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ABSTRACT

Memory-efficient training of deep neural networks has become increasingly impor-
tant as models grow larger while deployment environments impose strict resource
constraints. We propose TraDy, a novel transfer learning scheme leveraging two
key insights: layer importance for updates is architecture-dependent and deter-
minable a priori, while dynamic stochastic channel selection provides superior
gradient approximation compared to static approaches. We introduce a dynamic
channel selection approach that stochastically resamples channels between epochs
within preselected layers. Extensive experiments demonstrate TraDy achieves state-
of-the-art performance across various downstream tasks and architectures while
maintaining strict memory constraints, achieving up to 99% activation sparsity,
95% weight derivative sparsity, and 97% reduction in FLOPs for weight derivative
computation.
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Figure 1: TRady dynamically reselects the subgraph to update within the memory budget Bpem.

1 INTRODUCTION

In the span of a decade, machine and deep learning have become key technologies in the computer
science landscape. They have found a wide variety of practical applications in fields such as Natural
Language Processing|Vaswani et al.|(2017); [Tenney et al.|(2019), Computer Vision Krizhevsky et al.
(2012); [Simonyan & Zisserman! (2014)); Minaee et al.| (2021)), or Speech Recognition Deng et al.
(2013); Nassif et al.[(2019). This surge in popularity can be largely explained by the ever-increasing
performances of new architectures, intimately linked to hardware innovations |Baji|(2018)). The design
of better-performing parallel computing units (such as GPUs and TPUs) allows the training of large
neural networks that feature increasing overparameterization compared to their predecessors Sevilla
et al.| (2022)). If this trend further demonstrates deep learning principles’ innate generalization po-
tential, it raises ecological and technical concerns. Training and exploitation of these architectures
require very high energy consumption, and their deployment in real-world environments is impossible
without extensive compression, leading to performance worsening.

The research field of efficient neural network compression, consequently, has gained a surge of
interest in recent years. The main pillars of this research area are quantization, low-rank compression,
efficient design of compact models, knowledge distillation, and network sparsification (also known
as pruning) [Cheng et al.| (2018)); |[Deng et al.| (2020). These methods aim to optimize the trade-off
between memory/energy consumption and the inference accuracy of models in resource-constrained
environments. However, inference is only part of the life cycle of a deep neural network, and these
works do not provide solutions to perform memory-efficient training. As such, compressed models
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trained offline and deployed on-device suffer from a phenomenon called data drift [Sahiner et al.
(2023)) which results in performance degradation over time. Alternatively, enabling on-device learning
would improve the viability and efficiency of embedded Al through several use cases, including user
adaptivity or lifelong learning Incel & Bursa| (2023)).

One major obstacle to making on-device learning practical is the computational and memory burden
of backpropagation. For embedded devices, limited memory and computational capacity create
hard constraints that cannot be exceeded. Some methods attempt to address memory limitations by
exploring alternatives to backpropagation, like hyperdimensional computing for tasks like image
segmentation Yang et al.[(2023a), the Forward-Forward algorithm Hinton| (2022), and PEPITA [Pau
& Aymone| (2023)). Although these strategies are promising, they generally don’t match the perfor-
mance of backpropagation-based techniques. One direct approach attempting to solve memory and
computation issues was proposed by [Lin et al.| (2022}, where a static subnetwork is updated for any
downstream task. Orthogonally, Yang et al.|(2023b) and more recently Nguyen et al.| (2024)) reduce
memory consumption by compressing the elements to store for backpropagation. Each approach,
however, comes with its own limitations—either compromising accuracy or introducing additional
latency.

We propose Training Dynamics (TraDy) for memory-constrained transfer learning. Given a pre-
trained network, we make three key propositions regarding the training dynamics when performing
memory-constrained transfer learning on a downstream task. Building on top of these, we design a
dynamic channel selection algorithm for efficient transfer learning under memory constraints (Fig. [I)).
Our main contributions can be summarized as follows.

* We show that stochastic gradients exhibit heavy-tailed behavior during transfer learning,
creating natural sparsity patterns that facilitate efficient gradient pruning (Sec. [3.2).

* We show that the relative importance of network layers remains consistent across downstream
tasks and primarily depends on network architecture rather than task specifics, enabling a
priori layer selection (Sec. [3.3).

* We establish that channel importance distributions within layers are task-dependent and
cannot be predetermined without task data, while calculating importance metrics for all
channels contradicts on-device memory constraints (Prop.[3.2]and Sec. [4.).

* We introduce TraDy, a dynamic stochastic channel selection approach that resamples chan-
nels between epochs within pre-selected layers, effectively approximating the full gradient
while maintaining strict memory constraints (Sec.|3.4).

* Our experiments illustrate that TraDy achieves state-of-the-art performance in various
downstream tasks and network architectures while respecting memory limitations through
high levels of both weight and activation sparsities alongside reduced FLOPs, validating our
theoretical insights (Sec. .2).

2 RELATED WORKS

Gradient Pruning. Sub-network selection for training, whether static or dynamic, can be referred
to as gradient pruning. Unlike classical pruning, gradient pruning preserves the complete network
during inference, only modifying the backpropagation phase by selectively computing gradients
based on specific criteria. While gradient pruning in on-device learning primarily addresses memory
constraints, other applications focus on accelerating training with minimal accuracy impact|Zhang
et al.| (2024); IBragagnolo et al. (2022); L1 et al.| (2023)); [Ye et al.| (2020); [McDanel et al.| (2022)).
Particularly relevant to our fine-tuning approach is|Lee et al.|(2022), who explore gradient pruning as
a regularization technique. They demonstrate that network blocks can contribute either positively or
negatively to downstream task performance, creating task-specific optimal configurations for selective
updating. Their work shows that the ratio of gradient norm to parameter norm effectively predicts
which blocks should be updated or frozen for optimal transfer learning performance.

On-Device Learning. Our work draws inspiration from three key contributions in the on-device
learning domain, where memory and energy constraints necessitate efficient fine-tuning of pre-trained
models rather than training from scratch.

Lin et al.|(2022)) introduced Sparse Update (SU) schemes, a selective parameter updating strategy
that enables fine-tuning on extreme edge devices along with operator reordering and quantization-
aware scaling. Their approach demonstrated that memory-efficient subnetworks can yield acceptable
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performance on downstream tasks. However, finding adequate SU schemes requires heavy pre-
computation through offline accuracy contribution analysis, followed by evolutionary search for
each network and memory budget. Additionally, SU applies uniformly across all downstream tasks,
implicitly assuming that selected layers and channels are optimal for each individual task and should
remain fixed throughout training.

Building on this foundation, Kwon et al.[(2024) improved adaptability to new architectures, datasets,
and memory budgets. Their approach ranks layers by computing Fisher information on activations
from downstream task samples, then applies reweighting by parameter count and MAC operations.
Despite increased flexibility, computing Fisher information for all network channels requires more
memory than gradient computation itself, contradicting the original memory constraints. Like SU,
this approach still employs static selection that does not adapt during training.

Quélennec et al.|(2024) propose dynamic subnetwork selection between epochs using a "velocity"
metric that quantifies neuron output changes when fed with consistent data. Their results demonstrated
accuracy improvements over static selection within fixed parameter budgets. While promising and
flexible across networks and datasets, this method is limited by its exclusive focus on parameter
count without considering activation memory, which represents an equally significant constraint in
on-device scenarios |Cai et al.| (2020).

Our work builds upon these foundations by analyzing transfer learning dynamics in deep neural
networks and demonstrating how a theoretically-grounded dynamic channel selection strategy can
overcome limitations of previous approaches while maintaining strict memory constraints.

3 METHOD

In this section, we unfold our study towards parameter-efficient fine-tuning under extreme memory
constraints. After formulating our problem in Sec.[3.1} we introduce the theoretical foundations of
heavy-tailed gradient distributions and our memory-aware gradient norm metric in Sec.[3.2] This
theoretical framework guides our analysis of layer behavior in Sec.[3.3] where we demonstrate the
architecture-dependent nature of layer importance. Building on these insights, we introduce our
dynamic channel sampling strategy in Sec.[3.4] which enables efficient transfer learning within strict
memory budgets by stochastically resampling channels between epochs from pre-selected layers.

3.1 PROBLEM FORMULATION AND NOTATIONS

Our goal is to fine-tune a pre-trained neural network on a downstream task under specific memory
constraints, without prior knowledge of the target task. Although the target device can execute the
complete forward pass, the memory limitations prevent training all network parameters simultaneously.
Therefore, we aim to strategically select which portions of the architecture to train, optimizing
performance while keeping the combined weight and activation memory within the specified budget.
Our analysis focuses specifically on standard 2D convolutions within Convolutional Neural Networks
(CNNs), excluding bias terms)'| The CNN then writes as a sequence of n convolutional layers:

‘F(X):(CWnOCWn—lo"'OCWQOCW1)(X)7 ()

with X the input of the network and W; € RY *C*DPxD the weight kernels, C' and C” the number
of input and outputs channels and D the kernel dimensions.

