 295 ensures the expectation of selected gradients approximates the full gradient within efficient layers
 296 over time. Let $\Delta\tilde{\mathcal{W}}_t$ denote the non-null gradient at epoch t and $\Delta\mathcal{W}_{\{C^t\}}$ the sparse gradient from
 297 randomly selected set of channels $\{C^t\}$ at epoch t within pre-selected set of layers $\{L_K\}$. Following
 298 the principle that stochastic gradient expectation equals full gradient expectation, and due to our layer
 299 selection excluding low-magnitude gradients while the stochastic channel selection follows a uniform
 300 distribution, we have:

$$300 \quad \mathbb{E} \left[\sum_t \Delta\tilde{\mathcal{W}}_t \right] \simeq \mathbb{E} \left[\sum_t \Delta\mathcal{W}_{\{C^t\}} \right]. \quad (9)$$

301 The computational complexity of randomly and successively selecting k elements from n channels is
 302 $\mathcal{O}(k \log(n))$, negligible compared to gradient computation itself.

303 We present here TraDy, our dynamic subnetwork update pipeline for transfer learning, under memory
 304 constraints, depicted in Alg. 1. Given a pre-trained backbone and a training dataset, channels are
 305 randomly sampled within the fixed set of layers of interest $\{L_K\}$ and updated conditioned on the
 306 memory budget (line 4). At the end of the training, we evaluate our model’s performance on the test
 307 dataset (line 7). In the next section, we will present our empirical results.

310

4 EXPERIMENTS

311 This section describes the experiment conducted to validate the hypothesis proposed in Sec. 3 as
 312 well as compare its performance to other sparse update strategies. A complete description of the
 313 experimental setup is proposed in Sec. D.1 of the appendix.

314

4.1 GRADIENT STUDY

315 **Heavy-Tailed Stochastic Gradient.** We empirically validate the heavy-tailed characteristic of
 316 stochastic gradients during fine-tuning, as introduced in Sec. 3.2. Following methodology similar to
 317 [Şimşekli et al.](#), we use the [Mohammadi et al. \(2015\)](#) estimator for α -stable distributions. For each fine-
 318 tuning epoch t , we collect stochastic gradients of all P trainable parameters across S training steps,
 319 constructing a $P \times S$ matrix. This matrix is processed by the estimator to produce α_t , representing
 320 the heavy-tailed index of the stochastic gradient distribution during epoch t . Fig. 2 illustrates the
 321 evolution of α for our three network architectures when fine-tuned on three diverse downstream
 322 tasks.

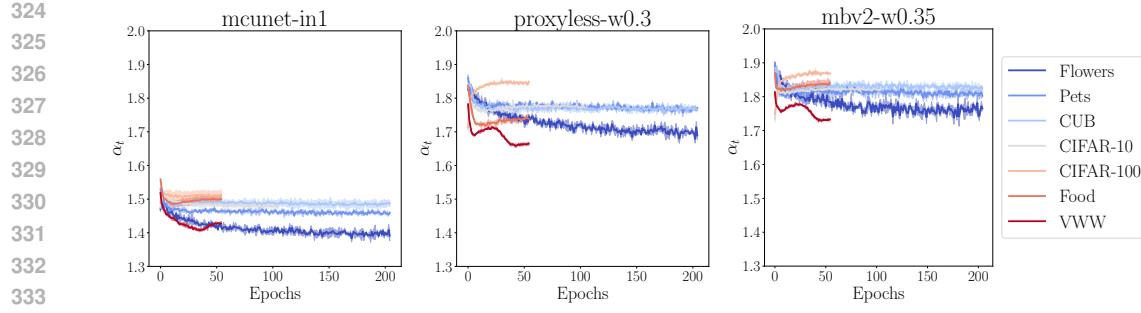
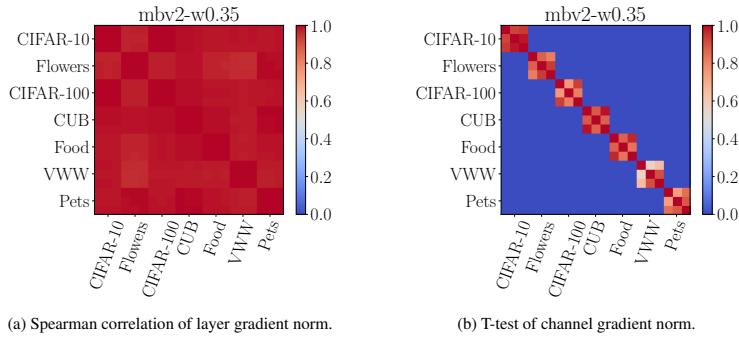
Figure 2: Evolution of stochastic gradient heavy-tailed index α_t .

Figure 3: Validation of channel and layer position across seeds and datasets for MobileNetV2.

tasks. Consistently across all scenarios, we observe that α remains below two, confirming the heavy-tailed nature of stochastic gradients. Interestingly, MCUNet exhibits significantly more heavy-tailed gradient behavior compared to other architectures. We hypothesize this stems from its compressed architecture design, which renders it more parameter-efficient. This increased efficiency likely concentrates gradient information more densely in fewer parameters, intensifying the heavy-tailed characteristic of its gradient distribution.

Layer Gradient Norm Distribution. Next, we examine Proposition 3.1, which posits that the same network produces consistent layer gradient norm topologies across different downstream tasks. We define "layer topology" as a vector containing the cumulative gradient norm of each layer across all training epochs. To quantify similarity between topologies, we compute Spearman correlation coefficients between all possible pairs of fine-tuning runs across our seven downstream datasets, using three random seeds per dataset. This yields a comprehensive 21×21 correlation matrix for each network architecture, as visualized in Fig. 3a with MobileNetV2. The results provide strong empirical support for our proposition—even in the worst-case comparison between the most dissimilar dataset pairs, the correlation coefficient never falls below 0.8. This remarkably high correlation confirms that layer-level gradient importance rankings remain largely invariant across diverse downstream tasks, validating our approach of pre-selecting layers based solely on architectural considerations.

Channel Gradient Norm Distribution. We now validate Proposition 3.2, which addresses gradient behavior at the channel level. Using methodology parallel to our layer analysis, we construct vectors where each element represents the cumulative gradient norm of a specific channel across all training epochs. This yields a high-dimensional representation of channel importance for each fine-tuning experiment. To assess whether these channel importance distributions differ significantly between tasks, we employ Student's T-test for pairwise comparisons, with results visualized in Fig. 3b. The analysis reveals a striking pattern: p-values for all inter-dataset comparisons are effectively zero, strongly rejecting the null hypothesis that channel gradient distributions from different datasets share the same mean values. This confirms our proposition that channel-level gradient importance patterns are fundamentally task-dependent and cannot be predetermined offline without access to the target dataset. Notably, the diagonal blocks in our visualization—representing comparisons between different random seeds for the same dataset—mostly feature non-zero p-values. This secondary finding indicates that while channel importance varies dramatically between tasks, it retains some

378 consistency across different initializations for the same task.

379 Results for other CNN architectures and transformers architectures show similar patterns (see Sec. D.2
380 and Sec. D.7 of the appendix).

382 4.2 MAIN RESULTS

384 **Preamble.** To rigorously validate the claims presented in Sec. 3,
385 we systematically compare three distinct memory-constrained
386 channel selection strategies. For each method, we explore both
387 Static and Dynamic variations. In the Static approach, channel
388 selection occurs once at initialization, with the same channels
389 updated throughout training. The Dynamic approach reapplys
390 the selection rule after each epoch, resulting in different channels
391 being updated over time.

392 ① *Full Random*: This baseline strategy randomly selects channels
393 from throughout the entire network architecture, without
394 layer-based prioritization. It serves as a control to evaluate the
395 benefit of our layer selection approach.

396 ② *Det RGN*: For each training epoch, we first compute the
397 full gradient without updating network weights, then deterministically
398 select channels with the highest RGN values. While
399 computationally impractical for real-world deployment (as it
400 requires calculating the complete gradient), we expect this
401 oracle-like method to serve as an upper-bound reference for
402 performance.

403 ③ *TopK Random*: Randomly samples channels from within the predetermined subset of top K
404 layers. The practical choice of K is defined in the appendix. In its dynamic version, this corresponds
405 to our proposed algorithm TraDy.

406 We benchmark our method against Lin *et al.*’s Sparse Update (SU) scheme, which represents the
407 current state-of-the-art in static channel selection for memory-constrained fine-tuning, as well as
408 Quénennec *et al.*’s Velocity method, which dynamically selects neurons based on their output changes
409 between epochs.

410 **Discussion.** In Fig. 4, we represent the results of paired t-tests comparing the average final test top-1
411 accuracies across all experimental conditions. Each cell represents a statistical comparison testing
412 the hypothesis that the selection strategy on the y-axis achieves higher mean test accuracy than the
413 strategy on the x-axis. We provide the complete table of results (Tab. 1 and Tab. 4) along with similar
414 results for transformer architectures (Sec.D.7) and comparisons with full fine-tuning in the appendix.
415 Regarding our introduced strategies, we observe that each dynamic variant (prefixed with D)
416 outperforms its static counterpart (prefixed with S). Notably, while S-Full Random yields the worst
417 results, our proposed algorithm—which restricts selection to top K layers and incorporates dynamic
418 selection—achieves the best performance, even surpassing D-RGN Deterministic, which was
419 expected to serve as an upper bound. Velocity achieves the second-best accuracy performance among
420 all evaluated methods, demonstrating the effectiveness of dynamic selection approaches.

421 We hypothesize that under extremely constrained memory budgets, D-RGN Deterministic’s approach
422 of always selecting channels with maximal RGN effectively leaves many channels with smaller but
423 significant RGN values permanently frozen. This likely causes the training process to follow the
424 direction of maximal gradient slope, potentially leading to local minima. In contrast, TraDy follows,
425 on average, the same direction as the non-null gradient while introducing beneficial stochasticity, as
426 layers with negligible gradients are excluded, but dynamic resampling occurs among significant ones.
427 This hypothesis is further supported by S-TopK Random’s poor performance (second worst strategy),
428 highlighting that dynamic reselection is crucial for achieving good results.

429 **Efficiency Metrics Analysis.** Fig. 5 illustrates the temporal evolution of key efficiency metrics
430 during MobileNetV2 fine-tuning on the Food dataset under the most restrictive memory constraint.
431 These results showcase patterns that remain consistent across different network-dataset-budget
432 combinations, with complete training metrics available in the following anonymous repository.
433 We observe that all of our methods achieve similar levels of weight and activation sparsity,
434 respectively in the range of 93% to 99% and 97.5% to 99.5%. SU trades off extremely low activation
435 memory for higher weight memory, possibly linked to the evolutionary search process implicitly
436 maximizing the amount of parameters updated. In comparison, we observe a more balanced trade-off

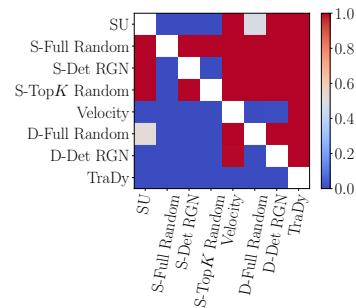
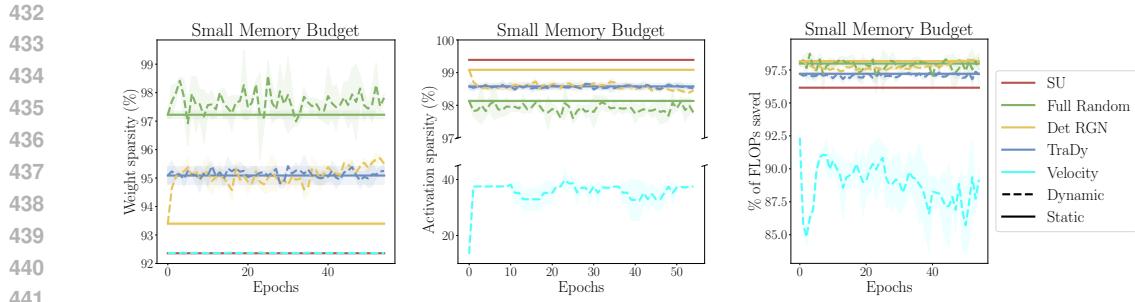


Figure 4: T-test comparisons of average final test accuracies across multiple experimental dimensions.