Given the i-th layer, we note A; € RBXCXH>XW and A, .| € RBXC<H'xW" a5 jts input and output
activation tensors, where B is the batch size, H and W are the width and height of the feature map.
To compute the weight derivatives -2%-, the loss £ is calculated at the output of the network and
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backpropagated to the 7*" layer through the activation derivatives as 5 e We then get the weight
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where h = I/ x stride + k x dilation, w = w’ x stride + [ x dilation and .A? is the padded input.
Similar to unstructured pruning, removing individual parameters does not yield significant compu-
tational and memory gains, as it creates inefficient unstructured sparse tensors. A more effective

'A similar analysis can be conducted for fully-connected layers.
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approach involves freezing along specific weight dimensions, enabling efficient tensor operations and
creating structured gradient sparsity [Bragagnolo et al.|(2022)). When considering selective freezing,
we have four potential dimensions: input channels, output channels, and the two kernel dimensions.
However, these options differ significantly in their effectiveness for memory optimization. While
freezing along output channels reduces memory needed for storing activation derivative tensors, these
derivatives must still be fully computed to ensure accurate gradient propagation through subsequent
layers. After analyzing all possibilities, freezing along the input channels dimension emerges as the
only approach that simultaneously achieves both weight sparsity and activation sparsity.

From Eq. 2] we observe that updating an input channel ¢ requires storing only the corresponding
activation values in memory. Specifically, when freezing weight tensors along the input channel
dimension, the gradient components form natural groupings that can be treated as independent units.
This dual benefit eliminates both the storage requirements for the corresponding activations and the
computational burden of calculating their associated weight gradients, making input channel freezing
optimal for memory-constrained scenarios.

Based on Eq.[2] we derive analytical expressions for both memory requirements and computational
complexity associated with updating a single input channel ¢ within layer 7 for a single data input. Let
CYi = C'" x D x D represent the weight memory cost and C;“l = H x W represent the activation
memory cost for channel c. The total space complexity (Opace ). and time complexity (Oyime ). are:

(espace)c = C};/VI + Cé‘h) (€)]

(Otime),, = D*C'H'W'. )
These expressions demonstrate that input channel-level selection provides fine-grained control over
both memory and computational consumption while maintaining the structural coherence necessary
for effectively exploiting the heavy-tailed sparsity patterns described in the following section, thus
achieving the critical combination of weight and activation sparsity essential for memory-efficient
fine-tuning.

3.2 HEAVY-TAILED THEORY AND GRADIENT NORM METRIC

The stochastic nature of gradient descent has significant theoretical implications for our approach. Sim+
sekli et al.| (2019)) established that stochastic gradient noise follows a heavy-tailed distribution during
training with SGD. Such distributions are characterized by a tail-index parameter o € (0, 2] and
exhibit power-law decay proportional to 1/|z|**1. When « = 2, this distribution reduces to a Gaus-
sian; for all other values of «, the resulting random variable has infinite variance. This heavy-tailed
noise can be mathematically formulated as:

Up(W) = AW, — AW, )

where AW denotes the true gradient computed using the entire dataset, AW, represents the stochastic
gradient estimated from k randomly sampled data points, and U follows a symmetric a-stable
distribution Uy, ~ SaS(0). In this notation, o serves as a scale parameter controlling the distribution’s
spread around zero.

Building on this foundation, [Wan et al.[(2023) demonstrated that injecting heavy-tailed noise during
weight updates inherently enhances network compressibility for pruning operations. Their key insight
reveals that heavy-tailed noise causes the weight matrix columns to follow multivariate heavy-tailed
distributions independently of each other. Consequently, the norm distribution becomes highly
skewed as a small subset of columns exhibits disproportionately large norms while most remain
relatively small. This concentration means that the overall weight matrix norm is mostly determined
by just a few dominant columns, creating an implicit structure that aligns perfectly with sparse update
requirements.

In our approach, we extend this theoretical framework to the domain of gradient pruning rather
than weight pruning. From (5), we can observe that gradients naturally decomposes as the sum of
the stochastic gradients and a heavy-tailed noise term Uy. Applying the insights from Wan et al.,
we expect that gradient norms will concentrate disproportionately in a small subset of channels.
This creates a natural opportunity for selective gradient computation and parameter updating. To
systematically exploit this property, we define the input channel gradient norm as:
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While the raw gradient norm provides valuable information about update importance, it fails to
account for the memory constraints that are central to our scenario. To address this limitation,
we introduce a memory-aware metric called the Reweighted Gradient Norm (RGN). This metric
incorporates both computational significance and memory efficiency by dividing the raw gradient
norm by the total memory cost associated with updating that channel. Using the notation established

in Sec.[3.1] we define RGN as:
)
RGN, = €72 7

CVy et
This reweighting counteracts the bias toward channels with higher parameter counts as they naturally
show larger gradient norms. By directly incorporating memory costs, RGN creates different layers
and channels’ order compared to the raw gradient norm. It is thus well-suited for memory-constrained
settings as it optimizes update efficiency through prioritization of less memory-intensive channels
when raw gradient norms are similar. This allows more parameters to be updated within the same
memory budget, potentially improving performance per memory unit.

We use this RGN metric throughout our analysis to examine layer and channel importance across
different architectures, datasets, and seeds, informing our final solution design.

3.3 LAYERS BEHAVIOR DURING FINE-TUNING

Just as heavy-tailed gradient properties create natural sparsity patterns among channels, we hypothe-
size that similar dynamics may govern layer-level importance. This section explores how gradient
norm distribution across layers influences their relative contribution to the fine-tuning process and
how this knowledge can guide our parameter selection strategy. We decide to characterize the layer

reweighted gradient norm as follows:
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Proposition 3.1. The relative ranking of layers to their reweighted gradient norm remains largely
invariant over time during training and across different downstream tasks. This ranking is primarily
determined by the network architecture rather than dataset-specific characteristics.

C
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Based on neural network architecture, certain layers consistently exhibit higher gradient norms than
others. This architectural dependency is particularly evident in networks with residual connections.
Skip connections mitigate gradient vanishing by effectively reducing the virtual depth of the network
for certain computational paths. As a result, we typically observe a characteristic pattern in the
distribution of gradient norms: the first layer of each residual block generally displays a significantly
higher gradient norm than subsequent layers within the same block.

We provide a detailed analysis of this phenomenon in the appendix, Sec.[C|and empirically validate
such behavior in Sec. 4.1

Based on these observations, we can strategically restrict parameter updates to the subset of layers
that naturally receive higher gradients. Recent literature supports this approach, with multiple studies
demonstrating that selectively updating certain layers provides significant contributions to model
optimization on downstream tasks|Kaplun et al.|(2023));/Zhang & Bottou|(2024); Lee et al.|(2022). The
practical implication is substantial: depending on the similarity between pre-training and downstream
tasks, updating only a carefully selected subset of layers can maintain performance comparable to
full fine-tuning while significantly reducing memory requirements.

3.4 DyNAMIC CHANNEL SAMPLING

After analyzing layer-level behavior, we now focus on individual input channels within selected
layers.

Proposition 3.2. The distribution of channel gradient norms varies between datasets.
From the weight derivative in (2)), two key components emerge: activation maps reflecting network

feature extraction and activation derivatives shaping the task-specific loss landscape. Both are
fundamentally task-dependent, justifying that channel gradient norms vary between downstream
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Algorithm 1 TraDy

Input: Pre-trained backbone weights VW, number of epochs n, train data Dy, test data Dieg,
memory budget Byem, set of relevant layers { Ly }.
Function:
for epochs = 1 to n do
Randomly sample channels {C*} within the set of relevant layers {Lx } along uniform
probability distribution until the memory budget Byep, is met.
Update weights of the selected channels using Dip.
end for
Evaluate the fine-tuned backbone using Die.

tasks. We provide empirical validation in Sec. @.T}

While Sec. [3.3|establishes that layers can be predetermined architecturally, static channel selection
proves inadequate since RGN distributions are task-dependent. In real-world scenarios where
downstream data is unavailable offline and memory constraints prevent full gradient computation,
directly estimating channel RGN distributions introduces overhead contradicting our efficiency goals.
Instead, we propose TraDy, a dynamic sampling strategy operating within memory constraints. Our
approach randomly selects input channels to update from the predetermined layers, resampling
between epochs while maintaining strict memory budget compliance throughout training. This
strategy ensures that the combined activation and weight memory consumption remains strictly below
the specified memory budget throughout the training process, effectively balancing exploration of the
channel space with the practical constraints of edge devices.

Leveraging layer selection from Sec. [3.3] most gradient information concentrates in selected layers,
as predicted by heavy-tailed theory (Sec.[3.2). Random channel selection changing dynamically
ensures the expectation of selected gradients approximates the full gradient within efficient layers
over time. Let AW; denote the non-null gradient at epoch ¢ and AWy ¢+, the sparse gradient from
randomly selected set of channels {C*} at epoch ¢ within pre-selected et of layers { Lk }. Following
the principle that stochastic gradient expectation equals full gradient expectation, and due to our layer
selection excluding low-magnitude gradients while the stochastic channel selection follows a uniform

distribution, we have:
> AW > AW{Ct}] : ©)
t t

The computational complexity of randomly and successively selecting k elements from n channels is
O(klog(n)), negligible compared to gradient computation itself.

We present here TraDy, our dynamic subnetwork update pipeline for transfer learning, under memory
constraints, depicted in Alg.[I] Given a pre-trained backbone and a training dataset, channels are
randomly sampled within the fixed set of layers of interest { Lk } and updated conditioned on the
memory budget (line[d). At the end of the training, we evaluate our model’s performance on the test
dataset (line[7). In the next section, we will present our empirical results.

E ~ K

4 EXPERIMENTS

This section describes the experiment conducted to validate the hypothesis proposed in Sec. [3] as
well as compare its performance to other sparse update strategies. A complete description of the
experimental setup is proposed in Sec. [D.T] of the appendix.

4.1 GRADIENT STUDY

Heavy-Tailed Stochastic Gradient. We empirically validate the heavy-tailed characteristic of
stochastic gradients during fine-tuning, as introduced in Sec. [3.2] Following methodology similar to
Simsekli et al., we use the Mohammadi et al.| (2015)) estimator for a-stable distributions. For each fine-
tuning epoch ¢, we collect stochastic gradients of all P trainable parameters across S training steps,
constructing a P x S matrix. This matrix is processed by the estimator to produce «, representing
the heavy-tailed index of the stochastic gradient distribution during epoch ¢. Fig. ]illustrates the
evolution of « for our three network architectures when fine-tuned on three diverse downstream
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Figure 2: Evolution of stochastic gradient heavy-tailed index «;.
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Figure 3: Validation of channel and layer proposition across seeds and datasets for MobileNetV2.

tasks. Consistently across all scenarios, we observe that o remains below two, confirming the heavy-
tailed nature of stochastic gradients. Interestingly, MCUNet exhibits significantly more heavy-tailed
gradient behavior compared to other architectures. We hypothesize this stems from its compressed
architecture design, which renders it more parameter-efficient. This increased efficiency likely
concentrates gradient information more densely in fewer parameters, intensifying the heavy-tailed
characteristic of its gradient distribution.

Layer Gradient Norm Distribution. Next, we examine Proposition [3.I} which posits that the same
network produces consistent layer gradient norm topologies across different downstream tasks. We
define "layer topology" as a vector containing the cumulative gradient norm of each layer across
all training epochs. To quantify similarity between topologies, we compute Spearman correlation
coefficients between all possible pairs of fine-tuning runs across our seven downstream datasets, using
three random seeds per dataset. This yields a comprehensive 21 x 21 correlation matrix for each
network architecture, as visualized in Fig.[3a with MobileNetV2. The results provide strong empirical
support for our proposition—even in the worst-case comparison between the most dissimilar dataset
pairs, the correlation coefficient never falls below 0.8. This remarkably high correlation confirms that
layer-level gradient importance rankings remain largely invariant across diverse downstream tasks,
validating our approach of pre-selecting layers based solely on architectural considerations.

Channel Gradient Norm Distribution. We now validate Proposition[3.2] which addresses gradient
behavior at the channel level. Using methodology parallel to our layer analysis, we construct vectors
where each element represents the cumulative gradient norm of a specific channel across all training
epochs. This yields a high-dimensional representation of channel importance for each fine-tuning
experiment. To assess whether these channel importance distributions differ significantly between
tasks, we employ Student’s T-test for pairwise comparisons, with results visualized in Fig.[3b} The
analysis reveals a striking pattern: p-values for all inter-dataset comparisons are effectively zero,
strongly rejecting the null hypothesis that channel gradient distributions from different datasets
share the same mean values. This confirms our proposition that channel-level gradient importance
patterns are fundamentally task-dependent and cannot be predetermined offline without access to the
target dataset. Notably, the diagonal blocks in our visualization—representing comparisons between
different random seeds for the same dataset—mostly feature non-zero p-values. This secondary
finding indicates that while channel importance varies dramatically between tasks, it retains some



Under review as a conference paper at ICLR 2026

consistency across different initializations for the same task.
Results for other CNN architectures and transformers architectures show similar patterns (see Sec.[D.2]
and Sec. [D.7] of the appendix).

4.2 MAIN RESULTS

Preamble. To rigorously validate the claims presented in Sec. |3
we systematically compare three distinct memory-constrained
channel selection strategies. For each method, we explore both S Full Random
Static and Dynamic variations. In the Static approach, channel S-Det RGN
selection occurs once at initialization, with the same channels 5 7op/ ftandom
updated throughout training. The Dynamic approach reapplies r\zﬁi; ] 04
the selection rule after each epoch, resulting in different channels D-Det RGN 0.2
being updated over time.

@ Full Random. This baseline strategy randomly selects chan-
nels from throughout the entire network architecture, without
layer-based prioritization. It serves as a control to evaluate the
benefit of our layer selection approach.

@ Det RGN: For each training epoch, we first compute the
full gradient without updating network weights, then determin-  Figure 4: T-test comparisons
istically select channels with the highest RGN values. While of average final test accuracies
computationally impractical for real-world deployment (as it  across multiple experimental di-
requires calculating the complete gradient), we expect this mensions.

oracle-like method to serve as an upper-bound reference for

performance.

@ TopK Random: Randomly samples channels from within the predetermined subset of top K
layers. The practical choice of K is defined in the appendix. In its dynamic version, this corresponds
to our proposed algorithm TraDy.

We benchmark our method against Lin ez al.’s Sparse Update (SU) scheme, which represents the
current state-of-the-art in static channel selection for memory-constrained fine-tuning, as well as
Quélennec et al.’s Velocity method, which dynamically selects neurons based on their output changes
between epochs.

Discussion. In Fig.[d we represent the results of paired t-tests comparing the average final test top-1
accuracies across all experimental conditions. Each cell represents a statistical comparison testing
the hypothesis that the selection strategy on the y-axis achieves higher mean test accuracy than the
strategy on the x-axis. We provide the complete table of results (Tab. [I] and Tab. ) along with similar
results for transformer architectures (Sec[D.7) and comparisons with full fine-tuning in the appendix.
Regarding our introduced strategies, we observe that each dynamic variant (prefixed with D)
outperforms its static counterpart (prefixed with S). Notably, while S-Full Random yields the worst
results, our proposed algorithm—which restricts selection to top K layers and incorporates dynamic
selection—achieves the best performance, even surpassing D-RGN Deterministic, which was
expected to serve as an upper bound. Velocity achieves the second-best accuracy performance among
all evaluated methods, demonstrating the effectiveness of dynamic selection approaches.

We hypothesize that under extremely constrained memory budgets, D-RGN Deterministic’s approach
of always selecting channels with maximal RGN effectively leaves many channels with smaller but
significant RGN values permanently frozen. This likely causes the training process to follow the
direction of maximal gradient slope, potentially leading to local minima. In contrast, TraDy follows,
on average, the same direction as the non-null gradient while introducing beneficial stochasticity, as
layers with negligible gradients are excluded, but dynamic resampling occurs among significant ones.
This hypothesis is further supported by S-TopK Random’s poor performance (second worst strategy),
highlighting that dynamic reselection is crucial for achieving good results.

Efficiency Metrics Analysis. Fig. [5]illustrates the temporal evolution of key efficiency metrics
during MobileNetV2 fine-tuning on the Food dataset under the most restrictive memory constraint.
These results showcase patterns that remain consistent across different network-dataset-budget
combinations, with complete training metrics available in the following |anonymous repository.

We observe that all of our methods achieve similar levels of weight and activation sparsity,
respectively in the range of 93% to 99% and 97.5% to 99.5%. SU trades off extremely low activation
memory for higher weight memory, possibly linked to the evolutionary search process implicitly
maximizing the amount of parameters updated. In comparison, we observe a more balanced trade-off
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Figure 5: Efficiency metrics comparison across channel selection strategies during MobileNetV2
fine-tuning on Food dataset under memory constraint. Results show evolution of sparsity levels and
computational savings throughout training.

with our TraDy algorithm, suggesting that maximizing weight update does not necessarily result in
improved task performance.

Notably, while Velocity achieves competitive accuracy (second-best among all methods), its
neuron-level selection strategy results in substantially lower activation sparsity (20-40% range)
compared to our channel-based approaches (97-99% range). This is because updating even a
single neuron within a layer requires storing the complete activation map from the previous layer.
Consequently, Velocity also achieves lower FLOPs savings (approximately 88%) compared to TraDy
and other channel-based methods (97%). Moreover, due to its reweighting focusing solely on weight
memory, the Velocity selection strategy results in the selection of computationally expensive neurons
to update, further increasing FLOPs requirements relative to the other strategies explored in our paper.
This is without accounting for the additional computational overhead of computing the velocity
metric for all neurons or the memory overhead of storing all activation values necessary to compute
this metric.

TraDy consistently requires significantly fewer FLOPs for weight derivative computation compared
to both SU and Velocity. This computational advantage stems from the emergence of depthwise
convolution layers among the top-ranked layers, which by design have low computational costs
during both forward and backward passes.

The combination of both high weight and activation sparsity levels makes our method intrinsically
more competitive than strategies that focus on either dimension alone. Methods like Jiang et al.
(2022))’s Back Razor or[Nguyen et al.|(2025)’s ASI achieve similar levels of activation sparsity or
compression rates but without the weight sparsity, while Velocity optimizes weight memory at
the expense of activation memory. TraDy’s balanced approach to both dimensions is particularly
advantageous for on-device learning scenarios where all memory resources are strictly constrained.

5 CONCLUSION

In this work, we introduced TraDy, a memory-efficient transfer learning approach that dynamically
selects channel subsets for update under tight resource constraints. Our method builds on two key
insights: stochastic gradients often exhibit heavy-tailed behavior, leading to inherent sparsity, and
layer importance remains consistent across tasks while channel relevance varies. By stochastically
resampling channels between epochs within architecturally important layers, our approach proves
its effectiveness in several challenging transfer learning scenarios, including training on efficient
architectures designed for on-device deployment.

Future work will explore connections between stochastic channel selection and optimization theory,
and extend our approach to broader network architectures for efficient on-device learning.
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A LIMITATIONS

Related Works. In Sec.[2] we discuss three key approaches to efficient subnetwork selection for
on-device learning, yet our experimental comparisons focus only on Lin ef al.’s SU method. Que-
lennec et al.’s implementation excludes activation memory from their budget calculations, making
direct comparisons methodologically inconsistent with our approach which accounts for both weight
and activation memory. Similarly, while Kwon et al.’s work offers improvements upon SU, the
absence of publicly available code at the time of our research prevented us from implementing and
benchmarking against their method.