(a) Weight sparsity evolution during training. (b) Activation sparsity evolution during training. (c) Computational savings in weight derivative FLOPs.

Figure 5: Efficiency metrics comparison across channel selection strategies during MobileNetV2 fine-tuning on Food dataset under memory constraint. Results show evolution of sparsity levels and computational savings throughout training.

with our TraDy algorithm, suggesting that maximizing weight update does not necessarily result in improved task performance.

Notably, while Velocity achieves competitive accuracy (second-best among all methods), its neuron-level selection strategy results in substantially lower activation sparsity (20-40% range) compared to our channel-based approaches (97-99% range). This is because updating even a single neuron within a layer requires storing the complete activation map from the previous layer. Consequently, Velocity also achieves lower FLOPs savings (approximately 88%) compared to TraDy and other channel-based methods (97%). Moreover, due to its reweighting focusing solely on weight memory, the Velocity selection strategy results in the selection of computationally expensive neurons to update, further increasing FLOPs requirements relative to the other strategies explored in our paper. This is without accounting for the additional computational overhead of computing the velocity metric for all neurons or the memory overhead of storing all activation values necessary to compute this metric.

TraDy consistently requires significantly fewer FLOPs for weight derivative computation compared to both SU and Velocity. This computational advantage stems from the emergence of depthwise convolution layers among the top-ranked layers, which by design have low computational costs during both forward and backward passes.

The combination of both high weight and activation sparsity levels makes our method intrinsically more competitive than strategies that focus on either dimension alone. Methods like Jiang et al. (2022)'s Back Razor or Nguyen et al. (2025)'s ASI achieve similar levels of activation sparsity or compression rates but without the weight sparsity, while Velocity optimizes weight memory at the expense of activation memory. TraDy's balanced approach to both dimensions is particularly advantageous for on-device learning scenarios where all memory resources are strictly constrained.

5 CONCLUSION

In this work, we introduced TraDy, a memory-efficient transfer learning approach that dynamically selects channel subsets for update under tight resource constraints. Our method builds on two key insights: stochastic gradients often exhibit heavy-tailed behavior, leading to inherent sparsity, and layer importance remains consistent across tasks while channel relevance varies. By stochastically resampling channels between epochs within architecturally important layers, our approach proves its effectiveness in several challenging transfer learning scenarios, including training on efficient architectures designed for on-device deployment.

Future work will explore connections between stochastic channel selection and optimization theory, and extend our approach to broader network architectures for efficient on-device learning.

REFERENCES

Toru Baji. Evolution of the gpu device widely used in ai and massive parallel processing. In *2018 IEEE 2nd Electron devices technology and manufacturing conference (EDTM)*, pp. 7–9. IEEE,

486 2018.

487

488 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101—mining discriminative compo-
489 nents with random forests. In *Computer Vision—ECCV 2014: 13th European Conference, Zurich,
490 Switzerland, September 6–12, 2014, Proceedings, Part VI 13*, 2014.

491 Andrea Bragagnolo, Enzo Tartaglione, and Marco Grangetto. To update or not to update? neurons at
492 equilibrium in deep models. *Advances in Neural Information Processing Systems*, 35, 2022.

493

494 Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target
495 task and hardware. In *International Conference on Learning Representations*, 2019. URL
496 <https://arxiv.org/pdf/1812.00332.pdf>.

497 Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl: Reduce memory, not parameters for
498 efficient on-device learning. *Advances in Neural Information Processing Systems*, 33:11285–11297,
499 2020.

500 Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. Model compression and acceleration for deep
501 neural networks: The principles, progress, and challenges. *IEEE Signal Processing Magazine*, 35
502 (1):126–136, 2018.

503

504 Aakanksha Chowdhery, Pete Warden, Jonathon Shlens, Andrew Howard, and Rocky Rhodes. Visual
505 wake words dataset. *arXiv preprint arXiv:1906.05721*, 2019.

506

507 Dorottya Demszky, Kelvin Guu, and Percy Liang. Transforming question answering datasets into
508 natural language inference datasets. *arXiv preprint arXiv:1809.02922*, 2018.

509

510 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
511 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
2009.

512

513 Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model compression and hardware
514 acceleration for neural networks: A comprehensive survey. *Proceedings of the IEEE*, 108(4):
485–532, 2020.

515

516 Li Deng, Geoffrey Hinton, and Brian Kingsbury. New types of deep neural network learning for
517 speech recognition and related applications: An overview. In *2013 IEEE international conference
518 on acoustics, speech and signal processing*, pp. 8599–8603. IEEE, 2013.

519

520 Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
521 Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
522 in 1 hour. *arXiv preprint arXiv:1706.02677*, 2017.

523

524 Haoze He, Juncheng B Li, Xuan Jiang, and Heather Miller. Smt: Fine-tuning large language models
525 with sparse matrices. In *The Thirteenth International Conference on Learning Representations*,
2025.

526

527 Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. *arXiv preprint
528 arXiv:2212.13345*, 2022.

529

530 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
531 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

532

533 Ozlem Durmaz Incel and Sevda Ozge Bursa. On-device deep learning for mobile and wearable
534 sensing applications: A review. *IEEE Sensors Journal*, 2023.

535

536 Ziyu Jiang, Xuxi Chen, Xueqin Huang, Xianzhi Du, Denny Zhou, and Zhangyang Wang. Back
537 razor: Memory-efficient transfer learning by self-sparsified backpropagation. *Advances in neural
538 information processing systems*, 35:29248–29261, 2022.

539

540 Gal Kaplun, Andrey Gurevich, Tal Swisa, Mazor David, Shai Shalev-Shwartz, and Eran Malach.
541 Less is more: Selective layer finetuning with subtuning, 2023.

542

543 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
544 bidirectional transformers for language understanding, 2019.

540 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images, 2009.
 541

542 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. *Advances in neural information processing systems*, 25, 2012.
 543

544 Young D. Kwon, Rui Li, Stylianos I. Venieris, Jagmohan Chauhan, Nicholas D. Lane, and Cecilia
 545 Mascolo. Tinytrain: Resource-aware task-adaptive sparse training of dnns at the data-scarce edge,
 546 2024. URL <https://arxiv.org/abs/2307.09988>.
 547

548 Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Kumar, Huaxiu Yao, Percy Liang, and
 549 Chelsea Finn. Surgical fine-tuning improves adaptation to distribution shifts. *arXiv preprint*
 550 *arXiv:2210.11466*, 2022.
 551

552 Ziyu Li, Enzo Tartaglione, and Van-Tam Nguyen. Scotti: Save computation at training time with
 553 an adaptive framework. In *Proceedings of the IEEE/CVF International Conference on Computer*
 554 *Vision*, pp. 1443–1452, 2023.
 555

556 Ji Lin, Wei-Ming Chen, Yujun Lin, Chuang Gan, Song Han, et al. Mcunet: Tiny deep learning on iot
 557 devices. *Advances in Neural Information Processing Systems*, 33, 2020.
 558

559 Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song Han. On-device
 560 training under 256kb memory. *Advances in Neural Information Processing Systems*, 35, 2022.
 561

562 Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
 563 Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In *Forty-first*
 564 *International Conference on Machine Learning*, 2024.
 565

566 Yinhuan Liu. Roberta: A robustly optimized bert pretraining approach. *arXiv preprint*
 567 *arXiv:1907.11692*, 364, 2019.
 568

569 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 570 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the*
 571 *IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.
 572

573 Bradley McDanel, Helia Dinh, and John Magallanes. Accelerating dnn training with structured
 574 data gradient pruning. In *2022 26th International Conference on Pattern Recognition (ICPR)*, pp.
 575 2293–2299. IEEE, 2022.
 576

577 Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, and Demetri
 578 Terzopoulos. Image segmentation using deep learning: A survey. *IEEE transactions on pattern*
 579 *analysis and machine intelligence*, 44(7):3523–3542, 2021.
 580

581 Mohammad Mohammadi, Adel Mohammadpour, and Hiroaki Ogata. On estimating the tail index
 582 and the spectral measure of multivariate α -stable distributions. *Metrika*, 78(5):549–561, 2015.
 583

584 Ali Bou Nassif, Ismail Shahin, Imtinan Attili, Mohammad Azzeh, and Khaled Shaalan. Speech
 585 recognition using deep neural networks: A systematic review. *IEEE access*, 7:19143–19165, 2019.
 586

587 Le-Trung Nguyen, Aël Quélenne, Enzo Tartaglione, Samuel Tardieu, and Van-Tam Nguyen.
 588 Activation map compression through tensor decomposition for deep learning. *arXiv preprint*
 589 *arXiv:2411.06346*, 2024.
 590

591 Le-Trung Nguyen, Aël Quélenne, Van-Tam Nguyen, and Enzo Tartaglione. Beyond low-rank decom-
 592 position: A shortcut approach for efficient on-device learning. *arXiv preprint arXiv:2505.05086*,
 593 2025.
 594

595 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 596 of classes. In *2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing*,
 597 pp. 722–729. IEEE, 2008.
 598

599 Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In *2012*
 600 *IEEE conference on computer vision and pattern recognition*, pp. 3498–3505. IEEE, 2012.
 601

594 Danilo Pietro Pau and Fabrizio Maria Aymone. Suitability of forward-forward and pepita learning to
 595 mlcommons-tiny benchmarks. In *2023 IEEE International Conference on Omni-layer Intelligent*
 596 *Systems (COINS)*, 2023.

597

598 Adam Poliak. A survey on recognizing textual entailment as an nlp evaluation. *arXiv preprint*
 599 *arXiv:2010.03061*, 2020.

600

601 Aël Quélenne, Enzo Tartaglione, Pavlo Mozharovskyi, and Van-Tam Nguyen. Towards on-device
 602 learning on the edge: Ways to select neurons to update under a budget constraint. In *Proceedings*
 603 *of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 685–694, 2024.

604

605 Berkman Sahiner, Weijie Chen, Ravi K Samala, and Nicholas Petrick. Data drift in medical machine
 606 learning: implications and potential remedies. *The British Journal of Radiology*, 96(1150):
 607 20220878, 2023.

608

609 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
 610 bilenetv2: Inverted residuals and linear bottlenecks. In *Proceedings of the IEEE conference on*
 611 *computer vision and pattern recognition*, pp. 4510–4520, 2018.

612

613 Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbahn, and Pablo Villalobos.
 614 Compute trends across three eras of machine learning. In *2022 International Joint Conference on*
 615 *Neural Networks (IJCNN)*, pp. 1–8. IEEE, 2022.

616

617 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 618 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

619

620 Umut Simsekli, Mert Gürbüzbalaban, Thanh Huy Nguyen, Gaël Richard, and Levent Sagun. On
 621 the heavy-tailed theory of stochastic gradient descent for deep neural networks. *arXiv preprint*
 622 *arXiv:1912.00018*, 222, 2019.

623

624 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
 625 Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
 626 In *Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing*, pp.
 627 1631–1642, Seattle, Washington, USA, October 2013. Association for Computational Linguistics.
 628 URL <https://www.aclweb.org/anthology/D13-1170>.

629

630 Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. *arXiv*
 631 *preprint arXiv:1905.05950*, 2019.

632

633 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 634 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 635 *systems*, 30, 2017.

636

637 Yijun Wan, Melih Barsbey, Abdellatif Zaidi, and Umut Simsekli. Implicit compressibility of
 638 overparametrized neural networks trained with heavy-tailed sgd. *arXiv preprint arXiv:2306.08125*,
 639 2023.