On-device Implementation. Although our work aims to enable efficient on-device learning, we
do not present metrics on actual hardware performance (latency, energy consumption, etc.). This
limitation stems from our method’s reliance on dynamic channel reselection between epochs, which
requires specialized implementation for efficient execution on edge devices. Our current implementa-
tion serves as a simulation to demonstrate the potential algorithmic benefits, but further engineering
work is needed to translate these theoretical gains into optimized on-device performance.
Backpropagation Cost. In our work, we report the FLOPs gained regarding the computation of
weight derivatives. We however acknowledge that total backpropagation cost includes both weight
and activation derivative calculations. The latter depends on the deepest layer requiring updates, as
gradients must propagate from the output through all intermediate layers. Our approach typically
selects relevant layers at greater depths than SU schemes, potentially increasing overall backpropa-
gation latency despite weight derivative savings. In future work, we plan to explore techniques for
exploiting the natural sparsity in activation gradients to enable compressed backpropagation, which
would allow efficient updating of deeper layers with minimal accuracy degradation and reduced
computational overhead.

B PARAMETER-EFFICIENT FINE-TUNING

Parameter-Efficient Fine-Tuning (PEFT) methods have emerged as a popular approach for adapt-
ing pre-trained models to downstream tasks while minimizing trainable parameters. Prominent
adapter-based methods like LoRA [Hu et al.|(2022)) and DoRA [Liu et al.| (2024) introduce low-rank
decomposition matrices in parallel with frozen pre-trained weights, achieving impressive parameter
efficiency by updating less than 1% of total parameters. LoRA decomposes weight updates into
low-rank matrices that are trained alongside frozen weights, while DoRA further decomposes weights
into magnitude and direction components, applying low-rank adaptation only to the directional
component. These methods have demonstrated effectiveness across diverse architectures and tasks,
establishing PEFT as a standard paradigm for efficient model adaptation.

However, adapter-based PEFT methods are fundamentally incompatible with extreme memory-
constrained scenarios. These approaches introduce parallel computation paths that require computing
forward pass through both weights and adapters paths during inference (thus increasing computational
cost), and storing the full activation maps to update the adapters modules during backpropagation.
Additionally, adapter modules introduce parameter storage overhead during training, as each forward
pass must execute through both the frozen backbone and adapter pathways. These limitations render
such methods impractical for on-device learning where activation memory constitutes the primary
bottleneck.

Among PEFT methods, PaCA [Woo et al|(2025)) represents the closest approach to our setting, as it
addresses both parameter and activation memory by randomly selecting channels for update within
existing layers rather than introducing adapters. However, PaCA performs uniform random selection
across all network layers without considering layer-wise gradient importance or dynamic resampling
across epochs. In our experimental framework, this approach corresponds directly to our S-Full
Random baseline, which we demonstrate to be the worst-performing selection strategy (Fig.d) in
our ablation study. In practice PaCa outperforms adapter-based strategies and by transitivity, TraDy
provides further improvements in performance due to its innovations.

C LAYER RANKING CONSISTENCY DETAILED ANALYSIS

Let us consider the simple case of R convolutional layers having the same size, intercepted by ReLU
activations, where a skip connection re-injects the input of the first in the final output ), reading
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Y=Aiir-1+Ai =Cw, .y, 0---0Cw,(A;) + A;. We also note Z; the i-th layer pre-activation,
1 the indicator function, and ® the Hadamard product operator. According to (Z), the weights
derivatives could be further expressed as:

oL

oL
YT i+R—1, 1z, R—1 . 10
Wrens conv (A +R-1 { Olz, g >0]> 10)

oy

Vk € [i,i + R — 2], we define J with the following recursive expression:

Ji+R-1)=[% 01z, >0

(1)
J (k) = (conv (T (k+1),W,/ ;) ®1z,50)
Subsequently, V& € [i,i + R — 2],
8?:; = conv (A, J(k)) . (12)
Besides, the input derivative is written as:
oL B oL I_i_a(CWHR,l0"~°CWi+1°CWi) ’ (13)

oA, 0y OA;

with I being the identity tensor.

Given that we’re working with pre-trained networks, we can leverage specific properties established
during their initial training phase. Pre-trained deep neural networks typically undergo regularization
via weight decay and gradient clipping, which constrains weight norms to generally remain below
one. Simultaneously, the inclusion of batch normalization layers during pre-training ensures that
activation norms are similarly bounded. When fine-tuning on downstream tasks that share reasonable
similarity with the pre-training domain, these weight and activation properties tend to be preserved,
as the magnitude of weight adjustments remains relatively small.

For instance, when ||[Wiyy1]|2 < 1,Vk € [i,i+ R — 2] and || A;[|2 < 1, we have that

oL <H oL <_“<H oL
Wi |, Wit |y OWitr-1

(14)

2

While exceptions may occur—certain layers occasionally exhibit weight or activation norms exceed-
ing one—these instances reflect inherent properties of the pre-trained network rather than task-specific
adaptations. The fundamental insight is that layers consistently maintain their relative gradient norm
proportions across diverse downstream tasks. This pattern becomes even more pronounced when

using our reweighted gradient norm metric, as both channel weight and activation memory costs are
architecture-dependent constants within each layer.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 EXPERIMENTAL SETUP

Training. Following Lin et al.| (2022), we employ the same architectures pre-trained on Ima-
geNet Deng et al.|(2009): MobileNetV2 |Sandler et al.[(2018)), ProxylessNAS |Cai et al.[(2019), and
MCUNet|Lin et al.|(2020) (we load the weights provided in their code implementation). We perform
training on a Nvidia Tesla V100 SXM2 and systematically train the classifier layer, independently of
the freezing strategy. Algorithms are implemented in Python using PyTorch 2.0.0. We also provide
results on transformer architectures in the appendix.

Datasets. We collect channel freezing metrics and transfer learning accuracy on multiple downstream
datasets: CIFAR-10 Krizhevsky et al.|(2009), CIFAR-100 |[Krizhevsky et al.|(2009), CUB |Welinder
et al.|(2010), Flowers |[Nilsback & Zisserman| (2008)), Food [Bossard et al.| (2014, Pets |Parkhi et al.
(2012) and VWW (Chowdhery et al. (2019)E| The learning policy consists of cosine learning rate
decay with 5 warm-up epochs |Goyal et al.|(2017), 50 epochs for larger datasets (CIFAR-100, Food,

2Pets: https://creativecommons.org/licenses/by-sa/4.0/, CC BY-SA 4.0 license; ImageNet: https://image-
net.org/download.php the ImageNet license; others are not listed.
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and VWW), 100 epochs for CIFAR-10, and 200 epochs for smaller datasets (CUB, Pets, and Flowers).
Learning rates range from 0.125 to 0, and we do not use weight decay or dropout. Our optimizer
is Stochastic Gradient Descent (SGD) with no momentum (as keeping states in memory would go
against our memory constraint). Each training is performed over three random seeds, and we report
average results with standard deviation.

Experiment Design. For experimental consistency, we adopt the same memory budgets Bpen used
in the original SU work, implementing three distinct memory constraint levels for each network archi-
tecture. These budgets represent the maximum allowable memory consumption for both parameter
storage and activations during the update process. Note that Velocity considers only weight memory
in its budget calculations, so we evaluate it taking the weight component of the budget (excluding
the activation part) for fair comparison. This comparative framework allows us to assess whether
our theoretical insights translate into practical performance advantages while maintaining strictly
equivalent memory constraints. For each channel selection strategy, we perform experiments on the
cross-product of three networks, seven datasets, three memory budgets, and three seeds, producing
189 individual trainings per strategy, thus ensuring the statistical significance of the obtained results.

D.2 PROPOSITIONS VALIDATION ON CNN ARCHITECTURES

mcunet-inl proxyless-w0.3

proxyless-w0.3 mcunet-inl
: CIFAR-10

1.0 1.0

CIFAR-10
0.8
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Figure 6: Spearman correlation of layer gradient ~ Figure 7: T-test of channel gradient norm across
norm across seeds and datasets. seeds and datasets.

Fig.[6]and Fig. [7]respectively correspond to the validation of Proposition [3.1] (layer gradient norm
consistency) and Proposition [3.2] (channel gradient norm variability) as presented in Sec. .1} with
MCUNet and ProxylessNAS architectures. In both cases, the observed results are very similar to
those obtained with MobileNetV2 (Fig. B), thus providing further confirmation of the theoretical
insights proposed in Sec.[3]

D.3 REWEIGHTED GRADIENT NORM METRIC VALIDATION

Here, we experimentally validate the efficacy of our RGN metric introduced in Sec. 3.2. We conduct
a series of experiments where channels are selectively frozen during training based on whether their
gradient norm (either raw or reweighted) falls below a predefined threshold . Even though memory
is not a channel freezing criterion in this setup, by logging metrics such as final accuracy, per-epoch
memory, and FLOPs, we can observe how well a network converges given different levels of partial
freezing. We consider a pre-trained MobileNetV2 that we fine-tune on CIFAR-10 and Flowers. The
results of this study are shown in Fig.[§]

Each plot in Fig. [8]illustrates a progression of freezing strategies: the top-right corner represents a
fully permissive threshold where all channels remain active during fine-tuning, while the bottom-left
represents the most restrictive case where all channels (except the classifier) are frozen. Moving
from right to left along each curve corresponds to increasingly stringent thresholds that progressively
freeze more channels.

A key observation is that gradient norms naturally decrease during training, causing a fixed threshold
¢ to freeze an increasing number of channels as training progresses. To capture this dynamic behavior
across the entire training process, we present cumulative metrics for channel updates.

Fig. [8a| reveals significant difference between raw and reweighted norm-based pruning: with raw
gradient thresholding, accuracy begins to deteriorate as soon as any memory reduction occurs. In
contrast, the reweighted approach maintains full accuracy even when eliminating over half the total
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Figure 8: Channel thresholding results based on gradient norm. Each point represents a complete
training run with respect to a pre-defined threshold ¢. Plots show: (a) final accuracy vs. total memory
usage, (b) final accuracy vs. total computational cost, and (c) total updated channel count vs. total
memory usage.

training memory. Fig. [8b]shows analogous patterns for computational savings.

Fig. [8c|helps us understand such phenomenon as, for the same amount of total memory, raw norm
thresholding removes substantially more channels than the reweighted approach. This occurs because
reweighting prioritizes freezing memory-intensive channels with relatively low gradient-to-memory
ratios. In the raw scenario, channels with high gradient norms often coincide with high memory costs
due to their larger parameter counts, yet these channels may have lower per-parameter importance.
Our reweighting mechanism effectively identifies this inefficiency, allowing channels with high
per-parameter gradient impact to be preserved while eliminating those with disproportionate memory
requirements.

D.4 LAYERS RGN BEHAVIOR

|
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Figure 9: Layers gradient norm and reweighting analysis in the case of a MobileNetV2 fine-tuned
on CIFAR-10. Fig.[9a] represents the raw cumulated gradient norm of layers, Fig. [9b]the per-layer
channel memory cost, and Fig. [9c|the cumulated RGN of layers.

Using a MobileNetV2 fine-tuned on CIFAR-10 as our case study, Fig.[9]illustrates how reweighting
transforms the importance profile across network layers. Fig. [9a] shows the raw gradient norm
cumulated over training epochs, while Fig. Oc| presents the corresponding reweighted values after
accounting for channel memory costs (shown on a logarithmic scale in Fig.[9b). In Fig. we
observe that some layers stand out in terms of cumulated RGN compared to others, namely the
depthwise and the second point-wise layers of the blocks closer to the output.
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Figure 10: Layers RGN cumulative contribution for 3 networks, fine-tuning on CIFAR-10.

With this observation and the knowledge that such topology is shared between downstream tasks
and over time, we deduce that we can freeze a-priori a certain subset of layers as they provide a
negligible contribution to the convergence of the network. To illustrate this point, we plot in Fig. [T0]
the evolution of cumulative RGN (expressed as a percentage of total network RGN) with respect to
the number of layers considered (layers ranked in descending order of RGN). We observe that for
each network, half of the total network RGN is contained within less than a quarter of the layers and
half of the layers correspond to more than 90% of the total RGN.

D.5 ToPK LAYERS SELECTION

90.01
~.89.5
Q .
<
—
S
& 89.0
3
=
2885
iz
£ 83.0 Random
= Det Raw Norm
875y e Det RGN

t
SO
(e}

35 50
Top K layers

Figure 11: Final test top1 accuracies depending on the number of top K layers for different dynamic
channel selection strategies.

Our proposed TraDy algorithm requires pre-selecting a subset of relevant layers for channel sampling.
As established in Sec. [3.3] and experimentally confirmed in Fig. [6] the relative ranking of layers
according to our RGN metric remains consistent across downstream tasks. This enables offline
determination of layer importance by fine-tuning the target network on any available relevant down-
stream task and recording RGN values during training (even a few epochs suffice to establish reliable
rankings).

The critical question becomes determining the optimal number K of top-ranked layers to include in
our selection pool. To investigate this parameter’s impact, we conduct an experimental study using
transfer learning with the smallest memory budget Bner, on CIFAR-10. We use the gradients norm
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information to rank a-priori the layers along their total RGN and select different levels of top K
layers to perform sampling within (K being the variable denoting the number of layers considered).
We compare three dynamic channel selection strategies within the selected layer subsets:

1. Random selection of channels until memory budget By, is met (Random).

2. Deterministic selection of channels with highest RGN values using complete gradient
knowledge until By, is met (Det RGN).

3. Deterministic selection based on raw gradient norm values using complete gradient knowl-
edge until Byen is met (Det Raw Norm).

Fig. [[T]presents the results of this analysis. For random selection, progressively excluding the least
important layers initially improves training accuracy by constraining the sampling pool to more
relevant channels. Performance peaks in the range around 35 to 40 layers before declining as essential
layers are eliminated, highlighting their critical role in convergence. Notably, these top 35 layers
capture 97% of the network’s total RGN as can be observed in Fig. We apply this 97% criterion
to our other architectures, yielding 27 layers for MCUNet and 43 layers for ProxylessNAS.

We acknowledge that our layer selection approach is relatively straightforward and presents opportu-
nities for further refinement. For instance, K could be adaptively determined based on the available
memory budget, maintaining a constant ratio between the budget and the total memory requirements
of the selected layers. However, developing such an adaptive scheme would require substantial
theoretical analysis and extensive empirical validation, which is outside of the scope of this work and
will be explored in future research. As demonstrated in Fig. 5, our current fixed-threshold approach
for determining K enables TraDy to achieve competitive performance against alternative strategies
within the scope of this work.

The RGN-based deterministic approach exhibits remarkable stability across different values of K,
maintaining consistent performance until a decline occurs when reducing from the top 10 to top
5 layers. This behavior aligns with our expectation that gradient importance concentrates heavily
within a small subset of layers as expressed in Sec. [3.2]

The Raw Norm approach demonstrates more complex dynamics. When applied to the entire network,
it yields relatively modest performance, but shows substantial improvement as the least important
layers are progressively excluded. This pattern suggests that these lower-ranked layers contain
channels with high absolute gradient magnitudes but poor gradient-to-memory efficiency ratios,
which our reweighting scheme effectively identifies and deprioritizes.

Intriguingly, Raw Norm selection achieves superior accuracy compared to either RGN or Random
selection within the 20-40 layer range, potentially indicating alternative ways to balance gradient
magnitude and memory efficiency beyond our current formulation. However, as stated in Sec. [3.4]
accessing the gradient norm to perform channel selection is energy inefficient compared to a Random
selection approach. Beyond the 20-layer threshold, both methods converge toward similar perfor-
mance levels, likely because the reweighting has diminishing impact on channel ordering when
focusing on the most gradient-rich layers where memory costs become more uniform.

While Lin et al.|(2022) observed that depthwise layers contribute minimally to accuracy when up-
dated in isolation, [Zhang et al.| (2019) demonstrated that layer contributions cannot be evaluated
independently as they depend critically on which other layers remain frozen or active. Our findings
suggest that the coordinated updating of depthwise layers alongside their corresponding second
pointwise layers within each block creates synergistic effects that promote efficient convergence. This
hypothesis is supported by the consistently high ranking we observe for these layer combinations,
indicating their collective importance for gradient-based optimization under memory constraints.

D.6 EXTENSION OF MAIN RESULTS

Here we provide additional results regarding our main experimental setup described in Sec. [D.6
Tab. [T| presents a report of final test top-1 accuracies across our full experimental matrix spanning
multiple architectures, datasets, and memory budgets when comparing SU and the dynamic selection
strategies. The results for the static variants are displayed appart for readability in Sec. (Tab. ).
We also provide comprehensive training metrics at the following anonymous repository in the
training_metrics folder. This supplementary data includes detailed figures tracking multiple
performance indicators across all fine-tuning experiments: training and test top-1 accuracies and
losses, weight and activation sparsity percentages induced by each channel selection strategy,
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Table 1: Comparison of final top1 test accuracies between SU and dynamic channel selection
strategies over various pretrained CNN models, datasets, and budgets.

Model Binem Method CIFAR-10 CIFAR-100 CUB Flowers Food Pets VWW Average
SU 89.10+£0.26  67.34+0.18  56.85+0.22 80.33+£0.56 61.62+0.13 76.53+0.26 87.73+0.06 74.22+0.74
Velocity 89.84+0.19  68.14+0.17  57.51£030 79.46+0.32 61.79+0.12 76.24+0.23  88.29+0.18 74.47+0.60

27 946 D-Full Random  89.32+0.15  67.85+£0.30 57.42+0.12  79.194026 60.69+0.16 76.63+0.19  88.56+0.12  74.24+0.52
D-Det RGN 89.294+0.08  67.48+0.05 57.70+0.36  79.944+0.54 61.884+0.17 76.80+0.04 88.36+0.21 74.49+0.71

TRaDy 89.88+0.19  68.68+0.17  57.9040.08 79.574+0.52 62.61+0.15 76.99+0.17 88.76+0.15 74.91:+0.64
SU 90.42+0.12  68.73+0.29  57.97+025 81.15+£0.51 64.56+0.17 77.04+0.28 87.76+0.16 75.3740.74
Velocity 90.94+0.31  69.74+0.45 58.45+0.59 80.13+0.62 65.43+0.23 77.14+0.37 88.31+0.22 75.73+1.13

MbV2-w0.35 66592  D-FullRandom 90.06+0.08 68.93+0.28 58.44+0.15 79.59+045 62.96+023 76.88+0.13 88.76+0.34 75.09+0.70