640

641 Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Be-
 642 longie, and Pietro Perona. Caltech-ucsd birds 200. Technical Report CNS-TR-201, Caltech,
 643 2010. URL [/se3/wp-content/uploads/2014/09/WelinderEtal10_CUB-200.pdf](https://se3/wp-content/uploads/2014/09/WelinderEtal10_CUB-200.pdf), <http://www.vision.caltech.edu/visipedia/CUB-200.html>.

644

645 Sunghyeon Woo, Sol Namkung, Sunwoo Lee, Inho Jeong, Beomseok Kim, and Dongsuk Jeon. Paca:
 646 Partial connection adaptation for efficient fine-tuning. *arXiv preprint arXiv:2503.01905*, 2025.

647

648 Junhuan Yang, Yi Sheng, Yuzhou Zhang, Weiwen Jiang, and Lei Yang. On-device unsupervised
 649 image segmentation. *arXiv preprint arXiv:2303.12753*, 2023a.

650

651 Yuedong Yang, Guihong Li, and Radu Marculescu. Efficient on-device training via gradient filtering.
 652 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 653 3811–3820, 2023b.

648 Xucheng Ye, Pengcheng Dai, Junyu Luo, Xin Guo, Yingjie Qi, Jianlei Yang, and Yiran Chen.
649 Accelerating cnn training by pruning activation gradients. In *Computer Vision–ECCV 2020: 16th*
650 *European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXV 16*, pp. 322–338.
651 Springer, 2020.

652 Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all layers created equal? *ArXiv*, 2019.

653 Jianyu Zhang and Léon Bottou. Fine-tuning with very large dropout, 2024.

654 Zhi Zhang, Qizhe Zhang, Zijun Gao, Renrui Zhang, Ekaterina Shutova, Shiji Zhou, and Shanghang
655 Zhang. Gradient-based parameter selection for efficient fine-tuning, 2024. URL <https://arxiv.org/abs/2312.10136>.

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 TABLE OF CONTENTS
703

704	A Limitations	15
705	B Parameter-Efficient Fine-Tuning	15
706	C Layer Ranking Consistency Detailed Analysis	15
707	D Additional Experimental Results	16
708	D.1 Experimental Setup	16
709	D.2 Proposition Validation on CNN Architectures	17
710	D.3 Reweighted Gradient Norm Metric Validation	17
711	D.4 Layers RGN Behavior	18
712	D.5 TopK Layers Selection	19
713	D.6 Extension of Main Results	20
714	D.7 Results on Transformers Architectures	22
715	D.8 Static Strategies Results	23
716	E LLM Usage	24
717		
718		
719		
720		
721		
722		
723		
724		
725		
726		
727		
728		
729		
730		
731		
732		
733		
734		
735		
736		
737		
738		
739		
740		
741		
742		
743		
744		
745		
746		
747		
748		
749		
750		
751		
752		
753		
754		
755		

756 **A LIMITATIONS**
757758 **Related Works.** In Sec. 2, we discuss three key approaches to efficient subnetwork selection for
759 on-device learning, yet our experimental comparisons focus only on Lin *et al.*’s SU method. Que-
760 lennec *et al.*’s implementation excludes activation memory from their budget calculations, making
761 direct comparisons methodologically inconsistent with our approach which accounts for both weight
762 and activation memory. Similarly, while Kwon *et al.*’s work offers improvements upon SU, the
763 absence of publicly available code at the time of our research prevented us from implementing and
764 benchmarking against their method.765 **On-device Implementation.** Although our work aims to enable efficient on-device learning, we
766 do not present metrics on actual hardware performance (latency, energy consumption, etc.). This
767 limitation stems from our method’s reliance on dynamic channel reselection between epochs, which
768 requires specialized implementation for efficient execution on edge devices. Our current implementa-
769 tion serves as a simulation to demonstrate the potential algorithmic benefits, but further engineering
770 work is needed to translate these theoretical gains into optimized on-device performance.771 **Backpropagation Cost.** In our work, we report the FLOPs gained regarding the computation of
772 weight derivatives. We however acknowledge that total backpropagation cost includes both weight
773 and activation derivative calculations. The latter depends on the deepest layer requiring updates, as
774 gradients must propagate from the output through all intermediate layers. Our approach typically
775 selects relevant layers at greater depths than SU schemes, potentially increasing overall backpropa-
776 gation latency despite weight derivative savings. In future work, we plan to explore techniques for
777 exploiting the natural sparsity in activation gradients to enable compressed backpropagation, which
778 would allow efficient updating of deeper layers with minimal accuracy degradation and reduced
779 computational overhead.780 **B PARAMETER-EFFICIENT FINE-TUNING**
781782 Parameter-Efficient Fine-Tuning (PEFT) methods have emerged as a popular approach for adapt-
783 ing pre-trained models to downstream tasks while minimizing trainable parameters. Prominent
784 adapter-based methods like LoRA Hu *et al.* (2022) and DoRA Liu *et al.* (2024) introduce low-rank
785 decomposition matrices in parallel with frozen pre-trained weights, achieving impressive parameter
786 efficiency by updating less than 1% of total parameters. LoRA decomposes weight updates into
787 low-rank matrices that are trained alongside frozen weights, while DoRA further decomposes weights
788 into magnitude and direction components, applying low-rank adaptation only to the directional
789 component. These methods have demonstrated effectiveness across diverse architectures and tasks,
790 establishing PEFT as a standard paradigm for efficient model adaptation.791 However, adapter-based PEFT methods are fundamentally incompatible with extreme memory-
792 constrained scenarios. These approaches introduce parallel computation paths that require computing
793 forward pass through both weights and adapters paths during inference (thus increasing computational
794 cost), and storing the full activation maps to update the adapters modules during backpropagation.
795 Additionally, adapter modules introduce parameter storage overhead during training, as each forward
796 pass must execute through both the frozen backbone and adapter pathways. These limitations render
797 such methods impractical for on-device learning where activation memory constitutes the primary
798 bottleneck.799 Among PEFT methods, PaCA Woo *et al.* (2025) represents the closest approach to our setting, as it
800 addresses both parameter and activation memory by randomly selecting channels for update within
801 existing layers rather than introducing adapters. However, PaCA performs uniform random selection
802 across all network layers without considering layer-wise gradient importance or dynamic resampling
803 across epochs. In our experimental framework, this approach corresponds directly to our S-Full
804 Random baseline, which we demonstrate to be the worst-performing selection strategy (Fig. 4) in
805 our ablation study. In practice PaCa outperforms adapter-based strategies and by transitivity, TraDy
806 provides further improvements in performance due to its innovations.807 **C LAYER RANKING CONSISTENCY DETAILED ANALYSIS**
808809 Let us consider the simple case of R convolutional layers having the same size, intercepted by ReLU
activations, where a skip connection re-injects the input of the first in the final output \mathcal{Y} , reading

$\mathcal{Y} = \mathcal{A}_{i+R-1} + \mathcal{A}_i = \mathcal{C}_{\mathcal{W}_{i+R-1}} \circ \cdots \circ \mathcal{C}_{\mathcal{W}_i}(\mathcal{A}_i) + \mathcal{A}_i$. We also note \mathcal{Z}_i the i-th layer pre-activation, $\mathbf{1}$ the indicator function, and \odot the Hadamard product operator. According to (2), the weights derivatives could be further expressed as:

$$\frac{\partial \mathcal{L}}{\partial \mathcal{W}_{i+R-1}} = \text{conv} \left(\mathcal{A}_{i+R-1}, \left[\frac{\partial \mathcal{L}}{\partial \mathcal{Y}} \odot \mathbf{1}_{\mathcal{Z}_{i+R-1} > 0} \right] \right). \quad (10)$$

$\forall k \in [i, i+R-2]$, we define \mathcal{J} with the following recursive expression:

$$\begin{cases} \mathcal{J}(i+R-1) = \left[\frac{\partial \mathcal{L}}{\partial \mathcal{Y}} \odot \mathbf{1}_{\mathcal{Z}_{i+R-1} > 0} \right] \\ \mathcal{J}(k) = (\text{conv}(\mathcal{J}(k+1), \mathcal{W}_{k+1}^\top) \odot \mathbf{1}_{\mathcal{Z}_k > 0}) \end{cases}. \quad (11)$$

Subsequently, $\forall k \in [i, i+R-2]$,

$$\frac{\partial \mathcal{L}}{\partial \mathcal{W}_k} = \text{conv}(\mathcal{A}_k, \mathcal{J}(k)). \quad (12)$$

Besides, the input derivative is written as:

$$\frac{\partial \mathcal{L}}{\partial \mathcal{A}_i} = \frac{\partial \mathcal{L}}{\partial \mathcal{Y}} \cdot \left[I + \frac{\partial(\mathcal{C}_{\mathcal{W}_{i+R-1}} \circ \cdots \circ \mathcal{C}_{\mathcal{W}_{i+1}} \circ \mathcal{C}_{\mathcal{W}_i})}{\partial \mathcal{A}_i} \right], \quad (13)$$

with I being the identity tensor.

Given that we’re working with pre-trained networks, we can leverage specific properties established during their initial training phase. Pre-trained deep neural networks typically undergo regularization via weight decay and gradient clipping, which constrains weight norms to generally remain below one. Simultaneously, the inclusion of batch normalization layers during pre-training ensures that activation norms are similarly bounded. When fine-tuning on downstream tasks that share reasonable similarity with the pre-training domain, these weight and activation properties tend to be preserved, as the magnitude of weight adjustments remains relatively small.

For instance, when $\|\mathcal{W}_{k+1}\|_2 \leq 1, \forall k \in [i, i+R-2]$ and $\|\mathcal{A}_i\|_2 \leq 1$, we have that

$$\left\| \frac{\partial \mathcal{L}}{\partial \mathcal{W}_i} \right\|_2 \leq \left\| \frac{\partial \mathcal{L}}{\partial \mathcal{W}_{i+1}} \right\|_2 \leq \cdots \leq \left\| \frac{\partial \mathcal{L}}{\partial \mathcal{W}_{i+R-1}} \right\|_2. \quad (14)$$

While exceptions may occur—certain layers occasionally exhibit weight or activation norms exceeding one—these instances reflect inherent properties of the pre-trained network rather than task-specific adaptations. The fundamental insight is that layers consistently maintain their relative gradient norm proportions across diverse downstream tasks. This pattern becomes even more pronounced when using our reweighted gradient norm metric, as both channel weight and activation memory costs are architecture-dependent constants within each layer.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 EXPERIMENTAL SETUP

Training. Following Lin et al. (2022), we employ the same architectures pre-trained on ImageNet Deng et al. (2009); MobileNetV2 Sandler et al. (2018), ProxylessNAS Cai et al. (2019), and MCUNet Lin et al. (2020) (we load the weights provided in their code implementation). We perform training on a Nvidia Tesla V100 SXM2 and systematically train the classifier layer, independently of the freezing strategy. Algorithms are implemented in Python using PyTorch 2.0.0. We also provide results on transformer architectures in the appendix.

Datasets. We collect channel freezing metrics and transfer learning accuracy on multiple downstream datasets: CIFAR-10 Krizhevsky et al. (2009), CIFAR-100 Krizhevsky et al. (2009), CUB Welinder et al. (2010), Flowers Nilsback & Zisserman (2008), Food Bossard et al. (2014), Pets Parkhi et al. (2012) and VWW Chowdhery et al. (2019).² The learning policy consists of cosine learning rate decay with 5 warm-up epochs Goyal et al. (2017), 50 epochs for larger datasets (CIFAR-100, Food,

²Pets: <https://creativecommons.org/licenses/by-sa/4.0/>, CC BY-SA 4.0 license; ImageNet: <https://image-net.org/download.php> the ImageNet license; others are not listed.

and VWW), 100 epochs for CIFAR-10, and 200 epochs for smaller datasets (CUB, Pets, and Flowers). Learning rates range from 0.125 to 0, and we do not use weight decay or dropout. Our optimizer is Stochastic Gradient Descent (SGD) with no momentum (as keeping states in memory would go against our memory constraint). Each training is performed over three random seeds, and we report average results with standard deviation.