D-Det RGN 90.26+0.05  68.82+0.13  58.73+0.10 80.58+0.40 64.22+0.20 76.65+0.52 88.25+0.15 75.36+0.72

TRaDy 90.79+0.21  69.57+0.27  59.09+0.15 80.09+0.51 64.96+0.22 76.64+0.11 88.22+0.32 75.62+0.75
su 90.69+0.17  69.17+0.09  57.92+035 81.09+0.39 65.33+0.23 77.12+0.16 87.30+0.32 75.5240.70
Velocity 91.37+0.19  70.62+0.13  59.03+0.29 80.57+0.26  66.69+0.3  76.67+0.33  88.11+0.3  76.15+0.70

93 696 D-Full Random  90.69+0.16  69.41+£0.22  58.74+0.08 79.99+0.51 63.90+022 76.51+£0.40 88.85+0.22 75.44+0.77
D-Det RGN 90.70+0.13  69.41+0.28  58.86+0.20 80.93+0.43 65.48+0.07 76.96+0.23 87.84+0.06 75.74+0.62

TRaDy 90.95+0.33  70.04+0.03  58.91+0.15 80.76+0.37 65.89+0.04 77.21+0.32 88.01+0.35 75.9740.70

1252320 Baseline 92.7240.03  72.69+0.16  60.03+0.18  81.88+0.34 70.79+0.20 76.68+0.33 88.584+0.19  77.6240.60

SuU 89.51+0.23  68.41+027 60.68+0.27 82.92+0.43 65.57+0.06 81.15+0.29 89.14+0.10 76.77+0.69

Velocity 89.93+0.11  69.20+0.15  60.69+0.50 82.05+0.34 64.42+021 81.21+0.25 89.53+0.08 76.72+0.72

15936 D-Full Random  90.22+0.06  69.08+0.24  61.21+0.22 82.37+026 65.71+0.16 81.20+0.16 89.96+0.05 77.11+0.48

D-Det RGN 90.29+0.2  69.06+0.28 61.03+0.40 82.34+0.37 65.95+0.07 81.07+0.13 89.90+0.19  77.09+0.69
TRaDy 90.38+0.18  69.72+0.14  61.30+£0.20 82.54+0.59 66.78+0.17 81.10+0.11  89.79+0.27 77.37+0.74
suU 91.65+0.26  70.96+0.23  62.03+0.32 83.79+0.53 69.77+0.03 81.52+0.11 88.67+0.14 78.34+0.73

Velocity 92.24+0.03  72.31+024  62.56+0.42 82.80+0.51 70.42+0.17 81.40+0.59 89.37+0.23 78.73+0.96

MCUNet-inl 64832  D-FullRandom 91.70+0.13  71.58+0.18 62.43+0.10 82.33+£0.31 69.07£0.28 81.26:£0.09 89.75+0.16 78.30:£0.52

D-Det RGN 91.60+0.19  71.11+0.15  61.86+£0.36 82.99+0.56 69.53+0.19 80.97+0.92 89.32+0.04 78.20£1.18

TRaDy 92.16+£0.25  72.11+040  62.20+0.10 83.02+0.52 70.57+0.17 81.11+0.28 89.30+0.27  78.64:+0.83

SU 92.07+0.13  71.58+0.15  61.44+0.41 83.74+047 71.02+0.15 81.07+0.24 88.77+0.31 78.53+0.78

Velocity 92.90+0.11  73.66+0.29  62.53+0.51 82.99+0.54 72.32+0.14 80.87+0.45 89.36+0.04 79.2340.93

112640 D-FullRandom 92.20£0.18 72712016 62.85+£0.11 82.8440.03 70.70£0.05 81.30£0.07 89.54+0.17 78.884033

D-Det RGN 92.01+0.03  72.30+0.13  62.36+0.56 83.02+0.37 71.16+0.32  80.76:+0.27 89.15+0.17  78.6840.82

TRaDy 92.53+0.21  72.95+027  62.12+0.14 83.25+0.36 71.88+0.12 81.29+0.25 89.39+0.31 79.06:+0.66

1309 808 Baseline 93.87+0.10  76.03+0.18  61.62+0.62 83.45+042 75.74+0.14 79.49+0.60 90.06+0.16  80.04+1.00

SU 91.00+£0.25  68.94+0.16  57.04+036 82.36+0.25 63.30+0.11 78.96+0.43 88.26+0.26 75.69+0.74

Velocity 90.69+0.10  69.12+0.06  55.98+0.12 81.85+0.34 61.46+0.13 78.58+0.50 88.67+0.20 75.19+0.67
25984 D-Full Random  90.76+0.23  69.20+£0.24  56.55+0.13  81.54+0.64 62.69+0.12 78.64+0.29 88.90+0.11  75.47+0.80
D-Det RGN 91.06+0.04  69.20+0.16  57.70+£0.34 81.80+0.64 64.22+0.16 78.72+0.45 88.71£0.12  75.92+0.89

TRaDy 91.34+0.14  69.83+0.46 57.62+0.26 82.13+0.34 64.30+0.21 78.73+0.48 88.86+0.21 76.12+0.86

SU 91.88+0.27  70.34+0.19  58.33+£0.36 83.15+0.28 66.49+0.29 78.99+0.74 87.82+0.12  76.71+0.98

Velocity 92.37+0.03  71.84+0.08 58.72+0.72 82.35+£0.20 66.63+0.13  78.9+0.44  88.53+0.18 77.05+0.90

Proxyless-w0.3 5 9o D-Full Random 91.97+036 71.04+0.11 58224043 81.63£0.78 65.62+£036 79.00+0.28 88.86£025 76.62+1.10

D-Det RGN 91.92+0.26  70.67+0.16  58.72+0.23 82.51+0.55 66.83+0.03  79.20+0.6  88.08+0.18  76.85+0.92

TRaDy 92274036  71.39+027 58.80+£0.47 82.39+0.18 67.17+0.10 79.10+0.14 88.31+0.23  77.06+0.73
SU 92.42+0.16  71.32+0.12  58.52+0.25 83.24+0.25 67.18+0.09 79.03+0.24 87.92+0.17 77.09+0.51
Velocity 92.82+0.23  72.51+022  59.71+£0.46 82.61+0.46 68.18+0.06 79.01+022 88.40+0.15 77.61+0.77

101376  D-FullRandom 9221+0.01 = 71.54+021 58.86+0.42 82.41+0.16 66.69+0.02 78.80+£0.39 89.04+0.39 77.08+0.74
D-Det RGN 92.374£0.09  71.06+0.02  59.27+0.61 82.73+0.51 67.97+0.19 79.06+0.63  88.1+£0.03  77.224+1.04

TRaDy 92.50+0.24  72.18+0.33  59.34+0.25 82.80+045 68.05+0.21 79.29+0.28 88.06+0.24 77.46+0.78

1162032 Baseline 93.71+0.12  74.81+0.13  61.75+£0.12 84.44+0.50 72.98+0.09 78.53+0.10 88.95+0.04 79.31+0.56
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computational costs for weight derivative calculations (measured in FLOPs), relative FLOP savings
compared to full fine-tuning, and additional memory-related control metrics. These extensive
logs provide deeper insights into the behavior and efficiency characteristics of each evaluated
approach. The anonymous repository also contains the complete source code required to reproduce
our experimental results, accompanied by detailed execution instructions in the README file and a
Jupyter notebook for generating all figures presented in this paper.

In Tab. [T, memory budgets By, are expressed as memory units, where each unit represents an
individual memory slot. Actual memory consumption is calculated by multiplying these units by the
number of bits per slot. The results reveal consistently low variance across repeated experiments
for each combination of memory budget, architecture, dataset, and selection strategy. While
accuracy differences between methods appear modest in individual comparisons, the extensive
experimental validation across multiple dimensions provides strong statistical evidence for TraDy’s
superior performance. Additionally, TraDy offers practical advantages through its straightforward
implementation compared to alternative approaches.

D.7 RESULTS ON TRANSFORMERS ARCHITECTURES
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Figure 12: Spearman correlation of layer gradi- Figure 13: T-test of channel gradient norm across
ent norm across seeds and datasets. seeds and datasets.

Although TraDy was conceived with the goal of enabling on-device learning, it can easily be adapted
to fine-tune larger architectures with limited memory or energy resources. In this section, we chose
to consider a SwinT model|Liu et al.|(2021) pre-trained on ImageNet and fine-tuned on the seven
downstream tasks introduced in the main paper. Regarding natural language processing (NLP), we
consider both BERT [Kenton & Toutanova! (2019) and RoBERTa|Liu! (2019)), standing as traditional
NLP architectures and which we fine-tune on three tasks: QNLI|Demszky et al.[(2018), RTE |Poliak:
(2020) and SST2 Socher et al.|(2013)).

In Fig. [I2]and Fig.[T3] we reproduce for these three architectures, the layer gradient norm Spearman
correlation and t-test of channel gradient norm as introduced in Sec.|[D.3] Regarding the Spearman
correlation, Fig.[T2]provides confirmation that the transformer architectures considered also follow
the layer invariance with respect to downstream tasks as introduced in Proposition 3.1} Similarly,
Fig.[13] showcases the rejection of the hypothesis of channel topology preservation between datasets.
Interestingly, in the case of the simpler convolutional architectures, we observed in Fig. [7] that
the different seeds of the same dataset resulted in a similar channel topology. In the case of the
transformer architectures, we observe that in most cases, different seeds for the same dataset does not
necessarly result in similar channel topology. We suppose that this is due to the higher expressivity of
these complex architectures, allowing for different subnetworks to perform the same task.

Tab. 2]and Tab. 3] present test accuracies for SwinT and BERT-family models respectively, evaluated
using our three dynamic selection approaches (static approaches result are provided separately in
Sec.[D8|for improved readability). Given that these transformer architectures are substantially larger
than the CNNs in our main experiments (approximately 26-30x larger for SwinT and 77-90x larger
for BERT/RoBERTa in terms of combined weight and activation memory), we explore two distinct
memory constraint scenarios:

1. Absolute Budget Matching: We apply identical memory budgets to those used for CNN
experiments. For transformer architectures, these budgets represent dramatically smaller
proportions of the total network, simulating extreme resource constraints where users seek
to exploit large model capabilities with severely limited computational resources.

2. Proportional Budget Matching: We scale memory budgets to maintain equivalent proportions
of total model memory as in the CNN experiments, enabling more substantial network
portions to participate in updates during each epoch.
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This dual-budget approach allows us to evaluate our method’s effectiveness across different constraint
severity levels while providing insights into transformer fine-tuning behavior under varying resource
limitations.
When comparing SwinT against CNN architectures, all three channel selection methods achieve
superior accuracy even under the most restrictive memory constraints (less than 0.1% of total network
memory). Furthermore, both vision and NLP transformers exhibit smaller accuracy degradation
between the most constrained budgets and full fine-tuning baselines compared to CNNs, despite
these budgets constituting much smaller network fractions. This resilience underscores transformers’
capacity to learn rich, transferable representations during pre-training that remain effective with

minimal parameter updates during downstream adaptation.
eplicates the statistical analysis from Fig. [ for transformer architectures. For SwinT

Fig. I
(Fig.%, we observe an overall consistent strategy ranking with D-Det RGN achieving the best
performance, followed by TraDy. However, for BERT-family models, both approaches appear to
be outperformed by S-Det RGN, though this result carries greater uncertainty due to the smaller
experimental sample size. Additionally, the substantial scale of these architectures suggests that
our top K layer selection methodology, while effective for CNNs, may require more sophisticated
calibration for transformer models of this magnitude.
Limitations and Future Directions for Transformer Architectures. While our experimental results
on transformer architectures demonstrate the applicability of TraDy’s core principles, the performance
gap compared to CNN architectures suggests that deeper understanding of fine-tuning dynamics
in transformers is necessary to achieve optimal results. Recent work on sparse matrix fine-tuning
for LLMs (2025)) provides valuable insights that could inform more effective adaptations
of our approach. Specifically, their analysis reveals that attention layer V vectors require the most
trainable parameters while MLPs need minimal updates—insights that could guide more informed
layer selection strategies for transformer architectures. However, a key challenge remains: such
analyses typically require a warm-up phase with full fine-tuning on downstream task data to compute
Fisher information, whereas our method assumes no downstream task data is available a priori and
enforces strict memory constraints at all times. Merging insights from layer-importance analysis in
transformers with our dynamic channel selection framework represents a promising direction for
future work, potentially enabling more effective memory-constrained fine-tuning of large language

models.
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Figure 14: T-test comparisons of average final test accuracies across multiple experimental dimensions

for each group of transformer architectures.

D.8 STATIC STRATEGIES RESULTS

This section presents experimental results for the static selection strategies evaluated in our study.
Tab. [ displays results for all vision architectures, while Tab. [5] presents findings for NLP models.

23



Under review as a conference paper at ICLR 2026

Table 2: Comparison of final top1 test accuracies between dynamic channel selection strategies with
a pretrained SwinT model fine-tuned on various datasets and budgets.

Model Biem Method CIFAR-10 CIFAR-100 CUB Flowers Food Pets VWW Average
D-Full Random  96.34+0.09 82.77+0.10  71.83+4.14 88.64+0.36 80.66+0.09 90.76+0.33 93.79+0.07 86.40+4.17
27 946 D-Det RGN 96.60+0.04  83.18+0.04 74.56+0.31 88.52+0.28 81.25+0.10 90.91+0.29 93.25+0.17 86.90+0.55
TRaDy 96.30+0.06  82.85+0.16 74.40+0.13 88.61+0.51 80.75+0.05 91.154+0.20 93.73+0.09 86.83+0.60

D-Full Random  96.59+0.20  83.44+0.09  72.76+0.32 82.26+6.56 80.88+0.45 90.61+0.8 93.92+0.10 85.78+6.64

112 640 D-Det RGN 96.82+0.07  83.77+£0.05  74.67+£0.40 89.51+0.04 82.43+0.09 90.78+0.11 92.96+0.14 87.28+0.46

TRaDy 96.74+0.07  83.55+0.13  74.30+0.14  88.60+0.44 81.56+0.10 91.11+0.24 93.83+0.02 87.10+0.55

SwinT D-Full Random  97.06+0.12  84.65+0.24  75.11+0.39  89.10+£0.17 83.59+0.12  90.95+0.22 93.25+0.04 87.67+0.56

633 859 D-Det RGN 97.37+£0.08  85.114£0.09  75.20+0.08 90.45+0.51 83.94+0.05 91.39+0.07 93.32+0.24 88.11+0.59
TRaDy 97.25+£0.03  84.65+0.24  75.11+0.39 89.10£0.17 83.59+0.12  90.95+0.22 93.25+0.04 87.70+0.55

D-Full Random  97.40+0.07  85.77+0.09  75.89+0.29 90.00+£0.49 84.76+0.13 91.55+0.38 93.74+0.17 88.44+0.73

2767 686 D-Det RGN 97.64+0.06  85.88+0.12  76.26+0.42 91.46+0.52 84.95+0.05 91.20+0.20 93.88+0.17 88.75+0.73

TRaDy 97.62+£0.09  85.774+0.09  75.89+0.29 90.00+0.49 84.76+0.13 91.55+0.38 93.74+0.17 88.48+0.73

31889952 Baseline 97.78+0.16  86.304+0.05  74.89+0.20 90.57+0.43 86.07+£0.23  90.184+0.60  93.72+0.10  88.50+0.31

E LLM USAGE

The redaction of this paper received support from LLM to help improve grammar and readability. No
scientific or technical content was generated through LLM. All numerical results, tables and figures
are our own production.
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Table 3: Comparison of final top1 test accuracies between dynamic channel selection strategies with
pretrained BERT and RoBERTa models, fine-tuned on various datasets and budgets.

Model Brem Method QNLI RTE SST2 Average
D-Full Random 84.50+0.23  56.32+0.36 89.414+0.46  76.74+0.63
27 946 D-Det RGN 87.78+0.45 57.28+1.78 91.17+0.40 78.74+1.88
TRaDy 84.384+0.21 57.76+£0.96  89.53+0.13  77.224+0.57
D-Full Random 84.50+0.04 58.24+232  89.414+0.53 77.38+2.38
112 640 D-Det RGN 89.00+0.22  60.05+£2.66  91.25+0.57 80.10+2.73
TRaDy 84.56+0.28 57.88+0.91  89.60+0.26  77.354+0.57
BERT D-Full Random 85.85+0.47 54.99+091 89.76+0.48 76.87+1.13
1912 629 D-Det RGN 89.83+0.09 60.53+0.55 91.48+0.24  80.61+0.61
TRaDy 85.84+0.30  56.68+0.72  90.104+0.35  77.544+0.49
D-Full Random 88.68+0.14  58.24+1.46 89.60+0.46  78.84+1.54
8351308 D-Det RGN 90.47+0.16  60.174+£3.07 91.67+£0.52  80.77+3.12
TRaDy 88.97+0.20 57.16£1.50 90.86+0.18  79.00+0.88
96 225792 Baseline 90.81+£0.27 62.45+1.81 91.74+0.50  81.67+1.90
D-Full Random  89.69+0.04  57.40+0.72  93.23+0.34  80.1140.80
27 946 D-Det RGN 90.97+£0.22  76.2940.55 92.51+040  86.59+0.71
TRaDy 89.71+0.13  57.16+0.75 93.31+0.07  80.06+0.76
D-Full Random  89.99+0.26  58.12+1.25 93.12+0.20 80.41+1.29
112 640 D-Det RGN 90.78+0.23  77.02+0.21  93.00+0.11  86.93+0.33
TRaDy 90.05+0.12  59.57+2.87 93.31+0.13  80.98+1.66
ROBERTa D-Full Random  91.23+0.18  65.10+0.83  93.85+0.65  83.39+1.07
1912 629 D-Det RGN 91.23£0.26  75.094+2.25 93.04+0.26  86.45+2.28
TRaDy 91.23+0.26  68.83+1.78 93.43+1.16 84.50+1.24
D-Full Random  91.544+0.11  73.7742.92  93.27+0.13  86.19+2.92
8 351 308 D-Det RGN 91.90+£0.13  70.28+£15.25 93.58+0.11 85.25+15.25
TRaDy 91.36+0.23  73.53+1.78 93.31+035 86.07+1.83
96 225 792 Baseline 92.314+0.14  76.41+0.55 93.16+0.92  87.29+1.08
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Table 4: Comparison of final topl test accuracies between static channel selection strategies over
various pretrained vision models, datasets, and budgets.