Experiment Design. For experimental consistency, we adopt the same memory budgets B_{mem} used in the original SU work, implementing three distinct memory constraint levels for each network architecture. These budgets represent the maximum allowable memory consumption for both parameter storage and activations during the update process. Note that Velocity considers only weight memory in its budget calculations, so we evaluate it taking the weight component of the budget (excluding the activation part) for fair comparison. This comparative framework allows us to assess whether our theoretical insights translate into practical performance advantages while maintaining strictly equivalent memory constraints. For each channel selection strategy, we perform experiments on the cross-product of three networks, seven datasets, three memory budgets, and three seeds, producing 189 individual trainings per strategy, thus ensuring the statistical significance of the obtained results.

D.2 PROPOSITIONS VALIDATION ON CNN ARCHITECTURES

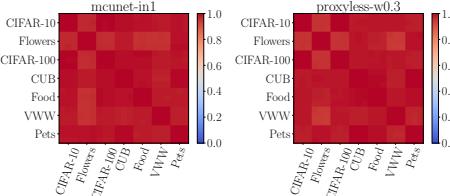


Figure 6: Spearman correlation of layer gradient norm across seeds and datasets.

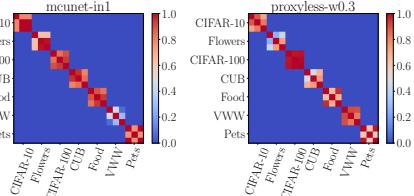


Figure 7: T-test of channel gradient norm across seeds and datasets.

Fig. 6 and Fig. 7 respectively correspond to the validation of Proposition 3.1 (layer gradient norm consistency) and Proposition 3.2 (channel gradient norm variability) as presented in Sec. 4.1, with MCUNet and ProxylessNAS architectures. In both cases, the observed results are very similar to those obtained with MobileNetV2 (Fig. 3), thus providing further confirmation of the theoretical insights proposed in Sec. 3.

D.3 REWEIGHTED GRADIENT NORM METRIC VALIDATION

Here, we experimentally validate the efficacy of our RGN metric introduced in Sec. 3.2. We conduct a series of experiments where channels are selectively frozen during training based on whether their gradient norm (either raw or reweighted) falls below a predefined threshold ε . Even though memory is not a channel freezing criterion in this setup, by logging metrics such as final accuracy, per-epoch memory, and FLOPs, we can observe how well a network converges given different levels of partial freezing. We consider a pre-trained MobileNetV2 that we fine-tune on CIFAR-10 and Flowers. The results of this study are shown in Fig. 8.

Each plot in Fig. 8 illustrates a progression of freezing strategies: the top-right corner represents a fully permissive threshold where all channels remain active during fine-tuning, while the bottom-left represents the most restrictive case where all channels (except the classifier) are frozen. Moving from right to left along each curve corresponds to increasingly stringent thresholds that progressively freeze more channels.

A key observation is that gradient norms naturally decrease during training, causing a fixed threshold ε to freeze an increasing number of channels as training progresses. To capture this dynamic behavior across the entire training process, we present cumulative metrics for channel updates.

Fig. 8a reveals significant difference between raw and reweighted norm-based pruning: with raw gradient thresholding, accuracy begins to deteriorate as soon as any memory reduction occurs. In contrast, the reweighted approach maintains full accuracy even when eliminating over half the total

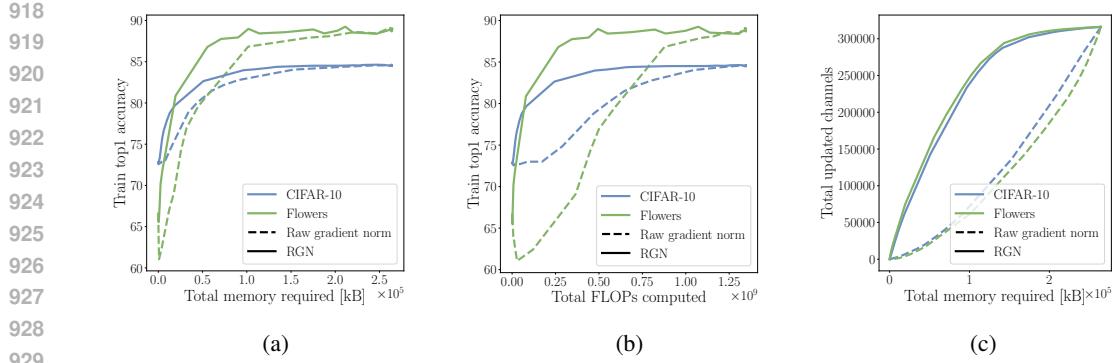


Figure 8: Channel thresholding results based on gradient norm. Each point represents a complete training run with respect to a pre-defined threshold ε . Plots show: (a) final accuracy vs. total memory usage, (b) final accuracy vs. total computational cost, and (c) total updated channel count vs. total memory usage.

training memory. Fig. 8b shows analogous patterns for computational savings. Fig. 8c helps us understand such phenomenon as, for the same amount of total memory, raw norm thresholding removes substantially more channels than the reweighted approach. This occurs because reweighting prioritizes freezing memory-intensive channels with relatively low gradient-to-memory ratios. In the raw scenario, channels with high gradient norms often coincide with high memory costs due to their larger parameter counts, yet these channels may have lower per-parameter importance. Our reweighting mechanism effectively identifies this inefficiency, allowing channels with high per-parameter gradient impact to be preserved while eliminating those with disproportionate memory requirements.

D.4 LAYERS RGN BEHAVIOR

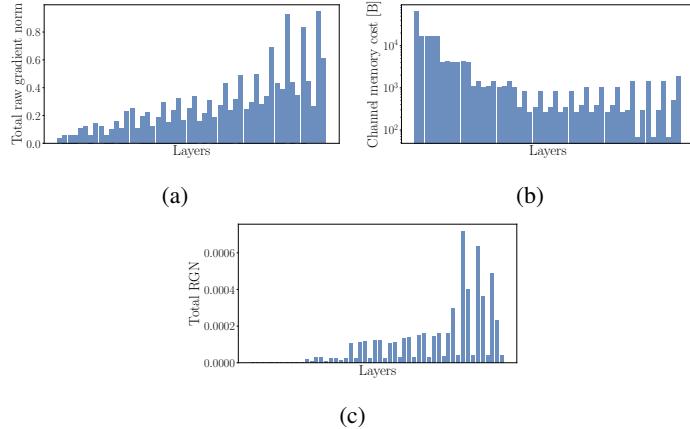


Figure 9: Layers gradient norm and reweighting analysis in the case of a MobileNetV2 fine-tuned on CIFAR-10. Fig. 9a, represents the raw cumulated gradient norm of layers, Fig. 9b the per-layer channel memory cost, and Fig. 9c the cumulated RGN of layers.

Using a MobileNetV2 fine-tuned on CIFAR-10 as our case study, Fig. 9 illustrates how reweighting transforms the importance profile across network layers. Fig. 9a shows the raw gradient norm cumulated over training epochs, while Fig. 9c presents the corresponding reweighted values after accounting for channel memory costs (shown on a logarithmic scale in Fig. 9b). In Fig. 9c, we observe that some layers stand out in terms of cumulated RGN compared to others, namely the depthwise and the second point-wise layers of the blocks closer to the output.

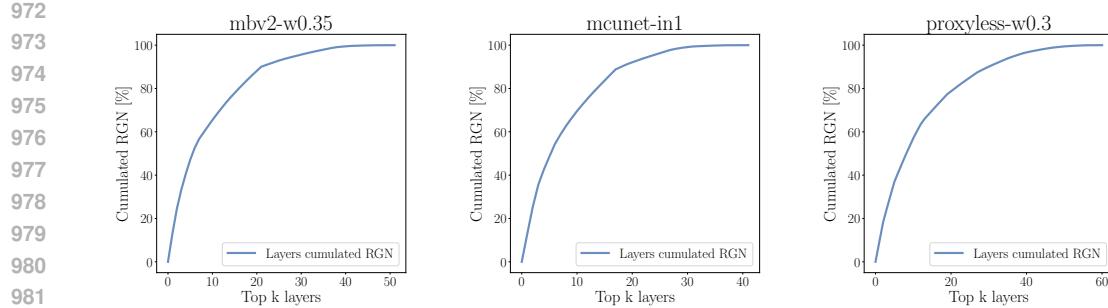


Figure 10: Layers RGN cumulative contribution for 3 networks, fine-tuning on CIFAR-10.

With this observation and the knowledge that such topology is shared between downstream tasks and over time, we deduce that we can freeze a-priori a certain subset of layers as they provide a negligible contribution to the convergence of the network. To illustrate this point, we plot in Fig. 10 the evolution of cumulative RGN (expressed as a percentage of total network RGN) with respect to the number of layers considered (layers ranked in descending order of RGN). We observe that for each network, half of the total network RGN is contained within less than a quarter of the layers and half of the layers correspond to more than 90% of the total RGN.

D.5 TOPK LAYERS SELECTION

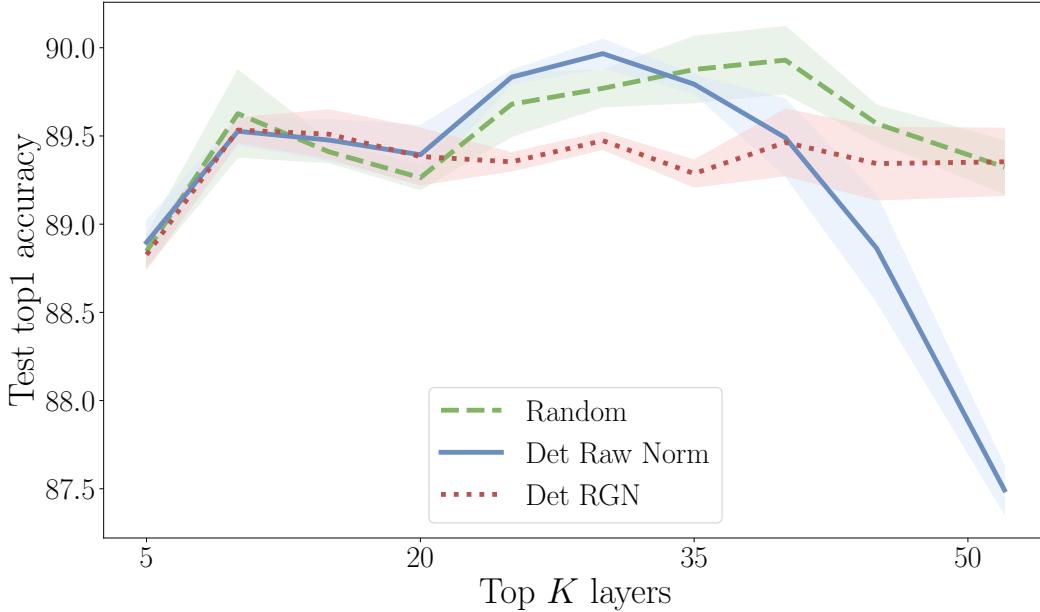


Figure 11: Final test top1 accuracies depending on the number of top K layers for different dynamic channel selection strategies.

Our proposed TraDy algorithm requires pre-selecting a subset of relevant layers for channel sampling. As established in Sec. 3.3 and experimentally confirmed in Fig. 6, the relative ranking of layers according to our RGN metric remains consistent across downstream tasks. This enables offline determination of layer importance by fine-tuning the target network on any available relevant downstream task and recording RGN values during training (even a few epochs suffice to establish reliable rankings).

The critical question becomes determining the optimal number K of top-ranked layers to include in our selection pool. To investigate this parameter's impact, we conduct an experimental study using transfer learning with the smallest memory budget B_{mem} on CIFAR-10. We use the gradients norm

1026 information to rank a-priori the layers along their total RGN and select different levels of top K
 1027 layers to perform sampling within (K being the variable denoting the number of layers considered).
 1028 We compare three dynamic channel selection strategies within the selected layer subsets:
 1029

- 1030 1. Random selection of channels until memory budget B_{mem} is met (Random).
- 1031 2. Deterministic selection of channels with highest RGN values using complete gradient
 1032 knowledge until B_{mem} is met (Det RGN).
- 1033 3. Deterministic selection based on raw gradient norm values using complete gradient knowl-
 1034 edge until B_{mem} is met (Det Raw Norm).

1035 Fig. 11 presents the results of this analysis. For random selection, progressively excluding the least
 1036 important layers initially improves training accuracy by constraining the sampling pool to more
 1037 relevant channels. Performance peaks in the range around 35 to 40 layers before declining as essential
 1038 layers are eliminated, highlighting their critical role in convergence. Notably, these top 35 layers
 1039 capture 97% of the network’s total RGN as can be observed in Fig. 10. We apply this 97% criterion
 1040 to our other architectures, yielding 27 layers for MCUNet and 43 layers for ProxylessNAS.

1041 We acknowledge that our layer selection approach is relatively straightforward and presents opportu-
 1042 nities for further refinement. For instance, K could be adaptively determined based on the available
 1043 memory budget, maintaining a constant ratio between the budget and the total memory requirements
 1044 of the selected layers. However, developing such an adaptive scheme would require substantial
 1045 theoretical analysis and extensive empirical validation, which is outside of the scope of this work and
 1046 will be explored in future research. As demonstrated in Fig. 5, our current fixed-threshold approach
 1047 for determining K enables TraDy to achieve competitive performance against alternative strategies
 1048 within the scope of this work.

1049 The RGN-based deterministic approach exhibits remarkable stability across different values of K ,
 1050 maintaining consistent performance until a decline occurs when reducing from the top 10 to top
 1051 5 layers. This behavior aligns with our expectation that gradient importance concentrates heavily
 1052 within a small subset of layers as expressed in Sec. 3.2.

1053 The Raw Norm approach demonstrates more complex dynamics. When applied to the entire network,
 1054 it yields relatively modest performance, but shows substantial improvement as the least important
 1055 layers are progressively excluded. This pattern suggests that these lower-ranked layers contain
 1056 channels with high absolute gradient magnitudes but poor gradient-to-memory efficiency ratios,
 1057 which our reweighting scheme effectively identifies and deproritizes.

1058 Intriguingly, Raw Norm selection achieves superior accuracy compared to either RGN or Random
 1059 selection within the 20-40 layer range, potentially indicating alternative ways to balance gradient
 1060 magnitude and memory efficiency beyond our current formulation. However, as stated in Sec. 3.4,
 1061 accessing the gradient norm to perform channel selection is energy inefficient compared to a Random
 1062 selection approach. Beyond the 20-layer threshold, both methods converge toward similar perfor-
 1063 mance levels, likely because the reweighting has diminishing impact on channel ordering when
 1064 focusing on the most gradient-rich layers where memory costs become more uniform.

1065 While Lin et al. (2022) observed that depthwise layers contribute minimally to accuracy when up-
 1066 dated in isolation, Zhang et al. (2019) demonstrated that layer contributions cannot be evaluated
 1067 independently as they depend critically on which other layers remain frozen or active. Our findings
 1068 suggest that the coordinated updating of depthwise layers alongside their corresponding second
 1069 pointwise layers within each block creates synergistic effects that promote efficient convergence. This
 1070 hypothesis is supported by the consistently high ranking we observe for these layer combinations,
 1071 indicating their collective importance for gradient-based optimization under memory constraints.

1072 D.6 EXTENSION OF MAIN RESULTS

1073 Here we provide additional results regarding our main experimental setup described in Sec. D.6.
 1074 Tab. 1 presents a report of final test top-1 accuracies across our full experimental matrix spanning
 1075 multiple architectures, datasets, and memory budgets when comparing SU and the dynamic selection
 1076 strategies. The results for the static variants are displayed appart for readability in Sec. D.8 (Tab. 4).
 1077 We also provide comprehensive training metrics at the following anonymous repository in the
 1078 *training_metrics* folder. This supplementary data includes detailed figures tracking multiple
 1079 performance indicators across all fine-tuning experiments: training and test top-1 accuracies and
 losses, weight and activation sparsity percentages induced by each channel selection strategy,

Table 1: Comparison of final top1 test accuracies between SU and dynamic channel selection strategies over various pretrained CNN models, datasets, and budgets.

Model	B_{mem}	Method	CIFAR-10	CIFAR-100	CUB	Flowers	Food	Pets	VWW	Average
27 946	MbV2-w0.35	SU	89.10 \pm 0.26	67.34 \pm 0.18	56.85 \pm 0.22	80.33 \pm 0.56	61.62 \pm 0.13	76.53 \pm 0.26	87.73 \pm 0.06	74.22 \pm 0.74
		Velocity	89.84 \pm 0.19	68.14 \pm 0.17	57.51 \pm 0.30	79.46 \pm 0.32	61.79 \pm 0.12	76.24 \pm 0.23	88.29 \pm 0.18	74.47 \pm 0.60
		D-Full Random	89.32 \pm 0.15	67.85 \pm 0.30	57.42 \pm 0.12	79.19 \pm 0.26	60.69 \pm 0.16	76.63 \pm 0.19	88.56 \pm 0.12	74.24 \pm 0.52
		D-Det RGN	89.29 \pm 0.08	67.48 \pm 0.05	57.70 \pm 0.36	79.94 \pm 0.54	61.88 \pm 0.17	76.80 \pm 0.04	88.36 \pm 0.21	74.49 \pm 0.71
		TRaDy	89.88 \pm 0.19	68.68 \pm 0.17	57.90 \pm 0.08	79.57 \pm 0.52	62.61 \pm 0.15	76.99 \pm 0.17	88.76 \pm 0.15	74.91\pm0.64
	66 592	SU	90.42 \pm 0.12	68.73 \pm 0.29	57.97 \pm 0.25	81.15 \pm 0.51	64.56 \pm 0.17	77.04 \pm 0.28	87.76 \pm 0.16	75.37 \pm 0.74
		Velocity	90.94 \pm 0.31	69.74 \pm 0.45	58.45 \pm 0.59	80.13 \pm 0.62	65.43 \pm 0.23	77.14 \pm 0.37	88.31 \pm 0.22	75.73\pm1.13
		D-Full Random	90.06 \pm 0.08	68.93 \pm 0.28	58.44 \pm 0.15	79.59 \pm 0.45	62.96 \pm 0.23	76.88 \pm 0.13	88.76 \pm 0.34	75.09 \pm 0.70
		D-Det RGN	90.26 \pm 0.05	68.82 \pm 0.13	58.73 \pm 0.10	80.58 \pm 0.40	64.22 \pm 0.20	76.65 \pm 0.52	88.25 \pm 0.15	75.36 \pm 0.72
		TRaDy	90.79 \pm 0.21	69.57 \pm 0.27	59.09 \pm 0.15	80.09 \pm 0.51	64.96 \pm 0.22	76.64 \pm 0.11	88.22 \pm 0.32	75.62 \pm 0.75
93 696	1 252 320	SU	90.69 \pm 0.17	69.17 \pm 0.09	57.92 \pm 0.35	81.09 \pm 0.39	65.33 \pm 0.23	77.12 \pm 0.16	87.30 \pm 0.32	75.52 \pm 0.70
		Velocity	91.37 \pm 0.19	70.62 \pm 0.13	59.03 \pm 0.29	80.57 \pm 0.26	66.69 \pm 0.3	76.67 \pm 0.33	88.11 \pm 0.3	76.15\pm0.70
		D-Full Random	90.69 \pm 0.16	69.41 \pm 0.22	58.74 \pm 0.08	79.99 \pm 0.51	63.90 \pm 0.22	76.51 \pm 0.40	88.85 \pm 0.22	75.44 \pm 0.77
		D-Det RGN	90.70 \pm 0.13	69.41 \pm 0.28	58.86 \pm 0.20	80.93 \pm 0.43	65.48 \pm 0.07	76.96 \pm 0.23	87.84 \pm 0.06	75.74 \pm 0.62
		TRaDy	90.95 \pm 0.33	70.04 \pm 0.03	58.91 \pm 0.15	80.76 \pm 0.37	65.89 \pm 0.04	77.21 \pm 0.32	88.01 \pm 0.35	75.97 \pm 0.70
	15 936	Baseline	92.72 \pm 0.03	72.69 \pm 0.16	60.03 \pm 0.18	81.88 \pm 0.34	70.79 \pm 0.20	76.68 \pm 0.33	88.58 \pm 0.19	77.62 \pm 0.60
		SU	89.51 \pm 0.23	68.41 \pm 0.27	60.68 \pm 0.27	82.92 \pm 0.43	65.57 \pm 0.06	81.15 \pm 0.29	89.14 \pm 0.10	76.77 \pm 0.69
		Velocity	89.93 \pm 0.11	69.20 \pm 0.15	60.69 \pm 0.50	82.05 \pm 0.34	64.42 \pm 0.21	81.21 \pm 0.25	89.53 \pm 0.08	76.72 \pm 0.72
		D-Full Random	90.22 \pm 0.06	69.08 \pm 0.24	61.21 \pm 0.22	82.37 \pm 0.26	65.71 \pm 0.16	81.20 \pm 0.16	89.96 \pm 0.05	77.11 \pm 0.48
		D-Det RGN	90.29 \pm 0.2	69.06 \pm 0.28	61.03 \pm 0.40	82.34 \pm 0.37	65.95 \pm 0.07	81.07 \pm 0.13	89.90 \pm 0.19	77.09 \pm 0.69
MCUNet-in1	64 832	TRaDy	90.38 \pm 0.18	69.72 \pm 0.14	61.30 \pm 0.20	82.54 \pm 0.59	66.78 \pm 0.17	81.10 \pm 0.11	89.79 \pm 0.27	77.37\pm0.74
		SU	91.65 \pm 0.26	70.96 \pm 0.23	62.03 \pm 0.32	83.79 \pm 0.53	69.77 \pm 0.03	81.52 \pm 0.11	88.67 \pm 0.14	78.34 \pm 0.73
		Velocity	92.24 \pm 0.03	72.31 \pm 0.24	62.56 \pm 0.42	82.80 \pm 0.51	70.42 \pm 0.17	81.40 \pm 0.59	89.37 \pm 0.23	78.73\pm0.96
		D-Full Random	91.70 \pm 0.13	71.58 \pm 0.18	62.43 \pm 0.10	82.33 \pm 0.31	69.07 \pm 0.28	81.26 \pm 0.09	89.75 \pm 0.16	78.30 \pm 0.52
		D-Det RGN	91.60 \pm 0.19	71.11 \pm 0.15	61.86 \pm 0.36	82.99 \pm 0.56	69.53 \pm 0.19	80.97 \pm 0.92	89.32 \pm 0.04	78.20 \pm 1.18
	112 640	TRaDy	92.16 \pm 0.25	72.11 \pm 0.40	62.20 \pm 0.10	83.02 \pm 0.52	70.57 \pm 0.17	81.11 \pm 0.28	89.30 \pm 0.27	78.64 \pm 0.83
		SU	92.07 \pm 0.13	71.58 \pm 0.15	61.44 \pm 0.41	83.74 \pm 0.47	71.02 \pm 0.15	81.07 \pm 0.24	88.77 \pm 0.31	78.53 \pm 0.78
		Velocity	92.90 \pm 0.11	73.66 \pm 0.29	62.53 \pm 0.51	82.99 \pm 0.54	72.32 \pm 0.14	80.87 \pm 0.45	89.36 \pm 0.04	79.23\pm0.93
		D-Full Random	92.20 \pm 0.18	72.71 \pm 0.16	62.85 \pm 0.11	82.84 \pm 0.03	70.70 \pm 0.05	81.30 \pm 0.07	89.54 \pm 0.17	78.88 \pm 0.33
		D-Det RGN	92.01 \pm 0.03	72.30 \pm 0.13	62.36 \pm 0.56	83.02 \pm 0.37	71.16 \pm 0.32	80.76 \pm 0.27	89.15 \pm 0.17	78.68 \pm 0.82
1 309 808	64 832	TRaDy	92.53 \pm 0.21	72.95 \pm 0.27	62.12 \pm 0.14	83.25 \pm 0.36	71.88 \pm 0.12	81.29 \pm 0.25	89.39 \pm 0.31	79.06 \pm 0.66
		Baseline	93.87 \pm 0.10	76.03 \pm 0.18	61.62 \pm 0.62	83.45 \pm 0.42	75.74 \pm 0.14	79.49 \pm 0.60	90.06 \pm 0.16	80.04 \pm 1.00
		SU	91.00 \pm 0.25	68.94 \pm 0.16	57.04 \pm 0.36	82.36 \pm 0.25	63.30 \pm 0.11	78.96 \pm 0.43	88.26 \pm 0.26	75.69 \pm 0.74
		Velocity	90.69 \pm 0.10	69.12 \pm 0.06	55.98 \pm 0.12	81.85 \pm 0.34	61.46 \pm 0.13	78.58 \pm 0.50	88.67 \pm 0.20	75.19 \pm 0.67
		D-Full Random	90.76 \pm 0.23	69.20 \pm 0.24	56.55 \pm 0.13	81.54 \pm 0.64	62.69 \pm 0.12	78.64 \pm 0.29	88.90 \pm 0.11	75.47 \pm 0.80
	25 984	D-Det RGN	91.06 \pm 0.04	69.20 \pm 0.16	57.70 \pm 0.34	81.80 \pm 0.64	64.22 \pm 0.16	78.72 \pm 0.45	88.71 \pm 0.12	75.92 \pm 0.89
		TRaDy	91.34 \pm 0.14	69.83 \pm 0.46	57.62 \pm 0.26	82.13 \pm 0.34	64.30 \pm 0.21	78.73 \pm 0.48	88.86 \pm 0.21	76.12\pm0.86
		SU	91.88 \pm 0.27	70.34 \pm 0.19	58.33 \pm 0.36	83.15 \pm 0.28	66.49 \pm 0.29	78.99 \pm 0.74	87.82 \pm 0.12	76.71 \pm 0.98
		Velocity	92.37 \pm 0.03	71.84 \pm 0.08	58.72 \pm 0.72	82.35 \pm 0.20	66.63 \pm 0.13	78.9 \pm 0.44	88.53 \pm 0.18	77.05 \pm 0.90
		D-Full Random	91.97 \pm 0.36	71.04 \pm 0.11	58.22 \pm 0.43	81.63 \pm 0.78	65.62 \pm 0.36	79.00 \pm 0.28	88.86 \pm 0.25	76.62 \pm 1.10
Proxyless-w0.3	72 960	D-Det RGN	91.92 \pm 0.26	70.67 \pm 0.16	58.72 \pm 0.23	82.51 \pm 0.55	66.83 \pm 0.03	79.20 \pm 0.6	88.08 \pm 0.18	76.85 \pm 0.92
		TRaDy	92.27 \pm 0.36	71.39 \pm 0.27	58.80 \pm 0.47	82.39 \pm 0.18	67.17 \pm 0.10	79.10 \pm 0.14	88.31 \pm 0.23	77.06\pm0.73
		SU	92.42 \pm 0.16	71.32 \pm 0.12	58.52 \pm 0.25	83.24 \pm 0.25	67.18 \pm 0.09	79.03 \pm 0.24	87.92 \pm 0.17	77.09 \pm 0.51
		Velocity	92.82 \pm 0.23	72.51 \pm 0.22	59.71 \pm 0.46	82.61 \pm 0.46	68.18 \pm 0.06	79.01 \pm 0.22	88.40 \pm 0.15	77.61\pm0.77
		D-Full Random	92.21 \pm 0.01	71.54 \pm 0.21	58.86 \pm 0.42	82.41 \pm 0.16	66.69 \pm 0.02	78.80 \pm 0.39	89.04 \pm 0.39	77.08 \pm 0.74
	101 376	D-Det RGN	92.37 \pm 0.09	71.06 \pm 0.02	59.27 \pm 0.61	82.73 \pm 0.51	67.97 \pm 0.19	79.06 \pm 0.63	88.1 \pm 0.03	77.22 \pm 1.04
		TRaDy	92.50 \pm 0.24	72.18 \pm 0.33	59.34 \pm 0.25	82.80 \pm 0.45	68.05 \pm 0.21	79.29 \pm 0.28	88.06 \pm 0.24	77.46 \pm 0.78
1131	1 162 032	Baseline	93.71 \pm 0.12	74.81 \pm 0.13	61.75 \pm 0.12	84.44 \pm 0.50	72.98 \pm 0.09	78.53 \pm 0.10	88.95 \pm 0.04	79.31 \pm 0.56
	1132									
	1133									