Model Brmem Method CIFAR-10 CIFAR-100 CUB Flowers Food Pets VWW Average

S-Full Random ~ 87.79+021  66.52+0.07  55.6+0.55  79.15+0.43 58214021 76.46+0.04 88.1740.03  73.13£0.76

27 946 S-Det RGN 88.78+0.07  67.254+0.12  57.11+0.49  79.59+0.41 60.05+0.11  76.704+0.26  88.44+0.15  73.99+0.73

S-TopK Random  88.524+0.02  66.93+0.14  56.52+0.55 79.68+0.62 59.52+0.39 76.71+0.55 88.124+0.58  73.71£1.22

S-Full Random  88.62+0.12  66.81+0.12  56.75+0.09  79.28+0.63 59.75+0.78 76.50+0.51  87.874+0.09  73.65+1.14

MbV2-w0.35 66 592 S-Det RGN 89.88+0.06  68.14+0.20 57.84+0.17 80.314+0.25 62.70+0.13 76.61+0.54 88.11+0.23  74.80+0.70

S-TopK Random  89.76+0.27  68.10+0.18  57.49+0.36 80.39+0.46 62.08+0.29 76.64+0.24 87.75+0.13  74.60+0.78

S-Full Random  89.01+0.22  67.21+0.15 56.87+£0.51 79.78+0.79 60.40+0.56 76.58+0.35 88.22+048  74.01%£1.27
93 696 S-Det RGN 90.45+0.10  68.84+0.04  57.80+0.09 80.59+0.11 64.11+0.19 76.75+0.26  87.54+0.06  75.15+0.37
S-TopK Random  90.25+0.05 68.41+036 57.94+0.18 80.42+033 63.14+0.18 76.67+022 87.61+0.15  74.92+0.61

S-Full Random  88.78+0.17  67.78+0.35 60.14+0.18 82.20+0.45 62.68+0.38 81.09+0.19  89.504+0.23  76.02+0.79

15936 S-Det RGN 89.1240.14  67.97+0.10  60.06+£0.22  82.1440.37 63.77+0.15 80.79+0.34  89.55+0.01 76.20+0.59

S-TopK Random  89.08+0.11  67.86+0.30 60.26+0.17 82.34+0.82 63.60+0.20 81.09+0.30  89.56+0.11 76.26+0.97

S-Full Random ~ 90.02+0.52  69.70+£0.02  60.98+0.17 82.67+020 64.87+1.29 80.95+0.53 89.444+0.06  76.95+1.51

MCUNet-inl 64 832 S-Det RGN 89.97+0.18  67.78+0.19  61.80+0.24 80.86+0.96 65.16+0.24 81.76+0.56 89.27+0.12  76.66+1.20
S-TopK Random  90.82+0.27  70.34+0.15  60.90+0.14 82.92+0.54 67.29+0.28 81.34+029 89.114+0.06  77.53+0.76

S-Full Random ~ 90.82+0.13  70.75+0.41  61.22+0.11  82.774035 66.92+0.77 80.80+0.15  89.0140.12  77.47+0.97

112 640 S-Det RGN 91.28+0.13  71.53£020 61.02+0.16 82.69+0.58 69.17+0.23 80.6440.16  88.89+0.17  77.89+0.73

S-TopK Random  91.58+0.13  71.55+0.34  60.95+0.73 82.804+0.26 69.28+0.17 80.42+0.29 88.73+0.33  77.90-£0.98

S-Full Random  89.15+0.33  67.90+0.21  55.22+0.23 81.64+0.54 58.72+026 78.32+0.14  88.394+0.08  74.19+0.77

25984 S-Det RGN 90.19+0.27  68.504+0.20  57.13+0.25 81.89+0.37 61.69+0.19 78.904+0.14  88.51+£0.10  75.26+0.61

S-TopK Random  89.98+0.18  68.33+022  56.17+0.11  81.894+0.50 60.60+0.12 78.17+0.25 88.394+0.19  74.79+0.68

S-Full Random ~ 90.344+0.08  68.78+0.14  56.35+0.38 81.95+0.36 61.32+0.87 78.79+0.48 88.4040.22  75.13£1.16

Proxyless-w0.3 72 960 S-Det RGN 91.30+0.12  70.3840.15  58.26+0.46 82.62+0.46 65.09+0.01 78.674+0.29 87.94+0.54  76.32+0.91
S-TopK Random  91.09+0.14  70.10+£0.32  57.32+0.45 82.15+0.10 63.75+0.16  78.44+0.32 87.86+0.40  75.8140.79

S-Full Random  90.64+0.15  69.37+0.14  57.18+0.63 82.15+0.33 62.60+0.63 78.51+0.20 88.06+0.32  75.50£1.04

101 376 S-Det RGN 91.76+0.15  71.284+035  58.6+0.18  82.82+042 66.45+0.25 78.70+0.49 87.84+0.27  76.78+0.85

S-TopK Random  91.61+033  70.73+0.46  57.88+0.35 82.514+025 64.92+0.17 78.46+0.06 87.584+027  76.24+0.78

S-Full Random ~ 96.314+0.15  82.94+0.07 73.80+0.11  88.34+0.19  80.55+0.21 91.08+0.15  93.63+0.08  86.66--0.39

27 946 S-Det RGN 96.36+0.09  83.05+0.12  74.38+0.12 88.76+0.29 80.62+0.11 91.03+0.11  93.60+0.15  86.83+0.41
S-TopK Random  96.28+0.07  82.97+0.09  74.03+0.07 88.58+0.11 80.58+0.25 90.87+0.21  93.70+0.04  86.72+0.37

S-Full Random  96.54+0.10  83.25+0.36  74.00+£0.23 88.7440.09 81.09+0.07 91.21£0.11  93.64+0.11 86.92+0.48

112 640 S-Det RGN 96.70+0.06  83.594+0.16  74.68+0.20 89.36+0.32 81.97+0.09 90.974+0.24  92.99+0.06  87.18+0.49

S-TopK Random  96.60+0.11  83.29+0.20 74.19+0.34 88.83+0.16 81.19+0.16 90.99+0.03  93.5040.17  86.94-0.50

S-Full Random ~ 96.99+0.12  84.24+020 74.55+0.44 89.33+£0.05 82.99+0.12 91.26+0.07  93.1+0.09 87.49+0.53

633 859 S-Det RGN 97.26+0.05 84.784+0.13  75.69+0.23 90.29+0.18  83.72+0.18 91.2840.28 79.72+23.27 86.11+23.27
S-TopK Random  97.06+0.06  84.24+020 74.55+0.44 89.3310.05 82.99+0.12 91.26+0.07 93.10+0.09  87.50-£0.52

S-Full Random ~ 97.504+0.06 ~ 85.53+0.08 ~ 75.75+0.14 89.84+0.08 84.46+0.12 91.30+0.23  93.734+0.17  88.30+0.36

2767 686 S-Det RGN 97.50+0.06  85.534+0.08  75.75+0.14 89.84+0.08 84.46+0.12 91.304+0.23  93.73+0.17  88.30+0.36
S-TopK Random  97.51+0.11  85.53+0.08  75.75+0.14 89.84+0.08 84.46+0.12 91.30+0.23  93.734+0.17  88.30+0.38
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Table 5: Comparison of final topl test accuracies between static channel selection strategies with
pretrained BERT and RoBERTa models, fine-tuned on various datasets and budgets.

Model Brem Method QNLI RTE SST2 Average
S-Full Random  84.48+0.22 57.284+0.83 89.68+0.11 77.15+0.87
27 946 S-Det RGN 86.42+0.13 58.72+2.18 90.86+0.35 78.67+2.21
S-TopK Random 84.53+0.34 58.24+2.32 89.37+0.13  77.38+2.35
S-Full Random 84.514+0.08 58.724+2.40 89.72+0.48 77.65+2.45
112 640 S-Det RGN 88.30+£0.43 59.09+1.46 91.21+0.46 79.53+1.59
S-TopK Random 84.69+0.19 58.00+2.21 89.53+0.26 77.41+2.23
BERT S-Full Random  86.08+0.49 57.04+1.44 89.91+0.34 77.68+1.56
1912629 S-Det RGN 89.22+0.16 59.81+2.05 91.55+0.29 80.19+2.08
S-TopK Random 86.80+£0.43 58.60+2.05 90.294+0.07 78.56+2.10
S-Full Random  88.55+0.17 56.80+0.21 90.29+0.18  78.55+0.32
8351 308 S-Det RGN 89.87+£0.22 61.01+2.53 91.55+0.29 80.81+2.57
S-TopK Random 88.77+£0.69 57.76+0.72 91.284+0.57 79.27+1.15
S-Full Random  89.68+0.17 56.56+0.75 93.31+0.18 79.8540.79
27 946 S-Det RGN 90.81+0.12 76.90+0.72 93.434+0.35 87.04+0.81
S-TopK Random 89.66+0.07 56.68+0.72 93.314+0.07 79.88+0.73
S-Full Random  89.69+0.10 59.09+3.62 93.39+0.29  80.72+3.63
112 640 S-Det RGN 90.91+0.61 76.77+£2.61 92.85+0.35 86.85+2.70
S-TopK Random 89.60+0.02 56.80+0.55 93.27+0.18 79.89+0.58
ROBERTa S-Full Random  90.95+0.26  62.334+9.49 93.58+0.34  82.2949.50
1912629 S-Det RGN 91.10+0.24 77.26+1.65 92.89+0.34 87.08+1.70
S-TopK Random 91.14+£0.22 62.33+6.14 93.23+0.46 82.23+6.16
S-Full Random 91.28+0.26 72.80+0.75 92.78+0.00 85.62+0.79
8351 308 S-Det RGN 91.204+0.31  75.09+£0.00 93.20+0.66 86.49+0.73
S-TopK Random 91.09+0.17 71.844+3.21 93.084+0.26 85.34+3.22
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