computational costs for weight derivative calculations (measured in FLOPs), relative FLOP savings compared to full fine-tuning, and additional memory-related control metrics. These extensive logs provide deeper insights into the behavior and efficiency characteristics of each evaluated approach. The anonymous repository also contains the complete source code required to reproduce our experimental results, accompanied by detailed execution instructions in the README file and a Jupyter notebook for generating all figures presented in this paper.

In Tab. 1, memory budgets B_{\max} are expressed as memory units, where each unit represents an individual memory slot. Actual memory consumption is calculated by multiplying these units by the number of bits per slot. The results reveal consistently low variance across repeated experiments for each combination of memory budget, architecture, dataset, and selection strategy. While accuracy differences between methods appear modest in individual comparisons, the extensive experimental validation across multiple dimensions provides strong statistical evidence for TraDy’s superior performance. Additionally, TraDy offers practical advantages through its straightforward implementation compared to alternative approaches.

D.7 RESULTS ON TRANSFORMERS ARCHITECTURES

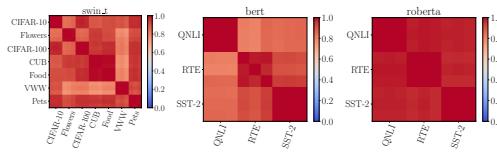


Figure 12: Spearman correlation of layer gradient norm across seeds and datasets.

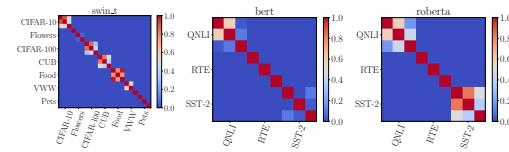


Figure 13: T-test of channel gradient norm across seeds and datasets.

Although TraDy was conceived with the goal of enabling on-device learning, it can easily be adapted to fine-tune larger architectures with limited memory or energy resources. In this section, we chose to consider a SwinT model Liu et al. (2021) pre-trained on ImageNet and fine-tuned on the seven downstream tasks introduced in the main paper. Regarding natural language processing (NLP), we consider both BERT Kenton & Toutanova (2019) and RoBERTa Liu (2019), standing as traditional NLP architectures and which we fine-tune on three tasks: QNLI Demszky et al. (2018), RTE Poliak (2020) and SST2 Socher et al. (2013).

In Fig. 12 and Fig. 13, we reproduce for these three architectures, the layer gradient norm Spearman correlation and t-test of channel gradient norm as introduced in Sec. D.3. Regarding the Spearman correlation, Fig. 12 provides confirmation that the transformer architectures considered also follow the layer invariance with respect to downstream tasks as introduced in Proposition 3.1. Similarly, Fig. 13, showcases the rejection of the hypothesis of channel topology preservation between datasets. Interestingly, in the case of the simpler convolutional architectures, we observed in Fig. 7 that the different seeds of the same dataset resulted in a similar channel topology. In the case of the transformer architectures, we observe that in most cases, different seeds for the same dataset does not necessarily result in similar channel topology. We suppose that this is due to the higher expressivity of these complex architectures, allowing for different subnetworks to perform the same task.

Tab. 2 and Tab. 3 present test accuracies for SwinT and BERT-family models respectively, evaluated using our three dynamic selection approaches (static approaches result are provided separately in Sec. D.8 for improved readability). Given that these transformer architectures are substantially larger than the CNNs in our main experiments (approximately 26-30 \times larger for SwinT and 77-90 \times larger for BERT/RoBERTa in terms of combined weight and activation memory), we explore two distinct memory constraint scenarios:

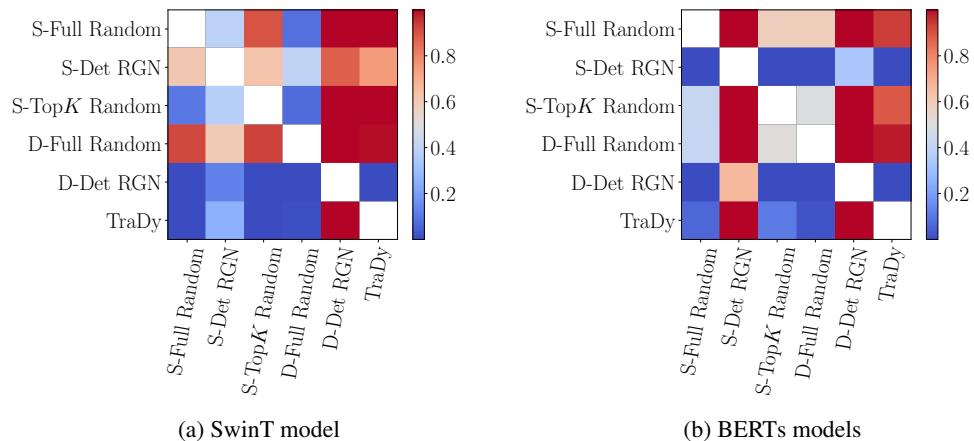
1. *Absolute Budget Matching*: We apply identical memory budgets to those used for CNN experiments. For transformer architectures, these budgets represent dramatically smaller proportions of the total network, simulating extreme resource constraints where users seek to exploit large model capabilities with severely limited computational resources.
2. *Proportional Budget Matching*: We scale memory budgets to maintain equivalent proportions of total model memory as in the CNN experiments, enabling more substantial network portions to participate in updates during each epoch.

1188
 1189 This dual-budget approach allows us to evaluate our method’s effectiveness across different constraint
 1190 severity levels while providing insights into transformer fine-tuning behavior under varying resource
 1191 limitations.

1192 When comparing SwinT against CNN architectures, all three channel selection methods achieve
 1193 superior accuracy even under the most restrictive memory constraints (less than 0.1% of total network
 1194 memory). Furthermore, both vision and NLP transformers exhibit smaller accuracy degradation
 1195 between the most constrained budgets and full fine-tuning baselines compared to CNNs, despite
 1196 these budgets constituting much smaller network fractions. This resilience underscores transformers’
 1197 capacity to learn rich, transferable representations during pre-training that remain effective with
 1198 minimal parameter updates during downstream adaptation.

1199 Fig. 14 replicates the statistical analysis from Fig. 4 for transformer architectures. For SwinT
 1200 (Fig. 14a), we observe an overall consistent strategy ranking with D-Det RGN achieving the best
 1201 performance, followed by TraDy. However, for BERT-family models, both approaches appear to
 1202 be outperformed by S-Det RGN, though this result carries greater uncertainty due to the smaller
 1203 experimental sample size. Additionally, the substantial scale of these architectures suggests that
 1204 our top K layer selection methodology, while effective for CNNs, may require more sophisticated
 1205 calibration for transformer models of this magnitude.

1206 **Limitations and Future Directions for Transformer Architectures.** While our experimental results
 1207 on transformer architectures demonstrate the applicability of TraDy’s core principles, the performance
 1208 gap compared to CNN architectures suggests that deeper understanding of fine-tuning dynamics
 1209 in transformers is necessary to achieve optimal results. Recent work on sparse matrix fine-tuning
 1210 for LLMs He et al. (2025) provides valuable insights that could inform more effective adaptations
 1211 of our approach. Specifically, their analysis reveals that attention layer V vectors require the most
 1212 trainable parameters while MLPs need minimal updates—insights that could guide more informed
 1213 layer selection strategies for transformer architectures. However, a key challenge remains: such
 1214 analyses typically require a warm-up phase with full fine-tuning on downstream task data to compute
 1215 Fisher information, whereas our method assumes no downstream task data is available a priori and
 1216 enforces strict memory constraints at all times. Merging insights from layer-importance analysis in
 1217 transformers with our dynamic channel selection framework represents a promising direction for
 1218 future work, potentially enabling more effective memory-constrained fine-tuning of large language
 1219 models.



1233 Figure 14: T-test comparisons of average final test accuracies across multiple experimental dimensions
 1234 for each group of transformer architectures.

1238 D.8 STATIC STRATEGIES RESULTS

1241 This section presents experimental results for the static selection strategies evaluated in our study.
 Tab. 4 displays results for all vision architectures, while Tab. 5 presents findings for NLP models.

1242 Table 2: Comparison of final top1 test accuracies between dynamic channel selection strategies with
 1243 a pretrained SwinT model fine-tuned on various datasets and budgets.

Model	B_{mem}	Method	CIFAR-10	CIFAR-100	CUB	Flowers	Food	Pets	VWW	Average
27 946		D-Full Random	96.34 \pm 0.09	82.77 \pm 0.10	71.83 \pm 4.14	88.64 \pm 0.36	80.66 \pm 0.09	90.76 \pm 0.33	93.79 \pm 0.07	86.40 \pm 4.17
		D-Det RGN	96.60 \pm 0.04	83.18 \pm 0.04	74.56 \pm 0.31	88.52 \pm 0.28	81.25 \pm 0.10	90.91 \pm 0.29	93.25 \pm 0.17	86.90\pm0.55
		TRaDy	96.30 \pm 0.06	82.85 \pm 0.16	74.40 \pm 0.13	88.61 \pm 0.51	80.75 \pm 0.05	91.15 \pm 0.20	93.73 \pm 0.09	86.83 \pm 0.60
112 640		D-Full Random	96.59 \pm 0.20	83.44 \pm 0.09	72.76 \pm 0.32	82.26 \pm 6.56	80.88 \pm 0.45	90.61 \pm 0.8	93.92 \pm 0.10	85.78 \pm 6.64
		D-Det RGN	96.82 \pm 0.07	83.77 \pm 0.05	74.67 \pm 0.40	89.51 \pm 0.04	82.43 \pm 0.09	90.78 \pm 0.11	92.96 \pm 0.14	87.28\pm0.46
		TRaDy	96.74 \pm 0.07	83.55 \pm 0.13	74.30 \pm 0.14	88.60 \pm 0.44	81.56 \pm 0.10	91.11 \pm 0.24	93.83 \pm 0.02	87.10 \pm 0.55
SwinT		D-Full Random	97.06 \pm 0.12	84.65 \pm 0.24	75.11 \pm 0.39	89.10 \pm 0.17	83.59 \pm 0.12	90.95 \pm 0.22	93.25 \pm 0.04	87.67 \pm 0.56
		D-Det RGN	97.37 \pm 0.08	85.11 \pm 0.09	75.20 \pm 0.08	90.45 \pm 0.51	83.94 \pm 0.05	91.39 \pm 0.07	93.32 \pm 0.24	88.11\pm0.59
		TRaDy	97.25 \pm 0.03	84.65 \pm 0.24	75.11 \pm 0.39	89.10 \pm 0.17	83.59 \pm 0.12	90.95 \pm 0.22	93.25 \pm 0.04	87.70 \pm 0.55
2 767 686		D-Full Random	97.40 \pm 0.07	85.77 \pm 0.09	75.89 \pm 0.29	90.00 \pm 0.49	84.76 \pm 0.13	91.55 \pm 0.38	93.74 \pm 0.17	88.44 \pm 0.73
		D-Det RGN	97.64 \pm 0.06	85.88 \pm 0.12	76.26 \pm 0.42	91.46 \pm 0.52	84.95 \pm 0.05	91.20 \pm 0.20	93.88 \pm 0.17	88.75\pm0.73
		TRaDy	97.62 \pm 0.09	85.77 \pm 0.09	75.89 \pm 0.29	90.00 \pm 0.49	84.76 \pm 0.13	91.55 \pm 0.38	93.74 \pm 0.17	88.48 \pm 0.73
31 889 952	Baseline		97.78 \pm 0.16	86.30 \pm 0.05	74.89 \pm 0.20	90.57 \pm 0.43	86.07 \pm 0.23	90.18 \pm 0.60	93.72 \pm 0.10	88.50 \pm 0.31

E LLM USAGE

The redaction of this paper received support from LLM to help improve grammar and readability. No scientific or technical content was generated through LLM. All numerical results, tables and figures are our own production.

1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296
 1297
 1298
 1299
 1300
 1301 Table 3: Comparison of final top1 test accuracies between dynamic channel selection strategies with
 1302 pretrained BERT and RoBERTa models, fine-tuned on various datasets and budgets.
 1303

Model	B_{mem}	Method	QNLI	RTE	SST2	Average
BERT	27 946	D-Full Random	84.50 \pm 0.23	56.32 \pm 0.36	89.41 \pm 0.46	76.74 \pm 0.63
		D-Det RGN	87.78 \pm 0.45	57.28 \pm 1.78	91.17 \pm 0.40	78.74\pm1.88
		TRaDy	84.38 \pm 0.21	57.76 \pm 0.96	89.53 \pm 0.13	77.22 \pm 0.57
	112 640	D-Full Random	84.50 \pm 0.04	58.24 \pm 2.32	89.41 \pm 0.53	77.38 \pm 2.38
		D-Det RGN	89.00 \pm 0.22	60.05 \pm 2.66	91.25 \pm 0.57	80.10\pm2.73
		TRaDy	84.56 \pm 0.28	57.88 \pm 0.91	89.60 \pm 0.26	77.35 \pm 0.57
	1 912 629	D-Full Random	85.85 \pm 0.47	54.99 \pm 0.91	89.76 \pm 0.48	76.87 \pm 1.13
		D-Det RGN	89.83 \pm 0.09	60.53 \pm 0.55	91.48 \pm 0.24	80.61\pm0.61
		TRaDy	85.84 \pm 0.30	56.68 \pm 0.72	90.10 \pm 0.35	77.54 \pm 0.49
RoBERTa	8 351 308	D-Full Random	88.68 \pm 0.14	58.24 \pm 1.46	89.60 \pm 0.46	78.84 \pm 1.54
		D-Det RGN	90.47 \pm 0.16	60.17 \pm 3.07	91.67 \pm 0.52	80.77\pm3.12
		TRaDy	88.97 \pm 0.20	57.16 \pm 1.50	90.86 \pm 0.18	79.00 \pm 0.88
	96 225 792	Baseline	90.81 \pm 0.27	62.45 \pm 1.81	91.74 \pm 0.50	81.67 \pm 1.90
		D-Full Random	89.69 \pm 0.04	57.40 \pm 0.72	93.23 \pm 0.34	80.11 \pm 0.80
		D-Det RGN	90.97 \pm 0.22	76.29 \pm 0.55	92.51 \pm 0.40	86.59\pm0.71
	112 640	TRaDy	89.71 \pm 0.13	57.16 \pm 0.75	93.31 \pm 0.07	80.06 \pm 0.76
		D-Full Random	89.99 \pm 0.26	58.12 \pm 1.25	93.12 \pm 0.20	80.41 \pm 1.29
		D-Det RGN	90.78 \pm 0.23	77.02 \pm 0.21	93.00 \pm 0.11	86.93\pm0.33
	1 912 629	TRaDy	90.05 \pm 0.12	59.57 \pm 2.87	93.31 \pm 0.13	80.98 \pm 1.66
		D-Full Random	91.23 \pm 0.18	65.10 \pm 0.83	93.85 \pm 0.65	83.39 \pm 1.07
		D-Det RGN	91.23 \pm 0.26	75.09 \pm 2.25	93.04 \pm 0.26	86.45\pm2.28
	8 351 308	TRaDy	91.23 \pm 0.26	68.83 \pm 1.78	93.43 \pm 1.16	84.50 \pm 1.24
		D-Full Random	91.54 \pm 0.11	73.77 \pm 2.92	93.27 \pm 0.13	86.19\pm2.92
		D-Det RGN	91.90 \pm 0.13	70.28 \pm 15.25	93.58 \pm 0.11	85.25 \pm 15.25
	96 225 792	TRaDy	91.36 \pm 0.23	73.53 \pm 1.78	93.31 \pm 0.35	86.07 \pm 1.83
		Baseline	92.31 \pm 0.14	76.41 \pm 0.55	93.16 \pm 0.92	87.29 \pm 1.08

1350
1351
1352
1353
1354
1355
1356
1357

1358 Table 4: Comparison of final top1 test accuracies between static channel selection strategies over
1359 various pretrained vision models, datasets, and budgets.

Model	B_{mem}	Method	CIFAR-10	CIFAR-100	CUB	Flowers	Food	Pets	VWW	Average
MbV2-w0.35	27 946	S-Full Random	87.79 \pm 0.21	66.52 \pm 0.07	55.6 \pm 0.55	79.15 \pm 0.43	58.21 \pm 0.21	76.46 \pm 0.04	88.17 \pm 0.03	73.13 \pm 0.76
		S-Det RGN	88.78 \pm 0.07	67.25 \pm 0.12	57.11 \pm 0.49	79.59 \pm 0.41	60.05 \pm 0.11	76.70 \pm 0.26	88.44 \pm 0.15	73.99\pm0.73
		S-TopK Random	88.52 \pm 0.02	66.93 \pm 0.14	56.52 \pm 0.55	79.68 \pm 0.62	59.52 \pm 0.39	76.71 \pm 0.55	88.12 \pm 0.58	73.71 \pm 1.22
		S-Full Random	88.62 \pm 0.12	66.81 \pm 0.12	56.75 \pm 0.09	79.28 \pm 0.63	59.75 \pm 0.78	76.50 \pm 0.51	87.87 \pm 0.09	73.65 \pm 1.14
	66 592	S-Det RGN	89.88 \pm 0.06	68.14 \pm 0.20	57.84 \pm 0.17	80.31 \pm 0.25	62.70 \pm 0.13	76.61 \pm 0.54	88.11 \pm 0.23	74.80\pm0.70
		S-TopK Random	89.76 \pm 0.27	68.10 \pm 0.18	57.49 \pm 0.36	80.39 \pm 0.46	62.08 \pm 0.29	76.64 \pm 0.24	87.75 \pm 0.13	74.60 \pm 0.78
		S-Full Random	89.01 \pm 0.22	67.21 \pm 0.15	56.87 \pm 0.51	79.78 \pm 0.79	60.40 \pm 0.56	76.58 \pm 0.35	88.22 \pm 0.48	74.01 \pm 1.27
MCUNet-in1	93 696	S-Det RGN	90.45 \pm 0.10	68.84 \pm 0.04	57.80 \pm 0.09	80.59 \pm 0.11	64.11 \pm 0.19	76.75 \pm 0.26	87.54 \pm 0.06	75.15\pm0.37
		S-TopK Random	90.25 \pm 0.05	68.41 \pm 0.36	57.94 \pm 0.18	80.42 \pm 0.33	63.14 \pm 0.18	76.67 \pm 0.22	87.61 \pm 0.15	74.92 \pm 0.61
		S-Full Random	88.78 \pm 0.17	67.78 \pm 0.35	60.14 \pm 0.18	82.20 \pm 0.45	62.68 \pm 0.38	81.09 \pm 0.19	89.50 \pm 0.23	76.02 \pm 0.79
		S-Det RGN	89.12 \pm 0.14	67.97 \pm 0.10	60.06 \pm 0.22	82.14 \pm 0.37	63.77 \pm 0.15	80.79 \pm 0.34	89.55 \pm 0.01	76.20 \pm 0.59
		S-TopK Random	89.08 \pm 0.11	67.86 \pm 0.30	60.26 \pm 0.17	82.34 \pm 0.82	63.60 \pm 0.20	81.09 \pm 0.30	89.56 \pm 0.11	76.26\pm0.97
	64 832	S-Full Random	90.02 \pm 0.52	69.70 \pm 0.02	60.98 \pm 0.17	82.67 \pm 0.20	64.87 \pm 1.29	80.95 \pm 0.53	89.44 \pm 0.06	76.95 \pm 1.51
		S-Det RGN	89.97 \pm 0.18	67.78 \pm 0.19	61.80 \pm 0.24	80.86 \pm 0.96	65.16 \pm 0.24	81.76 \pm 0.56	89.27 \pm 0.12	76.66 \pm 1.20
		S-TopK Random	90.82 \pm 0.27	70.34 \pm 0.15	60.90 \pm 0.14	82.92 \pm 0.54	67.29 \pm 0.28	81.34 \pm 0.29	89.11 \pm 0.06	77.53\pm0.76
		S-Full Random	90.82 \pm 0.13	70.75 \pm 0.41	61.22 \pm 0.11	82.77 \pm 0.35	66.92 \pm 0.77	80.80 \pm 0.15	89.01 \pm 0.12	77.47 \pm 0.97
		S-Det RGN	91.28 \pm 0.13	71.53 \pm 0.20	61.02 \pm 0.16	82.69 \pm 0.58	69.17 \pm 0.23	80.64 \pm 0.16	88.89 \pm 0.17	77.89 \pm 0.73
Proxyless-w0.3	112 640	S-TopK Random	91.58 \pm 0.13	71.55 \pm 0.34	60.95 \pm 0.73	82.80 \pm 0.26	69.28 \pm 0.17	80.42 \pm 0.29	88.73 \pm 0.33	77.90\pm0.98
		S-Full Random	89.15 \pm 0.33	67.90 \pm 0.21	55.22 \pm 0.23	81.64 \pm 0.54	58.72 \pm 0.26	78.32 \pm 0.14	88.39 \pm 0.08	74.19 \pm 0.77
		S-Det RGN	90.19 \pm 0.27	68.50 \pm 0.20	57.13 \pm 0.25	81.89 \pm 0.37	61.69 \pm 0.19	78.90 \pm 0.14	88.51 \pm 0.10	75.26\pm0.61
		S-TopK Random	89.98 \pm 0.18	68.33 \pm 0.22	56.17 \pm 0.11	81.89 \pm 0.50	60.60 \pm 0.12	78.17 \pm 0.25	88.39 \pm 0.19	74.79 \pm 0.68
		S-Full Random	90.34 \pm 0.08	68.78 \pm 0.14	56.35 \pm 0.38	81.95 \pm 0.36	61.32 \pm 0.87	78.79 \pm 0.48	88.40 \pm 0.22	75.13 \pm 1.16
	25 984	S-Det RGN	91.30 \pm 0.12	70.38 \pm 0.15	58.26 \pm 0.46	82.62 \pm 0.46	65.09 \pm 0.01	78.67 \pm 0.29	87.94 \pm 0.54	76.32\pm0.91
		S-TopK Random	91.09 \pm 0.14	70.10 \pm 0.32	57.32 \pm 0.45	82.15 \pm 0.10	63.75 \pm 0.16	78.4 \pm 0.32	87.86 \pm 0.40	75.81 \pm 0.79
		S-Full Random	90.64 \pm 0.15	69.37 \pm 0.14	57.18 \pm 0.63	82.15 \pm 0.33	62.60 \pm 0.63	78.51 \pm 0.20	88.06 \pm 0.32	75.50 \pm 1.04
		S-Det RGN	91.76 \pm 0.15	71.28 \pm 0.35	58.6 \pm 0.18	82.82 \pm 0.42	66.45 \pm 0.25	78.70 \pm 0.49	87.84 \pm 0.27	76.78\pm0.85
		S-TopK Random	91.61 \pm 0.33	70.73 \pm 0.46	57.88 \pm 0.35	82.51 \pm 0.25	64.92 \pm 0.17	78.46 \pm 0.06	87.58 \pm 0.27	76.24 \pm 0.78
SwinT	72 960	S-Full Random	96.31 \pm 0.15	82.94 \pm 0.07	73.80 \pm 0.11	88.34 \pm 0.19	80.55 \pm 0.21	91.08 \pm 0.15	93.63 \pm 0.08	86.66 \pm 0.39
		S-Det RGN	96.36 \pm 0.09	83.05 \pm 0.12	74.38 \pm 0.12	88.76 \pm 0.29	80.62 \pm 0.11	91.03 \pm 0.11	93.60 \pm 0.15	86.83\pm0.41
		S-TopK Random	96.28 \pm 0.07	82.97 \pm 0.09	74.03 \pm 0.07	88.58 \pm 0.11	80.58 \pm 0.25	90.87 \pm 0.21	93.70 \pm 0.04	86.72 \pm 0.37
		S-Full Random	96.54 \pm 0.10	83.25 \pm 0.36	74.00 \pm 0.23	88.74 \pm 0.09	81.09 \pm 0.07	91.21 \pm 0.11	93.64 \pm 0.11	86.92 \pm 0.48
		S-Det RGN	96.70 \pm 0.06	83.59 \pm 0.16	74.68 \pm 0.20	89.36 \pm 0.32	81.97 \pm 0.09	90.97 \pm 0.24	92.99 \pm 0.06	87.18\pm0.49
	633 859	S-TopK Random	96.60 \pm 0.11	83.29 \pm 0.20	74.19 \pm 0.34	88.83 \pm 0.16	81.19 \pm 0.16	90.99 \pm 0.03	93.50 \pm 0.17	86.94 \pm 0.50
		S-Full Random	96.99 \pm 0.12	84.24 \pm 0.20	74.55 \pm 0.44	89.33 \pm 0.05	82.99 \pm 0.12	91.26 \pm 0.07	93.1 \pm 0.09	87.49 \pm 0.53
		S-Det RGN	97.26 \pm 0.05	84.78 \pm 0.13	75.69 \pm 0.23	90.29 \pm 0.18	83.72 \pm 0.18	91.28 \pm 0.28	97.72 \pm 23.27	86.11 \pm 23.27
		S-TopK Random	97.06 \pm 0.06	84.24 \pm 0.20	74.55 \pm 0.44	89.33 \pm 0.05	82.99 \pm 0.12	91.26 \pm 0.07	93.10 \pm 0.09	87.50\pm0.52
		S-Full Random	97.50 \pm 0.06	85.53 \pm 0.08	75.75 \pm 0.14	89.84 \pm 0.08	84.46 \pm 0.12	91.30 \pm 0.23	93.73 \pm 0.17	88.30\pm0.36
1401	2 767 686	S-Det RGN	97.50 \pm 0.06	85.53 \pm 0.08	75.75 \pm 0.14	89.84 \pm 0.08	84.46 \pm 0.12	91.30 \pm 0.23	93.73 \pm 0.17	88.30 \pm 0.38
		S-TopK Random	97.51 \pm 0.11	85.53 \pm 0.08	75.75 \pm 0.14	89.84 \pm 0.08	84.46 \pm 0.12	91.30 \pm 0.23	93.73 \pm 0.17	88.30 \pm 0.38

1402
1403

Table 5: Comparison of final top1 test accuracies between static channel selection strategies with pretrained BERT and RoBERTa models, fine-tuned on various datasets and budgets.

Model	B_{mem}	Method	QNLI	RTE	SST2	Average
BERT	27 946	S-Full Random	84.48 \pm 0.22	57.28 \pm 0.83	89.68 \pm 0.11	77.15 \pm 0.87
		S-Det RGN	86.42 \pm 0.13	58.72 \pm 2.18	90.86 \pm 0.35	78.67\pm2.21
		S-TopK Random	84.53 \pm 0.34	58.24 \pm 2.32	89.37 \pm 0.13	77.38 \pm 2.35
	112 640	S-Full Random	84.51 \pm 0.08	58.72 \pm 2.40	89.72 \pm 0.48	77.65 \pm 2.45
		S-Det RGN	88.30 \pm 0.43	59.09 \pm 1.46	91.21 \pm 0.46	79.53\pm1.59
		S-TopK Random	84.69 \pm 0.19	58.00 \pm 2.21	89.53 \pm 0.26	77.41 \pm 2.23
	1 912 629	S-Full Random	86.08 \pm 0.49	57.04 \pm 1.44	89.91 \pm 0.34	77.68 \pm 1.56
		S-Det RGN	89.22 \pm 0.16	59.81 \pm 2.05	91.55 \pm 0.29	80.19\pm2.08
		S-TopK Random	86.80 \pm 0.43	58.60 \pm 2.05	90.29 \pm 0.07	78.56 \pm 2.10
RoBERTa	8 351 308	S-Full Random	88.55 \pm 0.17	56.80 \pm 0.21	90.29 \pm 0.18	78.55 \pm 0.32
		S-Det RGN	89.87 \pm 0.22	61.01 \pm 2.53	91.55 \pm 0.29	80.81\pm2.57
		S-TopK Random	88.77 \pm 0.69	57.76 \pm 0.72	91.28 \pm 0.57	79.27 \pm 1.15
	27 946	S-Full Random	89.68 \pm 0.17	56.56 \pm 0.75	93.31 \pm 0.18	79.85 \pm 0.79
		S-Det RGN	90.81 \pm 0.12	76.90 \pm 0.72	93.43 \pm 0.35	87.04\pm0.81
		S-TopK Random	89.66 \pm 0.07	56.68 \pm 0.72	93.31 \pm 0.07	79.88 \pm 0.73
	112 640	S-Full Random	89.69 \pm 0.10	59.09 \pm 3.62	93.39 \pm 0.29	80.72 \pm 3.63
		S-Det RGN	90.91 \pm 0.61	76.77 \pm 2.61	92.85 \pm 0.35	86.85\pm2.70
		S-TopK Random	89.60 \pm 0.02	56.80 \pm 0.55	93.27 \pm 0.18	79.89 \pm 0.58
	1 912 629	S-Full Random	90.95 \pm 0.26	62.33 \pm 9.49	93.58 \pm 0.34	82.29 \pm 9.50
		S-Det RGN	91.10 \pm 0.24	77.26 \pm 1.65	92.89 \pm 0.34	87.08\pm1.70
		S-TopK Random	91.14 \pm 0.22	62.33 \pm 6.14	93.23 \pm 0.46	82.23 \pm 6.16
	8 351 308	S-Full Random	91.28 \pm 0.26	72.80 \pm 0.75	92.78 \pm 0.00	85.62 \pm 0.79
		S-Det RGN	91.20 \pm 0.31	75.09 \pm 0.00	93.20 \pm 0.66	86.49\pm0.73
		S-TopK Random	91.09 \pm 0.17	71.84 \pm 3.21	93.08 \pm 0.26	85.34 \pm 3.22